1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/pseudo_fs.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/wait.h> 45 #include <linux/zpool.h> 46 #include <linux/magic.h> 47 48 /* 49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 50 * adjusting internal fragmentation. It also determines the number of 51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 53 * in the beginning of an allocated page are occupied by z3fold header, so 54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 55 * which shows the max number of free chunks in z3fold page, also there will 56 * be 63, or 62, respectively, freelists per pool. 57 */ 58 #define NCHUNKS_ORDER 6 59 60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 61 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 66 67 #define BUDDY_MASK (0x3) 68 #define BUDDY_SHIFT 2 69 #define SLOTS_ALIGN (0x40) 70 71 /***************** 72 * Structures 73 *****************/ 74 struct z3fold_pool; 75 struct z3fold_ops { 76 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 77 }; 78 79 enum buddy { 80 HEADLESS = 0, 81 FIRST, 82 MIDDLE, 83 LAST, 84 BUDDIES_MAX = LAST 85 }; 86 87 struct z3fold_buddy_slots { 88 /* 89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 90 * be enough slots to hold all possible variants 91 */ 92 unsigned long slot[BUDDY_MASK + 1]; 93 unsigned long pool; /* back link + flags */ 94 }; 95 #define HANDLE_FLAG_MASK (0x03) 96 97 /* 98 * struct z3fold_header - z3fold page metadata occupying first chunks of each 99 * z3fold page, except for HEADLESS pages 100 * @buddy: links the z3fold page into the relevant list in the 101 * pool 102 * @page_lock: per-page lock 103 * @refcount: reference count for the z3fold page 104 * @work: work_struct for page layout optimization 105 * @slots: pointer to the structure holding buddy slots 106 * @pool: pointer to the containing pool 107 * @cpu: CPU which this page "belongs" to 108 * @first_chunks: the size of the first buddy in chunks, 0 if free 109 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 110 * @last_chunks: the size of the last buddy in chunks, 0 if free 111 * @first_num: the starting number (for the first handle) 112 * @mapped_count: the number of objects currently mapped 113 */ 114 struct z3fold_header { 115 struct list_head buddy; 116 spinlock_t page_lock; 117 struct kref refcount; 118 struct work_struct work; 119 struct z3fold_buddy_slots *slots; 120 struct z3fold_pool *pool; 121 short cpu; 122 unsigned short first_chunks; 123 unsigned short middle_chunks; 124 unsigned short last_chunks; 125 unsigned short start_middle; 126 unsigned short first_num:2; 127 unsigned short mapped_count:2; 128 }; 129 130 /** 131 * struct z3fold_pool - stores metadata for each z3fold pool 132 * @name: pool name 133 * @lock: protects pool unbuddied/lru lists 134 * @stale_lock: protects pool stale page list 135 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 136 * buddies; the list each z3fold page is added to depends on 137 * the size of its free region. 138 * @lru: list tracking the z3fold pages in LRU order by most recently 139 * added buddy. 140 * @stale: list of pages marked for freeing 141 * @pages_nr: number of z3fold pages in the pool. 142 * @c_handle: cache for z3fold_buddy_slots allocation 143 * @ops: pointer to a structure of user defined operations specified at 144 * pool creation time. 145 * @compact_wq: workqueue for page layout background optimization 146 * @release_wq: workqueue for safe page release 147 * @work: work_struct for safe page release 148 * @inode: inode for z3fold pseudo filesystem 149 * @destroying: bool to stop migration once we start destruction 150 * @isolated: int to count the number of pages currently in isolation 151 * 152 * This structure is allocated at pool creation time and maintains metadata 153 * pertaining to a particular z3fold pool. 154 */ 155 struct z3fold_pool { 156 const char *name; 157 spinlock_t lock; 158 spinlock_t stale_lock; 159 struct list_head *unbuddied; 160 struct list_head lru; 161 struct list_head stale; 162 atomic64_t pages_nr; 163 struct kmem_cache *c_handle; 164 const struct z3fold_ops *ops; 165 struct zpool *zpool; 166 const struct zpool_ops *zpool_ops; 167 struct workqueue_struct *compact_wq; 168 struct workqueue_struct *release_wq; 169 struct wait_queue_head isolate_wait; 170 struct work_struct work; 171 struct inode *inode; 172 bool destroying; 173 int isolated; 174 }; 175 176 /* 177 * Internal z3fold page flags 178 */ 179 enum z3fold_page_flags { 180 PAGE_HEADLESS = 0, 181 MIDDLE_CHUNK_MAPPED, 182 NEEDS_COMPACTING, 183 PAGE_STALE, 184 PAGE_CLAIMED, /* by either reclaim or free */ 185 }; 186 187 /***************** 188 * Helpers 189 *****************/ 190 191 /* Converts an allocation size in bytes to size in z3fold chunks */ 192 static int size_to_chunks(size_t size) 193 { 194 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 195 } 196 197 #define for_each_unbuddied_list(_iter, _begin) \ 198 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 199 200 static void compact_page_work(struct work_struct *w); 201 202 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 203 gfp_t gfp) 204 { 205 struct z3fold_buddy_slots *slots; 206 207 slots = kmem_cache_alloc(pool->c_handle, 208 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE))); 209 210 if (slots) { 211 memset(slots->slot, 0, sizeof(slots->slot)); 212 slots->pool = (unsigned long)pool; 213 } 214 215 return slots; 216 } 217 218 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 219 { 220 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 221 } 222 223 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 224 { 225 