xref: /openbmc/linux/mm/z3fold.c (revision 7211ec63)
1 /*
2  * z3fold.c
3  *
4  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
5  * Copyright (C) 2016, Sony Mobile Communications Inc.
6  *
7  * This implementation is based on zbud written by Seth Jennings.
8  *
9  * z3fold is an special purpose allocator for storing compressed pages. It
10  * can store up to three compressed pages per page which improves the
11  * compression ratio of zbud while retaining its main concepts (e. g. always
12  * storing an integral number of objects per page) and simplicity.
13  * It still has simple and deterministic reclaim properties that make it
14  * preferable to a higher density approach (with no requirement on integral
15  * number of object per page) when reclaim is used.
16  *
17  * As in zbud, pages are divided into "chunks".  The size of the chunks is
18  * fixed at compile time and is determined by NCHUNKS_ORDER below.
19  *
20  * z3fold doesn't export any API and is meant to be used via zpool API.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/atomic.h>
26 #include <linux/sched.h>
27 #include <linux/list.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/percpu.h>
31 #include <linux/preempt.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35 #include <linux/zpool.h>
36 
37 /*****************
38  * Structures
39 *****************/
40 struct z3fold_pool;
41 struct z3fold_ops {
42 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
43 };
44 
45 enum buddy {
46 	HEADLESS = 0,
47 	FIRST,
48 	MIDDLE,
49 	LAST,
50 	BUDDIES_MAX
51 };
52 
53 /*
54  * struct z3fold_header - z3fold page metadata occupying first chunks of each
55  *			z3fold page, except for HEADLESS pages
56  * @buddy:		links the z3fold page into the relevant list in the
57  *			pool
58  * @page_lock:		per-page lock
59  * @refcount:		reference count for the z3fold page
60  * @work:		work_struct for page layout optimization
61  * @pool:		pointer to the pool which this page belongs to
62  * @cpu:		CPU which this page "belongs" to
63  * @first_chunks:	the size of the first buddy in chunks, 0 if free
64  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
65  * @last_chunks:	the size of the last buddy in chunks, 0 if free
66  * @first_num:		the starting number (for the first handle)
67  */
68 struct z3fold_header {
69 	struct list_head buddy;
70 	spinlock_t page_lock;
71 	struct kref refcount;
72 	struct work_struct work;
73 	struct z3fold_pool *pool;
74 	short cpu;
75 	unsigned short first_chunks;
76 	unsigned short middle_chunks;
77 	unsigned short last_chunks;
78 	unsigned short start_middle;
79 	unsigned short first_num:2;
80 };
81 
82 /*
83  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
84  * adjusting internal fragmentation.  It also determines the number of
85  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
86  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
87  * in the beginning of an allocated page are occupied by z3fold header, so
88  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
89  * which shows the max number of free chunks in z3fold page, also there will
90  * be 63, or 62, respectively, freelists per pool.
91  */
92 #define NCHUNKS_ORDER	6
93 
94 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
95 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
96 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
97 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
98 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
99 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
100 
101 #define BUDDY_MASK	(0x3)
102 
103 /**
104  * struct z3fold_pool - stores metadata for each z3fold pool
105  * @name:	pool name
106  * @lock:	protects pool unbuddied/lru lists
107  * @stale_lock:	protects pool stale page list
108  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
109  *		buddies; the list each z3fold page is added to depends on
110  *		the size of its free region.
111  * @lru:	list tracking the z3fold pages in LRU order by most recently
112  *		added buddy.
113  * @stale:	list of pages marked for freeing
114  * @pages_nr:	number of z3fold pages in the pool.
115  * @ops:	pointer to a structure of user defined operations specified at
116  *		pool creation time.
117  * @compact_wq:	workqueue for page layout background optimization
118  * @release_wq:	workqueue for safe page release
119  * @work:	work_struct for safe page release
120  *
121  * This structure is allocated at pool creation time and maintains metadata
122  * pertaining to a particular z3fold pool.
