xref: /openbmc/linux/mm/z3fold.c (revision 4419617e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/dcache.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/page-flags.h>
34 #include <linux/migrate.h>
35 #include <linux/node.h>
36 #include <linux/compaction.h>
37 #include <linux/percpu.h>
38 #include <linux/mount.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 
46 /*
47  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
48  * adjusting internal fragmentation.  It also determines the number of
49  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
50  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
51  * in the beginning of an allocated page are occupied by z3fold header, so
52  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
53  * which shows the max number of free chunks in z3fold page, also there will
54  * be 63, or 62, respectively, freelists per pool.
55  */
56 #define NCHUNKS_ORDER	6
57 
58 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
59 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
61 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
62 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
63 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
64 
65 #define BUDDY_MASK	(0x3)
66 #define BUDDY_SHIFT	2
67 #define SLOTS_ALIGN	(0x40)
68 
69 /*****************
70  * Structures
71 *****************/
72 struct z3fold_pool;
73 struct z3fold_ops {
74 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
75 };
76 
77 enum buddy {
78 	HEADLESS = 0,
79 	FIRST,
80 	MIDDLE,
81 	LAST,
82 	BUDDIES_MAX = LAST
83 };
84 
85 struct z3fold_buddy_slots {
86 	/*
87 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
88 	 * be enough slots to hold all possible variants
89 	 */
90 	unsigned long slot[BUDDY_MASK + 1];
91 	unsigned long pool; /* back link + flags */
92 };
93 #define HANDLE_FLAG_MASK	(0x03)
94 
95 /*
96  * struct z3fold_header - z3fold page metadata occupying first chunks of each
97  *			z3fold page, except for HEADLESS pages
98  * @buddy:		links the z3fold page into the relevant list in the
99  *			pool
100  * @page_lock:		per-page lock
101  * @refcount:		reference count for the z3fold page
102  * @work:		work_struct for page layout optimization
103  * @slots:		pointer to the structure holding buddy slots
104  * @cpu:		CPU which this page "belongs" to
105  * @first_chunks:	the size of the first buddy in chunks, 0 if free
106  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
107  * @last_chunks:	the size of the last buddy in chunks, 0 if free
108  * @first_num:		the starting number (for the first handle)
109  * @mapped_count:	the number of objects currently mapped
110  */
111 struct z3fold_header {
112 	struct list_head buddy;
113 	spinlock_t page_lock;
114 	struct kref refcount;
115 	struct work_struct work;
116 	struct z3fold_buddy_slots *slots;
117 	short cpu;
118 	unsigned short first_chunks;
119 	unsigned short middle_chunks;
120 	unsigned short last_chunks;
121 	unsigned short start_middle;
122 	unsigned short first_num:2;
123 	unsigned short mapped_count:2;
124 };
125 
126 /**
127  * struct z3fold_pool - stores metadata for each z3fold pool
128  * @name:	pool name
129  * @lock:	protects pool unbuddied/lru lists
130  * @stale_lock:	protects pool stale page list
131  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
132  *		buddies; the list each z3fold page is added to depends on
133  *		the size of its free region.
134  * @lru:	list tracking the z3fold pages in LRU order by most recently
135  *		added buddy.
136  * @stale:	list of pages marked for freeing
137  * @pages_nr:	number of z3fold pages in the pool.
138  * @c_handle:	cache for z3fold_buddy_slots allocation
139  * @ops:	pointer to a structure of user defined operations specified at
140  *		pool creation time.
141  * @compact_wq:	workqueue for page layout background optimization
142  * @release_wq:	workqueue for safe page release
143  * @work:	work_struct for safe page release
144  * @inode:	inode for z3fold pseudo filesystem
145  *
146  * This structure is allocated at pool creation time and maintains metadata
147  * pertaining to a particular z3fold pool.
148  */
149 struct z3fold_pool {
150 	const char *name;
151 	spinlock_t lock;
152 	spinlock_t stale_lock;
153 	struct list_head *unbuddied;
154 	struct list_head lru;
155 	struct list_head stale;
156 	atomic64_t pages_nr;
157 	struct kmem_cache *c_handle;
158 	const struct z3fold_ops *ops;
159 	struct zpool *zpool;
160 	const struct zpool_ops *zpool_ops;
161 	struct workqueue_struct *compact_wq;
162 	struct workqueue_struct *release_wq;
163 	struct work_struct work;
164 	struct inode *inode;
165 };
166 
167 /*
168  * Internal z3fold page flags
169  */
170 enum z3fold_page_flags {
171 	PAGE_HEADLESS = 0,
172 	MIDDLE_CHUNK_MAPPED,
173 	NEEDS_COMPACTING,
174 	PAGE_STALE,
175 	PAGE_CLAIMED, /* by either reclaim or free */
176 };
177 
178 /*****************
179  * Helpers
180 *****************/
181 
182 /* Converts an allocation size in bytes to size in z3fold chunks */
183 static int size_to_chunks(size_t size)
184 {
185 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
186 }
187 
188 #define for_each_unbuddied_list(_iter, _begin) \
189 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
190 
191 static void compact_page_work(struct work_struct *w);
192 
193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
194 							gfp_t gfp)
195 {
196 	struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
197 							    gfp);
198 
199 	if (slots) {
200 		memset(slots->slot, 0, sizeof(slots->slot));