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 226 } 227 228 static inline void free_handle(unsigned long handle) 229 { 230 struct z3fold_buddy_slots *slots; 231 int i; 232 bool is_free; 233 234 if (handle & (1 << PAGE_HEADLESS)) 235 return; 236 237 WARN_ON(*(unsigned long *)handle == 0); 238 *(unsigned long *)handle = 0; 239 slots = handle_to_slots(handle); 240 is_free = true; 241 for (i = 0; i <= BUDDY_MASK; i++) { 242 if (slots->slot[i]) { 243 is_free = false; 244 break; 245 } 246 } 247 248 if (is_free) { 249 struct z3fold_pool *pool = slots_to_pool(slots); 250 251 kmem_cache_free(pool->c_handle, slots); 252 } 253 } 254 255 static int z3fold_init_fs_context(struct fs_context *fc) 256 { 257 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM; 258 } 259 260 static struct file_system_type z3fold_fs = { 261 .name = "z3fold", 262 .init_fs_context = z3fold_init_fs_context, 263 .kill_sb = kill_anon_super, 264 }; 265 266 static struct vfsmount *z3fold_mnt; 267 static int z3fold_mount(void) 268 { 269 int ret = 0; 270 271 z3fold_mnt = kern_mount(&z3fold_fs); 272 if (IS_ERR(z3fold_mnt)) 273 ret = PTR_ERR(z3fold_mnt); 274 275 return ret; 276 } 277 278 static void z3fold_unmount(void) 279 { 280 kern_unmount(z3fold_mnt); 281 } 282 283 static const struct address_space_operations z3fold_aops; 284 static int z3fold_register_migration(struct z3fold_pool *pool) 285 { 286 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 287 if (IS_ERR(pool->inode)) { 288 pool->inode = NULL; 289 return 1; 290 } 291 292 pool->inode->i_mapping->private_data = pool; 293 pool->inode->i_mapping->a_ops = &z3fold_aops; 294 return 0; 295 } 296 297 static void z3fold_unregister_migration(struct z3fold_pool *pool) 298 { 299 if (pool->inode) 300 iput(pool->inode); 301 } 302 303 /* Initializes the z3fold header of a newly allocated z3fold page */ 304 static struct z3fold_header *init_z3fold_page(struct page *page, 305 struct z3fold_pool *pool, gfp_t gfp) 306 { 307 struct z3fold_header *zhdr = page_address(page); 308 struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp); 309 310 if (!slots) 311 return NULL; 312 313 INIT_LIST_HEAD(&page->lru); 314 clear_bit(PAGE_HEADLESS, &page->private); 315 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 316 clear_bit(NEEDS_COMPACTING, &page->private); 317 clear_bit(PAGE_STALE, &page->private); 318 clear_bit(PAGE_CLAIMED, &page->private); 319 320 spin_lock_init(&zhdr->page_lock); 321 kref_init(&zhdr->refcount); 322 zhdr->first_chunks = 0; 323 zhdr->middle_chunks = 0; 324 zhdr->last_chunks = 0; 325 zhdr->first_num = 0; 326 zhdr->start_middle = 0; 327 zhdr->cpu = -1; 328 zhdr->slots = slots; 329 zhdr->pool = pool; 330 INIT_LIST_HEAD(&zhdr->buddy); 331 INIT_WORK(&zhdr->work, compact_page_work); 332 return zhdr; 333 } 334 335 /* Resets the struct page fields and frees the page */ 336 static void free_z3fold_page(struct page *page, bool headless) 337 { 338 if (!headless) { 339 lock_page(page); 340 __ClearPageMovable(page); 341 unlock_page(page); 342 } 343 ClearPagePrivate(page); 344 __free_page(page); 345 } 346 347 /* Lock a z3fold page */ 348 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 349 { 350 spin_lock(&zhdr->page_lock); 351 } 352 353 /* Try to lock a z3fold page */ 354 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 355 { 356 return spin_trylock(&zhdr->page_lock); 357 } 358 359 /* Unlock a z3fold page */ 360 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 361 { 362 spin_unlock(&zhdr->page_lock); 363 } 364 365 /* Helper function to build the index */ 366 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 367 { 368 return (bud + zhdr->first_num) & BUDDY_MASK; 369 } 370 371 /* 372 * Encodes the handle of a particular buddy within a z3fold page 373 * Pool lock should be held as this function accesses first_num 374 */ 375 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 376 { 377 struct z3fold_buddy_slots *slots; 378 unsigned long h = (unsigned long)zhdr; 379 int idx = 0; 380 381 /* 382 * For a headless page, its handle is its pointer with the extra 383 * PAGE_HEADLESS bit set 384 */ 385 if (bud == HEADLESS) 386 return h | (1 << PAGE_HEADLESS); 387 388 /* otherwise, return pointer to encoded handle */ 389 idx = __idx(zhdr, bud); 390 h += idx; 391 if (bud == LAST) 392 h |= (zhdr->last_chunks << BUDDY_SHIFT); 393 394 slots = zhdr->slots; 395 slots->slot[idx] = h; 396 return (unsigned long)&slots->slot[idx]; 397 } 398 399 /* Returns the z3fold page where a given handle is stored */ 400 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 401 { 402 unsigned long addr = h; 403 404 if (!(addr & (1 << PAGE_HEADLESS))) 405 addr = *(unsigned long *)h; 406 407 return (struct z3fold_header *)(addr & PAGE_MASK); 408 } 409 410 /* only for LAST bud, returns zero otherwise */ 411 static unsigned short handle_to_chunks(unsigned long handle) 412 { 413 unsigned long addr = *(unsigned long *)handle; 414 415 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 416 } 417 418 /* 419 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 420 * but that doesn't matter. because the masking will result in the 421 * correct buddy number. 