xref: /openbmc/linux/mm/z3fold.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 
47 /*
48  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49  * adjusting internal fragmentation.  It also determines the number of
50  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52  * in the beginning of an allocated page are occupied by z3fold header, so
53  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54  * which shows the max number of free chunks in z3fold page, also there will
55  * be 63, or 62, respectively, freelists per pool.
56  */
57 #define NCHUNKS_ORDER	6
58 
59 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
60 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
64 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65 
66 #define BUDDY_MASK	(0x3)
67 #define BUDDY_SHIFT	2
68 #define SLOTS_ALIGN	(0x40)
69 
70 /*****************
71  * Structures
72 *****************/
73 struct z3fold_pool;
74 struct z3fold_ops {
75 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76 };
77 
78 enum buddy {
79 	HEADLESS = 0,
80 	FIRST,
81 	MIDDLE,
82 	LAST,
83 	BUDDIES_MAX = LAST
84 };
85 
86 struct z3fold_buddy_slots {
87 	/*
88 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 	 * be enough slots to hold all possible variants
90 	 */
91 	unsigned long slot[BUDDY_MASK + 1];
92 	unsigned long pool; /* back link + flags */
93 };
94 #define HANDLE_FLAG_MASK	(0x03)
95 
96 /*
97  * struct z3fold_header - z3fold page metadata occupying first chunks of each
98  *			z3fold page, except for HEADLESS pages
99  * @buddy:		links the z3fold page into the relevant list in the
100  *			pool
101  * @page_lock:		per-page lock
102  * @refcount:		reference count for the z3fold page
103  * @work:		work_struct for page layout optimization
104  * @slots:		pointer to the structure holding buddy slots
105  * @pool:		pointer to the containing pool
106  * @cpu:		CPU which this page "belongs" to
107  * @first_chunks:	the size of the first buddy in chunks, 0 if free
108  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
109  * @last_chunks:	the size of the last buddy in chunks, 0 if free
110  * @first_num:		the starting number (for the first handle)
111  * @mapped_count:	the number of objects currently mapped
112  */
113 struct z3fold_header {
114 	struct list_head buddy;
115 	spinlock_t page_lock;
116 	struct kref refcount;
117 	struct work_struct work;
118 	struct z3fold_buddy_slots *slots;
119 	struct z3fold_pool *pool;
120 	short cpu;
121 	unsigned short first_chunks;
122 	unsigned short middle_chunks;
123 	unsigned short last_chunks;
124 	unsigned short start_middle;
125 	unsigned short first_num:2;
126 	unsigned short mapped_count:2;
127 };
128 
129 /**
130  * struct z3fold_pool - stores metadata for each z3fold pool
131  * @name:	pool name
132  * @lock:	protects pool unbuddied/lru lists
133  * @stale_lock:	protects pool stale page list
134  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
135  *		buddies; the list each z3fold page is added to depends on
136  *		the size of its free region.
137  * @lru:	list tracking the z3fold pages in LRU order by most recently
138  *		added buddy.
139  * @stale:	list of pages marked for freeing
140  * @pages_nr:	number of z3fold pages in the pool.
141  * @c_handle:	cache for z3fold_buddy_slots allocation
142  * @ops:	pointer to a structure of user defined operations specified at
143  *		pool creation time.
144  * @compact_wq:	workqueue for page layout background optimization
145  * @release_wq:	workqueue for safe page release
146  * @work:	work_struct for safe page release
147  * @inode:	inode for z3fold pseudo filesystem
148  *
149  * This structure is allocated at pool creation time and maintains metadata
150  * pertaining to a particular z3fold pool.
151  */
152 struct z3fold_pool {
153 	const char *name;
154 	spinlock_t lock;
155 	spinlock_t stale_lock;
156 	struct list_head *unbuddied;
157 	struct list_head lru;
158 	struct list_head stale;
159 	atomic64_t pages_nr;
160 	struct kmem_cache *c_handle;
161 	const struct z3fold_ops *ops;
162 	struct zpool *zpool;
163 	const struct zpool_ops *zpool_ops;
164 	struct workqueue_struct *compact_wq;
165 	struct workqueue_struct *release_wq;
166 	struct work_struct work;
167 	struct inode *inode;
168 };
169 
170 /*
171  * Internal z3fold page flags
172  */
173 enum z3fold_page_flags {
174 	PAGE_HEADLESS = 0,
175 	MIDDLE_CHUNK_MAPPED,
176 	NEEDS_COMPACTING,
177 	PAGE_STALE,
178 	PAGE_CLAIMED, /* by either reclaim or free */
179 };
180 
181 /*****************
182  * Helpers
183 *****************/
184 
185 /* Converts an allocation size in bytes to size in z3fold chunks */
186 static int size_to_chunks(size_t size)
187 {
188 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
189 }
190 
191 #define for_each_unbuddied_list(_iter, _begin) \
192 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
193 
194 static void compact_page_work(struct work_struct *w);
195 
196 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
197 							gfp_t gfp)
198 {
199 	struct z3fold_buddy_slots *slots;
200 
201 	slots = kmem_cache_alloc(pool->c_handle,
202 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
203 
204 	if (slots) {
205 		memset(slots->slot, 0, sizeof(slots->slot));
206 		slots->pool = (unsigned long)pool;
207 	}
208 
209 	return slots;
210 }
211 
212 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