123  */
124 struct z3fold_pool {
125 	const char *name;
126 	spinlock_t lock;
127 	spinlock_t stale_lock;
128 	struct list_head *unbuddied;
129 	struct list_head lru;
130 	struct list_head stale;
131 	atomic64_t pages_nr;
132 	const struct z3fold_ops *ops;
133 	struct zpool *zpool;
134 	const struct zpool_ops *zpool_ops;
135 	struct workqueue_struct *compact_wq;
136 	struct workqueue_struct *release_wq;
137 	struct work_struct work;
138 };
139 
140 /*
141  * Internal z3fold page flags
142  */
143 enum z3fold_page_flags {
144 	PAGE_HEADLESS = 0,
145 	MIDDLE_CHUNK_MAPPED,
146 	NEEDS_COMPACTING,
147 	PAGE_STALE
148 };
149 
150 /*****************
151  * Helpers
152 *****************/
153 
154 /* Converts an allocation size in bytes to size in z3fold chunks */
155 static int size_to_chunks(size_t size)
156 {
157 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
158 }
159 
160 #define for_each_unbuddied_list(_iter, _begin) \
161 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
162 
163 static void compact_page_work(struct work_struct *w);
164 
165 /* Initializes the z3fold header of a newly allocated z3fold page */
166 static struct z3fold_header *init_z3fold_page(struct page *page,
167 					struct z3fold_pool *pool)
168 {
169 	struct z3fold_header *zhdr = page_address(page);
170 
171 	INIT_LIST_HEAD(&page->lru);
172 	clear_bit(PAGE_HEADLESS, &page->private);
173 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
174 	clear_bit(NEEDS_COMPACTING, &page->private);
175 	clear_bit(PAGE_STALE, &page->private);
176 
177 	spin_lock_init(&zhdr->page_lock);
178 	kref_init(&zhdr->refcount);
179 	zhdr->first_chunks = 0;
180 	zhdr->middle_chunks = 0;
181 	zhdr->last_chunks = 0;
182 	zhdr->first_num = 0;
183 	zhdr->start_middle = 0;
184 	zhdr->cpu = -1;
185 	zhdr->pool = pool;
186 	INIT_LIST_HEAD(&zhdr->buddy);
187 	INIT_WORK(&zhdr->work, compact_page_work);
188 	return zhdr;
189 }
190 
191 /* Resets the struct page fields and frees the page */
192 static void free_z3fold_page(struct page *page)
193 {
194 	__free_page(page);
195 }
196 
197 /* Lock a z3fold page */
198 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
199 {
200 	spin_lock(&zhdr->page_lock);
201 }
202 
203 /* Try to lock a z3fold page */
204 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
205 {
206 	return spin_trylock(&zhdr->page_lock);
207 }
208 
209 /* Unlock a z3fold page */
210 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
211 {
212 	spin_unlock(&zhdr->page_lock);
213 }
214 
215 /*
216  * Encodes the handle of a particular buddy within a z3fold page
217  * Pool lock should be held as this function accesses first_num
218  */
219 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
220 {
221 	unsigned long handle;
222 
223 	handle = (unsigned long)zhdr;
224 	if (bud != HEADLESS)
225 		handle += (bud + zhdr->first_num) & BUDDY_MASK;
226 	return handle;
227 }
228 
229 /* Returns the z3fold page where a given handle is stored */
230 static struct z3fold_header *handle_to_z3fold_header(unsigned long handle)
231 {
232 	return (struct z3fold_header *)(handle & PAGE_MASK);
233 }
234 
235 /*
236  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
237  *  but that doesn't matter. because the masking will result in the
238  *  correct buddy number.