422 */ 423 static enum buddy handle_to_buddy(unsigned long handle) 424 { 425 struct z3fold_header *zhdr; 426 unsigned long addr; 427 428 WARN_ON(handle & (1 << PAGE_HEADLESS)); 429 addr = *(unsigned long *)handle; 430 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 431 return (addr - zhdr->first_num) & BUDDY_MASK; 432 } 433 434 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 435 { 436 return zhdr->pool; 437 } 438 439 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 440 { 441 struct page *page = virt_to_page(zhdr); 442 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 443 444 WARN_ON(!list_empty(&zhdr->buddy)); 445 set_bit(PAGE_STALE, &page->private); 446 clear_bit(NEEDS_COMPACTING, &page->private); 447 spin_lock(&pool->lock); 448 if (!list_empty(&page->lru)) 449 list_del_init(&page->lru); 450 spin_unlock(&pool->lock); 451 if (locked) 452 z3fold_page_unlock(zhdr); 453 spin_lock(&pool->stale_lock); 454 list_add(&zhdr->buddy, &pool->stale); 455 queue_work(pool->release_wq, &pool->work); 456 spin_unlock(&pool->stale_lock); 457 } 458 459 static void __attribute__((__unused__)) 460 release_z3fold_page(struct kref *ref) 461 { 462 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 463 refcount); 464 __release_z3fold_page(zhdr, false); 465 } 466 467 static void release_z3fold_page_locked(struct kref *ref) 468 { 469 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 470 refcount); 471 WARN_ON(z3fold_page_trylock(zhdr)); 472 __release_z3fold_page(zhdr, true); 473 } 474 475 static void release_z3fold_page_locked_list(struct kref *ref) 476 { 477 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 478 refcount); 479 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 480 spin_lock(&pool->lock); 481 list_del_init(&zhdr->buddy); 482 spin_unlock(&pool->lock); 483 484 WARN_ON(z3fold_page_trylock(zhdr)); 485 __release_z3fold_page(zhdr, true); 486 } 487 488 static void free_pages_work(struct work_struct *w) 489 { 490 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 491 492 spin_lock(&pool->stale_lock); 493 while (!list_empty(&pool->stale)) { 494 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 495 struct z3fold_header, buddy); 496 struct page *page = virt_to_page(zhdr); 497 498 list_del(&zhdr->buddy); 499 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 500 continue; 501 spin_unlock(&pool->stale_lock); 502 cancel_work_sync(&zhdr->work); 503 free_z3fold_page(page, false); 504 cond_resched(); 505 spin_lock(&pool->stale_lock); 506 } 507 spin_unlock(&pool->stale_lock); 508 } 509 510 /* 511 * Returns the number of free chunks in a z3fold page. 512 * NB: can't be used with HEADLESS pages. 513 */ 514 static int num_free_chunks(struct z3fold_header *zhdr) 515 { 516 int nfree; 517 /* 518 * If there is a middle object, pick up the bigger free space 519 * either before or after it. Otherwise just subtract the number 520 * of chunks occupied by the first and the last objects. 521 */ 522 if (zhdr->middle_chunks != 0) { 523 int nfree_before = zhdr->first_chunks ? 524 0 : zhdr->start_middle - ZHDR_CHUNKS; 525 int nfree_after = zhdr->last_chunks ? 526 0 : TOTAL_CHUNKS - 527 (zhdr->start_middle + zhdr->middle_chunks); 528 nfree = max(nfree_before, nfree_after); 529 } else 530 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 531 return nfree; 532 } 533 534 /* Add to the appropriate unbuddied list */ 535 static inline void add_to_unbuddied(struct z3fold_pool *pool, 536 struct z3fold_header *zhdr) 537 { 538 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 539 zhdr->middle_chunks == 0) { 540 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 541 542 int freechunks = num_free_chunks(zhdr); 543 spin_lock(&pool->lock); 544 list_add(&zhdr->buddy, &unbuddied[freechunks]); 545 spin_unlock(&pool->lock); 546 zhdr->cpu = smp_processor_id(); 547 put_cpu_ptr(pool->unbuddied); 548 } 549 } 550 551 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 552 unsigned short dst_chunk) 553 { 554 void *beg = zhdr; 555 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 556 beg + (zhdr->start_middle << CHUNK_SHIFT), 557 zhdr->middle_chunks << CHUNK_SHIFT); 558 } 559 560 #define BIG_CHUNK_GAP 3 561 /* Has to be called with lock held */ 562 static int z3fold_compact_page(struct z3fold_header *zhdr) 563 { 564 struct page *page = virt_to_page(zhdr); 565 566 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 567 return 0; /* can't move middle chunk, it's used */ 568 569 if (unlikely(PageIsolated(page))) 570 return 0; 571 572 if (zhdr->middle_chunks == 0) 573 return 0; /* nothing to compact */ 574 575 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 576 /* move to the beginning */ 577 mchunk_memmove(zhdr, ZHDR_CHUNKS); 578 zhdr->first_chunks = zhdr->middle_chunks; 579 zhdr->middle_chunks = 0; 580 zhdr->start_middle = 0; 581 zhdr->first_num++; 582 return 1; 583 } 584 585 /* 586 * moving data is expensive, so let's only do that if 587 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 588 */ 589 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 590 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 591 BIG_CHUNK_GAP) { 592 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 593 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 594 return 1; 595 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 596 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 597 + zhdr->middle_chunks) >= 598 BIG_CHUNK_GAP) { 599 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 600 zhdr->middle_chunks; 601 mchunk_memmove(zhdr, new_start); 602 zhdr->start_middle = new_start; 603 return 1; 604 } 605 606 return 0; 607 } 608 609 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 610 { 611 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 612 struct page *page; 613 614 page = virt_to_page(zhdr); 615 if (locked) 616 WARN_ON(z3fold_page_trylock(zhdr)); 617 else 618 z3fold_page_lock(zhdr); 619 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 620 z3fold_page_unlock(zhdr); 621 return; 622 } 623 spin_lock(&pool->lock); 624 list_del_init(&zhdr->buddy); 625 spin_unlock(&pool->lock); 626 627 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 628 atomic64_dec(&pool->pages_nr); 