1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/dcache.h> 30 #include <linux/list.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/page-flags.h> 34 #include <linux/migrate.h> 35 #include <linux/node.h> 36 #include <linux/compaction.h> 37 #include <linux/percpu.h> 38 #include <linux/mount.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 46 /* 47 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 48 * adjusting internal fragmentation. It also determines the number of 49 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 50 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 51 * in the beginning of an allocated page are occupied by z3fold header, so 52 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 53 * which shows the max number of free chunks in z3fold page, also there will 54 * be 63, or 62, respectively, freelists per pool. 55 */ 56 #define NCHUNKS_ORDER 6 57 58 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 59 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 61 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 62 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 63 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 64 65 #define BUDDY_MASK (0x3) 66 #define BUDDY_SHIFT 2 67 #define SLOTS_ALIGN (0x40) 68 69 /***************** 70 * Structures 71 *****************/ 72 struct z3fold_pool; 73 struct z3fold_ops { 74 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 75 }; 76 77 enum buddy { 78 HEADLESS = 0, 79 FIRST, 80 MIDDLE, 81 LAST, 82 BUDDIES_MAX = LAST 83 }; 84 85 struct z3fold_buddy_slots { 86 /* 87 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 88 * be enough slots to hold all possible variants 89 */ 90 unsigned long slot[BUDDY_MASK + 1]; 91 unsigned long pool; /* back link + flags */ 92 }; 93 #define HANDLE_FLAG_MASK (0x03) 94 95 /* 96 * struct z3fold_header - z3fold page metadata occupying first chunks of each 97 * z3fold page, except for HEADLESS pages 98 * @buddy: links the z3fold page into the relevant list in the 99 * pool 100 * @page_lock: per-page lock 101 * @refcount: reference count for the z3fold page 102 * @work: work_struct for page layout optimization 103 * @slots: pointer to the structure holding buddy slots 104 * @cpu: CPU which this page "belongs" to 105 * @first_chunks: the size of the first buddy in chunks, 0 if free 106 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 107 * @last_chunks: the size of the last buddy in chunks, 0 if free 108 * @first_num: the starting number (for the first handle) 109 * @mapped_count: the number of objects currently mapped 110 */ 111 struct z3fold_header { 112 struct list_head buddy; 113 spinlock_t page_lock; 114 struct kref refcount; 115 struct work_struct work; 116 struct z3fold_buddy_slots *slots; 117 short cpu; 118 unsigned short first_chunks; 119 unsigned short middle_chunks; 120 unsigned short last_chunks; 121 unsigned short start_middle; 122 unsigned short first_num:2; 123 unsigned short mapped_count:2; 124 }; 125 126 /** 127 * struct z3fold_pool - stores metadata for each z3fold pool 128 * @name: pool name 129 * @lock: protects pool unbuddied/lru lists 130 * @stale_lock: protects pool stale page list 131 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 132 * buddies; the list each z3fold page is added to depends on 133 * the size of its free region. 134 * @lru: list tracking the z3fold pages in LRU order by most recently 135 * added buddy. 136 * @stale: list of pages marked for freeing 137 * @pages_nr: number of z3fold pages in the pool. 138 * @c_handle: cache for z3fold_buddy_slots allocation 139 * @ops: pointer to a structure of user defined operations specified at 140 * pool creation time. 141 * @compact_wq: workqueue for page layout background optimization 142 * @release_wq: workqueue for safe page release 143 * @work: work_struct for safe page release 144 * @inode: inode for z3fold pseudo filesystem 145 * 146 * This structure is allocated at pool creation time and maintains metadata 147 * pertaining to a particular z3fold pool. 148 */ 149 struct z3fold_pool { 150 const char *name; 151 spinlock_t lock; 152 spinlock_t stale_lock; 153 struct list_head *unbuddied; 154 struct list_head lru; 155 struct list_head stale; 156 atomic64_t pages_nr; 157 struct kmem_cache *c_handle; 158 const struct z3fold_ops *ops; 159 struct zpool *zpool; 160 const struct zpool_ops *zpool_ops; 161 struct workqueue_struct *compact_wq; 162 struct workqueue_struct *release_wq; 163 struct work_struct work; 164 struct inode *inode; 165 }; 166 167 /* 168 * Internal z3fold page flags 169 */ 170 enum z3fold_page_flags { 171 PAGE_HEADLESS = 0, 172 MIDDLE_CHUNK_MAPPED, 173 NEEDS_COMPACTING, 174 PAGE_STALE, 175 PAGE_CLAIMED, /* by either reclaim or free */ 176 }; 177 178 /***************** 179 * Helpers 180 *****************/ 181 182 /* Converts an allocation size in bytes to size in z3fold chunks */ 183 static int size_to_chunks(size_t size) 184 { 185 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 186 } 187 188 #define for_each_unbuddied_list(_iter, _begin) \ 189 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 190 191 static void compact_page_work(struct work_struct *w); 192 193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool) 194 { 195 struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle, 196 GFP_KERNEL); 197 198 if (slots) { 199 memset(slots->slot, 0, sizeof(slots->slot)); 200 slots->pool = (unsigned long)pool; 201 } 202 203 return slots; 204 } 205 206 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 207 { 208 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 209 } 210 211 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 212 { 213 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 214 } 215 216 static inline void free_handle(unsigned long handle) 217 { 218 struct z3fold_buddy_slots *slots; 219 int i; 220 bool is_free; 221 222 if (handle & (1 << PAGE_HEADLESS)) 223 return; 224 225 WARN_ON(*(unsigned long *)handle == 0); 226 *(unsigned long *)handle = 0; 227 slots = handle_to_slots(handle); 228 is_free = true; 229 for (i = 0; i <= BUDDY_MASK; i++) { 230 if (slots->slot[i]) { 231 is_free = false; 232 break; 233 } 234 } 235 236 if (is_free) { 237 struct z3fold_pool *pool = slots_to_pool(slots); 238 239 kmem_cache_free(pool->c_handle, slots); 240 } 241 } 242 243 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type, 244 int flags, const char *dev_name, void *data) 245 { 246 static const struct dentry_operations ops = { 247 .d_dname = simple_dname, 248 }; 249 250 return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33); 251 } 252 253 static struct file_system_type z3fold_fs = { 254 .name = "z3fold", 255 .mount = z3fold_do_mount, 256 .kill_sb = kill_anon_super, 257 }; 258 259 static struct vfsmount *z3fold_mnt; 260 static int z3fold_mount(void) 261 { 262 int ret = 0; 263 264 z3fold_mnt = kern_mount(&z3fold_fs); 265 if (IS_ERR(z3fold_mnt)) 266 ret = PTR_ERR(z3fold_mnt); 267 268 return ret; 269 } 270 271 static void z3fold_unmount(void) 272 { 273 kern_unmount(z3fold_mnt); 274 } 275 276 static const struct address_space_operations z3fold_aops; 277 static int z3fold_register_migration(struct z3fold_pool *pool) 278 { 279 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 280 if (IS_ERR(pool->inode)) { 281 pool->inode = NULL; 282 return 1; 283 } 284 285 pool->inode->i_mapping->private_data = pool; 286 pool->inode->i_mapping->a_ops = &z3fold_aops; 287 return 0; 288 } 289 290 static void z3fold_unregister_migration(struct z3fold_pool *pool) 291 { 292 if (pool->inode) 293 iput(pool->inode); 294 } 295 296 /* Initializes the z3fold header of a newly allocated z3fold page */ 297 static struct z3fold_header *init_z3fold_page(struct page *page, 298 struct z3fold_pool *pool) 299 { 300 struct z3fold_header *zhdr = page_address(page); 301 struct z3fold_buddy_slots *slots = alloc_slots(pool); 302 303 if (!slots) 304 return NULL; 305 306 INIT_LIST_HEAD(&page->lru); 307 clear_bit(PAGE_HEADLESS, &page->private); 308 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 309 clear_bit(NEEDS_COMPACTING, &page->private); 310 clear_bit(PAGE_STALE, &page->private); 311 clear_bit(PAGE_CLAIMED, &page->private); 312 313 spin_lock_init(&zhdr->page_lock); 314 kref_init(&zhdr->refcount); 315 zhdr->first_chunks = 0; 316 zhdr->middle_chunks = 0; 317 zhdr->last_chunks = 0; 318 zhdr->first_num = 0; 319 zhdr->start_middle = 0; 320 zhdr->cpu = -1; 321 zhdr->slots = slots; 322 INIT_LIST_HEAD(&zhdr->buddy); 323 INIT_WORK(&zhdr->work, compact_page_work); 324 return zhdr; 325 } 326 327 /* Resets the struct page fields and frees the page */ 328 static void free_z3fold_page(struct page *page, bool headless) 329 { 330 if (!headless) { 331 lock_page(page); 332 __ClearPageMovable(page); 333 unlock_page(page); 334 } 335 ClearPagePrivate(page); 336 __free_page(page); 337 } 338 339 /* Lock a z3fold page */ 340 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 341 { 342 spin_lock(&zhdr->page_lock); 343 } 344 345 /* Try to lock a z3fold page */ 346 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 347 { 348 return spin_trylock(&zhdr->page_lock); 349 } 350 351 /* Unlock a z3fold page */ 352 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 353 { 354 spin_unlock(&zhdr->page_lock); 355 } 356 357 /* Helper function to build the index */ 358 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 359 { 360 return (bud + zhdr->first_num) & BUDDY_MASK; 361 } 362 363 /* 364 * Encodes the handle of a particular buddy within a z3fold page 365 * Pool lock should be held as this function accesses first_num 366 */ 367 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 368 { 369 struct z3fold_buddy_slots *slots; 370 unsigned long h = (unsigned long)zhdr; 371 int idx = 0; 372 373 /* 374 * For a headless page, its handle is its pointer with the extra 375 * PAGE_HEADLESS bit set 376 */ 377 if (bud == HEADLESS) 378 return h | (1 << PAGE_HEADLESS); 379 380 /* otherwise, return pointer to encoded handle */ 381 idx = __idx(zhdr, bud); 382 h += idx; 383 if (bud == LAST) 384 h |= (zhdr->last_chunks << BUDDY_SHIFT); 385 386 slots = zhdr->slots; 387 slots->slot[idx] = h; 388 return (unsigned long)&slots->slot[idx]; 389 } 390 391 /* Returns the z3fold page where a given handle is stored */ 392 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 393 { 394 unsigned long addr = h; 395 396 if (!