1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/pseudo_fs.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 #include <linux/magic.h> 46 #include <linux/kmemleak.h> 47 48 /* 49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 50 * adjusting internal fragmentation. It also determines the number of 51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 53 * in the beginning of an allocated page are occupied by z3fold header, so 54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 55 * which shows the max number of free chunks in z3fold page, also there will 56 * be 63, or 62, respectively, freelists per pool. 57 */ 58 #define NCHUNKS_ORDER 6 59 60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 61 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 65 #define NCHUNKS (TOTAL_CHUNKS - ZHDR_CHUNKS) 66 67 #define BUDDY_MASK (0x3) 68 #define BUDDY_SHIFT 2 69 #define SLOTS_ALIGN (0x40) 70 71 /***************** 72 * Structures 73 *****************/ 74 struct z3fold_pool; 75 struct z3fold_ops { 76 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 77 }; 78 79 enum buddy { 80 HEADLESS = 0, 81 FIRST, 82 MIDDLE, 83 LAST, 84 BUDDIES_MAX = LAST 85 }; 86 87 struct z3fold_buddy_slots { 88 /* 89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 90 * be enough slots to hold all possible variants 91 */ 92 unsigned long slot[BUDDY_MASK + 1]; 93 unsigned long pool; /* back link */ 94 rwlock_t lock; 95 }; 96 #define HANDLE_FLAG_MASK (0x03) 97 98 /* 99 * struct z3fold_header - z3fold page metadata occupying first chunks of each 100 * z3fold page, except for HEADLESS pages 101 * @buddy: links the z3fold page into the relevant list in the 102 * pool 103 * @page_lock: per-page lock 104 * @refcount: reference count for the z3fold page 105 * @work: work_struct for page layout optimization 106 * @slots: pointer to the structure holding buddy slots 107 * @pool: pointer to the containing pool 108 * @cpu: CPU which this page "belongs" to 109 * @first_chunks: the size of the first buddy in chunks, 0 if free 110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 111 * @last_chunks: the size of the last buddy in chunks, 0 if free 112 * @first_num: the starting number (for the first handle) 113 * @mapped_count: the number of objects currently mapped 114 */ 115 struct z3fold_header { 116 struct list_head buddy; 117 spinlock_t page_lock; 118 struct kref refcount; 119 struct work_struct work; 120 struct z3fold_buddy_slots *slots; 121 struct z3fold_pool *pool; 122 short cpu; 123 unsigned short first_chunks; 124 unsigned short middle_chunks; 125 unsigned short last_chunks; 126 unsigned short start_middle; 127 unsigned short first_num:2; 128 unsigned short mapped_count:2; 129 unsigned short foreign_handles:2; 130 }; 131 132 /** 133 * struct z3fold_pool - stores metadata for each z3fold pool 134 * @name: pool name 135 * @lock: protects pool unbuddied/lru lists 136 * @stale_lock: protects pool stale page list 137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 138 * buddies; the list each z3fold page is added to depends on 139 * the size of its free region. 140 * @lru: list tracking the z3fold pages in LRU order by most recently 141 * added buddy. 142 * @stale: list of pages marked for freeing 143 * @pages_nr: number of z3fold pages in the pool. 144 * @c_handle: cache for z3fold_buddy_slots allocation 145 * @ops: pointer to a structure of user defined operations specified at 146 * pool creation time. 147 * @zpool: zpool driver 148 * @zpool_ops: zpool operations structure with an evict callback 149 * @compact_wq: workqueue for page layout background optimization 150 * @release_wq: workqueue for safe page release 151 * @work: work_struct for safe page release 152 * @inode: inode for z3fold pseudo filesystem 153 * 154 * This structure is allocated at pool creation time and maintains metadata 155 * pertaining to a particular z3fold pool. 156 */ 157 struct z3fold_pool { 158 const char *name; 159 spinlock_t lock; 160 spinlock_t stale_lock; 161 struct list_head *unbuddied; 162 struct list_head lru; 163 struct list_head stale; 164 atomic64_t pages_nr; 165 struct kmem_cache *c_handle; 166 const struct z3fold_ops *ops; 167 struct zpool *zpool; 168 const struct zpool_ops *zpool_ops; 169 struct workqueue_struct *compact_wq; 170 struct workqueue_struct *release_wq; 171 struct work_struct work; 172 struct inode *inode; 173 }; 174 175 /* 176 * Internal z3fold page flags 177 */ 178 enum z3fold_page_flags { 179 PAGE_HEADLESS = 0, 180 MIDDLE_CHUNK_MAPPED, 181 NEEDS_COMPACTING, 182 PAGE_STALE, 183 PAGE_CLAIMED, /* by either reclaim or free */ 184 }; 185 186 /* 187 * handle flags, go under HANDLE_FLAG_MASK 188 */ 189 enum z3fold_handle_flags { 190 HANDLES_NOFREE = 0, 191 }; 192 193 /* 194 * Forward declarations 195 */ 196 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool); 197 static void compact_page_work(struct work_struct *w); 198 199 /***************** 200 * Helpers 201 *****************/ 202 203 /* Converts an allocation size in bytes to size in z3fold chunks */ 204 static int size_to_chunks(size_t size) 205 { 206 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 207 } 208 209 #define for_each_unbuddied_list(_iter, _begin) \ 210 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 211 212 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 213 gfp_t gfp) 214 { 215 struct z3fold_buddy_slots *slots; 216 217 slots = kmem_cache_zalloc(pool->c_handle, 218 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE))); 219 220 if (slots) { 221 /* It will be freed separately in free_handle(). */ 222 kmemleak_not_leak(slots); 223 slots->pool = (unsigned long)pool; 224 rwlock_init(&slots->lock); 225 } 226 227 return slots; 228 } 229 230 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 231 { 232 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 233 } 234 235 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 236 { 237 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 238 } 239 240 /* Lock a z3fold page */ 241 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 242 { 243 spin_lock(&zhdr->page_lock); 244 } 245 246 /* Try to lock a z3fold page */ 247 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 248 { 249 return spin_trylock(&zhdr->page_lock); 250 } 251 252 /* Unlock a z3fold page */ 253 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 254 { 255 spin_unlock(&zhdr->page_lock); 256 } 257 258 /* return locked z3fold page if it's not headless */ 259 static inline struct z3fold_header *get_z3fold_header(unsigned long handle) 260 { 261 struct z3fold_buddy_slots *slots; 262 struct z3fold_header *zhdr; 263 int locked = 0; 264 265 if (!