xref: /openbmc/linux/mm/z3fold.c (revision 3098f5eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwlock.h>
45 #include <linux/zpool.h>
46 #include <linux/magic.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link + flags */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @compact_wq:	workqueue for page layout background optimization
148  * @release_wq:	workqueue for safe page release
149  * @work:	work_struct for safe page release
150  * @inode:	inode for z3fold pseudo filesystem
151  *
152  * This structure is allocated at pool creation time and maintains metadata
153  * pertaining to a particular z3fold pool.
154  */
155 struct z3fold_pool {
156 	const char *name;
157 	spinlock_t lock;
158 	spinlock_t stale_lock;
159 	struct list_head *unbuddied;
160 	struct list_head lru;
161 	struct list_head stale;
162 	atomic64_t pages_nr;
163 	struct kmem_cache *c_handle;
164 	const struct z3fold_ops *ops;
165 	struct zpool *zpool;
166 	const struct zpool_ops *zpool_ops;
167 	struct workqueue_struct *compact_wq;
168 	struct workqueue_struct *release_wq;
169 	struct work_struct work;
170 	struct inode *inode;
171 };
172 
173 /*
174  * Internal z3fold page flags
175  */
176 enum z3fold_page_flags {
177 	PAGE_HEADLESS = 0,
178 	MIDDLE_CHUNK_MAPPED,
179 	NEEDS_COMPACTING,
180 	PAGE_STALE,
181 	PAGE_CLAIMED, /* by either reclaim or free */
182 };
183 
184 /*
185  * handle flags, go under HANDLE_FLAG_MASK
186  */
187 enum z3fold_handle_flags {
188 	HANDLES_ORPHANED = 0,
189 };
190 
191 /*
192  * Forward declarations
193  */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196 
197 /*****************
198  * Helpers
199 *****************/
200 
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
203 {
204 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206 
207 #define for_each_unbuddied_list(_iter, _begin) \
208 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209 
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 							gfp_t gfp)
212 {
213 	struct z3fold_buddy_slots *slots;
214 
215 	slots = kmem_cache_alloc(pool->c_handle,
216 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217 
218 	if (slots) {
219 		memset(slots->slot, 0, sizeof(slots->slot));
220 		slots->pool = (unsigned long)pool;
221 		rwlock_init(&slots->lock);
222 	}
223 
224 	return slots;
225 }
226 
227 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
228 {
229 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
230 }
231 
232 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
233 {
234 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
235 }
236 
237 /* Lock a z3fold page */
238 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
239 {
240 	spin_lock(&zhdr->page_lock);
241 }
242 
243 /* Try to lock a z3fold page */
244 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
245 {
246 	return spin_trylock(&zhdr->page_lock);
247 }
248 
249 /* Unlock a z3fold page */
250 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
251 {
252 	spin_unlock(&zhdr->page_lock);
253 }
254 
255 
256 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
257 							bool lock)
258 {
259 	struct z3fold_buddy_slots *slots;
260 	struct z3fold_header *zhdr;
261 	int locked = 0;
262 
263 	if (!(handle & (1 << PAGE_HEADLESS))) {
264 		slots = handle_to_slots(handle);
265 		do {
266 			unsigned long addr;
267 
268 			read_lock(&slots->lock);
269 			addr = *(unsigned long *)handle;
270 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
271 			if (lock)
272 				locked = z3fold_page_trylock(zhdr);
273 			read_unlock(&slots->lock);
274 			if (locked)
275 				break;
276 			cpu_relax();
277 		} while (lock);
278 	} else {
279 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
280 	}
281 
282 	return zhdr;
283 }
284 
285 /* Returns the z3fold page where a given handle is stored */
286 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
287 {
288 	return __get_z3fold_header(h, false);
289 }
290 
291 /* return locked z3fold page if it's not headless */
292 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
293 {
294 	return __get_z3fold_header(h, true);