629 return; 630 } 631 632 if (unlikely(PageIsolated(page) || 633 test_bit(PAGE_STALE, &page->private))) { 634 z3fold_page_unlock(zhdr); 635 return; 636 } 637 638 z3fold_compact_page(zhdr); 639 add_to_unbuddied(pool, zhdr); 640 z3fold_page_unlock(zhdr); 641 } 642 643 static void compact_page_work(struct work_struct *w) 644 { 645 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 646 work); 647 648 do_compact_page(zhdr, false); 649 } 650 651 /* returns _locked_ z3fold page header or NULL */ 652 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 653 size_t size, bool can_sleep) 654 { 655 struct z3fold_header *zhdr = NULL; 656 struct page *page; 657 struct list_head *unbuddied; 658 int chunks = size_to_chunks(size), i; 659 660 lookup: 661 /* First, try to find an unbuddied z3fold page. */ 662 unbuddied = get_cpu_ptr(pool->unbuddied); 663 for_each_unbuddied_list(i, chunks) { 664 struct list_head *l = &unbuddied[i]; 665 666 zhdr = list_first_entry_or_null(READ_ONCE(l), 667 struct z3fold_header, buddy); 668 669 if (!zhdr) 670 continue; 671 672 /* Re-check under lock. */ 673 spin_lock(&pool->lock); 674 l = &unbuddied[i]; 675 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 676 struct z3fold_header, buddy)) || 677 !z3fold_page_trylock(zhdr)) { 678 spin_unlock(&pool->lock); 679 zhdr = NULL; 680 put_cpu_ptr(pool->unbuddied); 681 if (can_sleep) 682 cond_resched(); 683 goto lookup; 684 } 685 list_del_init(&zhdr->buddy); 686 zhdr->cpu = -1; 687 spin_unlock(&pool->lock); 688 689 page = virt_to_page(zhdr); 690 if (test_bit(NEEDS_COMPACTING, &page->private)) { 691 z3fold_page_unlock(zhdr); 692 zhdr = NULL; 693 put_cpu_ptr(pool->unbuddied); 694 if (can_sleep) 695 cond_resched(); 696 goto lookup; 697 } 698 699 /* 700 * this page could not be removed from its unbuddied 701 * list while pool lock was held, and then we've taken 702 * page lock so kref_put could not be called before 703 * we got here, so it's safe to just call kref_get() 704 */ 705 kref_get(&zhdr->refcount); 706 break; 707 } 708 put_cpu_ptr(pool->unbuddied); 709 710 if (!zhdr) { 711 int cpu; 712 713 /* look for _exact_ match on other cpus' lists */ 714 for_each_online_cpu(cpu) { 715 struct list_head *l; 716 717 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 718 spin_lock(&pool->lock); 719 l = &unbuddied[chunks]; 720 721 zhdr = list_first_entry_or_null(READ_ONCE(l), 722 struct z3fold_header, buddy); 723 724 if (!zhdr || !z3fold_page_trylock(zhdr)) { 725 spin_unlock(&pool->lock); 726 zhdr = NULL; 727 continue; 728 } 729 list_del_init(&zhdr->buddy); 730 zhdr->cpu = -1; 731 spin_unlock(&pool->lock); 732 733 page = virt_to_page(zhdr); 734 if (test_bit(NEEDS_COMPACTING, &page->private)) { 735 z3fold_page_unlock(zhdr); 736 zhdr = NULL; 737 if (can_sleep) 738 cond_resched(); 739 continue; 740 } 741 kref_get(&zhdr->refcount); 742 break; 743 } 744 } 745 746 return zhdr; 747 } 748 749 /* 750 * API Functions 751 */ 752 753 /** 754 * z3fold_create_pool() - create a new z3fold pool 755 * @name: pool name 756 * @gfp: gfp flags when allocating the z3fold pool structure 757 * @ops: user-defined operations for the z3fold pool 758 * 759 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 760 * failed. 761 */ 762 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 763 const struct z3fold_ops *ops) 764 { 765 struct z3fold_pool *pool = NULL; 766 int i, cpu; 767 768 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 769 if (!pool) 770 goto out; 771 pool->c_handle = kmem_cache_create("z3fold_handle", 772 sizeof(struct z3fold_buddy_slots), 773 SLOTS_ALIGN, 0, NULL); 774 if (!pool->c_handle) 775 goto out_c; 776 spin_lock_init(&pool->lock); 777 spin_lock_init(&pool->stale_lock); 778 init_waitqueue_head(&pool->isolate_wait); 779 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 780 if (!pool->unbuddied) 781 goto out_pool; 782 for_each_possible_cpu(cpu) { 783 struct list_head *unbuddied = 784 per_cpu_ptr(pool->unbuddied, cpu); 785 for_each_unbuddied_list(i, 0) 786 INIT_LIST_HEAD(&unbuddied[i]); 787 } 788 INIT_LIST_HEAD(&pool->lru); 789 INIT_LIST_HEAD(&pool->stale); 790 atomic64_set(&pool->pages_nr, 0); 791 pool->name = name; 792 pool->compact_wq = create_singlethread_workqueue(pool->name); 793 if (!pool->compact_wq) 794 goto out_unbuddied; 795 pool->release_wq = create_singlethread_workqueue(pool->name); 796 if (!pool->release_wq) 797 goto out_wq; 798 if (z3fold_register_migration(pool)) 799 goto out_rwq; 800 INIT_WORK(&pool->work, free_pages_work); 801 pool->ops = ops; 802 return pool; 803 804 out_rwq: 805 destroy_workqueue(pool->release_wq); 806 out_wq: 807 destroy_workqueue(pool->compact_wq); 808 out_unbuddied: 809 free_percpu(pool->unbuddied); 810 out_pool: 811 kmem_cache_destroy(pool->c_handle); 812 out_c: 813 kfree(pool); 814 out: 815 return NULL; 816 } 817 818 static bool pool_isolated_are_drained(struct z3fold_pool *pool) 819 { 820 bool ret; 821 822 spin_lock(&pool->lock); 823 ret = pool->isolated == 0; 824 spin_unlock(&pool->lock); 825 return ret; 826 } 827 /** 828 * z3fold_destroy_pool() - destroys an existing z3fold pool 829 * @pool: the z3fold pool to be destroyed 830 * 831 * The pool should be emptied before this function is called. 832 */ 833 static void z3fold_destroy_pool(struct z3fold_pool *pool) 834 { 835 kmem_cache_destroy(pool->c_handle); 836 /* 837 * We set pool-> destroying under lock to ensure that 838 * z3fold_page_isolate() sees any changes to destroying. This way we 839 * avoid the need for any memory barriers. 840 */ 841 842 spin_lock(&pool->lock); 843 pool->destroying = true; 844 spin_unlock(&pool->lock); 845 846 /* 847 * We need to ensure that no pages are being migrated while we destroy 848 * these workqueues, as migration can queue work on either of the 849 * workqueues. 