1 /* 2 * z3fold.c 3 * 4 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 5 * Copyright (C) 2016, Sony Mobile Communications Inc. 6 * 7 * This implementation is based on zbud written by Seth Jennings. 8 * 9 * z3fold is an special purpose allocator for storing compressed pages. It 10 * can store up to three compressed pages per page which improves the 11 * compression ratio of zbud while retaining its main concepts (e. g. always 12 * storing an integral number of objects per page) and simplicity. 13 * It still has simple and deterministic reclaim properties that make it 14 * preferable to a higher density approach (with no requirement on integral 15 * number of object per page) when reclaim is used. 16 * 17 * As in zbud, pages are divided into "chunks". The size of the chunks is 18 * fixed at compile time and is determined by NCHUNKS_ORDER below. 19 * 20 * z3fold doesn't export any API and is meant to be used via zpool API. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/atomic.h> 26 #include <linux/sched.h> 27 #include <linux/cpumask.h> 28 #include <linux/dcache.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/fs.h> 39 #include <linux/preempt.h> 40 #include <linux/workqueue.h> 41 #include <linux/slab.h> 42 #include <linux/spinlock.h> 43 #include <linux/zpool.h> 44 45 /* 46 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 47 * adjusting internal fragmentation. It also determines the number of 48 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 49 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 50 * in the beginning of an allocated page are occupied by z3fold header, so 51 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 52 * which shows the max number of free chunks in z3fold page, also there will 53 * be 63, or 62, respectively, freelists per pool. 54 */ 55 #define NCHUNKS_ORDER 6 56 57 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 58 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 59 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 60 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 61 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 62 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 63 64 #define BUDDY_MASK (0x3) 65 #define BUDDY_SHIFT 2 66 #define SLOTS_ALIGN (0x40) 67 68 /***************** 69 * Structures 70 *****************/ 71 struct z3fold_pool; 72 struct z3fold_ops { 73 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 74 }; 75 76 enum buddy { 77 HEADLESS = 0, 78 FIRST, 79 MIDDLE, 80 LAST, 81 BUDDIES_MAX = LAST 82 }; 83 84 struct z3fold_buddy_slots { 85 /* 86 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 87 * be enough slots to hold all possible variants 88 */ 89 unsigned long slot[BUDDY_MASK + 1]; 90 unsigned long pool; /* back link + flags */ 91 }; 92 #define HANDLE_FLAG_MASK (0x03) 93 94 /* 95 * struct z3fold_header - z3fold page metadata occupying first chunks of each 96 * z3fold page, except for HEADLESS pages 97 * @buddy: links the z3fold page into the relevant list in the 98 * pool 99 * @page_lock: per-page lock 100 * @refcount: reference count for the z3fold page 101 * @work: work_struct for page layout optimization 102 * @slots: pointer to the structure holding buddy slots 103 * @cpu: CPU which this page "belongs" to 104 * @first_chunks: the size of the first buddy in chunks, 0 if free 105 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 106 * @last_chunks: the size of the last buddy in chunks, 0 if free 107 * @first_num: the starting number (for the first handle) 108 * @mapped_count: the number of objects currently mapped 109 */ 110 struct z3fold_header { 111 struct list_head buddy; 112 spinlock_t page_lock; 113 struct kref refcount; 114 struct work_struct work; 115 struct z3fold_buddy_slots *slots; 116 short cpu; 117 unsigned short first_chunks; 118 unsigned short middle_chunks; 119 unsigned short last_chunks; 120 unsigned short start_middle; 121 unsigned short first_num:2; 122 unsigned short mapped_count:2; 123 }; 124 125 /** 126 * struct z3fold_pool - stores metadata for each z3fold pool 127 * @name: pool name 128 * @lock: protects pool unbuddied/lru lists 129 * @stale_lock: protects pool stale page list 130 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 131 * buddies; the list each z3fold page is added to depends on 132 * the size of its free region. 133 * @lru: list tracking the z3fold pages in LRU order by most recently 134 * added buddy. 135 * @stale: list of pages marked for freeing 136 * @pages_nr: number of z3fold pages in the pool. 137 * @c_handle: cache for z3fold_buddy_slots allocation 138 * @ops: pointer to a structure of user defined operations specified at 139 * pool creation time. 140 * @compact_wq: workqueue for page layout background optimization 141 * @release_wq: workqueue for safe page release 142 * @work: work_struct for safe page release 143 * @inode: inode for z3fold pseudo filesystem 144 * 145 * This structure is allocated at pool creation time and maintains metadata 146 * pertaining to a particular z3fold pool. 147 */ 148 struct z3fold_pool { 149 const char *name; 150 spinlock_t lock; 151 spinlock_t stale_lock; 152 struct list_head *unbuddied; 153 struct list_head lru; 154 struct list_head stale; 155 atomic64_t pages_nr; 156 struct kmem_cache *c_handle; 157 const struct z3fold_ops *ops; 158 struct zpool *zpool; 159 const struct zpool_ops *zpool_ops; 160 struct