201 		slots->pool = (unsigned long)pool;
202 	}
203 
204 	return slots;
205 }
206 
207 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
208 {
209 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
210 }
211 
212 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
213 {
214 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
215 }
216 
217 static inline void free_handle(unsigned long handle)
218 {
219 	struct z3fold_buddy_slots *slots;
220 	int i;
221 	bool is_free;
222 
223 	if (handle & (1 << PAGE_HEADLESS))
224 		return;
225 
226 	WARN_ON(*(unsigned long *)handle == 0);
227 	*(unsigned long *)handle = 0;
228 	slots = handle_to_slots(handle);
229 	is_free = true;
230 	for (i = 0; i <= BUDDY_MASK; i++) {
231 		if (slots->slot[i]) {
232 			is_free = false;
233 			break;
234 		}
235 	}
236 
237 	if (is_free) {
238 		struct z3fold_pool *pool = slots_to_pool(slots);
239 
240 		kmem_cache_free(pool->c_handle, slots);
241 	}
242 }
243 
244 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
245 				int flags, const char *dev_name, void *data)
246 {
247 	static const struct dentry_operations ops = {
248 		.d_dname = simple_dname,
249 	};
250 
251 	return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
252 }
253 
254 static struct file_system_type z3fold_fs = {
255 	.name		= "z3fold",
256 	.mount		= z3fold_do_mount,
257 	.kill_sb	= kill_anon_super,
258 };
259 
260 static struct vfsmount *z3fold_mnt;
261 static int z3fold_mount(void)
262 {
263 	int ret = 0;
264 
265 	z3fold_mnt = kern_mount(&z3fold_fs);
266 	if (IS_ERR(z3fold_mnt))
267 		ret = PTR_ERR(z3fold_mnt);
268 
269 	return ret;
270 }
271 
272 static void z3fold_unmount(void)
273 {
274 	kern_unmount(z3fold_mnt);
275 }
276 
277 static const struct address_space_operations z3fold_aops;
278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 	if (IS_ERR(pool->inode)) {
282 		pool->inode = NULL;
283 		return 1;
284 	}
285 
286 	pool->inode->i_mapping->private_data = pool;
287 	pool->inode->i_mapping->a_ops = &z3fold_aops;
288 	return 0;
289 }
290 
291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293 	if (pool->inode)
294 		iput(pool->inode);
295  }
296 
297 /* Initializes the z3fold header of a newly allocated z3fold page */
298 static struct z3fold_header *init_z3fold_page(struct page *page,
299 					struct z3fold_pool *pool, gfp_t gfp)
300 {
301 	struct z3fold_header *zhdr = page_address(page);
302 	struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303 
304 	if (!slots)
305 		return NULL;
306 
307 	INIT_LIST_HEAD(&page->lru);
308 	clear_bit(PAGE_HEADLESS, &page->private);
309 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310 	clear_bit(NEEDS_COMPACTING, &page->private);
311 	clear_bit(PAGE_STALE, &page->private);
312 	clear_bit(PAGE_CLAIMED, &page->private);
313 
314 	spin_lock_init(&zhdr->page_lock);
315 	kref_init(&zhdr->refcount);
316 	zhdr->first_chunks = 0;
317 	zhdr->middle_chunks = 0;
318 	zhdr->last_chunks = 0;
319 	zhdr->first_num = 0;
320 	zhdr->start_middle = 0;
321 	zhdr->cpu = -1;
322 	zhdr->slots = slots;
323 	INIT_LIST_HEAD(&zhdr->buddy);
324 	INIT_WORK(&zhdr->work, compact_page_work);
325 	return zhdr;
326 }
327 
328 /* Resets the struct page fields and frees the page */
329 static void free_z3fold_page(struct page *page, bool headless)
330 {
331 	if (!headless) {
332 		lock_page(page);
333 		__ClearPageMovable(page);
334 		unlock_page(page);
335 	}
336 	ClearPagePrivate(page);
337 	__free_page(page);
338 }
339 
340 /* Lock a z3fold page */
341 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
342 {
343 	spin_lock(&zhdr->page_lock);
344 }
345 
346 /* Try to lock a z3fold page */
347 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
348 {
349 	return spin_trylock(&zhdr->page_lock);
350 }
351 
352 /* Unlock a z3fold page */
353 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
354 {
355 	spin_unlock(&zhdr->page_lock);
356 }
357 
358 /* Helper function to build the index */
359 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
360 {
361 	return (bud + zhdr->first_num) & BUDDY_MASK;
362 }
363 
364 /*
365  * Encodes the handle of a particular buddy within a z3fold page
366  * Pool lock should be held as this function accesses first_num
367  */
368 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
369 {
370 	struct z3fold_buddy_slots *slots;
371 	unsigned long h = (unsigned long)zhdr;
372 	int idx = 0;
373 
374 	/*
375 	 * For a headless page, its handle is its pointer with the extra
376 	 * PAGE_HEADLESS bit set
377 	 */
378 	if (bud == HEADLESS)
379 		return h | (1 << PAGE_HEADLESS);
380 
381 	/* otherwise, return pointer to encoded handle */
382 	idx = __idx(zhdr, bud);
383 	h += idx;
384 	if (bud == LAST)
385 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
386 
387 	slots = zhdr->slots;
388 	slots->slot[idx] = h;
389 	return (unsigned long)&slots->slot[idx];
390 }
391 
392 /* Returns the z3fold page where a given handle is stored */
393 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
394 {
395 	unsigned long addr = h;
396 
397 	if (!(addr & (1 << PAGE_HEADLESS)))
398 		addr = *(unsigned long *)h;
399 
400 	return (struct z3fold_header *)(addr & PAGE_MASK);
401 }
402 
403 /* only for LAST bud, returns zero otherwise */
404 static unsigned short handle_to_chunks(unsigned long handle)
405 {
406 	unsigned long addr = *(unsigned long *)handle;
407 
408 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
409 }
410 
411 /*
412  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
413  *  but that doesn't matter. because the masking will result in the
414  *  correct buddy number.