239  */
240 static enum buddy handle_to_buddy(unsigned long handle)
241 {
242 	struct z3fold_header *zhdr = handle_to_z3fold_header(handle);
243 	return (handle - zhdr->first_num) & BUDDY_MASK;
244 }
245 
246 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
247 {
248 	struct page *page = virt_to_page(zhdr);
249 	struct z3fold_pool *pool = zhdr->pool;
250 
251 	WARN_ON(!list_empty(&zhdr->buddy));
252 	set_bit(PAGE_STALE, &page->private);
253 	clear_bit(NEEDS_COMPACTING, &page->private);
254 	spin_lock(&pool->lock);
255 	if (!list_empty(&page->lru))
256 		list_del(&page->lru);
257 	spin_unlock(&pool->lock);
258 	if (locked)
259 		z3fold_page_unlock(zhdr);
260 	spin_lock(&pool->stale_lock);
261 	list_add(&zhdr->buddy, &pool->stale);
262 	queue_work(pool->release_wq, &pool->work);
263 	spin_unlock(&pool->stale_lock);
264 }
265 
266 static void __attribute__((__unused__))
267 			release_z3fold_page(struct kref *ref)
268 {
269 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
270 						refcount);
271 	__release_z3fold_page(zhdr, false);
272 }
273 
274 static void release_z3fold_page_locked(struct kref *ref)
275 {
276 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
277 						refcount);
278 	WARN_ON(z3fold_page_trylock(zhdr));
279 	__release_z3fold_page(zhdr, true);
280 }
281 
282 static void release_z3fold_page_locked_list(struct kref *ref)
283 {
284 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
285 					       refcount);
286 	spin_lock(&zhdr->pool->lock);
287 	list_del_init(&zhdr->buddy);
288 	spin_unlock(&zhdr->pool->lock);
289 
290 	WARN_ON(z3fold_page_trylock(zhdr));
291 	__release_z3fold_page(zhdr, true);
292 }
293 
294 static void free_pages_work(struct work_struct *w)
295 {
296 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
297 
298 	spin_lock(&pool->stale_lock);
299 	while (!list_empty(&pool->stale)) {
300 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
301 						struct z3fold_header, buddy);
302 		struct page *page = virt_to_page(zhdr);
303 
304 		list_del(&zhdr->buddy);
305 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
306 			continue;
307 		spin_unlock(&pool->stale_lock);
308 		cancel_work_sync(&zhdr->work);
309 		free_z3fold_page(page);
310 		cond_resched();
311 		spin_lock(&pool->stale_lock);
312 	}
313 	spin_unlock(&pool->stale_lock);
314 }
315 
316 /*
317  * Returns the number of free chunks in a z3fold page.
318  * NB: can't be used with HEADLESS pages.
319  */
320 static int num_free_chunks(struct z3fold_header *zhdr)
321 {
322 	int nfree;
323 	/*
324 	 * If there is a middle object, pick up the bigger free space
325 	 * either before or after it. Otherwise just subtract the number
326 	 * of chunks occupied by the first and the last objects.
327 	 */
328 	if (zhdr->middle_chunks != 0) {
329 		int nfree_before = zhdr->first_chunks ?
330 			0 : zhdr->start_middle - ZHDR_CHUNKS;
331 		int nfree_after = zhdr->last_chunks ?
332 			0 : TOTAL_CHUNKS -
333 				(zhdr->start_middle + zhdr->middle_chunks);
334 		nfree = max(nfree_before, nfree_after);
335 	} else
336 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
337 	return nfree;
338 }
339 
340 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
341 				unsigned short dst_chunk)
342 {
343 	void *beg = zhdr;
344 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
345 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
346 		       zhdr->middle_chunks << CHUNK_SHIFT);
347 }
348 
349 #define BIG_CHUNK_GAP	3
350 /* Has to be called with lock held */
351 static int z3fold_compact_page(struct z3fold_header *zhdr)
352 {
353 	struct page *page = virt_to_page(zhdr);
354 
355 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
356 		return 0; /* can't move middle chunk, it's used */
357 
358 	if (zhdr->middle_chunks == 0)
359 		return 0; /* nothing to compact */
360 
361 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
362 		/* move to the beginning */
363 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
364 		zhdr->first_chunks = zhdr->middle_chunks;
365 		zhdr->middle_chunks = 0;
366 		zhdr->start_middle = 0;
367 		zhdr->first_num++;
368 		return 1;
369 	}
370 
371 	/*
372 	 * moving data is expensive, so let's only do that if
373 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
374 	 */
375 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
376 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
377 			BIG_CHUNK_GAP) {
378 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
379 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
380 		return 1;
381 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
382 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
383 					+ zhdr->middle_chunks) >=
384 			BIG_CHUNK_GAP) {
385 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
386 			zhdr->middle_chunks;
387 		mchunk_memmove(zhdr, new_start);
388 		zhdr->start_middle = new_start;
389 		return 1;
390 	}
391 
392 	return 0;
393 }
394 
395 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
396 {
397 	struct z3fold_pool *pool = zhdr->pool;
398 	struct page *page;
399 	struct list_head *unbuddied;
400 	int fchunks;
401 
402 	page = virt_to_page(zhdr);
403 	if (locked)
404 		WARN_ON(z3fold_page_trylock(zhdr));
405 	else
406 		z3fold_page_lock(zhdr);
407 	if (test_bit(PAGE_STALE, &page->private) ||
408 	    !test_and_clear_bit(NEEDS_COMPACTING, &page->private)) {
409 		z3fold_page_unlock(zhdr);
410 		return;
411 	}
412 	spin_lock(&pool->lock);
413 	list_del_init(&zhdr->buddy);
414 	spin_unlock(&pool->lock);
415 
416 	z3fold_compact_page(zhdr);
417 	unbuddied = get_cpu_ptr(pool->unbuddied);
418 	fchunks = num_free_chunks(zhdr);
419 	if (fchunks < NCHUNKS &&
420 	    (!zhdr->first_chunks || !zhdr->middle_chunks ||
421 			!zhdr->last_chunks)) {
422 		/* the page's not completely free and it's unbuddied */
423 		spin_lock(&pool->lock);
424 		list_add(&zhdr->buddy, &unbuddied[fchunks]);
425 		spin_unlock(&pool->lock);
426 		zhdr->cpu = smp_processor_id();
427 	}
428 	put_cpu_ptr(pool->unbuddied);
429 	z3fold_page_unlock(zhdr);
430 }
431 
432 static void compact_page_work(struct work_struct *w)
433 {
434 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
435 						work);
436 
437 	do_compact_page(zhdr, false);
438 }
439 
440 
441 /*
442  * API Functions
443  */
444 
445 /**
446  * z3fold_create_pool() - create a new z3fold pool
447  * @name:	pool name
448  * @gfp:	gfp flags when allocating the z3fold pool structure
449  * @ops:	user-defined operations for the z3fold pool
450  *
451  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
452  * failed.