(addr & (1 << PAGE_HEADLESS))) 397 addr = *(unsigned long *)h; 398 399 return (struct z3fold_header *)(addr & PAGE_MASK); 400 } 401 402 /* only for LAST bud, returns zero otherwise */ 403 static unsigned short handle_to_chunks(unsigned long handle) 404 { 405 unsigned long addr = *(unsigned long *)handle; 406 407 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 408 } 409 410 /* 411 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 412 * but that doesn't matter. because the masking will result in the 413 * correct buddy number. 414 */ 415 static enum buddy handle_to_buddy(unsigned long handle) 416 { 417 struct z3fold_header *zhdr; 418 unsigned long addr; 419 420 WARN_ON(handle & (1 << PAGE_HEADLESS)); 421 addr = *(unsigned long *)handle; 422 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 423 return (addr - zhdr->first_num) & BUDDY_MASK; 424 } 425 426 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 427 { 428 return slots_to_pool(zhdr->slots); 429 } 430 431 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 432 { 433 struct page *page = virt_to_page(zhdr); 434 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 435 436 WARN_ON(!list_empty(&zhdr->buddy)); 437 set_bit(PAGE_STALE, &page->private); 438 clear_bit(NEEDS_COMPACTING, &page->private); 439 spin_lock(&pool->lock); 440 if (!list_empty(&page->lru)) 441 list_del_init(&page->lru); 442 spin_unlock(&pool->lock); 443 if (locked) 444 z3fold_page_unlock(zhdr); 445 spin_lock(&pool->stale_lock); 446 list_add(&zhdr->buddy, &pool->stale); 447 queue_work(pool->release_wq, &pool->work); 448 spin_unlock(&pool->stale_lock); 449 } 450 451 static void __attribute__((__unused__)) 452 release_z3fold_page(struct kref *ref) 453 { 454 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 455 refcount); 456 __release_z3fold_page(zhdr, false); 457 } 458 459 static void release_z3fold_page_locked(struct kref *ref) 460 { 461 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 462 refcount); 463 WARN_ON(z3fold_page_trylock(zhdr)); 464 __release_z3fold_page(zhdr, true); 465 } 466 467 static void release_z3fold_page_locked_list(struct kref *ref) 468 { 469 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 470 refcount); 471 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 472 spin_lock(&pool->lock); 473 list_del_init(&zhdr->buddy); 474 spin_unlock(&pool->lock); 475 476 WARN_ON(z3fold_page_trylock(zhdr)); 477 __release_z3fold_page(zhdr, true); 478 } 479 480 static void free_pages_work(struct work_struct *w) 481 { 482 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 483 484 spin_lock(&pool->stale_lock); 485 while (!list_empty(&pool->stale)) { 486 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 487 struct z3fold_header, buddy); 488 struct page *page = virt_to_page(zhdr); 489 490 list_del(&zhdr->buddy); 491 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 492 continue; 493 spin_unlock(&pool->stale_lock); 494 cancel_work_sync(&zhdr->work); 495 free_z3fold_page(page, false); 496 cond_resched(); 497 spin_lock(&pool->stale_lock); 498 } 499 spin_unlock(&pool->stale_lock); 500 } 501 502 /* 503 * Returns the number of free chunks in a z3fold page. 504 * NB: can't be used with HEADLESS pages. 505 */ 506 static int num_free_chunks(struct z3fold_header *zhdr) 507 { 508 int nfree; 509 /* 510 * If there is a middle object, pick up the bigger free space 511 * either before or after it. Otherwise just subtract the number 512 * of chunks occupied by the first and the last objects. 513 */ 514 if (zhdr->middle_chunks != 0) { 515 int nfree_before = zhdr->first_chunks ? 516 0 : zhdr->start_middle - ZHDR_CHUNKS; 517 int nfree_after = zhdr->last_chunks ? 518 0 : TOTAL_CHUNKS - 519 (zhdr->start_middle + zhdr->middle_chunks); 520 nfree = max(nfree_before, nfree_after); 521 } else 522 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 523 return nfree; 524 } 525 526 /* Add to the appropriate unbuddied list */ 527 static inline void add_to_unbuddied(struct z3fold_pool *pool, 528 struct z3fold_header *zhdr) 529 { 530 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 531 zhdr->middle_chunks == 0) { 532 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 533 534 int freechunks = num_free_chunks(zhdr); 535 spin_lock(&pool->lock); 536 list_add(&zhdr->buddy, &unbuddied[freechunks]); 537 spin_unlock(&pool->lock); 538 zhdr->cpu = smp_processor_id(); 539 put_cpu_ptr(pool->unbuddied); 540 } 541 } 542 543 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 544 unsigned short dst_chunk) 545 { 546 void *beg = zhdr; 547 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 548 beg + (zhdr->start_middle << CHUNK_SHIFT), 549 zhdr->middle_chunks << CHUNK_SHIFT); 550 } 551 552 #define BIG_CHUNK_GAP 3 553 /* Has to be called with lock held */ 554 static int z3fold_compact_page(struct z3fold_header *zhdr) 555 { 556 struct page *page = virt_to_page(zhdr); 557 558 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 559 return 0; /* can't move middle chunk, it's used */ 560 561 if (unlikely(PageIsolated(page))) 562 return 0; 563 564 if (zhdr->middle_chunks == 0) 565 return 0; /* nothing to compact */ 566 567 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 568 /* move to the beginning */ 569 mchunk_memmove(zhdr, ZHDR_CHUNKS); 570 zhdr->first_chunks = zhdr->middle_chunks; 571 zhdr->middle_chunks = 0; 572 zhdr->start_middle = 0; 573 zhdr->first_num++; 574 return 1; 575 } 576 577 /* 578 * moving data is expensive, so