415  */
416 static enum buddy handle_to_buddy(unsigned long handle)
417 {
418 	struct z3fold_header *zhdr;
419 	unsigned long addr;
420 
421 	WARN_ON(handle & (1 << PAGE_HEADLESS));
422 	addr = *(unsigned long *)handle;
423 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
424 	return (addr - zhdr->first_num) & BUDDY_MASK;
425 }
426 
427 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
428 {
429 	return slots_to_pool(zhdr->slots);
430 }
431 
432 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
433 {
434 	struct page *page = virt_to_page(zhdr);
435 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
436 
437 	WARN_ON(!list_empty(&zhdr->buddy));
438 	set_bit(PAGE_STALE, &page->private);
439 	clear_bit(NEEDS_COMPACTING, &page->private);
440 	spin_lock(&pool->lock);
441 	if (!list_empty(&page->lru))
442 		list_del_init(&page->lru);
443 	spin_unlock(&pool->lock);
444 	if (locked)
445 		z3fold_page_unlock(zhdr);
446 	spin_lock(&pool->stale_lock);
447 	list_add(&zhdr->buddy, &pool->stale);
448 	queue_work(pool->release_wq, &pool->work);
449 	spin_unlock(&pool->stale_lock);
450 }
451 
452 static void __attribute__((__unused__))
453 			release_z3fold_page(struct kref *ref)
454 {
455 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
456 						refcount);
457 	__release_z3fold_page(zhdr, false);
458 }
459 
460 static void release_z3fold_page_locked(struct kref *ref)
461 {
462 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
463 						refcount);
464 	WARN_ON(z3fold_page_trylock(zhdr));
465 	__release_z3fold_page(zhdr, true);
466 }
467 
468 static void release_z3fold_page_locked_list(struct kref *ref)
469 {
470 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
471 					       refcount);
472 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
473 	spin_lock(&pool->lock);
474 	list_del_init(&zhdr->buddy);
475 	spin_unlock(&pool->lock);
476 
477 	WARN_ON(z3fold_page_trylock(zhdr));
478 	__release_z3fold_page(zhdr, true);
479 }
480 
481 static void free_pages_work(struct work_struct *w)
482 {
483 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
484 
485 	spin_lock(&pool->stale_lock);
486 	while (!list_empty(&pool->stale)) {
487 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
488 						struct z3fold_header, buddy);
489 		struct page *page = virt_to_page(zhdr);
490 
491 		list_del(&zhdr->buddy);
492 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
493 			continue;
494 		spin_unlock(&pool->stale_lock);
495 		cancel_work_sync(&zhdr->work);
496 		free_z3fold_page(page, false);
497 		cond_resched();
498 		spin_lock(&pool->stale_lock);
499 	}
500 	spin_unlock(&pool->stale_lock);
501 }
502 
503 /*
504  * Returns the number of free chunks in a z3fold page.
505  * NB: can't be used with HEADLESS pages.
506  */
507 static int num_free_chunks(struct z3fold_header *zhdr)
508 {
509 	int nfree;
510 	/*
511 	 * If there is a middle object, pick up the bigger free space
512 	 * either before or after it. Otherwise just subtract the number
513 	 * of chunks occupied by the first and the last objects.
514 	 */
515 	if (zhdr->middle_chunks != 0) {
516 		int nfree_before = zhdr->first_chunks ?
517 			0 : zhdr->start_middle - ZHDR_CHUNKS;
518 		int nfree_after = zhdr->last_chunks ?
519 			0 : TOTAL_CHUNKS -
520 				(zhdr->start_middle + zhdr->middle_chunks);
521 		nfree = max(nfree_before, nfree_after);
522 	} else
523 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
524 	return nfree;
525 }
526 
527 /* Add to the appropriate unbuddied list */
528 static inline void add_to_unbuddied(struct z3fold_pool *pool,
529 				struct z3fold_header *zhdr)
530 {
531 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
532 			zhdr->middle_chunks == 0) {
533 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
534 
535 		int freechunks = num_free_chunks(zhdr);
536 		spin_lock(&pool->lock);
537 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
538 		spin_unlock(&pool->lock);
539 		zhdr->cpu = smp_processor_id();
540 		put_cpu_ptr(pool->unbuddied);
541 	}
542 }
543 
544 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
545 				unsigned short dst_chunk)
546 {
547 	void *beg = zhdr;
548 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
549 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
550 		       zhdr->middle_chunks << CHUNK_SHIFT);
551 }
552 
553 #define BIG_CHUNK_GAP	3
554 /* Has to be called with lock held */
555 static int z3fold_compact_page(struct z3fold_header *zhdr)
556 {
557 	struct page *page = virt_to_page(zhdr);
558 
559 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
560 		return 0; /* can't move middle chunk, it's used */
561 
562 	if (unlikely(PageIsolated(page)))
563 		return 0;
564 
565 	if (zhdr->middle_chunks == 0)
566 		return 0; /* nothing to compact */
567 
568 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
569 		/* move to the beginning */
570 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
571 		zhdr->first_chunks = zhdr->middle_chunks;
572 		zhdr->middle_chunks = 0;
573 		zhdr->start_middle = 0;
574 		zhdr->first_num++;
575 		return 1;
576 	}
577 
578 	/*
579 	 * moving data is expensive, so let's only do that if
580 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
581 	 */
582 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
583 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
584 			BIG_CHUNK_GAP) {
585 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
586 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
587 		return 1;
588 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
589 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
590 					+ zhdr->middle_chunks) >=
591 			BIG_CHUNK_GAP) {
592 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
593 			zhdr->middle_chunks;
594 		mchunk_memmove(zhdr, new_start);
595 		zhdr->start_middle = new_start;
596 		return 1;
597 	}
598 
599 	return 0;