213 {
214 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
215 }
216 
217 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
218 {
219 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
220 }
221 
222 static inline void free_handle(unsigned long handle)
223 {
224 	struct z3fold_buddy_slots *slots;
225 	int i;
226 	bool is_free;
227 
228 	if (handle & (1 << PAGE_HEADLESS))
229 		return;
230 
231 	WARN_ON(*(unsigned long *)handle == 0);
232 	*(unsigned long *)handle = 0;
233 	slots = handle_to_slots(handle);
234 	is_free = true;
235 	for (i = 0; i <= BUDDY_MASK; i++) {
236 		if (slots->slot[i]) {
237 			is_free = false;
238 			break;
239 		}
240 	}
241 
242 	if (is_free) {
243 		struct z3fold_pool *pool = slots_to_pool(slots);
244 
245 		kmem_cache_free(pool->c_handle, slots);
246 	}
247 }
248 
249 static int z3fold_init_fs_context(struct fs_context *fc)
250 {
251 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
252 }
253 
254 static struct file_system_type z3fold_fs = {
255 	.name		= "z3fold",
256 	.init_fs_context = z3fold_init_fs_context,
257 	.kill_sb	= kill_anon_super,
258 };
259 
260 static struct vfsmount *z3fold_mnt;
261 static int z3fold_mount(void)
262 {
263 	int ret = 0;
264 
265 	z3fold_mnt = kern_mount(&z3fold_fs);
266 	if (IS_ERR(z3fold_mnt))
267 		ret = PTR_ERR(z3fold_mnt);
268 
269 	return ret;
270 }
271 
272 static void z3fold_unmount(void)
273 {
274 	kern_unmount(z3fold_mnt);
275 }
276 
277 static const struct address_space_operations z3fold_aops;
278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 	if (IS_ERR(pool->inode)) {
282 		pool->inode = NULL;
283 		return 1;
284 	}
285 
286 	pool->inode->i_mapping->private_data = pool;
287 	pool->inode->i_mapping->a_ops = &z3fold_aops;
288 	return 0;
289 }
290 
291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293 	if (pool->inode)
294 		iput(pool->inode);
295  }
296 
297 /* Initializes the z3fold header of a newly allocated z3fold page */
298 static struct z3fold_header *init_z3fold_page(struct page *page,
299 					struct z3fold_pool *pool, gfp_t gfp)
300 {
301 	struct z3fold_header *zhdr = page_address(page);
302 	struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303 
304 	if (!slots)
305 		return NULL;
306 
307 	INIT_LIST_HEAD(&page->lru);
308 	clear_bit(PAGE_HEADLESS, &page->private);
309 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310 	clear_bit(NEEDS_COMPACTING, &page->private);
311 	clear_bit(PAGE_STALE, &page->private);
312 	clear_bit(PAGE_CLAIMED, &page->private);
313 
314 	spin_lock_init(&zhdr->page_lock);
315 	kref_init(&zhdr->refcount);
316 	zhdr->first_chunks = 0;
317 	zhdr->middle_chunks = 0;
318 	zhdr->last_chunks = 0;
319 	zhdr->first_num = 0;
320 	zhdr->start_middle = 0;
321 	zhdr->cpu = -1;
322 	zhdr->slots = slots;
323 	zhdr->pool = pool;
324 	INIT_LIST_HEAD(&zhdr->buddy);
325 	INIT_WORK(&zhdr->work, compact_page_work);
326 	return zhdr;
327 }
328 
329 /* Resets the struct page fields and frees the page */
330 static void free_z3fold_page(struct page *page, bool headless)
331 {
332 	if (!headless) {
333 		lock_page(page);
334 		__ClearPageMovable(page);
335 		unlock_page(page);
336 	}
337 	ClearPagePrivate(page);
338 	__free_page(page);
339 }
340 
341 /* Lock a z3fold page */
342 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
343 {
344 	spin_lock(&zhdr->page_lock);
345 }
346 
347 /* Try to lock a z3fold page */
348 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
349 {
350 	return spin_trylock(&zhdr->page_lock);
351 }
352 
353 /* Unlock a z3fold page */
354 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
355 {
356 	spin_unlock(&zhdr->page_lock);
357 }
358 
359 /* Helper function to build the index */
360 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
361 {
362 	return (bud + zhdr->first_num) & BUDDY_MASK;
363 }
364 
365 /*
366  * Encodes the handle of a particular buddy within a z3fold page
367  * Pool lock should be held as this function accesses first_num
368  */
369 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
370 {
371 	struct z3fold_buddy_slots *slots;
372 	unsigned long h = (unsigned long)zhdr;
373 	int idx = 0;
374 
375 	/*
376 	 * For a headless page, its handle is its pointer with the extra
377 	 * PAGE_HEADLESS bit set
378 	 */
379 	if (bud == HEADLESS)
380 		return h | (1 << PAGE_HEADLESS);
381 
382 	/* otherwise, return pointer to encoded handle */
383 	idx = __idx(zhdr, bud);
384 	h += idx;
385 	if (bud == LAST)
386 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
387 
388 	slots = zhdr->slots;
389 	slots->slot[idx] = h;
390 	return (unsigned long)&slots->slot[idx];
391 }
392 
393 /* Returns the z3fold page where a given handle is stored */
394 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
395 {
396 	unsigned long addr = h;
397 
398 	if (!(addr & (1 << PAGE_HEADLESS)))
399 		addr = *(unsigned long *)h;
400 
401 	return (struct z3fold_header *)(addr & PAGE_MASK);
402 }
403 
404 /* only for LAST bud, returns zero otherwise */
405 static unsigned short handle_to_chunks(unsigned long handle)
406 {
407 	unsigned long addr = *(unsigned long *)handle;
408 
409 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
410 }
411 
412 /*
413  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
414  *  but that doesn't matter. because the masking will result in the
415  *  correct buddy number.