(handle & (1 << PAGE_HEADLESS))) { 266 slots = handle_to_slots(handle); 267 do { 268 unsigned long addr; 269 270 read_lock(&slots->lock); 271 addr = *(unsigned long *)handle; 272 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 273 locked = z3fold_page_trylock(zhdr); 274 read_unlock(&slots->lock); 275 if (locked) 276 break; 277 cpu_relax(); 278 } while (true); 279 } else { 280 zhdr = (struct z3fold_header *)(handle & PAGE_MASK); 281 } 282 283 return zhdr; 284 } 285 286 static inline void put_z3fold_header(struct z3fold_header *zhdr) 287 { 288 struct page *page = virt_to_page(zhdr); 289 290 if (!test_bit(PAGE_HEADLESS, &page->private)) 291 z3fold_page_unlock(zhdr); 292 } 293 294 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr) 295 { 296 struct z3fold_buddy_slots *slots; 297 int i; 298 bool is_free; 299 300 if (WARN_ON(*(unsigned long *)handle == 0)) 301 return; 302 303 slots = handle_to_slots(handle); 304 write_lock(&slots->lock); 305 *(unsigned long *)handle = 0; 306 307 if (test_bit(HANDLES_NOFREE, &slots->pool)) { 308 write_unlock(&slots->lock); 309 return; /* simple case, nothing else to do */ 310 } 311 312 if (zhdr->slots != slots) 313 zhdr->foreign_handles--; 314 315 is_free = true; 316 for (i = 0; i <= BUDDY_MASK; i++) { 317 if (slots->slot[i]) { 318 is_free = false; 319 break; 320 } 321 } 322 write_unlock(&slots->lock); 323 324 if (is_free) { 325 struct z3fold_pool *pool = slots_to_pool(slots); 326 327 if (zhdr->slots == slots) 328 zhdr->slots = NULL; 329 kmem_cache_free(pool->c_handle, slots); 330 } 331 } 332 333 static int z3fold_init_fs_context(struct fs_context *fc) 334 { 335 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM; 336 } 337 338 static struct file_system_type z3fold_fs = { 339 .name = "z3fold", 340 .init_fs_context = z3fold_init_fs_context, 341 .kill_sb = kill_anon_super, 342 }; 343 344 static struct vfsmount *z3fold_mnt; 345 static int __init z3fold_mount(void) 346 { 347 int ret = 0; 348 349 z3fold_mnt = kern_mount(&z3fold_fs); 350 if (IS_ERR(z3fold_mnt)) 351 ret = PTR_ERR(z3fold_mnt); 352 353 return ret; 354 } 355 356 static void z3fold_unmount(void) 357 { 358 kern_unmount(z3fold_mnt); 359 } 360 361 static const struct address_space_operations z3fold_aops; 362 static int z3fold_register_migration(struct z3fold_pool *pool) 363 { 364 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 365 if (IS_ERR(pool->inode)) { 366 pool->inode = NULL; 367 return 1; 368 } 369 370 pool->inode->i_mapping->private_data = pool; 371 pool->inode->i_mapping->a_ops = &z3fold_aops; 372 return 0; 373 } 374 375 static void z3fold_unregister_migration(struct z3fold_pool *pool) 376 { 377 if (pool->inode) 378 iput(pool->inode); 379 } 380 381 /* Initializes the z3fold header of a newly allocated z3fold page */ 382 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless, 383 struct z3fold_pool *pool, gfp_t gfp) 384 { 385 struct z3fold_header *zhdr = page_address(page); 386 struct z3fold_buddy_slots *slots; 387 388 INIT_LIST_HEAD(&page->lru); 389 clear_bit(PAGE_HEADLESS, &page->private); 390 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 391 clear_bit(NEEDS_COMPACTING, &page->private); 392 clear_bit(PAGE_STALE, &page->private); 393 clear_bit(PAGE_CLAIMED, &page->private); 394 if (headless) 395 return zhdr; 396 397 slots = alloc_slots(pool, gfp); 398 if (!slots) 399 return NULL; 400 401 memset(zhdr, 0, sizeof(*zhdr)); 402 spin_lock_init(&zhdr->page_lock); 403 kref_init(&zhdr->refcount); 404 zhdr->cpu = -1; 405 zhdr->slots = slots; 406 zhdr->pool = pool; 407 INIT_LIST_HEAD(&zhdr->buddy); 408 INIT_WORK(&zhdr->work, compact_page_work); 409 return zhdr; 410 } 411 412 /* Resets the struct page fields and frees the page */ 413 static void free_z3fold_page(struct page *page, bool headless) 414 { 415 if (!headless) { 416 lock_page(page); 417 __ClearPageMovable(page); 418 unlock_page(page); 419 } 420 __free_page(page); 421 } 422 423 /* Helper function to build the index */ 424 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 425 { 426 return (bud + zhdr->first_num) & BUDDY_MASK; 427 } 428 429 /* 430 * Encodes the handle of a particular buddy within a z3fold page 431 * Pool lock should be held as this function accesses first_num 432 */ 433 static unsigned long __encode_handle(struct z3fold_header *zhdr, 434 struct z3fold_buddy_slots *slots, 435 enum buddy bud) 436 { 437 unsigned long h = (unsigned long)zhdr; 438 int idx = 0; 439 440 /* 441 * For a headless page, its handle is its pointer with the extra 442 * PAGE_HEADLESS bit set 443 */ 444 if (bud == HEADLESS) 445 return h | (1 << PAGE_HEADLESS); 446 447 /* otherwise, return pointer to encoded handle */ 448 idx = __idx(zhdr, bud); 449 h += idx; 450 if (bud == LAST) 451 h |= (zhdr->last_chunks << BUDDY_SHIFT); 452 453 write_lock(&slots->lock); 454 slots->slot[idx] = h; 455 write_unlock(&slots->lock); 456 return (unsigned long)&slots->slot[idx]; 457 } 458 459 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 460 { 461 return __encode_handle(zhdr, zhdr->slots, bud); 462 } 463 464 /* only for LAST bud, returns zero otherwise */ 465 static unsigned short handle_to_chunks(unsigned long handle) 466 { 467 struct z3fold_buddy_slots *slots = handle_to_slots(handle); 468 unsigned long addr; 469 470 read_lock(&slots->lock); 471 addr = *(unsigned long *)handle; 472 read_unlock(&slots->lock); 473 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 474 } 475 476 /* 477 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 478 * but that doesn't matter. because the masking will result in the 479 * correct buddy number. 