workqueue_struct *compact_wq; 161 struct workqueue_struct *release_wq; 162 struct work_struct work; 163 struct inode *inode; 164 }; 165 166 /* 167 * Internal z3fold page flags 168 */ 169 enum z3fold_page_flags { 170 PAGE_HEADLESS = 0, 171 MIDDLE_CHUNK_MAPPED, 172 NEEDS_COMPACTING, 173 PAGE_STALE, 174 PAGE_CLAIMED, /* by either reclaim or free */ 175 }; 176 177 /***************** 178 * Helpers 179 *****************/ 180 181 /* Converts an allocation size in bytes to size in z3fold chunks */ 182 static int size_to_chunks(size_t size) 183 { 184 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 185 } 186 187 #define for_each_unbuddied_list(_iter, _begin) \ 188 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 189 190 static void compact_page_work(struct work_struct *w); 191 192 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool) 193 { 194 struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle, 195 GFP_KERNEL); 196 197 if (slots) { 198 memset(slots->slot, 0, sizeof(slots->slot)); 199 slots->pool = (unsigned long)pool; 200 } 201 202 return slots; 203 } 204 205 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 206 { 207 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 208 } 209 210 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 211 { 212 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 213 } 214 215 static inline void free_handle(unsigned long handle) 216 { 217 struct z3fold_buddy_slots *slots; 218 int i; 219 bool is_free; 220 221 if (handle & (1 << PAGE_HEADLESS)) 222 return; 223 224 WARN_ON(*(unsigned long *)handle == 0); 225 *(unsigned long *)handle = 0; 226 slots = handle_to_slots(handle); 227 is_free = true; 228 for (i = 0; i <= BUDDY_MASK; i++) { 229 if (slots->slot[i]) { 230 is_free = false; 231 break; 232 } 233 } 234 235 if (is_free) { 236 struct z3fold_pool *pool = slots_to_pool(slots); 237 238 kmem_cache_free(pool->c_handle, slots); 239 } 240 } 241 242 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type, 243 int flags, const char *dev_name, void *data) 244 { 245 static const struct dentry_operations ops = { 246 .d_dname = simple_dname, 247 }; 248 249 return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33); 250 } 251 252 static struct file_system_type z3fold_fs = { 253 .name = "z3fold", 254 .mount = z3fold_do_mount, 255 .kill_sb = kill_anon_super, 256 }; 257 258 static struct vfsmount *z3fold_mnt; 259 static int z3fold_mount(void) 260 { 261 int ret = 0; 262 263 z3fold_mnt = kern_mount(&z3fold_fs); 264 if (IS_ERR(z3fold_mnt)) 265 ret = PTR_ERR(z3fold_mnt); 266 267 return ret; 268 } 269 270 static void z3fold_unmount(void) 271 { 272 kern_unmount(z3fold_mnt); 273 } 274 275 static const struct address_space_operations z3fold_aops; 276 static int z3fold_register_migration(struct z3fold_pool *pool) 277 { 278 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 279 if (IS_ERR(pool->inode)) { 280 pool->inode = NULL; 281 return 1; 282 } 283 284 pool->inode->i_mapping->private_data = pool; 285 pool->inode->i_mapping->a_ops = &z3fold_aops; 286 return 0; 287 } 288 289 static void z3fold_unregister_migration(struct z3fold_pool *pool) 290 { 291 if (pool->inode) 292 iput(pool->inode); 293 } 294 295 /* Initializes the z3fold header of a newly allocated z3fold page */ 296 static struct z3fold_header *init_z3fold_page(struct page *page, 297 struct z3fold_pool *pool) 298 { 299 struct z3fold_header *zhdr = page_address(page); 300 struct z3fold_buddy_slots *slots = alloc_slots(pool); 301 302 if (!slots) 303 return NULL; 304 305 INIT_LIST_HEAD(&page->lru); 306 clear_bit(PAGE_HEADLESS, &page->private); 307 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 308 clear_bit(NEEDS_COMPACTING, &page->private); 309 clear_bit(PAGE_STALE, &page->private); 310 clear_bit(PAGE_CLAIMED, &page->private); 311 312 spin_lock_init(&zhdr->page_lock); 313 kref_init(&zhdr->refcount); 314 zhdr->first_chunks = 0; 315 zhdr->middle_chunks = 0; 316 zhdr->last_chunks = 0; 317 zhdr->first_num = 0; 318 zhdr->start_middle = 0; 319 zhdr->cpu = -1; 320 zhdr->slots = slots; 321 INIT_LIST_HEAD(&zhdr->buddy); 322 INIT_WORK(&zhdr->work, compact_page_work); 323 return zhdr; 324 } 325 326 /* Resets the struct page fields and frees the page */ 327 static void free_z3fold_page(struct page *page, bool headless) 328 { 329 if (!headless) { 330 lock_page(page); 331 __ClearPageMovable(page); 332 unlock_page(page); 333 } 334 ClearPagePrivate(page); 335 __free_page(page); 336 } 337 338 /* Lock a z3fold page */ 339 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 340 { 341 spin_lock(&zhdr->page_lock); 342 } 343 344 /* Try to lock a z3fold page */ 345 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 346 { 347 return spin_trylock(&zhdr->page_lock); 348 } 349 350 /* Unlock a z3fold page */ 351 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 352 { 353 spin_unlock(&zhdr->page_lock); 354 } 355 356 /* Helper function to build the index */ 357 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 358 { 359 return (bud + zhdr->first_num) & BUDDY_MASK; 360 } 361 362 /* 363 * Encodes the handle of a particular buddy within a z3fold page 364 * Pool lock should be held as this function accesses first_num 365 */ 366 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 367 { 368 struct z3fold_buddy_slots *slots; 369 unsigned long h = (unsigned long)zhdr; 370 int idx = 0; 371 372 /* 373 * For a headless page, its handle is its pointer with the extra 374 * PAGE_HEADLESS bit set 375 */ 376 if (bud == HEADLESS) 377 return h | (1 << PAGE_HEADLESS); 378 379 /* otherwise, return pointer to encoded handle */ 380 idx = __idx(zhdr, bud); 381 h += idx; 382 if (bud == LAST) 383 h |= (zhdr->last_chunks << BUDDY_SHIFT); 384 385 slots = zhdr->slots; 386 slots->slot[idx] = h; 387 return (unsigned long)&slots->slot[idx]; 388 } 389 390 /* Returns the z3fold page where a given handle is stored */ 391 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 392 { 393 unsigned long addr = h; 394 395 if (!