850 */ 851 wait_event(pool->isolate_wait, !pool_isolated_are_drained(pool)); 852 853 /* 854 * We need to destroy pool->compact_wq before pool->release_wq, 855 * as any pending work on pool->compact_wq will call 856 * queue_work(pool->release_wq, &pool->work). 857 * 858 * There are still outstanding pages until both workqueues are drained, 859 * so we cannot unregister migration until then. 860 */ 861 862 destroy_workqueue(pool->compact_wq); 863 destroy_workqueue(pool->release_wq); 864 z3fold_unregister_migration(pool); 865 kfree(pool); 866 } 867 868 /** 869 * z3fold_alloc() - allocates a region of a given size 870 * @pool: z3fold pool from which to allocate 871 * @size: size in bytes of the desired allocation 872 * @gfp: gfp flags used if the pool needs to grow 873 * @handle: handle of the new allocation 874 * 875 * This function will attempt to find a free region in the pool large enough to 876 * satisfy the allocation request. A search of the unbuddied lists is 877 * performed first. If no suitable free region is found, then a new page is 878 * allocated and added to the pool to satisfy the request. 879 * 880 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 881 * as z3fold pool pages. 882 * 883 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 884 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 885 * a new page. 886 */ 887 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 888 unsigned long *handle) 889 { 890 int chunks = size_to_chunks(size); 891 struct z3fold_header *zhdr = NULL; 892 struct page *page = NULL; 893 enum buddy bud; 894 bool can_sleep = gfpflags_allow_blocking(gfp); 895 896 if (!size) 897 return -EINVAL; 898 899 if (size > PAGE_SIZE) 900 return -ENOSPC; 901 902 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 903 bud = HEADLESS; 904 else { 905 retry: 906 zhdr = __z3fold_alloc(pool, size, can_sleep); 907 if (zhdr) { 908 if (zhdr->first_chunks == 0) { 909 if (zhdr->middle_chunks != 0 && 910 chunks >= zhdr->start_middle) 911 bud = LAST; 912 else 913 bud = FIRST; 914 } else if (zhdr->last_chunks == 0) 915 bud = LAST; 916 else if (zhdr->middle_chunks == 0) 917 bud = MIDDLE; 918 else { 919 if (kref_put(&zhdr->refcount, 920 release_z3fold_page_locked)) 921 atomic64_dec(&pool->pages_nr); 922 else 923 z3fold_page_unlock(zhdr); 924 pr_err("No free chunks in unbuddied\n"); 925 WARN_ON(1); 926 goto retry; 927 } 928 page = virt_to_page(zhdr); 929 goto found; 930 } 931 bud = FIRST; 932 } 933 934 page = NULL; 935 if (can_sleep) { 936 spin_lock(&pool->stale_lock); 937 zhdr = list_first_entry_or_null(&pool->stale, 938 struct z3fold_header, buddy); 939 /* 940 * Before allocating a page, let's see if we can take one from 941 * the stale pages list. cancel_work_sync() can sleep so we 942 * limit this case to the contexts where we can sleep 943 */ 944 if (zhdr) { 945 list_del(&zhdr->buddy); 946 spin_unlock(&pool->stale_lock); 947 cancel_work_sync(&zhdr->work); 948 page = virt_to_page(zhdr); 949 } else { 950 spin_unlock(&pool->stale_lock); 951 } 952 } 953 if (!page) 954 page = alloc_page(gfp); 955 956 if (!page) 957 return -ENOMEM; 958 959 zhdr = init_z3fold_page(page, pool, gfp); 960 if (!zhdr) { 961 __free_page(page); 962 return -ENOMEM; 963 } 964 atomic64_inc(&pool->pages_nr); 965 966 if (bud == HEADLESS) { 967 set_bit(PAGE_HEADLESS, &page->private); 968 goto headless; 969 } 970 if (can_sleep) { 971 lock_page(page); 972 __SetPageMovable(page, pool->inode->i_mapping); 973 unlock_page(page); 974 } else { 975 if (trylock_page(page)) { 976 __SetPageMovable(page, pool->inode->i_mapping); 977 unlock_page(page); 978 } 979 } 980 z3fold_page_lock(zhdr); 981 982 found: 983 if (bud == FIRST) 984 zhdr->first_chunks = chunks; 985 else if (bud == LAST) 986 zhdr->last_chunks = chunks; 987 else { 988 zhdr->middle_chunks = chunks; 989 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 990 } 991 add_to_unbuddied(pool, zhdr); 992 993 headless: 994 spin_lock(&pool->lock); 995 /* Add/move z3fold page to beginning of LRU */ 996 if (!list_empty(&page->lru)) 997 list_del(&page->lru); 998 999 list_add(&page->lru, &pool->lru); 1000 1001 *handle = encode_handle(zhdr, bud); 1002 spin_unlock(&pool->lock); 1003 if (bud != HEADLESS) 1004 z3fold_page_unlock(zhdr); 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * z3fold_free() - frees the allocation associated with the given handle 1011 * @pool: pool in which the allocation resided 1012 * @handle: handle associated with the allocation returned by z3fold_alloc() 1013 * 1014 * In the case that the z3fold page in which the allocation resides is under 1015 * reclaim, as indicated by the PG_reclaim flag being set, this function 1016 * only sets the first|last_chunks to 0. The page is actually freed 1017 * once both buddies are evicted (see z3fold_reclaim_page() below). 1018 */ 1019 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 1020 { 1021 struct z3fold_header *zhdr; 1022 struct page *page; 1023 enum buddy bud; 1024 1025 zhdr = handle_to_z3fold_header(handle); 1026 page = virt_to_page(zhdr); 1027 1028 if (test_bit(PAGE_HEADLESS, &page->private)) { 1029 /* if a headless page is under reclaim, just leave. 