416  */
417 static enum buddy handle_to_buddy(unsigned long handle)
418 {
419 	struct z3fold_header *zhdr;
420 	unsigned long addr;
421 
422 	WARN_ON(handle & (1 << PAGE_HEADLESS));
423 	addr = *(unsigned long *)handle;
424 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
425 	return (addr - zhdr->first_num) & BUDDY_MASK;
426 }
427 
428 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
429 {
430 	return zhdr->pool;
431 }
432 
433 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
434 {
435 	struct page *page = virt_to_page(zhdr);
436 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
437 
438 	WARN_ON(!list_empty(&zhdr->buddy));
439 	set_bit(PAGE_STALE, &page->private);
440 	clear_bit(NEEDS_COMPACTING, &page->private);
441 	spin_lock(&pool->lock);
442 	if (!list_empty(&page->lru))
443 		list_del_init(&page->lru);
444 	spin_unlock(&pool->lock);
445 	if (locked)
446 		z3fold_page_unlock(zhdr);
447 	spin_lock(&pool->stale_lock);
448 	list_add(&zhdr->buddy, &pool->stale);
449 	queue_work(pool->release_wq, &pool->work);
450 	spin_unlock(&pool->stale_lock);
451 }
452 
453 static void __attribute__((__unused__))
454 			release_z3fold_page(struct kref *ref)
455 {
456 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
457 						refcount);
458 	__release_z3fold_page(zhdr, false);
459 }
460 
461 static void release_z3fold_page_locked(struct kref *ref)
462 {
463 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
464 						refcount);
465 	WARN_ON(z3fold_page_trylock(zhdr));
466 	__release_z3fold_page(zhdr, true);
467 }
468 
469 static void release_z3fold_page_locked_list(struct kref *ref)
470 {
471 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
472 					       refcount);
473 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
474 	spin_lock(&pool->lock);
475 	list_del_init(&zhdr->buddy);
476 	spin_unlock(&pool->lock);
477 
478 	WARN_ON(z3fold_page_trylock(zhdr));
479 	__release_z3fold_page(zhdr, true);
480 }
481 
482 static void free_pages_work(struct work_struct *w)
483 {
484 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
485 
486 	spin_lock(&pool->stale_lock);
487 	while (!list_empty(&pool->stale)) {
488 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
489 						struct z3fold_header, buddy);
490 		struct page *page = virt_to_page(zhdr);
491 
492 		list_del(&zhdr->buddy);
493 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
494 			continue;
495 		spin_unlock(&pool->stale_lock);
496 		cancel_work_sync(&zhdr->work);
497 		free_z3fold_page(page, false);
498 		cond_resched();
499 		spin_lock(&pool->stale_lock);
500 	}
501 	spin_unlock(&pool->stale_lock);
502 }
503 
504 /*
505  * Returns the number of free chunks in a z3fold page.
506  * NB: can't be used with HEADLESS pages.
507  */
508 static int num_free_chunks(struct z3fold_header *zhdr)
509 {
510 	int nfree;
511 	/*
512 	 * If there is a middle object, pick up the bigger free space
513 	 * either before or after it. Otherwise just subtract the number
514 	 * of chunks occupied by the first and the last objects.
515 	 */
516 	if (zhdr->middle_chunks != 0) {
517 		int nfree_before = zhdr->first_chunks ?
518 			0 : zhdr->start_middle - ZHDR_CHUNKS;
519 		int nfree_after = zhdr->last_chunks ?
520 			0 : TOTAL_CHUNKS -
521 				(zhdr->start_middle + zhdr->middle_chunks);
522 		nfree = max(nfree_before, nfree_after);
523 	} else
524 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
525 	return nfree;
526 }
527 
528 /* Add to the appropriate unbuddied list */
529 static inline void add_to_unbuddied(struct z3fold_pool *pool,
530 				struct z3fold_header *zhdr)
531 {
532 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
533 			zhdr->middle_chunks == 0) {
534 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
535 
536 		int freechunks = num_free_chunks(zhdr);
537 		spin_lock(&pool->lock);
538 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
539 		spin_unlock(&pool->lock);
540 		zhdr->cpu = smp_processor_id();
541 		put_cpu_ptr(pool->unbuddied);
542 	}
543 }
544 
545 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
546 				unsigned short dst_chunk)
547 {
548 	void *beg = zhdr;
549 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
550 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
551 		       zhdr->middle_chunks << CHUNK_SHIFT);
552 }
553 
554 #define BIG_CHUNK_GAP	3
555 /* Has to be called with lock held */
556 static int z3fold_compact_page(struct z3fold_header *zhdr)
557 {
558 	struct page *page = virt_to_page(zhdr);
559 
560 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
561 		return 0; /* can't move middle chunk, it's used */
562 
563 	if (unlikely(PageIsolated(page)))
564 		return 0;
565 
566 	if (zhdr->middle_chunks == 0)
567 		return 0; /* nothing to compact */
568 
569 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
570 		/* move to the beginning */
571 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
572 		zhdr->first_chunks = zhdr->middle_chunks;
573 		zhdr->middle_chunks = 0;
574 		zhdr->start_middle = 0;
575 		zhdr->first_num++;
576 		return 1;
577 	}
578 
579 	/*
580 	 * moving data is expensive, so let's only do that if
581 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
582 	 */
583 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
584 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
585 			BIG_CHUNK_GAP) {
586 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
587 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
588 		return 1;
589 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
590 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
591 					+ zhdr->middle_chunks) >=
592 			BIG_CHUNK_GAP) {
593 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
594 			zhdr->middle_chunks;
595 		mchunk_memmove(zhdr, new_start);
596 		zhdr->start_middle = new_start;
597 		return 1;
598 	}
599 
600 	return 0;
601 }
602 
603 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
604 {
605 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
606 	struct page *page;
607 
608 	page = virt_to_page(zhdr);
609 	if (locked)