(addr & (1 << PAGE_HEADLESS))) 396 addr = *(unsigned long *)h; 397 398 return (struct z3fold_header *)(addr & PAGE_MASK); 399 } 400 401 /* only for LAST bud, returns zero otherwise */ 402 static unsigned short handle_to_chunks(unsigned long handle) 403 { 404 unsigned long addr = *(unsigned long *)handle; 405 406 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 407 } 408 409 /* 410 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 411 * but that doesn't matter. because the masking will result in the 412 * correct buddy number. 413 */ 414 static enum buddy handle_to_buddy(unsigned long handle) 415 { 416 struct z3fold_header *zhdr; 417 unsigned long addr; 418 419 WARN_ON(handle & (1 << PAGE_HEADLESS)); 420 addr = *(unsigned long *)handle; 421 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 422 return (addr - zhdr->first_num) & BUDDY_MASK; 423 } 424 425 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 426 { 427 return slots_to_pool(zhdr->slots); 428 } 429 430 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 431 { 432 struct page *page = virt_to_page(zhdr); 433 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 434 435 WARN_ON(!list_empty(&zhdr->buddy)); 436 set_bit(PAGE_STALE, &page->private); 437 clear_bit(NEEDS_COMPACTING, &page->private); 438 spin_lock(&pool->lock); 439 if (!list_empty(&page->lru)) 440 list_del_init(&page->lru); 441 spin_unlock(&pool->lock); 442 if (locked) 443 z3fold_page_unlock(zhdr); 444 spin_lock(&pool->stale_lock); 445 list_add(&zhdr->buddy, &pool->stale); 446 queue_work(pool->release_wq, &pool->work); 447 spin_unlock(&pool->stale_lock); 448 } 449 450 static void __attribute__((__unused__)) 451 release_z3fold_page(struct kref *ref) 452 { 453 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 454 refcount); 455 __release_z3fold_page(zhdr, false); 456 } 457 458 static void release_z3fold_page_locked(struct kref *ref) 459 { 460 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 461 refcount); 462 WARN_ON(z3fold_page_trylock(zhdr)); 463 __release_z3fold_page(zhdr, true); 464 } 465 466 static void release_z3fold_page_locked_list(struct kref *ref) 467 { 468 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 469 refcount); 470 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 471 spin_lock(&pool->lock); 472 list_del_init(&zhdr->buddy); 473 spin_unlock(&pool->lock); 474 475 WARN_ON(z3fold_page_trylock(zhdr)); 476 __release_z3fold_page(zhdr, true); 477 } 478 479 static void free_pages_work(struct work_struct *w) 480 { 481 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 482 483 spin_lock(&pool->stale_lock); 484 while (!list_empty(&pool->stale)) { 485 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 486 struct z3fold_header, buddy); 487 struct page *page = virt_to_page(zhdr); 488 489 list_del(&zhdr->buddy); 490 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 491 continue; 492 spin_unlock(&pool->stale_lock); 493 cancel_work_sync(&zhdr->work); 494 free_z3fold_page(page, false); 495 cond_resched(); 496 spin_lock(&pool->stale_lock); 497 } 498 spin_unlock(&pool->stale_lock); 499 } 500 501 /* 502 * Returns the number of free chunks in a z3fold page. 503 * NB: can't be used with HEADLESS pages. 504 */ 505 static int num_free_chunks(struct z3fold_header *zhdr) 506 { 507 int nfree; 508 /* 509 * If there is a middle object, pick up the bigger free space 510 * either before or after it. Otherwise just subtract the number 511 * of chunks occupied by the first and the last objects. 512 */ 513 if (zhdr->middle_chunks != 0) { 514 int nfree_before = zhdr->first_chunks ? 515 0 : zhdr->start_middle - ZHDR_CHUNKS; 516 int nfree_after = zhdr->last_chunks ? 517 0 : TOTAL_CHUNKS - 518 (zhdr->start_middle + zhdr->middle_chunks); 519 nfree = max(nfree_before, nfree_after); 520 } else 521 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 522 return nfree; 523 } 524 525 /* Add to the appropriate unbuddied list */ 526 static inline void add_to_unbuddied(struct z3fold_pool *pool, 527 struct z3fold_header *zhdr) 528 { 529 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 530 zhdr->middle_chunks == 0) { 531 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 532 533 int freechunks = num_free_chunks(zhdr); 534 spin_lock(&pool->lock); 535 list_add(&zhdr->buddy, &unbuddied[freechunks]); 536 spin_unlock(&pool->lock); 537 zhdr->cpu = smp_processor_id(); 538 put_cpu_ptr(pool->unbuddied); 539 } 540 } 541 542 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 543 unsigned short dst_chunk) 544 { 545 void *beg = zhdr; 546 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 547 beg + (zhdr->start_middle << CHUNK_SHIFT), 548 zhdr->middle_chunks << CHUNK_SHIFT); 549 } 550 551 #define BIG_CHUNK_GAP 3 552 /* Has to be called with lock held */ 553 static int z3fold_compact_page(struct z3fold_header *zhdr) 