1030 * NB: we use test_and_set_bit for a reason: if the bit 1031 * has not been set before, we release this page 1032 * immediately so we don't care about its value any more. 1033 */ 1034 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 1035 spin_lock(&pool->lock); 1036 list_del(&page->lru); 1037 spin_unlock(&pool->lock); 1038 free_z3fold_page(page, true); 1039 atomic64_dec(&pool->pages_nr); 1040 } 1041 return; 1042 } 1043 1044 /* Non-headless case */ 1045 z3fold_page_lock(zhdr); 1046 bud = handle_to_buddy(handle); 1047 1048 switch (bud) { 1049 case FIRST: 1050 zhdr->first_chunks = 0; 1051 break; 1052 case MIDDLE: 1053 zhdr->middle_chunks = 0; 1054 break; 1055 case LAST: 1056 zhdr->last_chunks = 0; 1057 break; 1058 default: 1059 pr_err("%s: unknown bud %d\n", __func__, bud); 1060 WARN_ON(1); 1061 z3fold_page_unlock(zhdr); 1062 return; 1063 } 1064 1065 free_handle(handle); 1066 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1067 atomic64_dec(&pool->pages_nr); 1068 return; 1069 } 1070 if (test_bit(PAGE_CLAIMED, &page->private)) { 1071 z3fold_page_unlock(zhdr); 1072 return; 1073 } 1074 if (unlikely(PageIsolated(page)) || 1075 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1076 z3fold_page_unlock(zhdr); 1077 return; 1078 } 1079 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1080 spin_lock(&pool->lock); 1081 list_del_init(&zhdr->buddy); 1082 spin_unlock(&pool->lock); 1083 zhdr->cpu = -1; 1084 kref_get(&zhdr->refcount); 1085 do_compact_page(zhdr, true); 1086 return; 1087 } 1088 kref_get(&zhdr->refcount); 1089 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1090 z3fold_page_unlock(zhdr); 1091 } 1092 1093 /** 1094 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1095 * @pool: pool from which a page will attempt to be evicted 1096 * @retries: number of pages on the LRU list for which eviction will 1097 * be attempted before failing 1098 * 1099 * z3fold reclaim is different from normal system reclaim in that it is done 1100 * from the bottom, up. This is because only the bottom layer, z3fold, has 1101 * information on how the allocations are organized within each z3fold page. 1102 * This has the potential to create interesting locking situations between 1103 * z3fold and the user, however. 1104 * 1105 * To avoid these, this is how z3fold_reclaim_page() should be called: 1106 * 1107 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1108 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1109 * call the user-defined eviction handler with the pool and handle as 1110 * arguments. 1111 * 1112 * If the handle can not be evicted, the eviction handler should return 1113 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1114 * appropriate list and try the next z3fold page on the LRU up to 1115 * a user defined number of retries. 1116 * 1117 * If the handle is successfully evicted, the eviction handler should 1118 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1119 * contains logic to delay freeing the page if the page is under reclaim, 1120 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1121 * 1122 * If all buddies in the z3fold page are successfully evicted, then the 1123 * z3fold page can be freed. 1124 * 1125 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1126 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1127 * the retry limit was hit. 1128 */ 1129 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1130 { 1131 int i, ret = 0; 1132 struct z3fold_header *zhdr = NULL; 1133 struct page *page = NULL; 1134 struct list_head *pos; 1135 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1136 1137 spin_lock(&pool->lock); 1138 if (!pool->ops || !pool->ops->evict || retries == 0) { 1139 spin_unlock(&pool->lock); 1140 return -EINVAL; 1141 } 1142 for (i = 0; i < retries; i++) { 1143 if (list_empty(&pool->lru)) { 1144 spin_unlock(&pool->lock); 1145 return -EINVAL; 1146 } 1147 list_for_each_prev(pos, &pool->lru) { 1148 page = list_entry(pos, struct page, lru); 1149 1150 /* this bit could have been set by free, in which case 1151 * we pass over to the next page in the pool. 1152 */ 1153 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1154 continue; 1155 1156 if (unlikely(PageIsolated(page))) 1157 continue; 1158 if (test_bit(PAGE_HEADLESS, &page->private)) 1159 break; 1160 1161 zhdr = page_address(page); 1162 if (!z3fold_page_trylock(zhdr)) { 1163 zhdr = NULL; 1164 continue; /* can't evict at this point */ 1165 } 1166 kref_get(&zhdr->refcount); 1167 list_del_init(&zhdr->buddy); 1168 zhdr->cpu = -1; 1169 break; 1170 } 1171 1172 if (!zhdr) 1173 break; 1174 1175 list_del_init(&page->lru); 1176 spin_unlock(&pool->lock); 1177 1178 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1179 /* 1180 * We need encode the handles before unlocking, since 1181 * we can race with free that will set 1182 * (first|last)_chunks to 0 1183 */ 1184 first_handle = 0; 1185 last_handle = 0; 1186 middle_handle = 0; 1187 if (zhdr->first_chunks) 1188 first_handle = encode_handle(zhdr, FIRST); 1189 if (zhdr->middle_chunks) 1190 middle_handle = encode_handle(zhdr, MIDDLE); 1191 if (zhdr->last_chunks) 1192 last_handle = encode_handle(zhdr, LAST); 1193 /* 1194 * it's safe to unlock here because we hold a 1195 * reference to this page 1196 */ 1197 z3fold_page_unlock(zhdr); 1198 } else { 1199 first_handle = encode_handle(zhdr, HEADLESS); 1200 last_handle = middle_handle = 0; 1201 } 1202 1203 /* Issue the eviction callback(s) */ 1204 if (middle_handle) { 1205 ret = pool->ops->evict(pool, middle_handle); 1206 if (ret) 1207 goto next; 1208 } 1209 if (first_handle) { 1210 ret = pool->ops->evict(pool, first_handle); 1211 if (ret) 1212 goto next; 1213 } 1214 if (last_handle) { 1215 ret = pool->ops->evict(pool, last_handle); 1216 if (ret) 1217 goto next; 1218 } 1219 next: 1220 if (test_bit(PAGE_HEADLESS, &page->private)) { 1221 if (ret == 0) { 1222 free_z3fold_page(page, true); 1223 atomic64_dec(&pool->pages_nr); 1224 return 0; 1225 } 1226 spin_lock(&pool->lock); 1227 list_add(&page->lru, &pool->lru); 1228 spin_unlock(&pool->lock); 1229 } else { 1230 z3fold_page_lock(zhdr); 