453  */
454 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
455 		const struct z3fold_ops *ops)
456 {
457 	struct z3fold_pool *pool = NULL;
458 	int i, cpu;
459 
460 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
461 	if (!pool)
462 		goto out;
463 	spin_lock_init(&pool->lock);
464 	spin_lock_init(&pool->stale_lock);
465 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
466 	for_each_possible_cpu(cpu) {
467 		struct list_head *unbuddied =
468 				per_cpu_ptr(pool->unbuddied, cpu);
469 		for_each_unbuddied_list(i, 0)
470 			INIT_LIST_HEAD(&unbuddied[i]);
471 	}
472 	INIT_LIST_HEAD(&pool->lru);
473 	INIT_LIST_HEAD(&pool->stale);
474 	atomic64_set(&pool->pages_nr, 0);
475 	pool->name = name;
476 	pool->compact_wq = create_singlethread_workqueue(pool->name);
477 	if (!pool->compact_wq)
478 		goto out;
479 	pool->release_wq = create_singlethread_workqueue(pool->name);
480 	if (!pool->release_wq)
481 		goto out_wq;
482 	INIT_WORK(&pool->work, free_pages_work);
483 	pool->ops = ops;
484 	return pool;
485 
486 out_wq:
487 	destroy_workqueue(pool->compact_wq);
488 out:
489 	kfree(pool);
490 	return NULL;
491 }
492 
493 /**
494  * z3fold_destroy_pool() - destroys an existing z3fold pool
495  * @pool:	the z3fold pool to be destroyed
496  *
497  * The pool should be emptied before this function is called.
498  */
499 static void z3fold_destroy_pool(struct z3fold_pool *pool)
500 {
501 	destroy_workqueue(pool->release_wq);
502 	destroy_workqueue(pool->compact_wq);
503 	kfree(pool);
504 }
505 
506 /**
507  * z3fold_alloc() - allocates a region of a given size
508  * @pool:	z3fold pool from which to allocate
509  * @size:	size in bytes of the desired allocation
510  * @gfp:	gfp flags used if the pool needs to grow
511  * @handle:	handle of the new allocation
512  *
513  * This function will attempt to find a free region in the pool large enough to
514  * satisfy the allocation request.  A search of the unbuddied lists is
515  * performed first. If no suitable free region is found, then a new page is
516  * allocated and added to the pool to satisfy the request.
517  *
518  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
519  * as z3fold pool pages.
520  *
521  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
522  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
523  * a new page.