let's only do that if 579 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 580 */ 581 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 582 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 583 BIG_CHUNK_GAP) { 584 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 585 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 586 return 1; 587 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 588 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 589 + zhdr->middle_chunks) >= 590 BIG_CHUNK_GAP) { 591 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 592 zhdr->middle_chunks; 593 mchunk_memmove(zhdr, new_start); 594 zhdr->start_middle = new_start; 595 return 1; 596 } 597 598 return 0; 599 } 600 601 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 602 { 603 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 604 struct page *page; 605 606 page = virt_to_page(zhdr); 607 if (locked) 608 WARN_ON(z3fold_page_trylock(zhdr)); 609 else 610 z3fold_page_lock(zhdr); 611 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 612 z3fold_page_unlock(zhdr); 613 return; 614 } 615 spin_lock(&pool->lock); 616 list_del_init(&zhdr->buddy); 617 spin_unlock(&pool->lock); 618 619 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 620 atomic64_dec(&pool->pages_nr); 621 return; 622 } 623 624 if (unlikely(PageIsolated(page) || 625 test_bit(PAGE_STALE, &page->private))) { 626 z3fold_page_unlock(zhdr); 627 return; 628 } 629 630 z3fold_compact_page(zhdr); 631 add_to_unbuddied(pool, zhdr); 632 z3fold_page_unlock(zhdr); 633 } 634 635 static void compact_page_work(struct work_struct *w) 636 { 637 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 638 work); 639 640 do_compact_page(zhdr, false); 641 } 642 643 /* returns _locked_ z3fold page header or NULL */ 644 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 645 size_t size, bool can_sleep) 646 { 647 struct z3fold_header *zhdr = NULL; 648 struct page *page; 649 struct list_head *unbuddied; 650 int chunks = size_to_chunks(size), i; 651 652 lookup: 653 /* First, try to find an unbuddied z3fold page. */ 654 unbuddied = get_cpu_ptr(pool->unbuddied); 655 for_each_unbuddied_list(i, chunks) { 656 struct list_head *l = &unbuddied[i]; 657 658 zhdr = list_first_entry_or_null(READ_ONCE(l), 659 struct z3fold_header, buddy); 660 661 if (!zhdr) 662 continue; 663 664 /* Re-check under lock. */ 665 spin_lock(&pool->lock); 666 l = &unbuddied[i]; 667 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 668 struct z3fold_header, buddy)) || 669 !z3fold_page_trylock(zhdr)) { 670 spin_unlock(&pool->lock); 671 zhdr = NULL; 672 put_cpu_ptr(pool->unbuddied); 673 if (can_sleep) 674 cond_resched(); 675 goto lookup; 676 } 677 list_del_init(&zhdr->buddy); 678 zhdr->cpu = -1; 679 spin_unlock(&pool->lock); 680 681 page = virt_to_page(zhdr); 682 if (test_bit(NEEDS_COMPACTING, &page->private)) { 683 z3fold_page_unlock(zhdr); 684 zhdr = NULL; 685 put_cpu_ptr(pool->unbuddied); 686 if (can_sleep) 687 cond_resched(); 688 goto lookup; 689 } 690 691 /* 692 * this page could not be removed from its unbuddied 693 * list while pool lock was held, and then we've taken 694 * page lock so kref_put could not be called before 695 * we got here, so it's safe to just call kref_get() 696 */ 697 kref_get(&zhdr->refcount); 698 break; 699 } 700 put_cpu_ptr(pool->unbuddied); 701 702 if (!zhdr) { 703 int cpu; 704 705 /* look for _exact_ match on other cpus' lists */ 706 for_each_online_cpu(cpu) { 707 struct list_head *l; 708 709 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 710 spin_lock(&pool->lock); 711 l = &unbuddied[chunks]; 712 713 zhdr = list_first_entry_or_null(READ_ONCE(l), 714 struct z3fold_header, buddy); 715 716 if (!zhdr || !z3fold_page_trylock(zhdr)) { 717 spin_unlock(&pool->lock); 718 zhdr = NULL; 719 continue; 720 } 721 list_del_init(&zhdr->buddy); 722 zhdr->cpu = -1; 723 spin_unlock(&pool->lock); 724 725 page = virt_to_page(zhdr); 726 if (test_bit(NEEDS_COMPACTING, &page->private)) { 727 z3fold_page_unlock(zhdr); 728 zhdr = NULL; 729 if (can_sleep) 730 cond_resched(); 731 continue; 732 } 733 kref_get(&zhdr->refcount); 734 break; 735 } 736 } 737 738 return zhdr; 739 } 740 741 /* 742 * API Functions 743 */ 744 745 /** 746 * z3fold_create_pool() - create a new z3fold pool 747 * @name: pool name 748 * @gfp: gfp flags when allocating the z3fold pool structure 749 * @ops: user-defined operations for the z3fold pool 750 * 751 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 752 * failed. 