554 { 555 struct page *page = virt_to_page(zhdr); 556 557 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 558 return 0; /* can't move middle chunk, it's used */ 559 560 if (unlikely(PageIsolated(page))) 561 return 0; 562 563 if (zhdr->middle_chunks == 0) 564 return 0; /* nothing to compact */ 565 566 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 567 /* move to the beginning */ 568 mchunk_memmove(zhdr, ZHDR_CHUNKS); 569 zhdr->first_chunks = zhdr->middle_chunks; 570 zhdr->middle_chunks = 0; 571 zhdr->start_middle = 0; 572 zhdr->first_num++; 573 return 1; 574 } 575 576 /* 577 * moving data is expensive, so let's only do that if 578 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 579 */ 580 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 581 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 582 BIG_CHUNK_GAP) { 583 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 584 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 585 return 1; 586 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 587 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 588 + zhdr->middle_chunks) >= 589 BIG_CHUNK_GAP) { 590 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 591 zhdr->middle_chunks; 592 mchunk_memmove(zhdr, new_start); 593 zhdr->start_middle = new_start; 594 return 1; 595 } 596 597 return 0; 598 } 599 600 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 601 { 602 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 603 struct page *page; 604 605 page = virt_to_page(zhdr); 606 if (locked) 607 WARN_ON(z3fold_page_trylock(zhdr)); 608 else 609 z3fold_page_lock(zhdr); 610 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 611 z3fold_page_unlock(zhdr); 612 return; 613 } 614 spin_lock(&pool->lock); 615 list_del_init(&zhdr->buddy); 616 spin_unlock(&pool->lock); 617 618 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 619 atomic64_dec(&pool->pages_nr); 620 return; 621 } 622 623 if (unlikely(PageIsolated(page) || 624 test_bit(PAGE_STALE, &page->private))) { 625 z3fold_page_unlock(zhdr); 626 return; 627 } 628 629 z3fold_compact_page(zhdr); 630 add_to_unbuddied(pool, zhdr); 631 z3fold_page_unlock(zhdr); 632 } 633 634 static void compact_page_work(struct work_struct *w) 635 { 636 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 637 work); 638 639 do_compact_page(zhdr, false); 640 } 641 642 /* returns _locked_ z3fold page header or NULL */ 643 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 644 size_t size, bool can_sleep) 645 { 646 struct z3fold_header *zhdr = NULL; 647 struct page *page; 648 struct list_head *unbuddied; 649 int chunks = size_to_chunks(size), i; 650 651 lookup: 652 /* First, try to find an unbuddied z3fold page. */ 653 unbuddied = get_cpu_ptr(pool->unbuddied); 654 for_each_unbuddied_list(i, chunks) { 655 struct list_head *l = &unbuddied[i]; 656 657 zhdr = list_first_entry_or_null(READ_ONCE(l), 658 struct z3fold_header, buddy); 659 660 if (!zhdr) 661 continue; 662 663 /* Re-check under lock. */ 664 spin_lock(&pool->lock); 665 l = &unbuddied[i]; 666 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 667 struct z3fold_header, buddy)) || 668 !z3fold_page_trylock(zhdr)) { 669 spin_unlock(&pool->lock); 670 zhdr = NULL; 671 put_cpu_ptr(pool->unbuddied); 672 if (can_sleep) 673 cond_resched(); 674 goto lookup; 675 } 676 list_del_init(&zhdr->buddy); 677 zhdr->cpu = -1; 678 spin_unlock(&pool->lock); 679 680 page = virt_to_page(zhdr); 681 if (test_bit(NEEDS_COMPACTING, &page->private)) { 682 z3fold_page_unlock(zhdr); 683 zhdr = NULL; 684 put_cpu_ptr(pool->unbuddied); 685 if (can_sleep) 686 cond_resched(); 687 goto lookup; 688 } 689 690 /* 691 * this page could not be removed from its unbuddied 692 * list while pool lock was held, and then we've taken 693 * page lock so kref_put could not be called before 694 * we got here, so it's safe to just call kref_get() 695 */ 696 kref_get(&zhdr->refcount); 697 break; 698 } 699 put_cpu_ptr(pool->unbuddied); 700 701 if (!zhdr) { 702 int cpu; 703 704 /* look for _exact_ match on other cpus' lists */ 705 for_each_online_cpu(cpu) { 706 struct list_head *l; 707 708 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 709 spin_lock(&pool->lock); 710 l = &unbuddied[chunks]; 711 712 zhdr = list_first_entry_or_null(READ_ONCE(l), 713 struct z3fold_header, buddy); 714 715 if (!zhdr || !z3fold_page_trylock(zhdr)) { 716 spin_unlock(&pool->lock); 717 zhdr = NULL; 718 continue; 719 } 720 list_del_init(&zhdr->buddy); 721 zhdr->cpu = -1; 722 spin_unlock(&pool->lock); 723 724 page = virt_to_page(zhdr); 725 if (test_bit(NEEDS_COMPACTING, &page->private)) { 726 z3fold_page_unlock(zhdr); 727 zhdr = NULL; 728 if (can_sleep) 729 cond_resched(); 730 continue; 731 } 732 kref_get(&zhdr->refcount); 733 break; 734 } 735 } 736 737 return zhdr; 738 } 739 740 /* 741 * API Functions 742 */ 743 744 /** 745 * z3fold_create_pool() - create a new z3fold pool 746 * @name: pool name 747 * @gfp: gfp flags when allocating the z3fold pool structure 748 * @ops: user-defined operations for the z3fold pool 749 * 750 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 751 * failed. 