1231 clear_bit(PAGE_CLAIMED, &page->private); 1232 if (kref_put(&zhdr->refcount, 1233 release_z3fold_page_locked)) { 1234 atomic64_dec(&pool->pages_nr); 1235 return 0; 1236 } 1237 /* 1238 * if we are here, the page is still not completely 1239 * free. Take the global pool lock then to be able 1240 * to add it back to the lru list 1241 */ 1242 spin_lock(&pool->lock); 1243 list_add(&page->lru, &pool->lru); 1244 spin_unlock(&pool->lock); 1245 z3fold_page_unlock(zhdr); 1246 } 1247 1248 /* We started off locked to we need to lock the pool back */ 1249 spin_lock(&pool->lock); 1250 } 1251 spin_unlock(&pool->lock); 1252 return -EAGAIN; 1253 } 1254 1255 /** 1256 * z3fold_map() - maps the allocation associated with the given handle 1257 * @pool: pool in which the allocation resides 1258 * @handle: handle associated with the allocation to be mapped 1259 * 1260 * Extracts the buddy number from handle and constructs the pointer to the 1261 * correct starting chunk within the page. 1262 * 1263 * Returns: a pointer to the mapped allocation 1264 */ 1265 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1266 { 1267 struct z3fold_header *zhdr; 1268 struct page *page; 1269 void *addr; 1270 enum buddy buddy; 1271 1272 zhdr = handle_to_z3fold_header(handle); 1273 addr = zhdr; 1274 page = virt_to_page(zhdr); 1275 1276 if (test_bit(PAGE_HEADLESS, &page->private)) 1277 goto out; 1278 1279 z3fold_page_lock(zhdr); 1280 buddy = handle_to_buddy(handle); 1281 switch (buddy) { 1282 case FIRST: 1283 addr += ZHDR_SIZE_ALIGNED; 1284 break; 1285 case MIDDLE: 1286 addr += zhdr->start_middle << CHUNK_SHIFT; 1287 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1288 break; 1289 case LAST: 1290 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1291 break; 1292 default: 1293 pr_err("unknown buddy id %d\n", buddy); 1294 WARN_ON(1); 1295 addr = NULL; 1296 break; 1297 } 1298 1299 if (addr) 1300 zhdr->mapped_count++; 1301 z3fold_page_unlock(zhdr); 1302 out: 1303 return addr; 1304 } 1305 1306 /** 1307 * z3fold_unmap() - unmaps the allocation associated with the given handle 1308 * @pool: pool in which the allocation resides 1309 * @handle: handle associated with the allocation to be unmapped 1310 */ 1311 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1312 { 1313 struct z3fold_header *zhdr; 1314 struct page *page; 1315 enum buddy buddy; 1316 1317 zhdr = handle_to_z3fold_header(handle); 1318 page = virt_to_page(zhdr); 1319 1320 if (test_bit(PAGE_HEADLESS, &page->private)) 1321 return; 1322 1323 z3fold_page_lock(zhdr); 1324 buddy = handle_to_buddy(handle); 1325 if (buddy == MIDDLE) 1326 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1327 zhdr->mapped_count--; 1328 z3fold_page_unlock(zhdr); 1329 } 1330 1331 /** 1332 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1333 * @pool: pool whose size is being queried 1334 * 1335 * Returns: size in pages of the given pool. 1336 */ 1337 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1338 { 1339 return atomic64_read(&pool->pages_nr); 1340 } 1341 1342 /* 1343 * z3fold_dec_isolated() expects to be called while pool->lock is held. 1344 */ 1345 static void z3fold_dec_isolated(struct z3fold_pool *pool) 1346 { 1347 assert_spin_locked(&pool->lock); 1348 VM_BUG_ON(pool->isolated <= 0); 1349 pool->isolated--; 1350 1351 /* 1352 * If we have no more isolated pages, we have to see if 1353 * z3fold_destroy_pool() is waiting for a signal. 1354 */ 1355 if (pool->isolated == 0 && waitqueue_active(&pool->isolate_wait)) 1356 wake_up_all(&pool->isolate_wait); 1357 } 1358 1359 static void z3fold_inc_isolated(struct z3fold_pool *pool) 1360 { 1361 pool->isolated++; 1362 } 1363 1364 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1365 { 1366 struct z3fold_header *zhdr; 1367 struct z3fold_pool *pool; 1368 1369 VM_BUG_ON_PAGE(!PageMovable(page), page); 1370 VM_BUG_ON_PAGE(PageIsolated(page), page); 1371 1372 if (test_bit(PAGE_HEADLESS, &page->private)) 1373 return false; 1374 1375 zhdr = page_address(page); 1376 z3fold_page_lock(zhdr); 1377 if (test_bit(NEEDS_COMPACTING, &page->private) || 1378 test_bit(PAGE_STALE, &page->private)) 1379 goto out; 1380 1381 pool = zhdr_to_pool(zhdr); 1382 1383 if (zhdr->mapped_count == 0) { 1384 kref_get(&zhdr->refcount); 1385 if (!list_empty(&zhdr->buddy)) 1386 list_del_init(&zhdr->buddy); 1387 spin_lock(&pool->lock); 1388 if (!list_empty(&page->lru)) 1389 list_del(&page->lru); 1390 /* 1391 * We need to check for destruction while holding pool->lock, as 1392 * otherwise destruction could see 0 isolated pages, and 1393 * proceed. 1394 */ 1395 if (unlikely(pool->destroying)) { 1396 spin_unlock(&pool->lock); 1397 /* 1398 * If this page isn't stale, somebody else holds a 1399 * reference to it. Let't drop our refcount so that they 1400 * can call the release logic. 1401 */ 1402 if (unlikely(kref_put(&zhdr->refcount, 1403 release_z3fold_page_locked))) { 1404 /* 1405 * If we get here we have kref problems, so we 1406 * should freak out. 1407 */ 1408 WARN(1, "Z3fold is experiencing kref problems\n"); 1409 z3fold_page_unlock(zhdr); 1410 return false; 1411 } 1412 z3fold_page_unlock(zhdr); 1413 return false; 1414 } 1415 1416 1417 z3fold_inc_isolated(pool); 1418 spin_unlock(&pool->lock); 1419 z3fold_page_unlock(zhdr); 1420 return true; 1421 } 1422 out: 1423 z3fold_page_unlock(zhdr); 1424 return false; 1425 } 1426 1427 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1428 struct page *page, enum migrate_mode mode) 1429 { 1430 struct z3fold_header *zhdr, *new_zhdr; 1431 struct z3fold_pool *pool; 1432 struct address_space *new_mapping; 1433 1434 VM_BUG_ON_PAGE(!PageMovable(page), page); 1435 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1436 