610 		WARN_ON(z3fold_page_trylock(zhdr));
611 	else
612 		z3fold_page_lock(zhdr);
613 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
614 		z3fold_page_unlock(zhdr);
615 		return;
616 	}
617 	spin_lock(&pool->lock);
618 	list_del_init(&zhdr->buddy);
619 	spin_unlock(&pool->lock);
620 
621 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
622 		atomic64_dec(&pool->pages_nr);
623 		return;
624 	}
625 
626 	if (unlikely(PageIsolated(page) ||
627 		     test_bit(PAGE_STALE, &page->private))) {
628 		z3fold_page_unlock(zhdr);
629 		return;
630 	}
631 
632 	z3fold_compact_page(zhdr);
633 	add_to_unbuddied(pool, zhdr);
634 	z3fold_page_unlock(zhdr);
635 }
636 
637 static void compact_page_work(struct work_struct *w)
638 {
639 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
640 						work);
641 
642 	do_compact_page(zhdr, false);
643 }
644 
645 /* returns _locked_ z3fold page header or NULL */
646 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
647 						size_t size, bool can_sleep)
648 {
649 	struct z3fold_header *zhdr = NULL;
650 	struct page *page;
651 	struct list_head *unbuddied;
652 	int chunks = size_to_chunks(size), i;
653 
654 lookup:
655 	/* First, try to find an unbuddied z3fold page. */
656 	unbuddied = get_cpu_ptr(pool->unbuddied);
657 	for_each_unbuddied_list(i, chunks) {
658 		struct list_head *l = &unbuddied[i];
659 
660 		zhdr = list_first_entry_or_null(READ_ONCE(l),
661 					struct z3fold_header, buddy);
662 
663 		if (!zhdr)
664 			continue;
665 
666 		/* Re-check under lock. */
667 		spin_lock(&pool->lock);
668 		l = &unbuddied[i];
669 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
670 						struct z3fold_header, buddy)) ||
671 		    !z3fold_page_trylock(zhdr)) {
672 			spin_unlock(&pool->lock);
673 			zhdr = NULL;
674 			put_cpu_ptr(pool->unbuddied);
675 			if (can_sleep)
676 				cond_resched();
677 			goto lookup;
678 		}
679 		list_del_init(&zhdr->buddy);
680 		zhdr->cpu = -1;
681 		spin_unlock(&pool->lock);
682 
683 		page = virt_to_page(zhdr);
684 		if (test_bit(NEEDS_COMPACTING, &page->private)) {
685 			z3fold_page_unlock(zhdr);
686 			zhdr = NULL;
687 			put_cpu_ptr(pool->unbuddied);
688 			if (can_sleep)
689 				cond_resched();
690 			goto lookup;
691 		}
692 
693 		/*
694 		 * this page could not be removed from its unbuddied
695 		 * list while pool lock was held, and then we've taken
696 		 * page lock so kref_put could not be called before
697 		 * we got here, so it's safe to just call kref_get()
698 		 */
699 		kref_get(&zhdr->refcount);
700 		break;
701 	}
702 	put_cpu_ptr(pool->unbuddied);
703 
704 	if (!zhdr) {
705 		int cpu;
706 
707 		/* look for _exact_ match on other cpus' lists */
708 		for_each_online_cpu(cpu) {
709 			struct list_head *l;
710 
711 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
712 			spin_lock(&pool->lock);
713 			l = &unbuddied[chunks];
714 
715 			zhdr = list_first_entry_or_null(READ_ONCE(l),
716 						struct z3fold_header, buddy);
717 
718 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
719 				spin_unlock(&pool->lock);
720 				zhdr = NULL;
721 				continue;
722 			}
723 			list_del_init(&zhdr->buddy);
724 			zhdr->cpu = -1;
725 			spin_unlock(&pool->lock);
726 
727 			page = virt_to_page(zhdr);
728 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
729 				z3fold_page_unlock(zhdr);
730 				zhdr = NULL;
731 				if (can_sleep)
732 					cond_resched();
733 				continue;
734 			}
735 			kref_get(&zhdr->refcount);
736 			break;
737 		}
738 	}
739 
740 	return zhdr;
741 }
742 
743 /*
744  * API Functions
745  */
746 
747 /**
748  * z3fold_create_pool() - create a new z3fold pool
749  * @name:	pool name
750  * @gfp:	gfp flags when allocating the z3fold pool structure
751  * @ops:	user-defined operations for the z3fold pool
752  *
753  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
754  * failed.
755  */
756 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
757 		const struct z3fold_ops *ops)
758 {
759 	struct z3fold_pool *pool = NULL;
760 	int i, cpu;
761 
762 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
763 	if (!pool)
764 		goto out;
765 	pool->c_handle = kmem_cache_create("z3fold_handle",
766 				sizeof(struct z3fold_buddy_slots),
767 				SLOTS_ALIGN, 0, NULL);
768 	if (!pool->c_handle)
769 		goto out_c;
770 	spin_lock_init(&pool->lock);
771 	spin_lock_init(&pool->stale_lock);
772 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
773 	if (!pool->unbuddied)
774 		goto out_pool;
775 	for_each_possible_cpu(cpu) {
776 		struct list_head *unbuddied =
777 				per_cpu_ptr(pool->unbuddied, cpu);
778 		for_each_unbuddied_list(i, 0)
779 			INIT_LIST_HEAD(&unbuddied[i]);
780 	}
781 	INIT_LIST_HEAD(&pool->lru);
782 	INIT_LIST_HEAD(&pool->stale);
783 	atomic64_set(&pool->pages_nr, 0);
784 	pool->name = name;
785 	pool->compact_wq = create_singlethread_workqueue(pool->name);
786 	if (!pool->compact_wq)
787 		goto out_unbuddied;
788 	pool->release_wq = create_singlethread_workqueue(pool->name);
789 	if (!pool->release_wq)
790 		goto out_wq;
791 	if (z3fold_register_migration(pool))
792 		goto out_rwq;
793 	INIT_WORK(&pool->work, free_pages_work);
794 	pool->ops = ops;
795 	return pool;
796 
797 out_rwq:
798 	destroy_workqueue(pool->release_wq);
799 out_wq:
800 	destroy_workqueue(pool->compact_wq);
801 out_unbuddied:
802 	free_percpu(pool->unbuddied);
803 out_pool:
804 	kmem_cache_destroy(pool->c_handle);
805 out_c:
806 	kfree(pool);
807 out:
808 	return NULL;
809 }
810 
811 /**
812  * z3fold_destroy_pool() - destroys an existing z3fold pool
813  * @pool:	the z3fold pool to be destroyed
814  *
815  * The pool should be emptied before this function is called.
816  */
817 static void z3fold_destroy_pool(struct z3fold_pool *pool)
818 {
819 	kmem_cache_destroy(pool->c_handle);
820 
821 	/*
822 	 * We need to destroy pool->compact_wq before pool->release_wq,
823 	 * as any pending work on pool->compact_wq will call
824 	 * queue_work(pool->release_wq, &pool->work).
825 	 *
826 	 * There are still outstanding pages until both workqueues are drained,
827 	 * so we cannot unregister migration until then.