600 }
601 
602 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
603 {
604 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
605 	struct page *page;
606 
607 	page = virt_to_page(zhdr);
608 	if (locked)
609 		WARN_ON(z3fold_page_trylock(zhdr));
610 	else
611 		z3fold_page_lock(zhdr);
612 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
613 		z3fold_page_unlock(zhdr);
614 		return;
615 	}
616 	spin_lock(&pool->lock);
617 	list_del_init(&zhdr->buddy);
618 	spin_unlock(&pool->lock);
619 
620 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
621 		atomic64_dec(&pool->pages_nr);
622 		return;
623 	}
624 
625 	if (unlikely(PageIsolated(page) ||
626 		     test_bit(PAGE_STALE, &page->private))) {
627 		z3fold_page_unlock(zhdr);
628 		return;
629 	}
630 
631 	z3fold_compact_page(zhdr);
632 	add_to_unbuddied(pool, zhdr);
633 	z3fold_page_unlock(zhdr);
634 }
635 
636 static void compact_page_work(struct work_struct *w)
637 {
638 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
639 						work);
640 
641 	do_compact_page(zhdr, false);
642 }
643 
644 /* returns _locked_ z3fold page header or NULL */
645 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
646 						size_t size, bool can_sleep)
647 {
648 	struct z3fold_header *zhdr = NULL;
649 	struct page *page;
650 	struct list_head *unbuddied;
651 	int chunks = size_to_chunks(size), i;
652 
653 lookup:
654 	/* First, try to find an unbuddied z3fold page. */
655 	unbuddied = get_cpu_ptr(pool->unbuddied);
656 	for_each_unbuddied_list(i, chunks) {
657 		struct list_head *l = &unbuddied[i];
658 
659 		zhdr = list_first_entry_or_null(READ_ONCE(l),
660 					struct z3fold_header, buddy);
661 
662 		if (!zhdr)
663 			continue;
664 
665 		/* Re-check under lock. */
666 		spin_lock(&pool->lock);
667 		l = &unbuddied[i];
668 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
669 						struct z3fold_header, buddy)) ||
670 		    !z3fold_page_trylock(zhdr)) {
671 			spin_unlock(&pool->lock);
672 			zhdr = NULL;
673 			put_cpu_ptr(pool->unbuddied);
674 			if (can_sleep)
675 				cond_resched();
676 			goto lookup;
677 		}
678 		list_del_init(&zhdr->buddy);
679 		zhdr->cpu = -1;
680 		spin_unlock(&pool->lock);
681 
682 		page = virt_to_page(zhdr);
683 		if (test_bit(NEEDS_COMPACTING, &page->private)) {
684 			z3fold_page_unlock(zhdr);
685 			zhdr = NULL;
686 			put_cpu_ptr(pool->unbuddied);
687 			if (can_sleep)
688 				cond_resched();
689 			goto lookup;
690 		}
691 
692 		/*
693 		 * this page could not be removed from its unbuddied
694 		 * list while pool lock was held, and then we've taken
695 		 * page lock so kref_put could not be called before
696 		 * we got here, so it's safe to just call kref_get()
697 		 */
698 		kref_get(&zhdr->refcount);
699 		break;
700 	}
701 	put_cpu_ptr(pool->unbuddied);
702 
703 	if (!zhdr) {
704 		int cpu;
705 
706 		/* look for _exact_ match on other cpus' lists */
707 		for_each_online_cpu(cpu) {
708 			struct list_head *l;
709 
710 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
711 			spin_lock(&pool->lock);
712 			l = &unbuddied[chunks];
713 
714 			zhdr = list_first_entry_or_null(READ_ONCE(l),
715 						struct z3fold_header, buddy);
716 
717 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
718 				spin_unlock(&pool->lock);
719 				zhdr = NULL;
720 				continue;
721 			}
722 			list_del_init(&zhdr->buddy);
723 			zhdr->cpu = -1;
724 			spin_unlock(&pool->lock);
725 
726 			page = virt_to_page(zhdr);
727 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
728 				z3fold_page_unlock(zhdr);
729 				zhdr = NULL;
730 				if (can_sleep)
731 					cond_resched();
732 				continue;
733 			}
734 			kref_get(&zhdr->refcount);
735 			break;
736 		}
737 	}
738 
739 	return zhdr;
740 }
741 
742 /*
743  * API Functions
744  */
745 
746 /**
747  * z3fold_create_pool() - create a new z3fold pool
748  * @name:	pool name
749  * @gfp:	gfp flags when allocating the z3fold pool structure
750  * @ops:	user-defined operations for the z3fold pool
751  *
752  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
753  * failed.
754  */
755 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
756 		const struct z3fold_ops *ops)
757 {
758 	struct z3fold_pool *pool = NULL;
759 	int i, cpu;
760 
761 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
762 	if (!pool)
763 		goto out;
764 	pool->c_handle = kmem_cache_create("z3fold_handle",
765 				sizeof(struct z3fold_buddy_slots),
766 				SLOTS_ALIGN, 0, NULL);
767 	if (!pool->c_handle)
768 		goto out_c;
769 	spin_lock_init(&pool->lock);
770 	spin_lock_init(&pool->stale_lock);
771 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
772 	if (!pool->unbuddied)
773 		goto out_pool;
774 	for_each_possible_cpu(cpu) {
775 		struct list_head *unbuddied =
776 				per_cpu_ptr(pool->unbuddied, cpu);
777 		for_each_unbuddied_list(i, 0)
778 			INIT_LIST_HEAD(&unbuddied[i]);
779 	}
780 	INIT_LIST_HEAD(&pool->lru);
781 	INIT_LIST_HEAD(&pool->stale);
782 	atomic64_set(&pool->pages_nr, 0);
783 	pool->name = name;
784 	pool->compact_wq = create_singlethread_workqueue(pool->name);
785 	if (!pool->compact_wq)
786 		goto out_unbuddied;
787 	pool->release_wq = create_singlethread_workqueue(pool->name);
788 	if (!pool->release_wq)
789 		goto out_wq;
790 	if (z3fold_register_migration(pool))
791 		goto out_rwq;
792 	INIT_WORK(&pool->work, free_pages_work);
793 	pool->ops = ops;
794 	return pool;
795 
796 out_rwq:
797 	destroy_workqueue(pool->release_wq);
798 out_wq:
799 	destroy_workqueue(pool->compact_wq);
800 out_unbuddied:
801 	free_percpu(pool->unbuddied);
802 out_pool:
803 	kmem_cache_destroy(pool->c_handle);
804 out_c:
805 	kfree(pool);
806 out:
807 	return NULL;
808 }
809 
810 /**
811  * z3fold_destroy_pool() - destroys an existing z3fold pool
812  * @pool:	the z3fold pool to be destroyed
813  *
814  * The pool should be emptied before this function is called.