752 */ 753 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 754 const struct z3fold_ops *ops) 755 { 756 struct z3fold_pool *pool = NULL; 757 int i, cpu; 758 759 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 760 if (!pool) 761 goto out; 762 pool->c_handle = kmem_cache_create("z3fold_handle", 763 sizeof(struct z3fold_buddy_slots), 764 SLOTS_ALIGN, 0, NULL); 765 if (!pool->c_handle) 766 goto out_c; 767 spin_lock_init(&pool->lock); 768 spin_lock_init(&pool->stale_lock); 769 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 770 if (!pool->unbuddied) 771 goto out_pool; 772 for_each_possible_cpu(cpu) { 773 struct list_head *unbuddied = 774 per_cpu_ptr(pool->unbuddied, cpu); 775 for_each_unbuddied_list(i, 0) 776 INIT_LIST_HEAD(&unbuddied[i]); 777 } 778 INIT_LIST_HEAD(&pool->lru); 779 INIT_LIST_HEAD(&pool->stale); 780 atomic64_set(&pool->pages_nr, 0); 781 pool->name = name; 782 pool->compact_wq = create_singlethread_workqueue(pool->name); 783 if (!pool->compact_wq) 784 goto out_unbuddied; 785 pool->release_wq = create_singlethread_workqueue(pool->name); 786 if (!pool->release_wq) 787 goto out_wq; 788 if (z3fold_register_migration(pool)) 789 goto out_rwq; 790 INIT_WORK(&pool->work, free_pages_work); 791 pool->ops = ops; 792 return pool; 793 794 out_rwq: 795 destroy_workqueue(pool->release_wq); 796 out_wq: 797 destroy_workqueue(pool->compact_wq); 798 out_unbuddied: 799 free_percpu(pool->unbuddied); 800 out_pool: 801 kmem_cache_destroy(pool->c_handle); 802 out_c: 803 kfree(pool); 804 out: 805 return NULL; 806 } 807 808 /** 809 * z3fold_destroy_pool() - destroys an existing z3fold pool 810 * @pool: the z3fold pool to be destroyed 811 * 812 * The pool should be emptied before this function is called. 813 */ 814 static void z3fold_destroy_pool(struct z3fold_pool *pool) 815 { 816 kmem_cache_destroy(pool->c_handle); 817 z3fold_unregister_migration(pool); 818 destroy_workqueue(pool->release_wq); 819 destroy_workqueue(pool->compact_wq); 820 kfree(pool); 821 } 822 823 /** 824 * z3fold_alloc() - allocates a region of a given size 825 * @pool: z3fold pool from which to allocate 826 * @size: size in bytes of the desired allocation 827 * @gfp: gfp flags used if the pool needs to grow 828 * @handle: handle of the new allocation 829 * 830 * This function will attempt to find a free region in the pool large enough to 831 * satisfy the allocation request. A search of the unbuddied lists is 832 * performed first. If no suitable free region is found, then a new page is 833 * allocated and added to the pool to satisfy the request. 834 * 835 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 836 * as z3fold pool pages. 837 * 838 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 839 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 840 * a new page. 841 */ 842 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 843 unsigned long *handle) 844 { 845 int chunks = size_to_chunks(size); 846 struct z3fold_header *zhdr = NULL; 847 struct page *page = NULL; 848 enum buddy bud; 849 bool can_sleep = gfpflags_allow_blocking(gfp); 850 851 if (!size || (gfp & __GFP_HIGHMEM)) 852 return -EINVAL; 853 854 if (size > PAGE_SIZE) 855 return -ENOSPC; 856 857 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 858 bud = HEADLESS; 859 else { 860 retry: 861 zhdr = __z3fold_alloc(pool, size, can_sleep); 862 if (zhdr) { 863 if (zhdr->first_chunks == 0) { 864 if (zhdr->middle_chunks != 0 && 865 chunks >= zhdr->start_middle) 866 bud = LAST; 867 else 868 bud = FIRST; 869 } else if (zhdr->last_chunks == 0) 870 bud = LAST; 871 else if (zhdr->middle_chunks == 0) 872 bud = MIDDLE; 873 else { 874 if (kref_put(&zhdr->refcount, 875 release_z3fold_page_locked)) 876 atomic64_dec(&pool->pages_nr); 877 else 878 z3fold_page_unlock(zhdr); 879 pr_err("No free chunks in unbuddied\n"); 880 WARN_ON(1); 881 goto retry; 882 } 883 page = virt_to_page(zhdr); 884 goto found; 885 } 886 bud = FIRST; 887 } 888 889 page = NULL; 890 if (can_sleep) { 891 spin_lock(&pool->stale_lock); 892 zhdr = list_first_entry_or_null(&pool->stale, 893 struct z3fold_header, buddy); 894 /* 895 * Before allocating a page, let's see if we can take one from 896 * the stale pages list. cancel_work_sync() can sleep so we 897 * limit this case to the contexts where we can sleep 898 */ 899 if (zhdr) { 900 list_del(&zhdr->buddy); 901 spin_unlock(&pool->stale_lock); 902 cancel_work_sync(&zhdr->work); 903 page = virt_to_page(zhdr); 904 } else { 905 spin_unlock(&pool->stale_lock); 906 } 907 } 908 if (!page) 909 page = alloc_page(gfp); 910 911 if (!page) 912 return -ENOMEM; 913 914 zhdr = init_z3fold_page(page, pool); 915 if (!zhdr) { 916 __free_page(page); 917 return -ENOMEM; 918 } 919 atomic64_inc(&pool->pages_nr); 920 921 if (bud == HEADLESS) { 922 set_bit(PAGE_HEADLESS, &page->private); 923 goto headless; 924 } 925 __SetPageMovable(page, pool->inode->i_mapping); 926 z3fold_page_lock(zhdr); 927 928 found: 929 if (bud == FIRST) 930 zhdr->first_chunks = chunks; 931 else if (bud == LAST) 932 zhdr->last_chunks = chunks; 933 else { 934 zhdr->middle_chunks = chunks; 935 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 936 } 937 add_to_unbuddied(pool, zhdr); 938 939 headless: 940 spin_lock(&pool->lock); 941 /* Add/move z3fold page to beginning of LRU */ 942 if (!list_empty(&page->lru)) 943 list_del(&page->lru); 944 945 list_add(&page->lru, &pool->lru); 946 947 *handle = encode_handle(zhdr, bud); 948 spin_unlock(&pool->lock); 949 if (bud != HEADLESS) 950 z3fold_page_unlock(zhdr); 951 952 return 0; 953 } 954 955 /** 956 * z3fold_free() - frees the allocation associated with the given handle 957 * @pool: pool in which the allocation resided 958 * @handle: handle associated with the allocation returned by z3fold_alloc() 959 * 960 * In the case that the z3fold page in which the allocation resides is under 961 * reclaim, as indicated by the PG_reclaim flag being set, this function 962 * only sets the first|last_chunks to 0. The page is actually freed 963 * once both buddies are evicted (see z3fold_reclaim_page() below). 