828 	 */
829 
830 	destroy_workqueue(pool->compact_wq);
831 	destroy_workqueue(pool->release_wq);
832 	z3fold_unregister_migration(pool);
833 	kfree(pool);
834 }
835 
836 /**
837  * z3fold_alloc() - allocates a region of a given size
838  * @pool:	z3fold pool from which to allocate
839  * @size:	size in bytes of the desired allocation
840  * @gfp:	gfp flags used if the pool needs to grow
841  * @handle:	handle of the new allocation
842  *
843  * This function will attempt to find a free region in the pool large enough to
844  * satisfy the allocation request.  A search of the unbuddied lists is
845  * performed first. If no suitable free region is found, then a new page is
846  * allocated and added to the pool to satisfy the request.
847  *
848  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
849  * as z3fold pool pages.
850  *
851  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
852  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
853  * a new page.
854  */
855 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
856 			unsigned long *handle)
857 {
858 	int chunks = size_to_chunks(size);
859 	struct z3fold_header *zhdr = NULL;
860 	struct page *page = NULL;
861 	enum buddy bud;
862 	bool can_sleep = gfpflags_allow_blocking(gfp);
863 
864 	if (!size)
865 		return -EINVAL;
866 
867 	if (size > PAGE_SIZE)
868 		return -ENOSPC;
869 
870 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
871 		bud = HEADLESS;
872 	else {
873 retry:
874 		zhdr = __z3fold_alloc(pool, size, can_sleep);
875 		if (zhdr) {
876 			if (zhdr->first_chunks == 0) {
877 				if (zhdr->middle_chunks != 0 &&
878 				    chunks >= zhdr->start_middle)
879 					bud = LAST;
880 				else
881 					bud = FIRST;
882 			} else if (zhdr->last_chunks == 0)
883 				bud = LAST;
884 			else if (zhdr->middle_chunks == 0)
885 				bud = MIDDLE;
886 			else {
887 				if (kref_put(&zhdr->refcount,
888 					     release_z3fold_page_locked))
889 					atomic64_dec(&pool->pages_nr);
890 				else
891 					z3fold_page_unlock(zhdr);
892 				pr_err("No free chunks in unbuddied\n");
893 				WARN_ON(1);
894 				goto retry;
895 			}
896 			page = virt_to_page(zhdr);
897 			goto found;
898 		}
899 		bud = FIRST;
900 	}
901 
902 	page = NULL;
903 	if (can_sleep) {
904 		spin_lock(&pool->stale_lock);
905 		zhdr = list_first_entry_or_null(&pool->stale,
906 						struct z3fold_header, buddy);
907 		/*
908 		 * Before allocating a page, let's see if we can take one from
909 		 * the stale pages list. cancel_work_sync() can sleep so we
910 		 * limit this case to the contexts where we can sleep
911 		 */
912 		if (zhdr) {
913 			list_del(&zhdr->buddy);
914 			spin_unlock(&pool->stale_lock);
915 			cancel_work_sync(&zhdr->work);
916 			page = virt_to_page(zhdr);
917 		} else {
918 			spin_unlock(&pool->stale_lock);
919 		}
920 	}
921 	if (!page)
922 		page = alloc_page(gfp);
923 
924 	if (!page)
925 		return -ENOMEM;
926 
927 	zhdr = init_z3fold_page(page, pool, gfp);
928 	if (!zhdr) {
929 		__free_page(page);
930 		return -ENOMEM;
931 	}
932 	atomic64_inc(&pool->pages_nr);
933 
934 	if (bud == HEADLESS) {
935 		set_bit(PAGE_HEADLESS, &page->private);
936 		goto headless;
937 	}
938 	if (can_sleep) {
939 		lock_page(page);
940 		__SetPageMovable(page, pool->inode->i_mapping);
941 		unlock_page(page);
942 	} else {
943 		if (trylock_page(page)) {
944 			__SetPageMovable(page, pool->inode->i_mapping);
945 			unlock_page(page);
946 		}
947 	}
948 	z3fold_page_lock(zhdr);
949 
950 found:
951 	if (bud == FIRST)
952 		zhdr->first_chunks = chunks;
953 	else if (bud == LAST)
954 		zhdr->last_chunks = chunks;
955 	else {
956 		zhdr->middle_chunks = chunks;
957 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
958 	}
959 	add_to_unbuddied(pool, zhdr);
960 
961 headless:
962 	spin_lock(&pool->lock);
963 	/* Add/move z3fold page to beginning of LRU */
964 	if (!list_empty(&page->lru))
965 		list_del(&page->lru);
966 
967 	list_add(&page->lru, &pool->lru);
968 
969 	*handle = encode_handle(zhdr, bud);
970 	spin_unlock(&pool->lock);
971 	if (bud != HEADLESS)
972 		z3fold_page_unlock(zhdr);
973 
974 	return 0;
975 }
976 
977 /**
978  * z3fold_free() - frees the allocation associated with the given handle
979  * @pool:	pool in which the allocation resided
980  * @handle:	handle associated with the allocation returned by z3fold_alloc()
981  *
982  * In the case that the z3fold page in which the allocation resides is under
983  * reclaim, as indicated by the PG_reclaim flag being set, this function
984  * only sets the first|last_chunks to 0.  The page is actually freed
985  * once both buddies are evicted (see z3fold_reclaim_page() below).
986  */
987 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
988 {
989 	struct z3fold_header *zhdr;
990 	struct page *page;
991 	enum buddy bud;
992 
993 	zhdr = handle_to_z3fold_header(handle);
994 	page = virt_to_page(zhdr);
995 
996 	if (test_bit(PAGE_HEADLESS, &page->private)) {
997 		/* if a headless page is under reclaim, just leave.
998 		 * NB: we use test_and_set_bit for a reason: if the bit
999 		 * has not been set before, we release this page
1000 		 * immediately so we don't care about its value any more.