753 */ 754 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 755 const struct z3fold_ops *ops) 756 { 757 struct z3fold_pool *pool = NULL; 758 int i, cpu; 759 760 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 761 if (!pool) 762 goto out; 763 pool->c_handle = kmem_cache_create("z3fold_handle", 764 sizeof(struct z3fold_buddy_slots), 765 SLOTS_ALIGN, 0, NULL); 766 if (!pool->c_handle) 767 goto out_c; 768 spin_lock_init(&pool->lock); 769 spin_lock_init(&pool->stale_lock); 770 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 771 if (!pool->unbuddied) 772 goto out_pool; 773 for_each_possible_cpu(cpu) { 774 struct list_head *unbuddied = 775 per_cpu_ptr(pool->unbuddied, cpu); 776 for_each_unbuddied_list(i, 0) 777 INIT_LIST_HEAD(&unbuddied[i]); 778 } 779 INIT_LIST_HEAD(&pool->lru); 780 INIT_LIST_HEAD(&pool->stale); 781 atomic64_set(&pool->pages_nr, 0); 782 pool->name = name; 783 pool->compact_wq = create_singlethread_workqueue(pool->name); 784 if (!pool->compact_wq) 785 goto out_unbuddied; 786 pool->release_wq = create_singlethread_workqueue(pool->name); 787 if (!pool->release_wq) 788 goto out_wq; 789 if (z3fold_register_migration(pool)) 790 goto out_rwq; 791 INIT_WORK(&pool->work, free_pages_work); 792 pool->ops = ops; 793 return pool; 794 795 out_rwq: 796 destroy_workqueue(pool->release_wq); 797 out_wq: 798 destroy_workqueue(pool->compact_wq); 799 out_unbuddied: 800 free_percpu(pool->unbuddied); 801 out_pool: 802 kmem_cache_destroy(pool->c_handle); 803 out_c: 804 kfree(pool); 805 out: 806 return NULL; 807 } 808 809 /** 810 * z3fold_destroy_pool() - destroys an existing z3fold pool 811 * @pool: the z3fold pool to be destroyed 812 * 813 * The pool should be emptied before this function is called. 814 */ 815 static void z3fold_destroy_pool(struct z3fold_pool *pool) 816 { 817 kmem_cache_destroy(pool->c_handle); 818 z3fold_unregister_migration(pool); 819 destroy_workqueue(pool->release_wq); 820 destroy_workqueue(pool->compact_wq); 821 kfree(pool); 822 } 823 824 /** 825 * z3fold_alloc() - allocates a region of a given size 826 * @pool: z3fold pool from which to allocate 827 * @size: size in bytes of the desired allocation 828 * @gfp: gfp flags used if the pool needs to grow 829 * @handle: handle of the new allocation 830 * 831 * This function will attempt to find a free region in the pool large enough to 832 * satisfy the allocation request. A search of the unbuddied lists is 833 * performed first. If no suitable free region is found, then a new page is 834 * allocated and added to the pool to satisfy the request. 835 * 836 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 837 * as z3fold pool pages. 838 * 839 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 840 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 841 * a new page. 842 */ 843 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 844 unsigned long *handle) 845 { 846 int chunks = size_to_chunks(size); 847 struct z3fold_header *zhdr = NULL; 848 struct page *page = NULL; 849 enum buddy bud; 850 bool can_sleep = gfpflags_allow_blocking(gfp); 851 852 if (!size || (gfp & __GFP_HIGHMEM)) 853 return -EINVAL; 854 855 if (size > PAGE_SIZE) 856 return -ENOSPC; 857 858 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 859 bud = HEADLESS; 860 else { 861 retry: 862 zhdr = __z3fold_alloc(pool, size, can_sleep); 863 if (zhdr) { 864 if (zhdr->first_chunks == 0) { 865 if (zhdr->middle_chunks != 0 && 866 chunks >= zhdr->start_middle) 867 bud = LAST; 868 else 869 bud = FIRST; 870 } else if (zhdr->last_chunks == 0) 871 bud = LAST; 872 else if (zhdr->middle_chunks == 0) 873 bud = MIDDLE; 874 else { 875 if (kref_put(&zhdr->refcount, 876 release_z3fold_page_locked)) 877 atomic64_dec(&pool->pages_nr); 878 else 879 z3fold_page_unlock(zhdr); 880 pr_err("No free chunks in unbuddied\n"); 881 WARN_ON(1); 882 goto retry; 883 } 884 page = virt_to_page(zhdr); 885 goto found; 886 } 887 bud = FIRST; 888 } 889 890 page = NULL; 891 if (can_sleep) { 892 spin_lock(&pool->stale_lock); 893 zhdr = list_first_entry_or_null(&pool->stale, 894 struct z3fold_header, buddy); 895 /* 896 * Before allocating a page, let's see if we can take one from 897 * the stale pages list. cancel_work_sync() can sleep so we 898 * limit this case to the contexts where we can sleep 899 */ 900 if (zhdr) { 901 list_del(&zhdr->buddy); 902 spin_unlock(&pool->stale_lock); 903 cancel_work_sync(&zhdr->work); 904 page = virt_to_page(zhdr); 905 } else { 906 spin_unlock(&pool->stale_lock); 907 } 908 } 909 if (!page) 910 page = alloc_page(gfp); 911 912 if (!page) 913 return -ENOMEM; 914 915 zhdr = init_z3fold_page(page, pool); 916 if (!zhdr) { 917 __free_page(page); 918 return -ENOMEM; 919 } 920 atomic64_inc(&pool->pages_nr); 921 922 if (bud == HEADLESS) { 923 set_bit(PAGE_HEADLESS, &page->private); 924 goto headless; 925 } 926 __SetPageMovable(page, pool->inode->i_mapping); 927 z3fold_page_lock(zhdr); 928 929 found: 930 if (bud == FIRST) 931 zhdr->first_chunks = chunks; 932 else if (bud == LAST) 933 zhdr->last_chunks = chunks; 934 else { 935 zhdr->middle_chunks = chunks; 936 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 937 } 938 add_to_unbuddied(pool, zhdr); 939 940 headless: 941 spin_lock(&pool->lock); 942 /* Add/move z3fold page to beginning of LRU */ 943 if (!list_empty(&page->lru)) 944 list_del(&page->lru); 945 946 list_add(&page->lru, &pool->lru); 947 948 *handle = encode_handle(zhdr, bud); 949 spin_unlock(&pool->lock); 950 if (bud != HEADLESS) 951 z3fold_page_unlock(zhdr); 952 953 return 0; 954 } 955 956 /** 957 * z3fold_free() - frees the allocation associated with the given handle 958 * @pool: pool in which the allocation resided 959 * @handle: handle associated with the allocation returned by z3fold_alloc() 960 * 961 * In the case that the z3fold page in which the allocation resides is under 962 * reclaim, as indicated by the PG_reclaim flag being set, this function 963 * only sets the first|last_chunks to 0. The page is actually freed 964 * once both buddies are evicted (see z3fold_reclaim_page() below). 