964 */ 965 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 966 { 967 struct z3fold_header *zhdr; 968 struct page *page; 969 enum buddy bud; 970 971 zhdr = handle_to_z3fold_header(handle); 972 page = virt_to_page(zhdr); 973 974 if (test_bit(PAGE_HEADLESS, &page->private)) { 975 /* if a headless page is under reclaim, just leave. 976 * NB: we use test_and_set_bit for a reason: if the bit 977 * has not been set before, we release this page 978 * immediately so we don't care about its value any more. 979 */ 980 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 981 spin_lock(&pool->lock); 982 list_del(&page->lru); 983 spin_unlock(&pool->lock); 984 free_z3fold_page(page, true); 985 atomic64_dec(&pool->pages_nr); 986 } 987 return; 988 } 989 990 /* Non-headless case */ 991 z3fold_page_lock(zhdr); 992 bud = handle_to_buddy(handle); 993 994 switch (bud) { 995 case FIRST: 996 zhdr->first_chunks = 0; 997 break; 998 case MIDDLE: 999 zhdr->middle_chunks = 0; 1000 break; 1001 case LAST: 1002 zhdr->last_chunks = 0; 1003 break; 1004 default: 1005 pr_err("%s: unknown bud %d\n", __func__, bud); 1006 WARN_ON(1); 1007 z3fold_page_unlock(zhdr); 1008 return; 1009 } 1010 1011 free_handle(handle); 1012 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1013 atomic64_dec(&pool->pages_nr); 1014 return; 1015 } 1016 if (test_bit(PAGE_CLAIMED, &page->private)) { 1017 z3fold_page_unlock(zhdr); 1018 return; 1019 } 1020 if (unlikely(PageIsolated(page)) || 1021 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1022 z3fold_page_unlock(zhdr); 1023 return; 1024 } 1025 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1026 spin_lock(&pool->lock); 1027 list_del_init(&zhdr->buddy); 1028 spin_unlock(&pool->lock); 1029 zhdr->cpu = -1; 1030 kref_get(&zhdr->refcount); 1031 do_compact_page(zhdr, true); 1032 return; 1033 } 1034 kref_get(&zhdr->refcount); 1035 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1036 z3fold_page_unlock(zhdr); 1037 } 1038 1039 /** 1040 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1041 * @pool: pool from which a page will attempt to be evicted 1042 * @retries: number of pages on the LRU list for which eviction will 1043 * be attempted before failing 1044 * 1045 * z3fold reclaim is different from normal system reclaim in that it is done 1046 * from the bottom, up. This is because only the bottom layer, z3fold, has 1047 * information on how the allocations are organized within each z3fold page. 1048 * This has the potential to create interesting locking situations between 1049 * z3fold and the user, however. 1050 * 1051 * To avoid these, this is how z3fold_reclaim_page() should be called: 1052 * 1053 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1054 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1055 * call the user-defined eviction handler with the pool and handle as 1056 * arguments. 1057 * 1058 * If the handle can not be evicted, the eviction handler should return 1059 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1060 * appropriate list and try the next z3fold page on the LRU up to 1061 * a user defined number of retries. 1062 * 1063 * If the handle is successfully evicted, the eviction handler should 1064 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1065 * contains logic to delay freeing the page if the page is under reclaim, 1066 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1067 * 1068 * If all buddies in the z3fold page are successfully evicted, then the 1069 * z3fold page can be freed. 1070 * 1071 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1072 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1073 * the retry limit was hit. 1074 */ 1075 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1076 { 1077 int i, ret = 0; 1078 struct z3fold_header *zhdr = NULL; 1079 struct page *page = NULL; 1080 struct list_head *pos; 1081 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1082 1083 spin_lock(&pool->lock); 1084 if (!pool->ops || !pool->ops->evict || retries == 0) { 1085 spin_unlock(&pool->lock); 1086 return -EINVAL; 1087 } 1088 for (i = 0; i < retries; i++) { 1089 if (list_empty(&pool->lru)) { 1090 spin_unlock(&pool->lock); 1091 return -EINVAL; 1092 } 1093 list_for_each_prev(pos, &pool->lru) { 1094 page = list_entry(pos, struct page, lru); 1095 1096 /* this bit could have been set by free, in which case 1097 * we pass over to the next page in the pool. 1098 */ 1099 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1100 continue; 1101 1102 if (unlikely(PageIsolated(page))) 1103 continue; 1104 if (test_bit(PAGE_HEADLESS, &page->private)) 1105 break; 1106 1107 zhdr = page_address(page); 1108 if (!z3fold_page_trylock(zhdr)) { 1109 zhdr = NULL; 1110 continue; /* can't evict at this point */ 1111 } 1112 kref_get(&zhdr->refcount); 1113 list_del_init(&zhdr->buddy); 1114 zhdr->cpu = -1; 1115 break; 1116 } 1117 1118 if (!zhdr) 1119 break; 1120 1121 list_del_init(&page->lru); 1122 spin_unlock(&pool->lock); 1123 1124 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1125 /* 1126 * We need encode the