1001 		 */
1002 		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1003 			spin_lock(&pool->lock);
1004 			list_del(&page->lru);
1005 			spin_unlock(&pool->lock);
1006 			free_z3fold_page(page, true);
1007 			atomic64_dec(&pool->pages_nr);
1008 		}
1009 		return;
1010 	}
1011 
1012 	/* Non-headless case */
1013 	z3fold_page_lock(zhdr);
1014 	bud = handle_to_buddy(handle);
1015 
1016 	switch (bud) {
1017 	case FIRST:
1018 		zhdr->first_chunks = 0;
1019 		break;
1020 	case MIDDLE:
1021 		zhdr->middle_chunks = 0;
1022 		break;
1023 	case LAST:
1024 		zhdr->last_chunks = 0;
1025 		break;
1026 	default:
1027 		pr_err("%s: unknown bud %d\n", __func__, bud);
1028 		WARN_ON(1);
1029 		z3fold_page_unlock(zhdr);
1030 		return;
1031 	}
1032 
1033 	free_handle(handle);
1034 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1035 		atomic64_dec(&pool->pages_nr);
1036 		return;
1037 	}
1038 	if (test_bit(PAGE_CLAIMED, &page->private)) {
1039 		z3fold_page_unlock(zhdr);
1040 		return;
1041 	}
1042 	if (unlikely(PageIsolated(page)) ||
1043 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1044 		z3fold_page_unlock(zhdr);
1045 		return;
1046 	}
1047 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1048 		spin_lock(&pool->lock);
1049 		list_del_init(&zhdr->buddy);
1050 		spin_unlock(&pool->lock);
1051 		zhdr->cpu = -1;
1052 		kref_get(&zhdr->refcount);
1053 		do_compact_page(zhdr, true);
1054 		return;
1055 	}
1056 	kref_get(&zhdr->refcount);
1057 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1058 	z3fold_page_unlock(zhdr);
1059 }
1060 
1061 /**
1062  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1063  * @pool:	pool from which a page will attempt to be evicted
1064  * @retries:	number of pages on the LRU list for which eviction will
1065  *		be attempted before failing
1066  *
1067  * z3fold reclaim is different from normal system reclaim in that it is done
1068  * from the bottom, up. This is because only the bottom layer, z3fold, has
1069  * information on how the allocations are organized within each z3fold page.
1070  * This has the potential to create interesting locking situations between
1071  * z3fold and the user, however.
1072  *
1073  * To avoid these, this is how z3fold_reclaim_page() should be called:
1074  *
1075  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1076  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1077  * call the user-defined eviction handler with the pool and handle as
1078  * arguments.
1079  *
1080  * If the handle can not be evicted, the eviction handler should return
1081  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1082  * appropriate list and try the next z3fold page on the LRU up to
1083  * a user defined number of retries.
1084  *
1085  * If the handle is successfully evicted, the eviction handler should
1086  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1087  * contains logic to delay freeing the page if the page is under reclaim,
1088  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1089  *
1090  * If all buddies in the z3fold page are successfully evicted, then the
1091  * z3fold page can be freed.
1092  *
1093  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1094  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1095  * the retry limit was hit.
1096  */
1097 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1098 {
1099 	int i, ret = 0;
1100 	struct z3fold_header *zhdr = NULL;
1101 	struct page *page = NULL;
1102 	struct list_head *pos;
1103 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1104 
1105 	spin_lock(&pool->lock);
1106 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1107 		spin_unlock(&pool->lock);
1108 		return -EINVAL;
1109 	}
1110 	for (i = 0; i < retries; i++) {
1111 		if (list_empty(&pool->lru)) {
1112 			spin_unlock(&pool->lock);
1113 			return -EINVAL;
1114 		}
1115 		list_for_each_prev(pos, &pool->lru) {
1116 			page = list_entry(pos, struct page, lru);
1117 
1118 			/* this bit could have been set by free, in which case
1119 			 * we pass over to the next page in the pool.
1120 			 */
1121 			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1122 				continue;
1123 
1124 			if (unlikely(PageIsolated(page)))
1125 				continue;
1126 			if (test_bit(PAGE_HEADLESS, &page->private))
1127 				break;
1128 
1129 			zhdr = page_address(page);
1130 			if (!z3fold_page_trylock(zhdr)) {
1131 				zhdr = NULL;
1132 				continue; /* can't evict at this point */
1133 			}
1134 			kref_get(&zhdr->refcount);
1135 			list_del_init(&zhdr->buddy);
1136 			zhdr->cpu = -1;
1137 			break;
1138 		}
1139 
1140 		if (!zhdr)
1141 			break;
1142 
1143 		list_del_init(&page->lru);
1144 		spin_unlock(&pool->lock);
1145 
1146 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1147 			/*
1148 			 * We need encode the handles before unlocking, since
1149 			 * we can race with free that will set
1150 			 * (first|last)_chunks to 0
1151 			 */
1152 			first_handle = 0;
1153 			last_handle = 0;
1154 			middle_handle = 0;
1155 			if (zhdr->first_chunks)
1156 				first_handle = encode_handle(zhdr, FIRST);
1157 			if (zhdr->middle_chunks)
1158 				middle_handle = encode_handle(zhdr, MIDDLE);
1159 			if (zhdr->last_chunks)
1160 				last_handle = encode_handle(zhdr, LAST);
1161 			/*
1162 			 * it's safe to unlock here because we hold a
1163 			 * reference to this page
1164 			 */
1165 			z3fold_page_unlock(zhdr);
1166 		} else {
1167 			first_handle = encode_handle(zhdr, HEADLESS);
1168 			last_handle = middle_handle = 0;
1169 		}
1170 
1171 		/* Issue the eviction callback(s) */
1172 		if (middle_handle) {
1173 			ret = pool->ops->evict(pool, middle_handle);
1174 			if (ret)
1175 				goto next;
1176 		}
1177 		if (first_handle) {
1178 			ret = pool->ops->evict(pool, first_handle);
1179 			if (ret)
1180 				goto next;
1181 		}
1182 		if (last_handle) {
1183 			ret = pool->ops->evict(pool, last_handle);
1184 			if (ret)
1185 				goto next;
1186 		}
1187 next:
1188 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1189 			if (ret == 0) {
1190 				free_z3fold_page(page, true);
1191 				atomic64_dec(&pool->pages_nr);
1192 				return 0;
1193 			}
1194 			spin_lock(&pool->lock);
1195 			list_add(&page->lru, &pool->lru);
1196 			spin_unlock(&pool->lock);
1197 		} else {
1198 			z3fold_page_lock(zhdr);
1199 			clear_bit(PAGE_CLAIMED, &page->private);
1200 			if (kref_put(&zhdr->refcount,
1201 					release_z3fold_page_locked)) {
1202 				atomic64_dec(&pool->pages_nr);
1203 				return 0;
1204 			}
1205 			/*
1206 			 * if we are here, the page is still not completely
1207 			 * free. Take the global pool lock then to be able
1208 			 * to add it back to the lru list
1209 			 */
1210 			spin_lock(&pool->lock);
1211 			list_add(&page->lru, &pool->lru);
1212 			spin_unlock(&pool->lock);
1213 			z3fold_page_unlock(zhdr);
1214 		}
1215 
1216 		/* We started off locked to we need to lock the pool back */
1217 		spin_lock(&pool->lock);
1218 	}
1219 	spin_unlock(&pool->lock);
1220 	return -EAGAIN;
1221 }
1222 
1223 /**
1224  * z3fold_map() - maps the allocation associated with the given handle
1225  * @pool:	pool in which the allocation resides
1226  * @handle:	handle associated with the allocation to be mapped
1227  *
1228  * Extracts the buddy number from handle and constructs the pointer to the
1229  * correct starting chunk within the page.