965 */ 966 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 967 { 968 struct z3fold_header *zhdr; 969 struct page *page; 970 enum buddy bud; 971 972 zhdr = handle_to_z3fold_header(handle); 973 page = virt_to_page(zhdr); 974 975 if (test_bit(PAGE_HEADLESS, &page->private)) { 976 /* if a headless page is under reclaim, just leave. 977 * NB: we use test_and_set_bit for a reason: if the bit 978 * has not been set before, we release this page 979 * immediately so we don't care about its value any more. 980 */ 981 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 982 spin_lock(&pool->lock); 983 list_del(&page->lru); 984 spin_unlock(&pool->lock); 985 free_z3fold_page(page, true); 986 atomic64_dec(&pool->pages_nr); 987 } 988 return; 989 } 990 991 /* Non-headless case */ 992 z3fold_page_lock(zhdr); 993 bud = handle_to_buddy(handle); 994 995 switch (bud) { 996 case FIRST: 997 zhdr->first_chunks = 0; 998 break; 999 case MIDDLE: 1000 zhdr->middle_chunks = 0; 1001 break; 1002 case LAST: 1003 zhdr->last_chunks = 0; 1004 break; 1005 default: 1006 pr_err("%s: unknown bud %d\n", __func__, bud); 1007 WARN_ON(1); 1008 z3fold_page_unlock(zhdr); 1009 return; 1010 } 1011 1012 free_handle(handle); 1013 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1014 atomic64_dec(&pool->pages_nr); 1015 return; 1016 } 1017 if (test_bit(PAGE_CLAIMED, &page->private)) { 1018 z3fold_page_unlock(zhdr); 1019 return; 1020 } 1021 if (unlikely(PageIsolated(page)) || 1022 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1023 z3fold_page_unlock(zhdr); 1024 return; 1025 } 1026 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1027 spin_lock(&pool->lock); 1028 list_del_init(&zhdr->buddy); 1029 spin_unlock(&pool->lock); 1030 zhdr->cpu = -1; 1031 kref_get(&zhdr->refcount); 1032 do_compact_page(zhdr, true); 1033 return; 1034 } 1035 kref_get(&zhdr->refcount); 1036 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1037 z3fold_page_unlock(zhdr); 1038 } 1039 1040 /** 1041 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1042 * @pool: pool from which a page will attempt to be evicted 1043 * @retries: number of pages on the LRU list for which eviction will 1044 * be attempted before failing 1045 * 1046 * z3fold reclaim is different from normal system reclaim in that it is done 1047 * from the bottom, up. This is because only the bottom layer, z3fold, has 1048 * information on how the allocations are organized within each z3fold page. 1049 * This has the potential to create interesting locking situations between 1050 * z3fold and the user, however. 1051 * 1052 * To avoid these, this is how z3fold_reclaim_page() should be called: 1053 * 1054 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1055 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1056 * call the user-defined eviction handler with the pool and handle as 1057 * arguments. 1058 * 1059 * If the handle can not be evicted, the eviction handler should return 1060 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1061 * appropriate list and try the next z3fold page on the LRU up to 1062 * a user defined number of retries. 1063 * 1064 * If the handle is successfully evicted, the eviction handler should 1065 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1066 * contains logic to delay freeing the page if the page is under reclaim, 1067 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1068 * 1069 * If all buddies in the z3fold page are successfully evicted, then the 1070 * z3fold page can be freed. 1071 * 1072 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1073 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1074 * the retry limit was hit. 1075 */ 1076 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1077 { 1078 int i, ret = 0; 1079 struct z3fold_header *zhdr = NULL; 1080 struct page *page = NULL; 1081 struct list_head *pos; 1082 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1083 1084 spin_lock(&pool->lock); 1085 if (!pool->ops || !pool->ops->evict || retries == 0) { 1086 spin_unlock(&pool->lock); 1087 return -EINVAL; 1088 } 1089 for (i = 0; i < retries; i++) { 1090 if (list_empty(&pool->lru)) { 1091 spin_unlock(&pool->lock); 1092 return -EINVAL; 1093 } 1094 list_for_each_prev(pos, &pool->lru) { 1095 page = list_entry(pos, struct page, lru); 1096 1097 /* this bit could have been set by free, in which case 1098 * we pass over to the next page in the pool. 1099 */ 1100 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1101 continue; 1102 1103 if (unlikely(PageIsolated(page))) 1104 continue; 1105 if (test_bit(PAGE_HEADLESS, &page->private)) 1106 break; 1107 1108 zhdr = page_address(page); 1109 if (!z3fold_page_trylock(zhdr)) { 1110 zhdr = NULL; 1111 continue; /* can't evict at this point */ 1112 } 1113 kref_get(&zhdr->refcount); 1114 list_del_init(&zhdr->buddy); 1115 zhdr->cpu = -1; 1116 break; 1117 } 1118 1119 if (!zhdr) 1120 break; 1121 1122 list_del_init(&page->lru); 1123 spin_unlock(&pool->lock); 1124 1125 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1126 /* 1127 * We need encode the handles before unlocking, since 1128 * we can race with free that will set 1129 * (first|last)_chunks to 0 1130 */ 1131 first_handle = 0; 1132 last_handle = 0; 1133 middle_handle = 0; 1134 if (zhdr->first_chunks) 1135 first_handle = encode_handle(zhdr, FIRST); 