524  */
525 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
526 			unsigned long *handle)
527 {
528 	int chunks = 0, i, freechunks;
529 	struct z3fold_header *zhdr = NULL;
530 	struct page *page = NULL;
531 	enum buddy bud;
532 	bool can_sleep = (gfp & __GFP_RECLAIM) == __GFP_RECLAIM;
533 
534 	if (!size || (gfp & __GFP_HIGHMEM))
535 		return -EINVAL;
536 
537 	if (size > PAGE_SIZE)
538 		return -ENOSPC;
539 
540 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
541 		bud = HEADLESS;
542 	else {
543 		struct list_head *unbuddied;
544 		chunks = size_to_chunks(size);
545 
546 lookup:
547 		/* First, try to find an unbuddied z3fold page. */
548 		unbuddied = get_cpu_ptr(pool->unbuddied);
549 		for_each_unbuddied_list(i, chunks) {
550 			struct list_head *l = &unbuddied[i];
551 
552 			zhdr = list_first_entry_or_null(READ_ONCE(l),
553 						struct z3fold_header, buddy);
554 
555 			if (!zhdr)
556 				continue;
557 
558 			/* Re-check under lock. */
559 			spin_lock(&pool->lock);
560 			l = &unbuddied[i];
561 			if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
562 					struct z3fold_header, buddy)) ||
563 			    !z3fold_page_trylock(zhdr)) {
564 				spin_unlock(&pool->lock);
565 				put_cpu_ptr(pool->unbuddied);
566 				goto lookup;
567 			}
568 			list_del_init(&zhdr->buddy);
569 			zhdr->cpu = -1;
570 			spin_unlock(&pool->lock);
571 
572 			page = virt_to_page(zhdr);
573 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
574 				z3fold_page_unlock(zhdr);
575 				zhdr = NULL;
576 				put_cpu_ptr(pool->unbuddied);
577 				if (can_sleep)
578 					cond_resched();
579 				goto lookup;
580 			}
581 
582 			/*
583 			 * this page could not be removed from its unbuddied
584 			 * list while pool lock was held, and then we've taken
585 			 * page lock so kref_put could not be called before
586 			 * we got here, so it's safe to just call kref_get()
587 			 */
588 			kref_get(&zhdr->refcount);
589 			break;
590 		}
591 		put_cpu_ptr(pool->unbuddied);
592 
593 		if (zhdr) {
594 			if (zhdr->first_chunks == 0) {
595 				if (zhdr->middle_chunks != 0 &&
596 				    chunks >= zhdr->start_middle)
597 					bud = LAST;
598 				else
599 					bud = FIRST;
600 			} else if (zhdr->last_chunks == 0)
601 				bud = LAST;
602 			else if (zhdr->middle_chunks == 0)
603 				bud = MIDDLE;
604 			else {
605 				if (kref_put(&zhdr->refcount,
606 					     release_z3fold_page_locked))
607 					atomic64_dec(&pool->pages_nr);
608 				else
609 					z3fold_page_unlock(zhdr);
610 				pr_err("No free chunks in unbuddied\n");
611 				WARN_ON(1);
612 				goto lookup;
613 			}
614 			goto found;
615 		}
616 		bud = FIRST;
617 	}
618 
619 	spin_lock(&pool->stale_lock);
620 	zhdr = list_first_entry_or_null(&pool->stale,
621 					struct z3fold_header, buddy);
622 	/*
623 	 * Before allocating a page, let's see if we can take one from the
624 	 * stale pages list. cancel_work_sync() can sleep so we must make
625 	 * sure it won't be called in case we're in atomic context.
626 	 */
627 	if (zhdr && (can_sleep || !work_pending(&zhdr->work))) {
628 		list_del(&zhdr->buddy);
629 		spin_unlock(&pool->stale_lock);
630 		if (can_sleep)
631 			cancel_work_sync(&zhdr->work);
632 		page = virt_to_page(zhdr);
633 	} else {
634 		spin_unlock(&pool->stale_lock);
635 		page = alloc_page(gfp);
636 	}
637 
638 	if (!page)
639 		return -ENOMEM;
640 
641 	atomic64_inc(&pool->pages_nr);
642 	zhdr = init_z3fold_page(page, pool);
643 
644 	if (bud == HEADLESS) {
645 		set_bit(PAGE_HEADLESS, &page->private);
646 		goto headless;
647 	}
648 	z3fold_page_lock(zhdr);
649 
650 found:
651 	if (bud == FIRST)
652 		zhdr->first_chunks = chunks;
653 	else if (bud == LAST)
654 		zhdr->last_chunks = chunks;
655 	else {
656 		zhdr->middle_chunks = chunks;
657 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
658 	}
659 
660 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
661 			zhdr->middle_chunks == 0) {
662 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
663 
664 		/* Add to unbuddied list */
665 		freechunks = num_free_chunks(zhdr);
666 		spin_lock(&pool->lock);
667 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
668 		spin_unlock(&pool->lock);
669 		zhdr->cpu = smp_processor_id();
670 		put_cpu_ptr(pool->unbuddied);
671 	}
672 
673 headless:
674 	spin_lock(&pool->lock);
675 	/* Add/move z3fold page to beginning of LRU */
676 	if (!list_empty(&page->lru))
677 		list_del(&page->lru);
678 
679 	list_add(&page->lru, &pool->lru);
680 
681 	*handle = encode_handle(zhdr, bud);
682 	spin_unlock(&pool->lock);
683 	if (bud != HEADLESS)
684 		z3fold_page_unlock(zhdr);
685 
686 	return 0;
687 }
688 
689 /**
690  * z3fold_free() - frees the allocation associated with the given handle
691  * @pool:	pool in which the allocation resided
692  * @handle:	handle associated with the allocation returned by z3fold_alloc()
693  *
694  * In the case that the z3fold page in which the allocation resides is under
695  * reclaim, as indicated by the PG_reclaim flag being set, this function
696  * only sets the first|last_chunks to 0.  The page is actually freed
697  * once both buddies are evicted (see z3fold_reclaim_page() below).