815  */
816 static void z3fold_destroy_pool(struct z3fold_pool *pool)
817 {
818 	kmem_cache_destroy(pool->c_handle);
819 	z3fold_unregister_migration(pool);
820 	destroy_workqueue(pool->release_wq);
821 	destroy_workqueue(pool->compact_wq);
822 	kfree(pool);
823 }
824 
825 /**
826  * z3fold_alloc() - allocates a region of a given size
827  * @pool:	z3fold pool from which to allocate
828  * @size:	size in bytes of the desired allocation
829  * @gfp:	gfp flags used if the pool needs to grow
830  * @handle:	handle of the new allocation
831  *
832  * This function will attempt to find a free region in the pool large enough to
833  * satisfy the allocation request.  A search of the unbuddied lists is
834  * performed first. If no suitable free region is found, then a new page is
835  * allocated and added to the pool to satisfy the request.
836  *
837  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
838  * as z3fold pool pages.
839  *
840  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
841  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
842  * a new page.
843  */
844 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
845 			unsigned long *handle)
846 {
847 	int chunks = size_to_chunks(size);
848 	struct z3fold_header *zhdr = NULL;
849 	struct page *page = NULL;
850 	enum buddy bud;
851 	bool can_sleep = gfpflags_allow_blocking(gfp);
852 
853 	if (!size || (gfp & __GFP_HIGHMEM))
854 		return -EINVAL;
855 
856 	if (size > PAGE_SIZE)
857 		return -ENOSPC;
858 
859 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
860 		bud = HEADLESS;
861 	else {
862 retry:
863 		zhdr = __z3fold_alloc(pool, size, can_sleep);
864 		if (zhdr) {
865 			if (zhdr->first_chunks == 0) {
866 				if (zhdr->middle_chunks != 0 &&
867 				    chunks >= zhdr->start_middle)
868 					bud = LAST;
869 				else
870 					bud = FIRST;
871 			} else if (zhdr->last_chunks == 0)
872 				bud = LAST;
873 			else if (zhdr->middle_chunks == 0)
874 				bud = MIDDLE;
875 			else {
876 				if (kref_put(&zhdr->refcount,
877 					     release_z3fold_page_locked))
878 					atomic64_dec(&pool->pages_nr);
879 				else
880 					z3fold_page_unlock(zhdr);
881 				pr_err("No free chunks in unbuddied\n");
882 				WARN_ON(1);
883 				goto retry;
884 			}
885 			page = virt_to_page(zhdr);
886 			goto found;
887 		}
888 		bud = FIRST;
889 	}
890 
891 	page = NULL;
892 	if (can_sleep) {
893 		spin_lock(&pool->stale_lock);
894 		zhdr = list_first_entry_or_null(&pool->stale,
895 						struct z3fold_header, buddy);
896 		/*
897 		 * Before allocating a page, let's see if we can take one from
898 		 * the stale pages list. cancel_work_sync() can sleep so we
899 		 * limit this case to the contexts where we can sleep
900 		 */
901 		if (zhdr) {
902 			list_del(&zhdr->buddy);
903 			spin_unlock(&pool->stale_lock);
904 			cancel_work_sync(&zhdr->work);
905 			page = virt_to_page(zhdr);
906 		} else {
907 			spin_unlock(&pool->stale_lock);
908 		}
909 	}
910 	if (!page)
911 		page = alloc_page(gfp);
912 
913 	if (!page)
914 		return -ENOMEM;
915 
916 	zhdr = init_z3fold_page(page, pool, gfp);
917 	if (!zhdr) {
918 		__free_page(page);
919 		return -ENOMEM;
920 	}
921 	atomic64_inc(&pool->pages_nr);
922 
923 	if (bud == HEADLESS) {
924 		set_bit(PAGE_HEADLESS, &page->private);
925 		goto headless;
926 	}
927 	__SetPageMovable(page, pool->inode->i_mapping);
928 	z3fold_page_lock(zhdr);
929 
930 found:
931 	if (bud == FIRST)
932 		zhdr->first_chunks = chunks;
933 	else if (bud == LAST)
934 		zhdr->last_chunks = chunks;
935 	else {
936 		zhdr->middle_chunks = chunks;
937 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
938 	}
939 	add_to_unbuddied(pool, zhdr);
940 
941 headless:
942 	spin_lock(&pool->lock);
943 	/* Add/move z3fold page to beginning of LRU */
944 	if (!list_empty(&page->lru))
945 		list_del(&page->lru);
946 
947 	list_add(&page->lru, &pool->lru);
948 
949 	*handle = encode_handle(zhdr, bud);
950 	spin_unlock(&pool->lock);
951 	if (bud != HEADLESS)
952 		z3fold_page_unlock(zhdr);
953 
954 	return 0;
955 }
956 
957 /**
958  * z3fold_free() - frees the allocation associated with the given handle
959  * @pool:	pool in which the allocation resided
960  * @handle:	handle associated with the allocation returned by z3fold_alloc()
961  *
962  * In the case that the z3fold page in which the allocation resides is under
963  * reclaim, as indicated by the PG_reclaim flag being set, this function
964  * only sets the first|last_chunks to 0.  The page is actually freed
965  * once both buddies are evicted (see z3fold_reclaim_page() below).
966  */
967 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
968 {
969 	struct z3fold_header *zhdr;
970 	struct page *page;
971 	enum buddy bud;
972 
973 	zhdr = handle_to_z3fold_header(handle);
974 	page = virt_to_page(zhdr);
975 
976 	if (test_bit(PAGE_HEADLESS, &page->private)) {
977 		/* if a headless page is under reclaim, just leave.
978 		 * NB: we use test_and_set_bit for a reason: if the bit
979 		 * has not been set before, we release this page
980 		 * immediately so we don't care about its value any more.