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1437 1438 zhdr = page_address(page); 1439 pool = zhdr_to_pool(zhdr); 1440 1441 if (!z3fold_page_trylock(zhdr)) { 1442 return -EAGAIN; 1443 } 1444 if (zhdr->mapped_count != 0) { 1445 z3fold_page_unlock(zhdr); 1446 return -EBUSY; 1447 } 1448 if (work_pending(&zhdr->work)) { 1449 z3fold_page_unlock(zhdr); 1450 return -EAGAIN; 1451 } 1452 new_zhdr = page_address(newpage); 1453 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1454 newpage->private = page->private; 1455 page->private = 0; 1456 z3fold_page_unlock(zhdr); 1457 spin_lock_init(&new_zhdr->page_lock); 1458 INIT_WORK(&new_zhdr->work, compact_page_work); 1459 /* 1460 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty, 1461 * so we only have to reinitialize it. 1462 */ 1463 INIT_LIST_HEAD(&new_zhdr->buddy); 1464 new_mapping = page_mapping(page); 1465 __ClearPageMovable(page); 1466 ClearPagePrivate(page); 1467 1468 get_page(newpage); 1469 z3fold_page_lock(new_zhdr); 1470 if (new_zhdr->first_chunks) 1471 encode_handle(new_zhdr, FIRST); 1472 if (new_zhdr->last_chunks) 1473 encode_handle(new_zhdr, LAST); 1474 if (new_zhdr->middle_chunks) 1475 encode_handle(new_zhdr, MIDDLE); 1476 set_bit(NEEDS_COMPACTING, &newpage->private); 1477 new_zhdr->cpu = smp_processor_id(); 1478 spin_lock(&pool->lock); 1479 list_add(&newpage->lru, &pool->lru); 1480 spin_unlock(&pool->lock); 1481 __SetPageMovable(newpage, new_mapping); 1482 z3fold_page_unlock(new_zhdr); 1483 1484 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1485 1486 spin_lock(&pool->lock); 1487 z3fold_dec_isolated(pool); 1488 spin_unlock(&pool->lock); 1489 1490 page_mapcount_reset(page); 1491 put_page(page); 1492 return 0; 1493 } 1494 1495 static void z3fold_page_putback(struct page *page) 1496 { 1497 struct z3fold_header *zhdr; 1498 struct z3fold_pool *pool; 1499 1500 zhdr = page_address(page); 1501 pool = zhdr_to_pool(zhdr); 1502 1503 z3fold_page_lock(zhdr); 1504 if (!list_empty(&zhdr->buddy)) 1505 list_del_init(&zhdr->buddy); 1506 INIT_LIST_HEAD(&page->lru); 1507 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1508 atomic64_dec(&pool->pages_nr); 1509 spin_lock(&pool->lock); 1510 z3fold_dec_isolated(pool); 1511 spin_unlock(&pool->lock); 1512 return; 1513 } 1514 spin_lock(&pool->lock); 1515 list_add(&page->lru, &pool->lru); 1516 z3fold_dec_isolated(pool); 1517 spin_unlock(&pool->lock); 1518 z3fold_page_unlock(zhdr); 1519 } 1520 1521 static const struct address_space_operations z3fold_aops = { 1522 .isolate_page = z3fold_page_isolate, 1523 .migratepage = z3fold_page_migrate, 1524 .putback_page = z3fold_page_putback, 1525 }; 1526 1527 /***************** 1528 * zpool 1529 ****************/ 1530 1531 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1532 { 1533 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1534 return pool->zpool_ops->evict(pool->zpool, handle); 1535 else 1536 return -ENOENT; 1537 } 1538 1539 static const struct z3fold_ops z3fold_zpool_ops = { 1540 .evict = z3fold_zpool_evict 1541 }; 1542 1543 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1544 const struct zpool_ops *zpool_ops, 1545 struct zpool *zpool) 1546 { 1547 struct z3fold_pool *pool; 1548 1549 pool = z3fold_create_pool(name, gfp, 1550 zpool_ops ? &z3fold_zpool_ops : NULL); 1551 if (pool) { 1552 pool->zpool = zpool; 1553 pool->zpool_ops = zpool_ops; 1554 } 1555 return pool; 1556 } 1557 1558 static void z3fold_zpool_destroy(void *pool) 1559 { 1560 z3fold_destroy_pool(pool); 1561 } 1562 1563 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1564 unsigned long *handle) 1565 { 1566 return z3fold_alloc(pool, size, gfp, handle); 1567 } 1568 static void z3fold_zpool_free(void *pool, unsigned long handle) 1569 { 1570 z3fold_free(pool, handle); 1571 } 1572 1573 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1574 unsigned int *reclaimed) 1575 { 1576 unsigned int total = 0; 1577 int ret = -EINVAL; 1578 1579 while (total < pages) { 1580 ret = z3fold_reclaim_page(pool, 8); 1581 if (ret < 0) 1582 break; 1583 total++; 1584 } 1585 1586 if (reclaimed) 1587 *reclaimed = total; 1588 1589 return ret; 1590 } 1591 1592 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1593 enum zpool_mapmode mm) 1594 { 1595 return z3fold_map(pool, handle); 1596 } 1597 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1598 { 1599 z3fold_unmap(pool, handle); 1600 } 1601 1602 static u64 z3fold_zpool_total_size(void *pool) 1603 { 1604 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1605 } 1606 1607 static struct zpool_driver z3fold_zpool_driver = { 1608 .type = "z3fold", 1609 .owner = THIS_MODULE, 1610 .create = z3fold_zpool_create, 1611 .destroy = z3fold_zpool_destroy, 1612 .malloc = z3fold_zpool_malloc, 1613 .free = z3fold_zpool_free, 1614 .shrink = z3fold_zpool_shrink, 1615 .map = z3fold_zpool_map, 1616 .unmap = z3fold_zpool_unmap, 1617 .total_size = z3fold_zpool_total_size, 1618 }; 1619 1620 MODULE_ALIAS("zpool-z3fold"); 1621 1622 static int __init init_z3fold(void) 1623 { 1624 int ret; 1625 1626 /* Make sure the z3fold header is not larger than the page size */ 1627 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1628 ret = z3fold_mount(); 1629 if (ret) 1630 return ret; 1631 1632 zpool_register_driver(&z3fold_zpool_driver); 1633 1634 return 0; 1635 } 1636 1637 static void __exit exit_z3fold(void) 1638 { 1639 z3fold_unmount(); 1640 zpool_unregister_driver(&z3fold_zpool_driver); 1641 } 1642 1643 module_init(init_z3fold); 1644 module_exit(exit_z3fold); 1645 1646 MODULE_LICENSE("GPL"); 1647 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1648 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1649