698  */
699 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
700 {
701 	struct z3fold_header *zhdr;
702 	struct page *page;
703 	enum buddy bud;
704 
705 	zhdr = handle_to_z3fold_header(handle);
706 	page = virt_to_page(zhdr);
707 
708 	if (test_bit(PAGE_HEADLESS, &page->private)) {
709 		/* HEADLESS page stored */
710 		bud = HEADLESS;
711 	} else {
712 		z3fold_page_lock(zhdr);
713 		bud = handle_to_buddy(handle);
714 
715 		switch (bud) {
716 		case FIRST:
717 			zhdr->first_chunks = 0;
718 			break;
719 		case MIDDLE:
720 			zhdr->middle_chunks = 0;
721 			zhdr->start_middle = 0;
722 			break;
723 		case LAST:
724 			zhdr->last_chunks = 0;
725 			break;
726 		default:
727 			pr_err("%s: unknown bud %d\n", __func__, bud);
728 			WARN_ON(1);
729 			z3fold_page_unlock(zhdr);
730 			return;
731 		}
732 	}
733 
734 	if (bud == HEADLESS) {
735 		spin_lock(&pool->lock);
736 		list_del(&page->lru);
737 		spin_unlock(&pool->lock);
738 		free_z3fold_page(page);
739 		atomic64_dec(&pool->pages_nr);
740 		return;
741 	}
742 
743 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
744 		atomic64_dec(&pool->pages_nr);
745 		return;
746 	}
747 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
748 		z3fold_page_unlock(zhdr);
749 		return;
750 	}
751 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
752 		spin_lock(&pool->lock);
753 		list_del_init(&zhdr->buddy);
754 		spin_unlock(&pool->lock);
755 		zhdr->cpu = -1;
756 		do_compact_page(zhdr, true);
757 		return;
758 	}
759 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
760 	z3fold_page_unlock(zhdr);
761 }
762 
763 /**
764  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
765  * @pool:	pool from which a page will attempt to be evicted
766  * @retires:	number of pages on the LRU list for which eviction will
767  *		be attempted before failing
768  *
769  * z3fold reclaim is different from normal system reclaim in that it is done
770  * from the bottom, up. This is because only the bottom layer, z3fold, has
771  * information on how the allocations are organized within each z3fold page.
772  * This has the potential to create interesting locking situations between
773  * z3fold and the user, however.
774  *
775  * To avoid these, this is how z3fold_reclaim_page() should be called:
776 
777  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
778  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
779  * call the user-defined eviction handler with the pool and handle as
780  * arguments.
781  *
782  * If the handle can not be evicted, the eviction handler should return
783  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
784  * appropriate list and try the next z3fold page on the LRU up to
785  * a user defined number of retries.
786  *
787  * If the handle is successfully evicted, the eviction handler should
788  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
789  * contains logic to delay freeing the page if the page is under reclaim,
790  * as indicated by the setting of the PG_reclaim flag on the underlying page.
791  *
792  * If all buddies in the z3fold page are successfully evicted, then the
793  * z3fold page can be freed.
794  *
795  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
796  * no pages to evict or an eviction handler is not registered, -EAGAIN if
797  * the retry limit was hit.