handles before unlocking, since 1127 * we can race with free that will set 1128 * (first|last)_chunks to 0 1129 */ 1130 first_handle = 0; 1131 last_handle = 0; 1132 middle_handle = 0; 1133 if (zhdr->first_chunks) 1134 first_handle = encode_handle(zhdr, FIRST); 1135 if (zhdr->middle_chunks) 1136 middle_handle = encode_handle(zhdr, MIDDLE); 1137 if (zhdr->last_chunks) 1138 last_handle = encode_handle(zhdr, LAST); 1139 /* 1140 * it's safe to unlock here because we hold a 1141 * reference to this page 1142 */ 1143 z3fold_page_unlock(zhdr); 1144 } else { 1145 first_handle = encode_handle(zhdr, HEADLESS); 1146 last_handle = middle_handle = 0; 1147 } 1148 1149 /* Issue the eviction callback(s) */ 1150 if (middle_handle) { 1151 ret = pool->ops->evict(pool, middle_handle); 1152 if (ret) 1153 goto next; 1154 } 1155 if (first_handle) { 1156 ret = pool->ops->evict(pool, first_handle); 1157 if (ret) 1158 goto next; 1159 } 1160 if (last_handle) { 1161 ret = pool->ops->evict(pool, last_handle); 1162 if (ret) 1163 goto next; 1164 } 1165 next: 1166 if (test_bit(PAGE_HEADLESS, &page->private)) { 1167 if (ret == 0) { 1168 free_z3fold_page(page, true); 1169 atomic64_dec(&pool->pages_nr); 1170 return 0; 1171 } 1172 spin_lock(&pool->lock); 1173 list_add(&page->lru, &pool->lru); 1174 spin_unlock(&pool->lock); 1175 } else { 1176 z3fold_page_lock(zhdr); 1177 clear_bit(PAGE_CLAIMED, &page->private); 1178 if (kref_put(&zhdr->refcount, 1179 release_z3fold_page_locked)) { 1180 atomic64_dec(&pool->pages_nr); 1181 return 0; 1182 } 1183 /* 1184 * if we are here, the page is still not completely 1185 * free. Take the global pool lock then to be able 1186 * to add it back to the lru list 1187 */ 1188 spin_lock(&pool->lock); 1189 list_add(&page->lru, &pool->lru); 1190 spin_unlock(&pool->lock); 1191 z3fold_page_unlock(zhdr); 1192 } 1193 1194 /* We started off locked to we need to lock the pool back */ 1195 spin_lock(&pool->lock); 1196 } 1197 spin_unlock(&pool->lock); 1198 return -EAGAIN; 1199 } 1200 1201 /** 1202 * z3fold_map() - maps the allocation associated with the given handle 1203 * @pool: pool in which the allocation resides 1204 * @handle: handle associated with the allocation to be mapped 1205 * 1206 * Extracts the buddy number from handle and constructs the pointer to the 1207 * correct starting chunk within the page. 1208 * 1209 * Returns: a pointer to the mapped allocation 1210 */ 1211 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1212 { 1213 struct z3fold_header *zhdr; 1214 struct page *page; 1215 void *addr; 1216 enum buddy buddy; 1217 1218 zhdr = handle_to_z3fold_header(handle); 1219 addr = zhdr; 1220 page = virt_to_page(zhdr); 1221 1222 if (test_bit(PAGE_HEADLESS, &page->private)) 1223 goto out; 1224 1225 z3fold_page_lock(zhdr); 1226 buddy = handle_to_buddy(handle); 1227 switch (buddy) { 1228 case FIRST: 1229 addr += ZHDR_SIZE_ALIGNED; 1230 break; 1231 case MIDDLE: 1232 addr += zhdr->start_middle << CHUNK_SHIFT; 1233 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1234 break; 1235 case LAST: 1236 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1237 break; 1238 default: 1239 pr_err("unknown buddy id %d\n", buddy); 1240 WARN_ON(1); 1241 addr = NULL; 1242 break; 1243 } 1244 1245 if (addr) 1246 zhdr->mapped_count++; 1247 z3fold_page_unlock(zhdr); 1248 out: 1249 return addr; 1250 } 1251 1252 /** 1253 * z3fold_unmap() - unmaps the allocation associated with the given handle 1254 * @pool: pool in which the allocation resides 1255 * @handle: handle associated with the allocation to be unmapped 1256 */ 1257 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1258 { 1259 struct z3fold_header *zhdr; 1260 struct page *page; 1261 enum buddy buddy; 1262 1263 zhdr = handle_to_z3fold_header(handle); 1264 page = virt_to_page(zhdr); 1265 1266 if (test_bit(PAGE_HEADLESS, &page->private)) 1267 return; 1268 1269 z3fold_page_lock(zhdr); 1270 buddy = handle_to_buddy(handle); 1271 if (buddy == MIDDLE) 1272 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1273 zhdr->mapped_count--; 1274 z3fold_page_unlock(zhdr); 1275 } 1276 1277 /** 1278 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1279 * @pool: pool whose size is being queried 1280 * 1281 * Returns: size in pages of the given pool. 1282 */ 1283 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1284 { 1285 return atomic64_read(&pool->pages_nr); 1286 } 1287 1288 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1289 { 1290 struct z3fold_header *zhdr; 1291 struct z3fold_pool *pool; 1292 1293 VM_BUG_ON_PAGE(!PageMovable(page), page); 1294 VM_BUG_ON_PAGE(PageIsolated(page), page); 1295 1296 if (test_bit(PAGE_HEADLESS, &page->private)) 1297 return false; 1298 1299 zhdr = page_address(page); 1300 z3fold_page_lock(zhdr); 1301 if (test_bit(NEEDS_COMPACTING, &page->private) || 1302 test_bit(PAGE_STALE, &page->private)) 1303 goto out; 1304 1305 pool = zhdr_to_pool(zhdr); 1306 1307 if (zhdr->mapped_count == 0) { 1308 kref_get(&zhdr->refcount); 1309 if (!list_empty(&zhdr->buddy)) 1310 list_del_init(&zhdr->buddy); 1311 spin_lock(&pool->lock); 1312 if (!list_empty(&page->lru)) 1313 list_del(&page->lru); 1314 spin_unlock(&pool->lock); 1315 z3fold_page_unlock(zhdr); 1316 return true; 1317 } 1318 out: 1319 z3fold_page_unlock(zhdr); 1320 return false; 1321 } 1322 1323 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1324 struct page *page, enum migrate_mode mode) 1325 { 1326 