1230  *
1231  * Returns: a pointer to the mapped allocation
1232  */
1233 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1234 {
1235 	struct z3fold_header *zhdr;
1236 	struct page *page;
1237 	void *addr;
1238 	enum buddy buddy;
1239 
1240 	zhdr = handle_to_z3fold_header(handle);
1241 	addr = zhdr;
1242 	page = virt_to_page(zhdr);
1243 
1244 	if (test_bit(PAGE_HEADLESS, &page->private))
1245 		goto out;
1246 
1247 	z3fold_page_lock(zhdr);
1248 	buddy = handle_to_buddy(handle);
1249 	switch (buddy) {
1250 	case FIRST:
1251 		addr += ZHDR_SIZE_ALIGNED;
1252 		break;
1253 	case MIDDLE:
1254 		addr += zhdr->start_middle << CHUNK_SHIFT;
1255 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1256 		break;
1257 	case LAST:
1258 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1259 		break;
1260 	default:
1261 		pr_err("unknown buddy id %d\n", buddy);
1262 		WARN_ON(1);
1263 		addr = NULL;
1264 		break;
1265 	}
1266 
1267 	if (addr)
1268 		zhdr->mapped_count++;
1269 	z3fold_page_unlock(zhdr);
1270 out:
1271 	return addr;
1272 }
1273 
1274 /**
1275  * z3fold_unmap() - unmaps the allocation associated with the given handle
1276  * @pool:	pool in which the allocation resides
1277  * @handle:	handle associated with the allocation to be unmapped
1278  */
1279 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1280 {
1281 	struct z3fold_header *zhdr;
1282 	struct page *page;
1283 	enum buddy buddy;
1284 
1285 	zhdr = handle_to_z3fold_header(handle);
1286 	page = virt_to_page(zhdr);
1287 
1288 	if (test_bit(PAGE_HEADLESS, &page->private))
1289 		return;
1290 
1291 	z3fold_page_lock(zhdr);
1292 	buddy = handle_to_buddy(handle);
1293 	if (buddy == MIDDLE)
1294 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1295 	zhdr->mapped_count--;
1296 	z3fold_page_unlock(zhdr);
1297 }
1298 
1299 /**
1300  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1301  * @pool:	pool whose size is being queried
1302  *
1303  * Returns: size in pages of the given pool.
1304  */
1305 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1306 {
1307 	return atomic64_read(&pool->pages_nr);
1308 }
1309 
1310 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1311 {
1312 	struct z3fold_header *zhdr;
1313 	struct z3fold_pool *pool;
1314 
1315 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1316 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1317 
1318 	if (test_bit(PAGE_HEADLESS, &page->private))
1319 		return false;
1320 
1321 	zhdr = page_address(page);
1322 	z3fold_page_lock(zhdr);
1323 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1324 	    test_bit(PAGE_STALE, &page->private))
1325 		goto out;
1326 
1327 	pool = zhdr_to_pool(zhdr);
1328 
1329 	if (zhdr->mapped_count == 0) {
1330 		kref_get(&zhdr->refcount);
1331 		if (!list_empty(&zhdr->buddy))
1332 			list_del_init(&zhdr->buddy);
1333 		spin_lock(&pool->lock);
1334 		if (!list_empty(&page->lru))
1335 			list_del(&page->lru);
1336 		spin_unlock(&pool->lock);
1337 		z3fold_page_unlock(zhdr);
1338 		return true;
1339 	}
1340 out:
1341 	z3fold_page_unlock(zhdr);
1342 	return false;
1343 }
1344 
1345 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1346 			       struct page *page, enum migrate_mode mode)
1347 {
1348 	struct z3fold_header *zhdr, *new_zhdr;
1349 	struct z3fold_pool *pool;
1350 	struct address_space *new_mapping;
1351 
1352 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1353 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1354 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1355 
1356 	zhdr = page_address(page);
1357 	pool = zhdr_to_pool(zhdr);
1358 
1359 	if (!z3fold_page_trylock(zhdr)) {
1360 		return -EAGAIN;
1361 	}
1362 	if (zhdr->mapped_count != 0) {
1363 		z3fold_page_unlock(zhdr);
1364 		return -EBUSY;
1365 	}
1366 	if (work_pending(&zhdr->work)) {
1367 		z3fold_page_unlock(zhdr);
1368 		return -EAGAIN;
1369 	}
1370 	new_zhdr = page_address(newpage);
1371 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1372 	newpage->private = page->private;
1373 	page->private = 0;
1374 	z3fold_page_unlock(zhdr);
1375 	spin_lock_init(&new_zhdr->page_lock);
1376 	INIT_WORK(&new_zhdr->work, compact_page_work);
1377 	/*
1378 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1379 	 * so we only have to reinitialize it.