981 		 */
982 		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
983 			spin_lock(&pool->lock);
984 			list_del(&page->lru);
985 			spin_unlock(&pool->lock);
986 			free_z3fold_page(page, true);
987 			atomic64_dec(&pool->pages_nr);
988 		}
989 		return;
990 	}
991 
992 	/* Non-headless case */
993 	z3fold_page_lock(zhdr);
994 	bud = handle_to_buddy(handle);
995 
996 	switch (bud) {
997 	case FIRST:
998 		zhdr->first_chunks = 0;
999 		break;
1000 	case MIDDLE:
1001 		zhdr->middle_chunks = 0;
1002 		break;
1003 	case LAST:
1004 		zhdr->last_chunks = 0;
1005 		break;
1006 	default:
1007 		pr_err("%s: unknown bud %d\n", __func__, bud);
1008 		WARN_ON(1);
1009 		z3fold_page_unlock(zhdr);
1010 		return;
1011 	}
1012 
1013 	free_handle(handle);
1014 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1015 		atomic64_dec(&pool->pages_nr);
1016 		return;
1017 	}
1018 	if (test_bit(PAGE_CLAIMED, &page->private)) {
1019 		z3fold_page_unlock(zhdr);
1020 		return;
1021 	}
1022 	if (unlikely(PageIsolated(page)) ||
1023 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1024 		z3fold_page_unlock(zhdr);
1025 		return;
1026 	}
1027 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1028 		spin_lock(&pool->lock);
1029 		list_del_init(&zhdr->buddy);
1030 		spin_unlock(&pool->lock);
1031 		zhdr->cpu = -1;
1032 		kref_get(&zhdr->refcount);
1033 		do_compact_page(zhdr, true);
1034 		return;
1035 	}
1036 	kref_get(&zhdr->refcount);
1037 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1038 	z3fold_page_unlock(zhdr);
1039 }
1040 
1041 /**
1042  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1043  * @pool:	pool from which a page will attempt to be evicted
1044  * @retries:	number of pages on the LRU list for which eviction will
1045  *		be attempted before failing
1046  *
1047  * z3fold reclaim is different from normal system reclaim in that it is done
1048  * from the bottom, up. This is because only the bottom layer, z3fold, has
1049  * information on how the allocations are organized within each z3fold page.
1050  * This has the potential to create interesting locking situations between
1051  * z3fold and the user, however.
1052  *
1053  * To avoid these, this is how z3fold_reclaim_page() should be called:
1054  *
1055  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1056  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1057  * call the user-defined eviction handler with the pool and handle as
1058  * arguments.
1059  *
1060  * If the handle can not be evicted, the eviction handler should return
1061  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1062  * appropriate list and try the next z3fold page on the LRU up to
1063  * a user defined number of retries.
1064  *
1065  * If the handle is successfully evicted, the eviction handler should
1066  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1067  * contains logic to delay freeing the page if the page is under reclaim,
1068  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1069  *
1070  * If all buddies in the z3fold page are successfully evicted, then the
1071  * z3fold page can be freed.
1072  *
1073  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1074  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1075  * the retry limit was hit.
1076  */
1077 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1078 {
1079 	int i, ret = 0;
1080 	struct z3fold_header *zhdr = NULL;
1081 	struct page *page = NULL;
1082 	struct list_head *pos;
1083 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1084 
1085 	spin_lock(&pool->lock);
1086 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1087 		spin_unlock(&pool->lock);
1088 		return -EINVAL;
1089 	}
1090 	for (i = 0; i < retries; i++) {
1091 		if (list_empty(&pool->lru)) {
1092 			spin_unlock(&pool->lock);
1093 			return -EINVAL;
1094 		}
1095 		list_for_each_prev(pos, &pool->lru) {
1096 			page = list_entry(pos, struct page, lru);
1097 
1098 			/* this bit could have been set by free, in which case
1099 			 * we pass over to the next page in the pool.
1100 			 */
1101 			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1102 				continue;
1103 
1104 			if (unlikely(PageIsolated(page)))
1105 				continue;
1106 			if (test_bit(PAGE_HEADLESS, &page->private))
1107 				break;
1108 
1109 			zhdr = page_address(page);
1110 			if (!z3fold_page_trylock(zhdr)) {
1111 				zhdr = NULL;
1112 				continue; /* can't evict at this point */
1113 			}
1114 			kref_get(&zhdr->refcount);
1115 			list_del_init(&zhdr->buddy);
1116 			zhdr->cpu = -1;
1117 			break;
1118 		}
1119 
1120 		if (!zhdr)
1121 			break;
1122 
1123 		list_del_init(&page->lru);
1124 		spin_unlock(&pool->lock);
1125 
1126 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1127 			/*
1128 			 * We need encode the handles before unlocking, since
1129 			 * we can race with free that will set
1130 			 * (first|last)_chunks to 0
1131 			 */
1132 			first_handle = 0;
1133 			last_handle = 0;
1134 			middle_handle = 0;
1135 			if (zhdr->first_chunks)
1136 				first_handle = encode_handle(zhdr, FIRST);
1137 			if (zhdr->middle_chunks)
1138 				middle_handle = encode_handle(zhdr, MIDDLE);
1139 			if (zhdr->last_chunks)
1140 				last_handle = encode_handle(zhdr, LAST);
1141 			/*
1142 			 * it's safe to unlock here because we hold a
1143 			 * reference to this page
1144 			 */
1145 			z3fold_page_unlock(zhdr);
1146 		} else {
1147 			first_handle = encode_handle(zhdr, HEADLESS);
1148 			last_handle = middle_handle = 0;
1149 		}
1150 
1151 		/* Issue the eviction callback(s) */
1152 		if (middle_handle) {
1153 			ret = pool->ops->evict(pool, middle_handle);
1154 			if (ret)
1155 				goto next;
1156 		}
1157 		if (first_handle) {
1158 			ret = pool->ops->evict(pool, first_handle);
1159 			if (ret)
1160 				goto next;
1161 		}
1162 		if (last_handle) {
1163 			ret = pool->ops->evict(pool, last_handle);
1164 			if (ret)
1165 				goto next;
1166 		}
1167 next:
1168 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1169 			if (ret == 0) {
1170 				free_z3fold_page(page, true);
1171 				atomic64_dec(&pool->pages_nr);
1172 				return 0;
1173 			}
1174 			spin_lock(&pool->lock);
1175 			list_add(&page->lru, &pool->lru);
1176 			spin_unlock(&pool->lock);
1177 		} else {
1178 			z3fold_page_lock(zhdr);
1179 			clear_bit(PAGE_CLAIMED, &page->private);
1180 			if (kref_put(&zhdr->refcount,
1181 					release_z3fold_page_locked)) {
1182 				atomic64_dec(&pool->pages_nr);
1183 				return 0;
1184 			}
1185 			/*
1186 			 * if we are here, the page is still not completely
1187 			 * free. Take the global pool lock then to be able
1188 			 * to add it back to the lru list
1189 			 */
1190 			spin_lock(&pool->lock);
1191 			list_add(&page->lru, &pool->lru);
1192 			spin_unlock(&pool->lock);
1193 			z3fold_page_unlock(zhdr);
1194 		}
1195 
1196 		/* We started off locked to we need to lock the pool back */
1197 		spin_lock(&pool->lock);
1198 	}
1199 	spin_unlock(&pool->lock);
1200 	return -EAGAIN;
1201 }
1202 
1203 /**
1204  * z3fold_map() - maps the allocation associated with the given handle
1205  * @pool:	pool in which the allocation resides
1206  * @handle:	handle associated with the allocation to be mapped
1207  *
1208  * Extracts the buddy number from handle and constructs the pointer to the
1209  * correct starting chunk within the page.