480 */ 481 static enum buddy handle_to_buddy(unsigned long handle) 482 { 483 struct z3fold_header *zhdr; 484 struct z3fold_buddy_slots *slots = handle_to_slots(handle); 485 unsigned long addr; 486 487 read_lock(&slots->lock); 488 WARN_ON(handle & (1 << PAGE_HEADLESS)); 489 addr = *(unsigned long *)handle; 490 read_unlock(&slots->lock); 491 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 492 return (addr - zhdr->first_num) & BUDDY_MASK; 493 } 494 495 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 496 { 497 return zhdr->pool; 498 } 499 500 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 501 { 502 struct page *page = virt_to_page(zhdr); 503 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 504 505 WARN_ON(!list_empty(&zhdr->buddy)); 506 set_bit(PAGE_STALE, &page->private); 507 clear_bit(NEEDS_COMPACTING, &page->private); 508 spin_lock(&pool->lock); 509 if (!list_empty(&page->lru)) 510 list_del_init(&page->lru); 511 spin_unlock(&pool->lock); 512 513 if (locked) 514 z3fold_page_unlock(zhdr); 515 516 spin_lock(&pool->stale_lock); 517 list_add(&zhdr->buddy, &pool->stale); 518 queue_work(pool->release_wq, &pool->work); 519 spin_unlock(&pool->stale_lock); 520 521 atomic64_dec(&pool->pages_nr); 522 } 523 524 static void release_z3fold_page(struct kref *ref) 525 { 526 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 527 refcount); 528 __release_z3fold_page(zhdr, false); 529 } 530 531 static void release_z3fold_page_locked(struct kref *ref) 532 { 533 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 534 refcount); 535 WARN_ON(z3fold_page_trylock(zhdr)); 536 __release_z3fold_page(zhdr, true); 537 } 538 539 static void release_z3fold_page_locked_list(struct kref *ref) 540 { 541 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 542 refcount); 543 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 544 545 spin_lock(&pool->lock); 546 list_del_init(&zhdr->buddy); 547 spin_unlock(&pool->lock); 548 549 WARN_ON(z3fold_page_trylock(zhdr)); 550 __release_z3fold_page(zhdr, true); 551 } 552 553 static void free_pages_work(struct work_struct *w) 554 { 555 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 556 557 spin_lock(&pool->stale_lock); 558 while (!list_empty(&pool->stale)) { 559 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 560 struct z3fold_header, buddy); 561 struct page *page = virt_to_page(zhdr); 562 563 list_del(&zhdr->buddy); 564 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 565 continue; 566 spin_unlock(&pool->stale_lock); 567 cancel_work_sync(&zhdr->work); 568 free_z3fold_page(page, false); 569 cond_resched(); 570 spin_lock(&pool->stale_lock); 571 } 572 spin_unlock(&pool->stale_lock); 573 } 574 575 /* 576 * Returns the number of free chunks in a z3fold page. 577 * NB: can't be used with HEADLESS pages. 578 */ 579 static int num_free_chunks(struct z3fold_header *zhdr) 580 { 581 int nfree; 582 /* 583 * If there is a middle object, pick up the bigger free space 584 * either before or after it. Otherwise just subtract the number 585 * of chunks occupied by the first and the last objects. 586 */ 587 if (zhdr->middle_chunks != 0) { 588 int nfree_before = zhdr->first_chunks ? 589 0 : zhdr->start_middle - ZHDR_CHUNKS; 590 int nfree_after = zhdr->last_chunks ? 591 0 : TOTAL_CHUNKS - 592 (zhdr->start_middle + zhdr->middle_chunks); 593 nfree = max(nfree_before, nfree_after); 594 } else 595 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 596 return nfree; 597 } 598 599 /* Add to the appropriate unbuddied list */ 600 static inline void add_to_unbuddied(struct z3fold_pool *pool, 601 struct z3fold_header *zhdr) 602 { 603 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 604 zhdr->middle_chunks == 0) { 605 struct list_head *unbuddied; 606 int freechunks = num_free_chunks(zhdr); 607 608 migrate_disable(); 609 unbuddied = this_cpu_ptr(pool->unbuddied); 610 spin_lock(&pool->lock); 611 list_add(&zhdr->buddy, &unbuddied[freechunks]); 612 spin_unlock(&pool->lock); 613 zhdr->cpu = smp_processor_id(); 614 migrate_enable(); 615 } 616 } 617 618 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks) 619 { 620 enum buddy bud = HEADLESS; 621 622 if (zhdr->middle_chunks) { 623 if (!zhdr->first_chunks && 624 chunks <= zhdr->start_middle - ZHDR_CHUNKS) 625 bud = FIRST; 626 else if (!zhdr->last_chunks) 627 bud = LAST; 628 } else { 629 if (!zhdr->first_chunks) 630 bud = FIRST; 631 else if (!zhdr->last_chunks) 632 bud = LAST; 633 else 634 bud = MIDDLE; 635 } 636 637 return bud; 638 } 639 640 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 641 unsigned short dst_chunk) 642 { 643 void *beg = zhdr; 644 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 645 beg + (zhdr->start_middle << CHUNK_SHIFT), 646 zhdr->middle_chunks << CHUNK_SHIFT); 647 } 648 649 static inline bool buddy_single(struct z3fold_header *zhdr) 650 { 651 return !((zhdr->first_chunks && zhdr->middle_chunks) || 652 (zhdr->first_chunks && zhdr->last_chunks) || 653 (zhdr->middle_chunks && zhdr->last_chunks)); 654 } 655 656 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr) 657 { 658 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 659 void *p = zhdr; 660 unsigned long old_handle = 0; 661 size_t sz = 0; 662 struct z3fold_header *new_zhdr = NULL; 663 int first_idx = __idx(zhdr, FIRST); 664 int middle_idx = __idx(zhdr, MIDDLE); 665 int last_idx = __idx(zhdr, LAST); 666 unsigned short *moved_chunks = NULL; 667 668 /* 669 * No need to protect slots here -- all the slots are "local" and 670 * the page lock is already taken 671 */ 672 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) { 673 p += ZHDR_SIZE_ALIGNED; 674 sz = zhdr->first_chunks << CHUNK_SHIFT; 675 old_handle = (unsigned long)&zhdr->slots->slot[first_idx]; 676 moved_chunks = &zhdr->first_chunks; 677 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) { 678 p += zhdr->start_middle << CHUNK_SHIFT; 679 sz = zhdr->middle_chunks << CHUNK_SHIFT; 680 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx]; 681 moved_chunks = &zhdr->middle_chunks; 682 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) { 683 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); 684 sz = zhdr->last_chunks << CHUNK_SHIFT; 685 old_handle = (unsigned long)&zhdr->slots->slot[last_idx]; 686 moved_chunks = &zhdr->last_chunks; 687 } 688 689 if (sz > 0) { 690 enum buddy new_bud = HEADLESS; 691 short chunks = size_to_chunks(sz); 692 void *q; 693 694 new_zhdr = __z3fold_alloc(pool, sz, false); 695 if (!new_zhdr) 