1380 	 */
1381 	INIT_LIST_HEAD(&new_zhdr->buddy);
1382 	new_mapping = page_mapping(page);
1383 	__ClearPageMovable(page);
1384 	ClearPagePrivate(page);
1385 
1386 	get_page(newpage);
1387 	z3fold_page_lock(new_zhdr);
1388 	if (new_zhdr->first_chunks)
1389 		encode_handle(new_zhdr, FIRST);
1390 	if (new_zhdr->last_chunks)
1391 		encode_handle(new_zhdr, LAST);
1392 	if (new_zhdr->middle_chunks)
1393 		encode_handle(new_zhdr, MIDDLE);
1394 	set_bit(NEEDS_COMPACTING, &newpage->private);
1395 	new_zhdr->cpu = smp_processor_id();
1396 	spin_lock(&pool->lock);
1397 	list_add(&newpage->lru, &pool->lru);
1398 	spin_unlock(&pool->lock);
1399 	__SetPageMovable(newpage, new_mapping);
1400 	z3fold_page_unlock(new_zhdr);
1401 
1402 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1403 
1404 	page_mapcount_reset(page);
1405 	put_page(page);
1406 	return 0;
1407 }
1408 
1409 static void z3fold_page_putback(struct page *page)
1410 {
1411 	struct z3fold_header *zhdr;
1412 	struct z3fold_pool *pool;
1413 
1414 	zhdr = page_address(page);
1415 	pool = zhdr_to_pool(zhdr);
1416 
1417 	z3fold_page_lock(zhdr);
1418 	if (!list_empty(&zhdr->buddy))
1419 		list_del_init(&zhdr->buddy);
1420 	INIT_LIST_HEAD(&page->lru);
1421 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1422 		atomic64_dec(&pool->pages_nr);
1423 		return;
1424 	}
1425 	spin_lock(&pool->lock);
1426 	list_add(&page->lru, &pool->lru);
1427 	spin_unlock(&pool->lock);
1428 	z3fold_page_unlock(zhdr);
1429 }
1430 
1431 static const struct address_space_operations z3fold_aops = {
1432 	.isolate_page = z3fold_page_isolate,
1433 	.migratepage = z3fold_page_migrate,
1434 	.putback_page = z3fold_page_putback,
1435 };
1436 
1437 /*****************
1438  * zpool
1439  ****************/
1440 
1441 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1442 {
1443 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1444 		return pool->zpool_ops->evict(pool->zpool, handle);
1445 	else
1446 		return -ENOENT;
1447 }
1448 
1449 static const struct z3fold_ops z3fold_zpool_ops = {
1450 	.evict =	z3fold_zpool_evict
1451 };
1452 
1453 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1454 			       const struct zpool_ops *zpool_ops,
1455 			       struct zpool *zpool)
1456 {
1457 	struct z3fold_pool *pool;
1458 
1459 	pool = z3fold_create_pool(name, gfp,
1460 				zpool_ops ? &z3fold_zpool_ops : NULL);
1461 	if (pool) {
1462 		pool->zpool = zpool;
1463 		pool->zpool_ops = zpool_ops;
1464 	}
1465 	return pool;
1466 }
1467 
1468 static void z3fold_zpool_destroy(void *pool)
1469 {
1470 	z3fold_destroy_pool(pool);
1471 }
1472 
1473 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1474 			unsigned long *handle)
1475 {
1476 	return z3fold_alloc(pool, size, gfp, handle);
1477 }
1478 static void z3fold_zpool_free(void *pool, unsigned long handle)
1479 {
1480 	z3fold_free(pool, handle);
1481 }
1482 
1483 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1484 			unsigned int *reclaimed)
1485 {
1486 	unsigned int total = 0;
1487 	int ret = -EINVAL;
1488 
1489 	while (total < pages) {
1490 		ret = z3fold_reclaim_page(pool, 8);
1491 		if (ret < 0)
1492 			break;
1493 		total++;
1494 	}
1495 
1496 	if (reclaimed)
1497 		*reclaimed = total;
1498 
1499 	return ret;
1500 }
1501 
1502 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1503 			enum zpool_mapmode mm)
1504 {
1505 	return z3fold_map(pool, handle);
1506 }
1507 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1508 {
1509 	z3fold_unmap(pool, handle);
1510 }
1511 
1512 static u64 z3fold_zpool_total_size(void *pool)
1513 {
1514 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1515 }
1516 
1517 static struct zpool_driver z3fold_zpool_driver = {
1518 	.type =		"z3fold",
1519 	.owner =	THIS_MODULE,
1520 	.create =	z3fold_zpool_create,
1521 	.destroy =	z3fold_zpool_destroy,
1522 	.malloc =	z3fold_zpool_malloc,
1523 	.free =		z3fold_zpool_free,
1524 	.shrink =	z3fold_zpool_shrink,
1525 	.map =		z3fold_zpool_map,
1526 	.unmap =	z3fold_zpool_unmap,
1527 	.total_size =	z3fold_zpool_total_size,
1528 };
1529 
1530 MODULE_ALIAS("zpool-z3fold");
1531 
1532 static int __init init_z3fold(void)
1533 {
1534 	int ret;
1535 
1536 	/* Make sure the z3fold header is not larger than the page size */
1537 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1538 	ret = z3fold_mount();
1539 	if (ret)
1540 		return ret;
1541 
1542 	zpool_register_driver(&z3fold_zpool_driver);
1543 
1544 	return 0;
1545 }
1546 
1547 static void __exit exit_z3fold(void)
1548 {
1549 	z3fold_unmount();
1550 	zpool_unregister_driver(&z3fold_zpool_driver);
1551 }
1552 
1553 module_init(init_z3fold);
1554 module_exit(exit_z3fold);
1555 
1556 MODULE_LICENSE("GPL");
1557 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1558 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1559