1210  *
1211  * Returns: a pointer to the mapped allocation
1212  */
1213 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1214 {
1215 	struct z3fold_header *zhdr;
1216 	struct page *page;
1217 	void *addr;
1218 	enum buddy buddy;
1219 
1220 	zhdr = handle_to_z3fold_header(handle);
1221 	addr = zhdr;
1222 	page = virt_to_page(zhdr);
1223 
1224 	if (test_bit(PAGE_HEADLESS, &page->private))
1225 		goto out;
1226 
1227 	z3fold_page_lock(zhdr);
1228 	buddy = handle_to_buddy(handle);
1229 	switch (buddy) {
1230 	case FIRST:
1231 		addr += ZHDR_SIZE_ALIGNED;
1232 		break;
1233 	case MIDDLE:
1234 		addr += zhdr->start_middle << CHUNK_SHIFT;
1235 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1236 		break;
1237 	case LAST:
1238 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1239 		break;
1240 	default:
1241 		pr_err("unknown buddy id %d\n", buddy);
1242 		WARN_ON(1);
1243 		addr = NULL;
1244 		break;
1245 	}
1246 
1247 	if (addr)
1248 		zhdr->mapped_count++;
1249 	z3fold_page_unlock(zhdr);
1250 out:
1251 	return addr;
1252 }
1253 
1254 /**
1255  * z3fold_unmap() - unmaps the allocation associated with the given handle
1256  * @pool:	pool in which the allocation resides
1257  * @handle:	handle associated with the allocation to be unmapped
1258  */
1259 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1260 {
1261 	struct z3fold_header *zhdr;
1262 	struct page *page;
1263 	enum buddy buddy;
1264 
1265 	zhdr = handle_to_z3fold_header(handle);
1266 	page = virt_to_page(zhdr);
1267 
1268 	if (test_bit(PAGE_HEADLESS, &page->private))
1269 		return;
1270 
1271 	z3fold_page_lock(zhdr);
1272 	buddy = handle_to_buddy(handle);
1273 	if (buddy == MIDDLE)
1274 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1275 	zhdr->mapped_count--;
1276 	z3fold_page_unlock(zhdr);
1277 }
1278 
1279 /**
1280  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1281  * @pool:	pool whose size is being queried
1282  *
1283  * Returns: size in pages of the given pool.
1284  */
1285 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1286 {
1287 	return atomic64_read(&pool->pages_nr);
1288 }
1289 
1290 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1291 {
1292 	struct z3fold_header *zhdr;
1293 	struct z3fold_pool *pool;
1294 
1295 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1296 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1297 
1298 	if (test_bit(PAGE_HEADLESS, &page->private))
1299 		return false;
1300 
1301 	zhdr = page_address(page);
1302 	z3fold_page_lock(zhdr);
1303 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1304 	    test_bit(PAGE_STALE, &page->private))
1305 		goto out;
1306 
1307 	pool = zhdr_to_pool(zhdr);
1308 
1309 	if (zhdr->mapped_count == 0) {
1310 		kref_get(&zhdr->refcount);
1311 		if (!list_empty(&zhdr->buddy))
1312 			list_del_init(&zhdr->buddy);
1313 		spin_lock(&pool->lock);
1314 		if (!list_empty(&page->lru))
1315 			list_del(&page->lru);
1316 		spin_unlock(&pool->lock);
1317 		z3fold_page_unlock(zhdr);
1318 		return true;
1319 	}
1320 out:
1321 	z3fold_page_unlock(zhdr);
1322 	return false;
1323 }
1324 
1325 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1326 			       struct page *page, enum migrate_mode mode)
1327 {
1328 	struct z3fold_header *zhdr, *new_zhdr;
1329 	struct z3fold_pool *pool;
1330 	struct address_space *new_mapping;
1331 
1332 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1333 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1334 
1335 	zhdr = page_address(page);
1336 	pool = zhdr_to_pool(zhdr);
1337 
1338 	if (!trylock_page(page))
1339 		return -EAGAIN;
1340 
1341 	if (!z3fold_page_trylock(zhdr)) {
1342 		unlock_page(page);
1343 		return -EAGAIN;
1344 	}
1345 	if (zhdr->mapped_count != 0) {
1346 		z3fold_page_unlock(zhdr);
1347 		unlock_page(page);
1348 		return -EBUSY;
1349 	}
1350 	new_zhdr = page_address(newpage);
1351 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1352 	newpage->private = page->private;
1353 	page->private = 0;
1354 	z3fold_page_unlock(zhdr);
1355 	spin_lock_init(&new_zhdr->page_lock);
1356 	new_mapping = page_mapping(page);
1357 	__ClearPageMovable(page);
1358 	ClearPagePrivate(page);
1359 
1360 	get_page(newpage);
1361 	z3fold_page_lock(new_zhdr);
1362 	if (new_zhdr->first_chunks)
1363 		encode_handle(new_zhdr, FIRST);
1364 	if (new_zhdr->last_chunks)
1365 		encode_handle(new_zhdr, LAST);
1366 	if (new_zhdr->middle_chunks)