696 return NULL; 697 698 if (WARN_ON(new_zhdr == zhdr)) 699 goto out_fail; 700 701 new_bud = get_free_buddy(new_zhdr, chunks); 702 q = new_zhdr; 703 switch (new_bud) { 704 case FIRST: 705 new_zhdr->first_chunks = chunks; 706 q += ZHDR_SIZE_ALIGNED; 707 break; 708 case MIDDLE: 709 new_zhdr->middle_chunks = chunks; 710 new_zhdr->start_middle = 711 new_zhdr->first_chunks + ZHDR_CHUNKS; 712 q += new_zhdr->start_middle << CHUNK_SHIFT; 713 break; 714 case LAST: 715 new_zhdr->last_chunks = chunks; 716 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT); 717 break; 718 default: 719 goto out_fail; 720 } 721 new_zhdr->foreign_handles++; 722 memcpy(q, p, sz); 723 write_lock(&zhdr->slots->lock); 724 *(unsigned long *)old_handle = (unsigned long)new_zhdr + 725 __idx(new_zhdr, new_bud); 726 if (new_bud == LAST) 727 *(unsigned long *)old_handle |= 728 (new_zhdr->last_chunks << BUDDY_SHIFT); 729 write_unlock(&zhdr->slots->lock); 730 add_to_unbuddied(pool, new_zhdr); 731 z3fold_page_unlock(new_zhdr); 732 733 *moved_chunks = 0; 734 } 735 736 return new_zhdr; 737 738 out_fail: 739 if (new_zhdr && !kref_put(&new_zhdr->refcount, release_z3fold_page_locked)) { 740 add_to_unbuddied(pool, new_zhdr); 741 z3fold_page_unlock(new_zhdr); 742 } 743 return NULL; 744 745 } 746 747 #define BIG_CHUNK_GAP 3 748 /* Has to be called with lock held */ 749 static int z3fold_compact_page(struct z3fold_header *zhdr) 750 { 751 struct page *page = virt_to_page(zhdr); 752 753 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 754 return 0; /* can't move middle chunk, it's used */ 755 756 if (unlikely(PageIsolated(page))) 757 return 0; 758 759 if (zhdr->middle_chunks == 0) 760 return 0; /* nothing to compact */ 761 762 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 763 /* move to the beginning */ 764 mchunk_memmove(zhdr, ZHDR_CHUNKS); 765 zhdr->first_chunks = zhdr->middle_chunks; 766 zhdr->middle_chunks = 0; 767 zhdr->start_middle = 0; 768 zhdr->first_num++; 769 return 1; 770 } 771 772 /* 773 * moving data is expensive, so let's only do that if 774 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 775 */ 776 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 777 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 778 BIG_CHUNK_GAP) { 779 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 780 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 781 return 1; 782 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 783 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 784 + zhdr->middle_chunks) >= 785 BIG_CHUNK_GAP) { 786 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 787 zhdr->middle_chunks; 788 mchunk_memmove(zhdr, new_start); 789 zhdr->start_middle = new_start; 790 return 1; 791 } 792 793 return 0; 794 } 795 796 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 797 { 798 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 799 struct page *page; 800 801 page = virt_to_page(zhdr); 802 if (locked) 803 WARN_ON(z3fold_page_trylock(zhdr)); 804 else 805 z3fold_page_lock(zhdr); 806 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 807 z3fold_page_unlock(zhdr); 808 return; 809 } 810 spin_lock(&pool->lock); 811 list_del_init(&zhdr->buddy); 812 spin_unlock(&pool->lock); 813 814 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) 815 return; 816 817 if (test_bit(PAGE_STALE, &page->private) || 818 test_and_set_bit(PAGE_CLAIMED, &page->private)) { 819 z3fold_page_unlock(zhdr); 820 return; 821 } 822 823 if (!zhdr->foreign_handles && buddy_single(zhdr) && 824 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) { 825 if (!kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 826 clear_bit(PAGE_CLAIMED, &page->private); 827 z3fold_page_unlock(zhdr); 828 } 829 return; 830 } 831 832 z3fold_compact_page(zhdr); 833 add_to_unbuddied(pool, zhdr); 834 clear_bit(PAGE_CLAIMED, &page->private); 835 z3fold_page_unlock(zhdr); 836 } 837 838 static void compact_page_work(struct work_struct *w) 839 { 840 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 841 work); 842 843 do_compact_page(zhdr, false); 844 } 845 846 /* returns _locked_ z3fold page header or NULL */ 847 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 848 size_t size, bool can_sleep) 849 { 850 struct z3fold_header *zhdr = NULL; 851 struct page *page; 852 struct list_head *unbuddied; 853 int chunks = size_to_chunks(size), i; 854 855 lookup: 856 migrate_disable(); 857 /* First, try to find an unbuddied z3fold page. */ 858 unbuddied = this_cpu_ptr(pool->unbuddied); 859 for_each_unbuddied_list(i, chunks) { 860 struct list_head *l = &unbuddied[i]; 861 862 zhdr = list_first_entry_or_null(READ_ONCE(l), 863 struct z3fold_header, buddy); 864 865 if (!zhdr) 866 continue; 867 868 /* Re-check under lock. */ 869 spin_lock(&pool->lock); 870 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 871 struct z3fold_header, buddy)) || 872 !z3fold_page_trylock(zhdr)) { 873 spin_unlock(&pool->lock); 874 zhdr = NULL; 875 migrate_enable(); 876 if (can_sleep) 877 cond_resched(); 878 goto lookup; 879 } 880 list_del_init(&zhdr->buddy); 881 zhdr->cpu = -1; 882 spin_unlock(&pool->lock); 883 884 page = virt_to_page(zhdr); 885 if (test_bit(NEEDS_COMPACTING, &page->private) || 886 test_bit(PAGE_CLAIMED, &page->private)) { 887 z3fold_page_unlock(zhdr); 888 zhdr = NULL; 889 migrate_enable(); 890 if (can_sleep) 891 cond_resched(); 892 goto lookup; 893 } 894 895 /* 896 * this page could not be removed from its unbuddied 897 * list while pool lock was held, and then we've taken 898 * page lock so kref_put could not be called before 899 * we got here, so it's safe to just call kref_get() 900 */ 901 kref_get(&zhdr->refcount); 902 break; 903 } 904 migrate_enable(); 905 906 if (!zhdr) { 907 int cpu; 908 909 /* look for _exact_ match on other cpus' lists */ 910 for_each_online_cpu(cpu) { 911 struct list_head *l; 912 913 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 914 spin_lock(&pool->lock); 915 l = &unbuddied[chunks]; 916 917 zhdr = list_first_entry_or_null(READ_ONCE(l), 918 struct z3fold_header, buddy); 919 920 if (!zhdr || !z3fold_page_trylock(zhdr)) { 921 spin_unlock(&pool->lock); 922 zhdr = NULL; 923 continue; 924 } 925 list_del_init(&zhdr->buddy); 926 zhdr->cpu = -1; 927 spin_unlock(&pool->lock); 928 929 page = virt_to_page(zhdr); 930 if (test_bit(NEEDS_COMPACTING, &page->private) || 931 test_bit(PAGE_CLAIMED, &page->private)) { 932 z3fold_page_unlock(zhdr); 933 zhdr = NULL; 934 if (can_sleep) 935 cond_resched(); 936 continue; 937 } 938 kref_get(&zhdr->refcount); 939 break; 940 } 941 } 942 943 if (zhdr && !zhdr->slots) 944 zhdr->slots = alloc_slots(pool, 945 can_sleep ? GFP_NOIO : GFP_ATOMIC); 946 return zhdr; 947 } 948 949 /* 950 * API Functions 951 */ 952 953 /** 954 * z3fold_create_pool() - create a new z3fold pool 955 * @name: pool name 956 * @gfp: gfp flags when allocating the z3fold pool structure 957 * @ops: user-defined operations for the z3fold pool 958 * 959 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 960 * failed. 