798  */
799 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
800 {
801 	int i, ret = 0;
802 	struct z3fold_header *zhdr = NULL;
803 	struct page *page = NULL;
804 	struct list_head *pos;
805 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
806 
807 	spin_lock(&pool->lock);
808 	if (!pool->ops || !pool->ops->evict || retries == 0) {
809 		spin_unlock(&pool->lock);
810 		return -EINVAL;
811 	}
812 	for (i = 0; i < retries; i++) {
813 		if (list_empty(&pool->lru)) {
814 			spin_unlock(&pool->lock);
815 			return -EINVAL;
816 		}
817 		list_for_each_prev(pos, &pool->lru) {
818 			page = list_entry(pos, struct page, lru);
819 			if (test_bit(PAGE_HEADLESS, &page->private))
820 				/* candidate found */
821 				break;
822 
823 			zhdr = page_address(page);
824 			if (!z3fold_page_trylock(zhdr))
825 				continue; /* can't evict at this point */
826 			kref_get(&zhdr->refcount);
827 			list_del_init(&zhdr->buddy);
828 			zhdr->cpu = -1;
829 		}
830 
831 		list_del_init(&page->lru);
832 		spin_unlock(&pool->lock);
833 
834 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
835 			/*
836 			 * We need encode the handles before unlocking, since
837 			 * we can race with free that will set
838 			 * (first|last)_chunks to 0
839 			 */
840 			first_handle = 0;
841 			last_handle = 0;
842 			middle_handle = 0;
843 			if (zhdr->first_chunks)
844 				first_handle = encode_handle(zhdr, FIRST);
845 			if (zhdr->middle_chunks)
846 				middle_handle = encode_handle(zhdr, MIDDLE);
847 			if (zhdr->last_chunks)
848 				last_handle = encode_handle(zhdr, LAST);
849 			/*
850 			 * it's safe to unlock here because we hold a
851 			 * reference to this page
852 			 */
853 			z3fold_page_unlock(zhdr);
854 		} else {
855 			first_handle = encode_handle(zhdr, HEADLESS);
856 			last_handle = middle_handle = 0;
857 		}
858 
859 		/* Issue the eviction callback(s) */
860 		if (middle_handle) {
861 			ret = pool->ops->evict(pool, middle_handle);
862 			if (ret)
863 				goto next;
864 		}
865 		if (first_handle) {
866 			ret = pool->ops->evict(pool, first_handle);
867 			if (ret)
868 				goto next;
869 		}
870 		if (last_handle) {
871 			ret = pool->ops->evict(pool, last_handle);
872 			if (ret)
873 				goto next;
874 		}
875 next:
876 		spin_lock(&pool->lock);
877 		if (test_bit(PAGE_HEADLESS, &page->private)) {
878 			if (ret == 0) {
879 				spin_unlock(&pool->lock);
880 				free_z3fold_page(page);
881 				return 0;
882 			}
883 		} else if (kref_put(&zhdr->refcount, release_z3fold_page)) {
884 			atomic64_dec(&pool->pages_nr);
885 			spin_unlock(&pool->lock);
886 			return 0;
887 		}
888 
889 		/*
890 		 * Add to the beginning of LRU.
891 		 * Pool lock has to be kept here to ensure the page has
892 		 * not already been released
893 		 */
894 		list_add(&page->lru, &pool->lru);
895 	}
896 	spin_unlock(&pool->lock);
897 	return -EAGAIN;
898 }
899 
900 /**
901  * z3fold_map() - maps the allocation associated with the given handle
902  * @pool:	pool in which the allocation resides
903  * @handle:	handle associated with the allocation to be mapped
904  *
905  * Extracts the buddy number from handle and constructs the pointer to the
906  * correct starting chunk within the page.
907  *
908  * Returns: a pointer to the mapped allocation
909  */
910 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
911 {
912 	struct z3fold_header *zhdr;
913 	struct page *page;
914 	void *addr;
915 	enum buddy buddy;
916 
917 	zhdr = handle_to_z3fold_header(handle);
918 	addr = zhdr;
919 	page = virt_to_page(zhdr);
920 
921 	if (test_bit(PAGE_HEADLESS, &page->private))
922 		goto out;
923 
924 	z3fold_page_lock(zhdr);
925 	buddy = handle_to_buddy(handle);
926 	switch (buddy) {
927 	case FIRST:
928 		addr += ZHDR_SIZE_ALIGNED;
929 		break;
930 	case MIDDLE:
931 		addr += zhdr->start_middle << CHUNK_SHIFT;
932 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
933 		break;
934 	case LAST:
935 		addr += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
936 		break;
937 	default:
938 		pr_err("unknown buddy id %d\n", buddy);
939 		WARN_ON(1);
940 		addr = NULL;
941 		break;
942 	}
943 
944 	z3fold_page_unlock(zhdr);
945 out:
946 	return addr;
947 }
948 
949 /**
950  * z3fold_unmap() - unmaps the allocation associated with the given handle
951  * @pool:	pool in which the allocation resides
952  * @handle:	handle associated with the allocation to be unmapped
953  */
954 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
955 {
956 	struct z3fold_header *zhdr;
957 	struct page *page;
958 	enum buddy buddy;
959 
960 	zhdr = handle_to_z3fold_header(handle);
961 	page = virt_to_page(zhdr);
962 
963 	if (test_bit(PAGE_HEADLESS, &page->private))
964 		return;
965 
966 	z3fold_page_lock(zhdr);
967 	buddy = handle_to_buddy(handle);
968 	if (buddy == MIDDLE)
969 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
970 	z3fold_page_unlock(zhdr);
971 }
972 
973 /**
974  * z3fold_get_pool_size() - gets the z3fold pool size in pages
975  * @pool:	pool whose size is being queried
976  *
977  * Returns: size in pages of the given pool.