1136 if (zhdr->middle_chunks) 1137 middle_handle = encode_handle(zhdr, MIDDLE); 1138 if (zhdr->last_chunks) 1139 last_handle = encode_handle(zhdr, LAST); 1140 /* 1141 * it's safe to unlock here because we hold a 1142 * reference to this page 1143 */ 1144 z3fold_page_unlock(zhdr); 1145 } else { 1146 first_handle = encode_handle(zhdr, HEADLESS); 1147 last_handle = middle_handle = 0; 1148 } 1149 1150 /* Issue the eviction callback(s) */ 1151 if (middle_handle) { 1152 ret = pool->ops->evict(pool, middle_handle); 1153 if (ret) 1154 goto next; 1155 } 1156 if (first_handle) { 1157 ret = pool->ops->evict(pool, first_handle); 1158 if (ret) 1159 goto next; 1160 } 1161 if (last_handle) { 1162 ret = pool->ops->evict(pool, last_handle); 1163 if (ret) 1164 goto next; 1165 } 1166 next: 1167 if (test_bit(PAGE_HEADLESS, &page->private)) { 1168 if (ret == 0) { 1169 free_z3fold_page(page, true); 1170 atomic64_dec(&pool->pages_nr); 1171 return 0; 1172 } 1173 spin_lock(&pool->lock); 1174 list_add(&page->lru, &pool->lru); 1175 spin_unlock(&pool->lock); 1176 } else { 1177 z3fold_page_lock(zhdr); 1178 clear_bit(PAGE_CLAIMED, &page->private); 1179 if (kref_put(&zhdr->refcount, 1180 release_z3fold_page_locked)) { 1181 atomic64_dec(&pool->pages_nr); 1182 return 0; 1183 } 1184 /* 1185 * if we are here, the page is still not completely 1186 * free. Take the global pool lock then to be able 1187 * to add it back to the lru list 1188 */ 1189 spin_lock(&pool->lock); 1190 list_add(&page->lru, &pool->lru); 1191 spin_unlock(&pool->lock); 1192 z3fold_page_unlock(zhdr); 1193 } 1194 1195 /* We started off locked to we need to lock the pool back */ 1196 spin_lock(&pool->lock); 1197 } 1198 spin_unlock(&pool->lock); 1199 return -EAGAIN; 1200 } 1201 1202 /** 1203 * z3fold_map() - maps the allocation associated with the given handle 1204 * @pool: pool in which the allocation resides 1205 * @handle: handle associated with the allocation to be mapped 1206 * 1207 * Extracts the buddy number from handle and constructs the pointer to the 1208 * correct starting chunk within the page. 1209 * 1210 * Returns: a pointer to the mapped allocation 1211 */ 1212 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1213 { 1214 struct z3fold_header *zhdr; 1215 struct page *page; 1216 void *addr; 1217 enum buddy buddy; 1218 1219 zhdr = handle_to_z3fold_header(handle); 1220 addr = zhdr; 1221 page = virt_to_page(zhdr); 1222 1223 if (test_bit(PAGE_HEADLESS, &page->private)) 1224 goto out; 1225 1226 z3fold_page_lock(zhdr); 1227 buddy = handle_to_buddy(handle); 1228 switch (buddy) { 1229 case FIRST: 1230 addr += ZHDR_SIZE_ALIGNED; 1231 break; 1232 case MIDDLE: 1233 addr += zhdr->start_middle << CHUNK_SHIFT; 1234 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1235 break; 1236 case LAST: 1237 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1238 break; 1239 default: 1240 pr_err("unknown buddy id %d\n", buddy); 1241 WARN_ON(1); 1242 addr = NULL; 1243 break; 1244 } 1245 1246 if (addr) 1247 zhdr->mapped_count++; 1248 z3fold_page_unlock(zhdr); 1249 out: 1250 return addr; 1251 } 1252 1253 /** 1254 * z3fold_unmap() - unmaps the allocation associated with the given handle 1255 * @pool: pool in which the allocation resides 1256 * @handle: handle associated with the allocation to be unmapped 1257 */ 1258 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1259 { 1260 struct z3fold_header *zhdr; 1261 struct page *page; 1262 enum buddy buddy; 1263 1264 zhdr = handle_to_z3fold_header(handle); 1265 page = virt_to_page(zhdr); 1266 1267 if (test_bit(PAGE_HEADLESS, &page->private)) 1268 return; 1269 1270 z3fold_page_lock(zhdr); 1271 buddy = handle_to_buddy(handle); 1272 if (buddy == MIDDLE) 1273 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1274 zhdr->mapped_count--; 1275 z3fold_page_unlock(zhdr); 1276 } 1277 1278 /** 1279 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1280 * @pool: pool whose size is being queried 1281 * 1282 * Returns: size in pages of the given pool. 1283 */ 1284 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1285 { 1286 return atomic64_read(&pool->pages_nr); 1287 } 1288 1289 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1290 { 1291 struct z3fold_header *zhdr; 1292 struct z3fold_pool *pool; 1293 1294 VM_BUG_ON_PAGE(!PageMovable(page), page); 1295 VM_BUG_ON_PAGE(PageIsolated(page), page); 1296 1297 if (test_bit(PAGE_HEADLESS, &page->private)) 1298 return false; 1299 1300 zhdr = page_address(page); 1301 z3fold_page_lock(zhdr); 1302 if (test_bit(NEEDS_COMPACTING, &page->private) || 1303 test_bit(PAGE_STALE, &page->private)) 1304 goto out; 1305 1306 pool = zhdr_to_pool(zhdr); 1307 1308 if (zhdr->mapped_count == 0) { 1309 kref_get(&zhdr->refcount); 1310 if (!list_empty(&zhdr->buddy)) 1311 list_del_init(&zhdr->buddy); 1312 spin_lock(&pool->lock); 1313 if (!list_empty(&page->lru)) 1314 list_del(&page->lru); 1315 spin_unlock(&pool->lock); 1316 z3fold_page_unlock(zhdr); 1317 return true; 1318 } 1319 out: 1320 z3fold_page_unlock(zhdr); 1321 return false; 1322 } 1323 1324 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1325 struct page *page, enum migrate_mode mode) 1326 { 1327 struct z3fold_header *zhdr, *new_zhdr; 1328 struct z3fold_pool *pool; 1329 struct address_space *new_mapping; 1330 1331 