961 */ 962 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 963 const struct z3fold_ops *ops) 964 { 965 struct z3fold_pool *pool = NULL; 966 int i, cpu; 967 968 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 969 if (!pool) 970 goto out; 971 pool->c_handle = kmem_cache_create("z3fold_handle", 972 sizeof(struct z3fold_buddy_slots), 973 SLOTS_ALIGN, 0, NULL); 974 if (!pool->c_handle) 975 goto out_c; 976 spin_lock_init(&pool->lock); 977 spin_lock_init(&pool->stale_lock); 978 pool->unbuddied = __alloc_percpu(sizeof(struct list_head) * NCHUNKS, 979 __alignof__(struct list_head)); 980 if (!pool->unbuddied) 981 goto out_pool; 982 for_each_possible_cpu(cpu) { 983 struct list_head *unbuddied = 984 per_cpu_ptr(pool->unbuddied, cpu); 985 for_each_unbuddied_list(i, 0) 986 INIT_LIST_HEAD(&unbuddied[i]); 987 } 988 INIT_LIST_HEAD(&pool->lru); 989 INIT_LIST_HEAD(&pool->stale); 990 atomic64_set(&pool->pages_nr, 0); 991 pool->name = name; 992 pool->compact_wq = create_singlethread_workqueue(pool->name); 993 if (!pool->compact_wq) 994 goto out_unbuddied; 995 pool->release_wq = create_singlethread_workqueue(pool->name); 996 if (!pool->release_wq) 997 goto out_wq; 998 if (z3fold_register_migration(pool)) 999 goto out_rwq; 1000 INIT_WORK(&pool->work, free_pages_work); 1001 pool->ops = ops; 1002 return pool; 1003 1004 out_rwq: 1005 destroy_workqueue(pool->release_wq); 1006 out_wq: 1007 destroy_workqueue(pool->compact_wq); 1008 out_unbuddied: 1009 free_percpu(pool->unbuddied); 1010 out_pool: 1011 kmem_cache_destroy(pool->c_handle); 1012 out_c: 1013 kfree(pool); 1014 out: 1015 return NULL; 1016 } 1017 1018 /** 1019 * z3fold_destroy_pool() - destroys an existing z3fold pool 1020 * @pool: the z3fold pool to be destroyed 1021 * 1022 * The pool should be emptied before this function is called. 1023 */ 1024 static void z3fold_destroy_pool(struct z3fold_pool *pool) 1025 { 1026 kmem_cache_destroy(pool->c_handle); 1027 1028 /* 1029 * We need to destroy pool->compact_wq before pool->release_wq, 1030 * as any pending work on pool->compact_wq will call 1031 * queue_work(pool->release_wq, &pool->work). 1032 * 1033 * There are still outstanding pages until both workqueues are drained, 1034 * so we cannot unregister migration until then. 1035 */ 1036 1037 destroy_workqueue(pool->compact_wq); 1038 destroy_workqueue(pool->release_wq); 1039 z3fold_unregister_migration(pool); 1040 free_percpu(pool->unbuddied); 1041 kfree(pool); 1042 } 1043 1044 /** 1045 * z3fold_alloc() - allocates a region of a given size 1046 * @pool: z3fold pool from which to allocate 1047 * @size: size in bytes of the desired allocation 1048 * @gfp: gfp flags used if the pool needs to grow 1049 * @handle: handle of the new allocation 1050 * 1051 * This function will attempt to find a free region in the pool large enough to 1052 * satisfy the allocation request. A search of the unbuddied lists is 1053 * performed first. If no suitable free region is found, then a new page is 1054 * allocated and added to the pool to satisfy the request. 1055 * 1056 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 1057 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 1058 * a new page. 1059 */ 1060 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 1061 unsigned long *handle) 1062 { 1063 int chunks = size_to_chunks(size); 1064 struct z3fold_header *zhdr = NULL; 1065 struct page *page = NULL; 1066 enum buddy bud; 1067 bool can_sleep = gfpflags_allow_blocking(gfp); 1068 1069 if (!size) 1070 return -EINVAL; 1071 1072 if (size > PAGE_SIZE) 1073 return -ENOSPC; 1074 1075 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 1076 bud = HEADLESS; 1077 else { 1078 retry: 1079 zhdr = __z3fold_alloc(pool, size, can_sleep); 1080 if (zhdr) { 1081 bud = get_free_buddy(zhdr, chunks); 1082 if (bud == HEADLESS) { 1083 if (!kref_put(&zhdr->refcount, 1084 release_z3fold_page_locked)) 1085 z3fold_page_unlock(zhdr); 1086 pr_err("No free chunks in unbuddied\n"); 1087 WARN_ON(1); 1088 goto retry; 1089 } 1090 page = virt_to_page(zhdr); 1091 goto found; 1092 } 1093 bud = FIRST; 1094 } 1095 1096 page = NULL; 1097 if (can_sleep) { 1098 spin_lock(&pool->stale_lock); 1099 zhdr = list_first_entry_or_null(&pool->stale, 1100 struct z3fold_header, buddy); 1101 /* 1102 * Before allocating a page, let's see if we can take one from 1103 * the stale pages list. cancel_work_sync() can sleep so we 1104 * limit this case to the contexts where we can sleep 1105 */ 1106 if (zhdr) { 1107 list_del(&zhdr->buddy); 1108 spin_unlock(&pool->stale_lock); 1109 cancel_work_sync(&zhdr->work); 1110 page = virt_to_page(zhdr); 1111 } else { 1112 spin_unlock(&pool->stale_lock); 1113 } 1114 } 1115 if (!page) 1116 page = alloc_page(gfp); 1117 1118 if (!page) 1119 return -ENOMEM; 1120 1121 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp); 1122 if (!zhdr) { 1123 __free_page(page); 1124 return -ENOMEM; 1125 } 1126 atomic64_inc(&pool->pages_nr); 1127 1128 if (bud == HEADLESS) { 1129 set_bit(PAGE_HEADLESS, &page->private); 1130 goto headless; 1131 } 1132 if (can_sleep) { 1133 lock_page(page); 1134 __SetPageMovable(page, pool->inode->i_mapping); 1135 unlock_page(page); 1136 } else { 1137 if (trylock_page(page)) { 1138 __SetPageMovable(page, pool->inode->i_mapping); 1139 unlock_page(page); 1140 } 1141 } 1142 z3fold_page_lock(zhdr); 1143 1144 found: 1145 if (bud == FIRST) 1146 zhdr->first_chunks = chunks; 1147 else if (bud == LAST) 1148 zhdr->last_chunks = chunks; 1149 else { 1150 zhdr->middle_chunks = chunks; 1151 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 1152 } 1153 add_to_unbuddied(pool, zhdr); 1154 1155 headless: 1156 spin_lock(&pool->lock); 1157 /* Add/move z3fold page to beginning of LRU */ 1158 if (!list_empty(&page->lru)) 1159 list_del(&page->lru); 1160 1161 list_add(&page->lru, &pool->lru); 1162 1163 *handle = encode_handle(zhdr, bud); 1164 spin_unlock(&pool->lock); 1165 if (bud != HEADLESS) 1166 z3fold_page_unlock(zhdr); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * z3fold_free() - frees the allocation associated with the given handle 1173 * @pool: pool in which the allocation resided 1174 * @handle: handle associated with the allocation returned by z3fold_alloc() 1175 * 1176 * In the case that the z3fold page in which the allocation resides is under 1177 * reclaim, as indicated by the PAGE_CLAIMED flag being set, this function 1178 * only sets the first|middle|last_chunks to 0. The page is actually freed 1179 * once all buddies are evicted (see z3fold_reclaim_page() below). 1180 */ 1181 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 1182 { 1183 struct z3fold_header *zhdr; 1184 struct page *page; 1185 enum buddy bud; 1186 bool page_claimed; 1187 1188 zhdr = get_z3fold_header(handle); 1189 page = virt_to_page(zhdr); 1190 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private); 1191 1192 if (test_bit(PAGE_HEADLESS, &page->private)) { 1193 /* if a headless page is under reclaim, just leave. 1194 * NB: we use test_and_set_bit for a reason: if the bit 1195 * has not been set before, we release this page 1196 * immediately so we don't care about its value any more. 1197 */ 1198 if (!page_claimed) { 1199 spin_lock(&pool->lock); 1200 list_del(&page->lru); 1201 spin_unlock(&pool->lock); 1202 put_z3fold_header(zhdr); 1203 free_z3fold_page(page, true); 1204 atomic64_dec(&pool->pages_nr); 1205 } 1206 return; 1207 } 1208 1209 /* Non-headless case */ 1210 bud = handle_to_buddy(handle); 1211 1212 switch (bud) { 1213 case FIRST: 1214 zhdr->first_chunks = 0; 1215 break; 1216 case MIDDLE: 1217 zhdr->middle_chunks = 0; 1218 break; 1219 case LAST: 1220 zhdr->last_chunks = 0; 1221 break; 1222 default: 1223 pr_err("%s: unknown bud %d\n", __func__, bud); 1224 WARN_ON(1); 1225 put_z3fold_header(zhdr); 1226 return; 1227 } 1228 1229 if (!page_claimed) 1230 free_handle(handle, zhdr); 1231 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) 1232 return; 1233 if (page_claimed) { 1234 /* the page has not been claimed by us */ 1235 put_z3fold_header(zhdr); 1236 return; 1237 } 1238 if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1239 put_z3fold_header(zhdr); 1240 clear_bit(PAGE_CLAIMED, &page->private); 1241 return; 1242 } 1243 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1244 zhdr->cpu = -1; 1245 kref_get(&zhdr->refcount); 1246 clear_bit(PAGE_CLAIMED, &page->private); 1247 do_compact_page(zhdr, true); 1248 return; 1249 } 1250 kref_get(&zhdr->refcount); 1251 clear_bit(PAGE_CLAIMED, &page->private); 1252 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1253 put_z3fold_header(zhdr); 1254 } 1255 1256 /** 1257 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1258 * @pool: pool from which a page will attempt to be evicted 1259 * @retries: number of pages on the LRU list for which eviction will 1260 * be attempted before failing 1261 * 1262 * z3fold reclaim is different from normal system reclaim in that it is done 1263 * from the bottom, up. This is because only the bottom layer, z3fold, has 1264 * information on how the allocations are organized within each z3fold page. 1265 * This has the potential to create interesting locking situations between 1266 * z3fold and the user, however. 1267 * 1268 * To avoid these, this is how z3fold_reclaim_page() should be called: 1269 * 1270 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1271 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1272 * call the user-defined eviction handler with the pool and handle as 1273 * arguments. 1274 * 1275 * If the handle can not be evicted, the eviction handler should return 1276 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1277 * appropriate list and try the next z3fold page on the LRU up to 1278 * a user defined number of retries. 1279 * 1280 * If the handle is successfully evicted, the eviction handler should 1281 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1282 * contains logic to delay freeing the page if the page is under reclaim, 1283 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1284 * 1285 * If all buddies in the z3fold page are successfully evicted, then the 1286 * z3fold page can be freed. 1287 * 1288 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1289 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1290 * the retry limit was hit. 1291 */ 1292 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1293 { 1294 int i, ret = -1; 1295 struct z3fold_header *zhdr = NULL; 1296 struct page *page = NULL; 1297 struct list_head *pos; 1298 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1299 struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN))); 1300 1301 rwlock_init(&slots.lock); 1302 slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE); 1303 1304 spin_lock(&pool->lock); 1305 if (!pool->ops || !pool->ops->evict || retries == 0) { 1306 spin_unlock(&pool->lock); 1307 return -EINVAL; 1308 } 1309 for (i = 0; i < retries; i++) { 1310 if (list_empty(&pool->lru)) { 1311 spin_unlock(&pool->lock); 1312 return -EINVAL; 1313 } 1314 list_for_each_prev(pos, &pool->lru) { 1315 page = list_entry(pos, struct page, lru); 1316 1317 zhdr = page_address(page); 1318 if (test_bit(PAGE_HEADLESS, &page->private)) { 1319 /* 1320 * For non-headless pages, we wait to do this 1321 * until we have the page lock to avoid racing 1322 * with __z3fold_alloc(). Headless pages don't 1323 * have a lock (and __z3fold_alloc() will never 1324 * see them), but we still need to test and set 1325 * PAGE_CLAIMED to avoid racing with 1326 * z3fold_free(), so just do it now before 1327 * leaving the loop. 1328 */ 1329 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1330 continue; 1331 1332 break; 1333 } 1334 1335 if (kref_get_unless_zero(&zhdr->refcount) == 0) { 1336 zhdr = NULL; 