1367 		encode_handle(new_zhdr, MIDDLE);
1368 	set_bit(NEEDS_COMPACTING, &newpage->private);
1369 	new_zhdr->cpu = smp_processor_id();
1370 	spin_lock(&pool->lock);
1371 	list_add(&newpage->lru, &pool->lru);
1372 	spin_unlock(&pool->lock);
1373 	__SetPageMovable(newpage, new_mapping);
1374 	z3fold_page_unlock(new_zhdr);
1375 
1376 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1377 
1378 	page_mapcount_reset(page);
1379 	unlock_page(page);
1380 	put_page(page);
1381 	return 0;
1382 }
1383 
1384 static void z3fold_page_putback(struct page *page)
1385 {
1386 	struct z3fold_header *zhdr;
1387 	struct z3fold_pool *pool;
1388 
1389 	zhdr = page_address(page);
1390 	pool = zhdr_to_pool(zhdr);
1391 
1392 	z3fold_page_lock(zhdr);
1393 	if (!list_empty(&zhdr->buddy))
1394 		list_del_init(&zhdr->buddy);
1395 	INIT_LIST_HEAD(&page->lru);
1396 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1397 		atomic64_dec(&pool->pages_nr);
1398 		return;
1399 	}
1400 	spin_lock(&pool->lock);
1401 	list_add(&page->lru, &pool->lru);
1402 	spin_unlock(&pool->lock);
1403 	z3fold_page_unlock(zhdr);
1404 }
1405 
1406 static const struct address_space_operations z3fold_aops = {
1407 	.isolate_page = z3fold_page_isolate,
1408 	.migratepage = z3fold_page_migrate,
1409 	.putback_page = z3fold_page_putback,
1410 };
1411 
1412 /*****************
1413  * zpool
1414  ****************/
1415 
1416 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1417 {
1418 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1419 		return pool->zpool_ops->evict(pool->zpool, handle);
1420 	else
1421 		return -ENOENT;
1422 }
1423 
1424 static const struct z3fold_ops z3fold_zpool_ops = {
1425 	.evict =	z3fold_zpool_evict
1426 };
1427 
1428 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1429 			       const struct zpool_ops *zpool_ops,
1430 			       struct zpool *zpool)
1431 {
1432 	struct z3fold_pool *pool;
1433 
1434 	pool = z3fold_create_pool(name, gfp,
1435 				zpool_ops ? &z3fold_zpool_ops : NULL);
1436 	if (pool) {
1437 		pool->zpool = zpool;
1438 		pool->zpool_ops = zpool_ops;
1439 	}
1440 	return pool;
1441 }
1442 
1443 static void z3fold_zpool_destroy(void *pool)
1444 {
1445 	z3fold_destroy_pool(pool);
1446 }
1447 
1448 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1449 			unsigned long *handle)
1450 {
1451 	return z3fold_alloc(pool, size, gfp, handle);
1452 }
1453 static void z3fold_zpool_free(void *pool, unsigned long handle)
1454 {
1455 	z3fold_free(pool, handle);
1456 }
1457 
1458 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1459 			unsigned int *reclaimed)
1460 {
1461 	unsigned int total = 0;
1462 	int ret = -EINVAL;
1463 
1464 	while (total < pages) {
1465 		ret = z3fold_reclaim_page(pool, 8);
1466 		if (ret < 0)
1467 			break;
1468 		total++;
1469 	}
1470 
1471 	if (reclaimed)
1472 		*reclaimed = total;
1473 
1474 	return ret;
1475 }
1476 
1477 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1478 			enum zpool_mapmode mm)
1479 {
1480 	return z3fold_map(pool, handle);
1481 }
1482 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1483 {
1484 	z3fold_unmap(pool, handle);
1485 }
1486 
1487 static u64 z3fold_zpool_total_size(void *pool)
1488 {
1489 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1490 }
1491 
1492 static struct zpool_driver z3fold_zpool_driver = {
1493 	.type =		"z3fold",
1494 	.owner =	THIS_MODULE,
1495 	.create =	z3fold_zpool_create,
1496 	.destroy =	z3fold_zpool_destroy,
1497 	.malloc =	z3fold_zpool_malloc,
1498 	.free =		z3fold_zpool_free,
1499 	.shrink =	z3fold_zpool_shrink,
1500 	.map =		z3fold_zpool_map,
1501 	.unmap =	z3fold_zpool_unmap,
1502 	.total_size =	z3fold_zpool_total_size,
1503 };
1504 
1505 MODULE_ALIAS("zpool-z3fold");
1506 
1507 static int __init init_z3fold(void)
1508 {
1509 	int ret;
1510 
1511 	/* Make sure the z3fold header is not larger than the page size */
1512 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1513 	ret = z3fold_mount();
1514 	if (ret)
1515 		return ret;
1516 
1517 	zpool_register_driver(&z3fold_zpool_driver);
1518 
1519 	return 0;
1520 }
1521 
1522 static void __exit exit_z3fold(void)
1523 {
1524 	z3fold_unmount();
1525 	zpool_unregister_driver(&z3fold_zpool_driver);
1526 }
1527 
1528 module_init(init_z3fold);
1529 module_exit(exit_z3fold);
1530 
1531 MODULE_LICENSE("GPL");
1532 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1533 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1534