VM_BUG_ON_PAGE(!PageMovable(page), page); 1332 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1333 1334 zhdr = page_address(page); 1335 pool = zhdr_to_pool(zhdr); 1336 1337 if (!trylock_page(page)) 1338 return -EAGAIN; 1339 1340 if (!z3fold_page_trylock(zhdr)) { 1341 unlock_page(page); 1342 return -EAGAIN; 1343 } 1344 if (zhdr->mapped_count != 0) { 1345 z3fold_page_unlock(zhdr); 1346 unlock_page(page); 1347 return -EBUSY; 1348 } 1349 new_zhdr = page_address(newpage); 1350 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1351 newpage->private = page->private; 1352 page->private = 0; 1353 z3fold_page_unlock(zhdr); 1354 spin_lock_init(&new_zhdr->page_lock); 1355 new_mapping = page_mapping(page); 1356 __ClearPageMovable(page); 1357 ClearPagePrivate(page); 1358 1359 get_page(newpage); 1360 z3fold_page_lock(new_zhdr); 1361 if (new_zhdr->first_chunks) 1362 encode_handle(new_zhdr, FIRST); 1363 if (new_zhdr->last_chunks) 1364 encode_handle(new_zhdr, LAST); 1365 if (new_zhdr->middle_chunks) 1366 encode_handle(new_zhdr, MIDDLE); 1367 set_bit(NEEDS_COMPACTING, &newpage->private); 1368 new_zhdr->cpu = smp_processor_id(); 1369 spin_lock(&pool->lock); 1370 list_add(&newpage->lru, &pool->lru); 1371 spin_unlock(&pool->lock); 1372 __SetPageMovable(newpage, new_mapping); 1373 z3fold_page_unlock(new_zhdr); 1374 1375 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1376 1377 page_mapcount_reset(page); 1378 unlock_page(page); 1379 put_page(page); 1380 return 0; 1381 } 1382 1383 static void z3fold_page_putback(struct page *page) 1384 { 1385 struct z3fold_header *zhdr; 1386 struct z3fold_pool *pool; 1387 1388 zhdr = page_address(page); 1389 pool = zhdr_to_pool(zhdr); 1390 1391 z3fold_page_lock(zhdr); 1392 if (!list_empty(&zhdr->buddy)) 1393 list_del_init(&zhdr->buddy); 1394 INIT_LIST_HEAD(&page->lru); 1395 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1396 atomic64_dec(&pool->pages_nr); 1397 return; 1398 } 1399 spin_lock(&pool->lock); 1400 list_add(&page->lru, &pool->lru); 1401 spin_unlock(&pool->lock); 1402 z3fold_page_unlock(zhdr); 1403 } 1404 1405 static const struct address_space_operations z3fold_aops = { 1406 .isolate_page = z3fold_page_isolate, 1407 .migratepage = z3fold_page_migrate, 1408 .putback_page = z3fold_page_putback, 1409 }; 1410 1411 /***************** 1412 * zpool 1413 ****************/ 1414 1415 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1416 { 1417 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1418 return pool->zpool_ops->evict(pool->zpool, handle); 1419 else 1420 return -ENOENT; 1421 } 1422 1423 static const struct z3fold_ops z3fold_zpool_ops = { 1424 .evict = z3fold_zpool_evict 1425 }; 1426 1427 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1428 const struct zpool_ops *zpool_ops, 1429 struct zpool *zpool) 1430 { 1431 struct z3fold_pool *pool; 1432 1433 pool = z3fold_create_pool(name, gfp, 1434 zpool_ops ? &z3fold_zpool_ops : NULL); 1435 if (pool) { 1436 pool->zpool = zpool; 1437 pool->zpool_ops = zpool_ops; 1438 } 1439 return pool; 1440 } 1441 1442 static void z3fold_zpool_destroy(void *pool) 1443 { 1444 z3fold_destroy_pool(pool); 1445 } 1446 1447 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1448 unsigned long *handle) 1449 { 1450 return z3fold_alloc(pool, size, gfp, handle); 1451 } 1452 static void z3fold_zpool_free(void *pool, unsigned long handle) 1453 { 1454 z3fold_free(pool, handle); 1455 } 1456 1457 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1458 unsigned int *reclaimed) 1459 { 1460 unsigned int total = 0; 1461 int ret = -EINVAL; 1462 1463 while (total < pages) { 1464 ret = z3fold_reclaim_page(pool, 8); 1465 if (ret < 0) 1466 break; 1467 total++; 1468 } 1469 1470 if (reclaimed) 1471 *reclaimed = total; 1472 1473 return ret; 1474 } 1475 1476 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1477 enum zpool_mapmode mm) 1478 { 1479 return z3fold_map(pool, handle); 1480 } 1481 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1482 { 1483 z3fold_unmap(pool, handle); 1484 } 1485 1486 static u64 z3fold_zpool_total_size(void *pool) 1487 { 1488 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1489 } 1490 1491 static struct zpool_driver z3fold_zpool_driver = { 1492 .type = "z3fold", 1493 .owner = THIS_MODULE, 1494 .create = z3fold_zpool_create, 1495 .destroy = z3fold_zpool_destroy, 1496 .malloc = z3fold_zpool_malloc, 1497 .free = z3fold_zpool_free, 1498 .shrink = z3fold_zpool_shrink, 1499 .map = z3fold_zpool_map, 1500 .unmap = z3fold_zpool_unmap, 1501 .total_size = z3fold_zpool_total_size, 1502 }; 1503 1504 MODULE_ALIAS("zpool-z3fold"); 1505 1506 static int __init init_z3fold(void) 1507 { 1508 int ret; 1509 1510 /* Make sure the z3fold header is not larger than the page size */ 1511 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1512 ret = z3fold_mount(); 1513 if (ret) 1514 return ret; 1515 1516 zpool_register_driver(&z3fold_zpool_driver); 1517 1518 return 0; 1519 } 1520 1521 static void __exit exit_z3fold(void) 1522 { 1523 z3fold_unmount(); 1524 zpool_unregister_driver(&z3fold_zpool_driver); 1525 } 1526 1527 module_init(init_z3fold); 1528 module_exit(exit_z3fold); 1529 1530 MODULE_LICENSE("GPL"); 1531 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1532 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1533