1337 break; 1338 } 1339 if (!z3fold_page_trylock(zhdr)) { 1340 kref_put(&zhdr->refcount, release_z3fold_page); 1341 zhdr = NULL; 1342 continue; /* can't evict at this point */ 1343 } 1344 1345 /* test_and_set_bit is of course atomic, but we still 1346 * need to do it under page lock, otherwise checking 1347 * that bit in __z3fold_alloc wouldn't make sense 1348 */ 1349 if (zhdr->foreign_handles || 1350 test_and_set_bit(PAGE_CLAIMED, &page->private)) { 1351 if (!kref_put(&zhdr->refcount, 1352 release_z3fold_page_locked)) 1353 z3fold_page_unlock(zhdr); 1354 zhdr = NULL; 1355 continue; /* can't evict such page */ 1356 } 1357 list_del_init(&zhdr->buddy); 1358 zhdr->cpu = -1; 1359 break; 1360 } 1361 1362 if (!zhdr) 1363 break; 1364 1365 list_del_init(&page->lru); 1366 spin_unlock(&pool->lock); 1367 1368 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1369 /* 1370 * We need encode the handles before unlocking, and 1371 * use our local slots structure because z3fold_free 1372 * can zero out zhdr->slots and we can't do much 1373 * about that 1374 */ 1375 first_handle = 0; 1376 last_handle = 0; 1377 middle_handle = 0; 1378 memset(slots.slot, 0, sizeof(slots.slot)); 1379 if (zhdr->first_chunks) 1380 first_handle = __encode_handle(zhdr, &slots, 1381 FIRST); 1382 if (zhdr->middle_chunks) 1383 middle_handle = __encode_handle(zhdr, &slots, 1384 MIDDLE); 1385 if (zhdr->last_chunks) 1386 last_handle = __encode_handle(zhdr, &slots, 1387 LAST); 1388 /* 1389 * it's safe to unlock here because we hold a 1390 * reference to this page 1391 */ 1392 z3fold_page_unlock(zhdr); 1393 } else { 1394 first_handle = encode_handle(zhdr, HEADLESS); 1395 last_handle = middle_handle = 0; 1396 } 1397 /* Issue the eviction callback(s) */ 1398 if (middle_handle) { 1399 ret = pool->ops->evict(pool, middle_handle); 1400 if (ret) 1401 goto next; 1402 } 1403 if (first_handle) { 1404 ret = pool->ops->evict(pool, first_handle); 1405 if (ret) 1406 goto next; 1407 } 1408 if (last_handle) { 1409 ret = pool->ops->evict(pool, last_handle); 1410 if (ret) 1411 goto next; 1412 } 1413 next: 1414 if (test_bit(PAGE_HEADLESS, &page->private)) { 1415 if (ret == 0) { 1416 free_z3fold_page(page, true); 1417 atomic64_dec(&pool->pages_nr); 1418 return 0; 1419 } 1420 spin_lock(&pool->lock); 1421 list_add(&page->lru, &pool->lru); 1422 spin_unlock(&pool->lock); 1423 clear_bit(PAGE_CLAIMED, &page->private); 1424 } else { 1425 struct z3fold_buddy_slots *slots = zhdr->slots; 1426 z3fold_page_lock(zhdr); 1427 if (kref_put(&zhdr->refcount, 1428 release_z3fold_page_locked)) { 1429 kmem_cache_free(pool->c_handle, slots); 1430 return 0; 1431 } 1432 /* 1433 * if we are here, the page is still not completely 1434 * free. Take the global pool lock then to be able 1435 * to add it back to the lru list 1436 */ 1437 spin_lock(&pool->lock); 1438 list_add(&page->lru, &pool->lru); 1439 spin_unlock(&pool->lock); 1440 z3fold_page_unlock(zhdr); 1441 clear_bit(PAGE_CLAIMED, &page->private); 1442 } 1443 1444 /* We started off locked to we need to lock the pool back */ 1445 spin_lock(&pool->lock); 1446 } 1447 spin_unlock(&pool->lock); 1448 return -EAGAIN; 1449 } 1450 1451 /** 1452 * z3fold_map() - maps the allocation associated with the given handle 1453 * @pool: pool in which the allocation resides 1454 * @handle: handle associated with the allocation to be mapped 1455 * 1456 * Extracts the buddy number from handle and constructs the pointer to the 1457 * correct starting chunk within the page. 1458 * 1459 * Returns: a pointer to the mapped allocation 1460 */ 1461 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1462 { 1463 struct z3fold_header *zhdr; 1464 struct page *page; 1465 void *addr; 1466 enum buddy buddy; 1467 1468 zhdr = get_z3fold_header(handle); 1469 addr = zhdr; 1470 page = virt_to_page(zhdr); 1471 1472 if (test_bit(PAGE_HEADLESS, &page->private)) 1473 goto out; 1474 1475 buddy = handle_to_buddy(handle); 1476 switch (buddy) { 1477 case FIRST: 1478 addr += ZHDR_SIZE_ALIGNED; 1479 break; 1480 case MIDDLE: 1481 addr += zhdr->start_middle << CHUNK_SHIFT; 1482 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1483 break; 1484 case LAST: 1485 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1486 break; 1487 default: 1488 pr_err("unknown buddy id %d\n", buddy); 1489 WARN_ON(1); 1490 addr = NULL; 1491 break; 1492 } 1493 1494 if (addr) 1495 zhdr->mapped_count++; 1496 out: 1497 put_z3fold_header(zhdr); 1498 return addr; 1499 } 1500 1501 /** 1502 * z3fold_unmap() - unmaps the allocation associated with the given handle 1503 * @pool: pool in which the allocation resides 1504 * @handle: handle associated with the allocation to be unmapped 1505 */ 1506 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1507 { 1508 struct z3fold_header *zhdr; 1509 struct page *page; 1510 enum buddy buddy; 1511 1512 zhdr = get_z3fold_header(handle); 1513 page = virt_to_page(zhdr); 1514 1515 if (test_bit(PAGE_HEADLESS, &page->private)) 1516 return; 1517 1518 buddy = handle_to_buddy(handle); 1519 if (buddy == MIDDLE) 1520 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1521 zhdr->mapped_count--; 1522 put_z3fold_header(zhdr); 1523 } 1524 1525 /** 1526 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1527 * @pool: pool whose size is being queried 1528 * 1529 * Returns: size in pages of the given pool. 1530 */ 1531 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1532 { 1533 return atomic64_read(&pool->pages_nr); 1534 } 1535 1536 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1537 { 1538 struct z3fold_header *zhdr; 1539 struct z3fold_pool *pool; 1540 1541 VM_BUG_ON_PAGE(!PageMovable(page), page); 1542 VM_BUG_ON_PAGE(PageIsolated(page), page); 1543 1544 if (test_bit(PAGE_HEADLESS, &page->private)) 1545 return false; 1546 1547 zhdr = page_address(page); 1548 z3fold_page_lock(zhdr); 1549 if (test_bit(NEEDS_COMPACTING, &page->private) || 1550 test_bit(PAGE_STALE, &page->private)) 1551 goto out; 1552 1553 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) 1554 goto out; 1555 1556 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1557 goto out; 1558 pool = zhdr_to_pool(zhdr); 1559 spin_lock(&pool->lock); 1560 if (!list_empty(&zhdr->buddy)) 1561 list_del_init(&zhdr->buddy); 1562 if (!list_empty(&page->lru)) 1563 list_del_init(&page->lru); 1564 spin_unlock(&pool->lock); 1565 1566 kref_get(&zhdr->refcount); 1567 z3fold_page_unlock(zhdr); 1568 return true; 1569 1570 out: 1571 z3fold_page_unlock(zhdr); 1572 return false; 1573 } 1574 1575 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1576 struct page *page, enum migrate_mode mode) 1577 { 1578 struct z3fold_header *zhdr, *new_zhdr; 1579 struct z3fold_pool *pool; 1580 struct address_space *new_mapping; 1581 1582 VM_BUG_ON_PAGE(!PageMovable(page), page); 1583 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1584 VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page); 1585 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1586 1587 zhdr = page_address(page); 1588 pool = zhdr_to_pool(zhdr); 1589 1590 if (!z3fold_page_trylock(zhdr)) 1591 return -EAGAIN; 1592 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) { 1593 z3fold_page_unlock(zhdr); 1594 clear_bit(PAGE_CLAIMED, &page->private); 1595 return -EBUSY; 1596 } 1597 if (work_pending(&zhdr->work)) { 1598 z3fold_page_unlock(zhdr); 1599 return -EAGAIN; 1600 } 1601 new_zhdr = page_address(newpage); 1602 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1603 newpage->private = page->private; 1604 page->private = 0; 1605 z3fold_page_unlock(zhdr); 1606 spin_lock_init(&new_zhdr->page_lock); 1607 INIT_WORK(&new_zhdr->work, compact_page_work); 1608 /* 1609 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty, 1610 * so we only have to reinitialize it. 1611 */ 1612 INIT_LIST_HEAD(&new_zhdr->buddy); 1613 new_mapping = page_mapping(page); 1614 __ClearPageMovable(page); 1615 1616 get_page(newpage); 1617 z3fold_page_lock(new_zhdr); 1618 if (new_zhdr->first_chunks) 1619 encode_handle(new_zhdr, FIRST); 1620 if (new_zhdr->last_chunks) 1621 encode_handle(new_zhdr, LAST); 1622 if (new_zhdr->middle_chunks) 1623 encode_handle(new_zhdr, MIDDLE); 1624 set_bit(NEEDS_COMPACTING, &newpage->private); 1625 new_zhdr->cpu = smp_processor_id(); 1626 spin_lock(&pool->lock); 1627 list_add(&newpage->lru, &pool->lru); 1628 spin_unlock(&pool->lock); 1629 __SetPageMovable(newpage, new_mapping); 1630 z3fold_page_unlock(new_zhdr); 1631 1632 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1633 1634 clear_bit(PAGE_CLAIMED, &page->private); 1635 put_page(page); 1636 return 0; 1637 } 1638 1639 static void z3fold_page_putback(struct page *page) 1640 { 1641 struct z3fold_header *zhdr; 1642 struct z3fold_pool *pool; 1643 1644 zhdr = page_address(page); 1645 pool = zhdr_to_pool(zhdr); 1646 1647 z3fold_page_lock(zhdr); 1648 if (!list_empty(&zhdr->buddy)) 1649 list_del_init(&zhdr->buddy); 1650 INIT_LIST_HEAD(&page->lru); 1651 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) 1652 return; 1653 spin_lock(&pool->lock); 1654 list_add(&page->lru, &pool->lru); 1655 spin_unlock(&pool->lock); 1656 clear_bit(PAGE_CLAIMED, &page->private); 1657 z3fold_page_unlock(zhdr); 1658 } 1659 1660 static const struct address_space_operations z3fold_aops = { 1661 .isolate_page = z3fold_page_isolate, 1662 .migratepage = z3fold_page_migrate, 1663 .putback_page = z3fold_page_putback, 1664 }; 1665 1666 /***************** 1667 * zpool 1668 ****************/ 1669 1670 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1671 { 1672 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1673 return pool->zpool_ops->evict(pool->zpool, handle); 1674 else 1675 return -ENOENT; 1676 } 1677 1678 static const struct z3fold_ops z3fold_zpool_ops = { 1679 .evict = z3fold_zpool_evict 1680 }; 1681 1682 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1683 const struct zpool_ops *zpool_ops, 1684 struct zpool *zpool) 1685 { 1686 struct z3fold_pool *pool; 1687 1688 pool = z3fold_create_pool(name, gfp, 1689 zpool_ops ? &z3fold_zpool_ops : NULL); 1690 if (pool) { 1691 pool->zpool = zpool; 1692 pool->zpool_ops = zpool_ops; 1693 } 1694 return pool; 1695 } 1696 1697 static void z3fold_zpool_destroy(void *pool) 1698 { 1699 z3fold_destroy_pool(pool); 1700 } 1701 1702 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1703 unsigned long *handle) 1704 { 1705 return z3fold_alloc(pool, size, gfp, handle); 1706 } 1707 static void z3fold_zpool_free(void *pool, unsigned long handle) 1708 { 1709 z3fold_free(pool, handle); 1710 } 1711 1712 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1713 unsigned int *reclaimed) 1714 { 1715 unsigned int total = 0; 1716 int ret = -EINVAL; 1717 1718 while (total < pages) { 1719 ret = z3fold_reclaim_page(pool, 8); 1720 if (ret < 0) 1721 break; 1722 total++; 1723 } 1724 1725 if (reclaimed) 1726 *reclaimed = total; 1727 1728 return ret; 1729 } 1730 1731 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1732 enum zpool_mapmode mm) 1733 { 1734 return z3fold_map(pool, handle); 1735 } 1736 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1737 { 1738 z3fold_unmap(pool, handle); 1739 } 1740 1741 static u64 z3fold_zpool_total_size(void *pool) 1742 { 1743 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1744 } 1745 1746 static struct zpool_driver z3fold_zpool_driver = { 1747 .type = "z3fold", 1748 .sleep_mapped = true, 1749 .owner = THIS_MODULE, 1750 .create = z3fold_zpool_create, 1751 .destroy = z3fold_zpool_destroy, 1752 .malloc = z3fold_zpool_malloc, 1753 .free = z3fold_zpool_free, 1754 .shrink = z3fold_zpool_shrink, 1755 .map = z3fold_zpool_map, 1756 .unmap = z3fold_zpool_unmap, 1757 .total_size = z3fold_zpool_total_size, 1758 }; 1759 1760 MODULE_ALIAS("zpool-z3fold"); 1761 1762 static int __init init_z3fold(void) 1763 { 1764 int ret; 1765 1766 /* 1767 * Make sure the z3fold header is not larger than the page size and 1768 * there has remaining spaces for its buddy. 1769 */ 1770 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE - CHUNK_SIZE); 1771 ret = z3fold_mount(); 1772 if (ret) 1773 return ret; 1774 1775 zpool_register_driver(&z3fold_zpool_driver); 1776 1777 return 0; 1778 } 1779 1780 static void __exit exit_z3fold(void) 1781 { 1782 z3fold_unmount(); 1783 zpool_unregister_driver(&z3fold_zpool_driver); 1784 } 1785 1786 module_init(init_z3fold); 1787 module_exit(exit_z3fold); 1788 1789 MODULE_LICENSE("GPL"); 1790 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1791 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1792