struct z3fold_header *zhdr, *new_zhdr; 1327 struct z3fold_pool *pool; 1328 struct address_space *new_mapping; 1329 1330 VM_BUG_ON_PAGE(!PageMovable(page), page); 1331 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1332 1333 zhdr = page_address(page); 1334 pool = zhdr_to_pool(zhdr); 1335 1336 if (!trylock_page(page)) 1337 return -EAGAIN; 1338 1339 if (!z3fold_page_trylock(zhdr)) { 1340 unlock_page(page); 1341 return -EAGAIN; 1342 } 1343 if (zhdr->mapped_count != 0) { 1344 z3fold_page_unlock(zhdr); 1345 unlock_page(page); 1346 return -EBUSY; 1347 } 1348 new_zhdr = page_address(newpage); 1349 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1350 newpage->private = page->private; 1351 page->private = 0; 1352 z3fold_page_unlock(zhdr); 1353 spin_lock_init(&new_zhdr->page_lock); 1354 new_mapping = page_mapping(page); 1355 __ClearPageMovable(page); 1356 ClearPagePrivate(page); 1357 1358 get_page(newpage); 1359 z3fold_page_lock(new_zhdr); 1360 if (new_zhdr->first_chunks) 1361 encode_handle(new_zhdr, FIRST); 1362 if (new_zhdr->last_chunks) 1363 encode_handle(new_zhdr, LAST); 1364 if (new_zhdr->middle_chunks) 1365 encode_handle(new_zhdr, MIDDLE); 1366 set_bit(NEEDS_COMPACTING, &newpage->private); 1367 new_zhdr->cpu = smp_processor_id(); 1368 spin_lock(&pool->lock); 1369 list_add(&newpage->lru, &pool->lru); 1370 spin_unlock(&pool->lock); 1371 __SetPageMovable(newpage, new_mapping); 1372 z3fold_page_unlock(new_zhdr); 1373 1374 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1375 1376 page_mapcount_reset(page); 1377 unlock_page(page); 1378 put_page(page); 1379 return 0; 1380 } 1381 1382 static void z3fold_page_putback(struct page *page) 1383 { 1384 struct z3fold_header *zhdr; 1385 struct z3fold_pool *pool; 1386 1387 zhdr = page_address(page); 1388 pool = zhdr_to_pool(zhdr); 1389 1390 z3fold_page_lock(zhdr); 1391 if (!list_empty(&zhdr->buddy)) 1392 list_del_init(&zhdr->buddy); 1393 INIT_LIST_HEAD(&page->lru); 1394 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1395 atomic64_dec(&pool->pages_nr); 1396 return; 1397 } 1398 spin_lock(&pool->lock); 1399 list_add(&page->lru, &pool->lru); 1400 spin_unlock(&pool->lock); 1401 z3fold_page_unlock(zhdr); 1402 } 1403 1404 static const struct address_space_operations z3fold_aops = { 1405 .isolate_page = z3fold_page_isolate, 1406 .migratepage = z3fold_page_migrate, 1407 .putback_page = z3fold_page_putback, 1408 }; 1409 1410 /***************** 1411 * zpool 1412 ****************/ 1413 1414 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1415 { 1416 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1417 return pool->zpool_ops->evict(pool->zpool, handle); 1418 else 1419 return -ENOENT; 1420 } 1421 1422 static const struct z3fold_ops z3fold_zpool_ops = { 1423 .evict = z3fold_zpool_evict 1424 }; 1425 1426 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1427 const struct zpool_ops *zpool_ops, 1428 struct zpool *zpool) 1429 { 1430 struct z3fold_pool *pool; 1431 1432 pool = z3fold_create_pool(name, gfp, 1433 zpool_ops ? &z3fold_zpool_ops : NULL); 1434 if (pool) { 1435 pool->zpool = zpool; 1436 pool->zpool_ops = zpool_ops; 1437 } 1438 return pool; 1439 } 1440 1441 static void z3fold_zpool_destroy(void *pool) 1442 { 1443 z3fold_destroy_pool(pool); 1444 } 1445 1446 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1447 unsigned long *handle) 1448 { 1449 return z3fold_alloc(pool, size, gfp, handle); 1450 } 1451 static void z3fold_zpool_free(void *pool, unsigned long handle) 1452 { 1453 z3fold_free(pool, handle); 1454 } 1455 1456 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1457 unsigned int *reclaimed) 1458 { 1459 unsigned int total = 0; 1460 int ret = -EINVAL; 1461 1462 while (total < pages) { 1463 ret = z3fold_reclaim_page(pool, 8); 1464 if (ret < 0) 1465 break; 1466 total++; 1467 } 1468 1469 if (reclaimed) 1470 *reclaimed = total; 1471 1472 return ret; 1473 } 1474 1475 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1476 enum zpool_mapmode mm) 1477 { 1478 return z3fold_map(pool, handle); 1479 } 1480 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1481 { 1482 z3fold_unmap(pool, handle); 1483 } 1484 1485 static u64 z3fold_zpool_total_size(void *pool) 1486 { 1487 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1488 } 1489 1490 static struct zpool_driver z3fold_zpool_driver = { 1491 .type = "z3fold", 1492 .owner = THIS_MODULE, 1493 .create = z3fold_zpool_create, 1494 .destroy = z3fold_zpool_destroy, 1495 .malloc = z3fold_zpool_malloc, 1496 .free = z3fold_zpool_free, 1497 .shrink = z3fold_zpool_shrink, 1498 .map = z3fold_zpool_map, 1499 .unmap = z3fold_zpool_unmap, 1500 .total_size = z3fold_zpool_total_size, 1501 }; 1502 1503 MODULE_ALIAS("zpool-z3fold"); 1504 1505 static int __init init_z3fold(void) 1506 { 1507 int ret; 1508 1509 /* Make sure the z3fold header is not larger than the page size */ 1510 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1511 ret = z3fold_mount(); 1512 if (ret) 1513 return ret; 1514 1515 zpool_register_driver(&z3fold_zpool_driver); 1516 1517 return 0; 1518 } 1519 1520 static void __exit exit_z3fold(void) 1521 { 1522 z3fold_unmount(); 1523 zpool_unregister_driver(&z3fold_zpool_driver); 1524 } 1525 1526 module_init(init_z3fold); 1527 module_exit(exit_z3fold); 1528 1529 MODULE_LICENSE("GPL"); 1530 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1531 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1532