978  */
979 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
980 {
981 	return atomic64_read(&pool->pages_nr);
982 }
983 
984 /*****************
985  * zpool
986  ****************/
987 
988 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
989 {
990 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
991 		return pool->zpool_ops->evict(pool->zpool, handle);
992 	else
993 		return -ENOENT;
994 }
995 
996 static const struct z3fold_ops z3fold_zpool_ops = {
997 	.evict =	z3fold_zpool_evict
998 };
999 
1000 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1001 			       const struct zpool_ops *zpool_ops,
1002 			       struct zpool *zpool)
1003 {
1004 	struct z3fold_pool *pool;
1005 
1006 	pool = z3fold_create_pool(name, gfp,
1007 				zpool_ops ? &z3fold_zpool_ops : NULL);
1008 	if (pool) {
1009 		pool->zpool = zpool;
1010 		pool->zpool_ops = zpool_ops;
1011 	}
1012 	return pool;
1013 }
1014 
1015 static void z3fold_zpool_destroy(void *pool)
1016 {
1017 	z3fold_destroy_pool(pool);
1018 }
1019 
1020 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1021 			unsigned long *handle)
1022 {
1023 	return z3fold_alloc(pool, size, gfp, handle);
1024 }
1025 static void z3fold_zpool_free(void *pool, unsigned long handle)
1026 {
1027 	z3fold_free(pool, handle);
1028 }
1029 
1030 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1031 			unsigned int *reclaimed)
1032 {
1033 	unsigned int total = 0;
1034 	int ret = -EINVAL;
1035 
1036 	while (total < pages) {
1037 		ret = z3fold_reclaim_page(pool, 8);
1038 		if (ret < 0)
1039 			break;
1040 		total++;
1041 	}
1042 
1043 	if (reclaimed)
1044 		*reclaimed = total;
1045 
1046 	return ret;
1047 }
1048 
1049 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1050 			enum zpool_mapmode mm)
1051 {
1052 	return z3fold_map(pool, handle);
1053 }
1054 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1055 {
1056 	z3fold_unmap(pool, handle);
1057 }
1058 
1059 static u64 z3fold_zpool_total_size(void *pool)
1060 {
1061 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1062 }
1063 
1064 static struct zpool_driver z3fold_zpool_driver = {
1065 	.type =		"z3fold",
1066 	.owner =	THIS_MODULE,
1067 	.create =	z3fold_zpool_create,
1068 	.destroy =	z3fold_zpool_destroy,
1069 	.malloc =	z3fold_zpool_malloc,
1070 	.free =		z3fold_zpool_free,
1071 	.shrink =	z3fold_zpool_shrink,
1072 	.map =		z3fold_zpool_map,
1073 	.unmap =	z3fold_zpool_unmap,
1074 	.total_size =	z3fold_zpool_total_size,
1075 };
1076 
1077 MODULE_ALIAS("zpool-z3fold");
1078 
1079 static int __init init_z3fold(void)
1080 {
1081 	/* Make sure the z3fold header is not larger than the page size */
1082 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1083 	zpool_register_driver(&z3fold_zpool_driver);
1084 
1085 	return 0;
1086 }
1087 
1088 static void __exit exit_z3fold(void)
1089 {
1090 	zpool_unregister_driver(&z3fold_zpool_driver);
1091 }
1092 
1093 module_init(init_z3fold);
1094 module_exit(exit_z3fold);
1095 
1096 MODULE_LICENSE("GPL");
1097 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1098 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1099