295 }
296 
297 static inline void put_z3fold_header(struct z3fold_header *zhdr)
298 {
299 	struct page *page = virt_to_page(zhdr);
300 
301 	if (!test_bit(PAGE_HEADLESS, &page->private))
302 		z3fold_page_unlock(zhdr);
303 }
304 
305 static inline void free_handle(unsigned long handle)
306 {
307 	struct z3fold_buddy_slots *slots;
308 	struct z3fold_header *zhdr;
309 	int i;
310 	bool is_free;
311 
312 	if (handle & (1 << PAGE_HEADLESS))
313 		return;
314 
315 	if (WARN_ON(*(unsigned long *)handle == 0))
316 		return;
317 
318 	zhdr = handle_to_z3fold_header(handle);
319 	slots = handle_to_slots(handle);
320 	write_lock(&slots->lock);
321 	*(unsigned long *)handle = 0;
322 	write_unlock(&slots->lock);
323 	if (zhdr->slots == slots)
324 		return; /* simple case, nothing else to do */
325 
326 	/* we are freeing a foreign handle if we are here */
327 	zhdr->foreign_handles--;
328 	is_free = true;
329 	read_lock(&slots->lock);
330 	if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
331 		read_unlock(&slots->lock);
332 		return;
333 	}
334 	for (i = 0; i <= BUDDY_MASK; i++) {
335 		if (slots->slot[i]) {
336 			is_free = false;
337 			break;
338 		}
339 	}
340 	read_unlock(&slots->lock);
341 
342 	if (is_free) {
343 		struct z3fold_pool *pool = slots_to_pool(slots);
344 
345 		kmem_cache_free(pool->c_handle, slots);
346 	}
347 }
348 
349 static int z3fold_init_fs_context(struct fs_context *fc)
350 {
351 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
352 }
353 
354 static struct file_system_type z3fold_fs = {
355 	.name		= "z3fold",
356 	.init_fs_context = z3fold_init_fs_context,
357 	.kill_sb	= kill_anon_super,
358 };
359 
360 static struct vfsmount *z3fold_mnt;
361 static int z3fold_mount(void)
362 {
363 	int ret = 0;
364 
365 	z3fold_mnt = kern_mount(&z3fold_fs);
366 	if (IS_ERR(z3fold_mnt))
367 		ret = PTR_ERR(z3fold_mnt);
368 
369 	return ret;
370 }
371 
372 static void z3fold_unmount(void)
373 {
374 	kern_unmount(z3fold_mnt);
375 }
376 
377 static const struct address_space_operations z3fold_aops;
378 static int z3fold_register_migration(struct z3fold_pool *pool)
379 {
380 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
381 	if (IS_ERR(pool->inode)) {
382 		pool->inode = NULL;
383 		return 1;
384 	}
385 
386 	pool->inode->i_mapping->private_data = pool;
387 	pool->inode->i_mapping->a_ops = &z3fold_aops;
388 	return 0;
389 }
390 
391 static void z3fold_unregister_migration(struct z3fold_pool *pool)
392 {
393 	if (pool->inode)
394 		iput(pool->inode);
395  }
396 
397 /* Initializes the z3fold header of a newly allocated z3fold page */
398 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
399 					struct z3fold_pool *pool, gfp_t gfp)
400 {
401 	struct z3fold_header *zhdr = page_address(page);
402 	struct z3fold_buddy_slots *slots;
403 
404 	INIT_LIST_HEAD(&page->lru);
405 	clear_bit(PAGE_HEADLESS, &page->private);
406 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
407 	clear_bit(NEEDS_COMPACTING, &page->private);
408 	clear_bit(PAGE_STALE, &page->private);
409 	clear_bit(PAGE_CLAIMED, &page->private);
410 	if (headless)
411 		return zhdr;
412 
413 	slots = alloc_slots(pool, gfp);
414 	if (!slots)
415 		return NULL;
416 
417 	spin_lock_init(&zhdr->page_lock);
418 	kref_init(&zhdr->refcount);
419 	zhdr->first_chunks = 0;
420 	zhdr->middle_chunks = 0;
421 	zhdr->last_chunks = 0;
422 	zhdr->first_num = 0;
423 	zhdr->start_middle = 0;
424 	zhdr->cpu = -1;
425 	zhdr->foreign_handles = 0;
426 	zhdr->slots = slots;
427 	zhdr->pool = pool;
428 	INIT_LIST_HEAD(&zhdr->buddy);
429 	INIT_WORK(&zhdr->work, compact_page_work);
430 	return zhdr;
431 }
432 
433 /* Resets the struct page fields and frees the page */
434 static void free_z3fold_page(struct page *page, bool headless)
435 {
436 	if (!headless) {
437 		lock_page(page);
438 		__ClearPageMovable(page);
439 		unlock_page(page);
440 	}
441 	ClearPagePrivate(page);
442 	__free_page(page);
443 }
444 
445 /* Helper function to build the index */
446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
447 {
448 	return (bud + zhdr->first_num) & BUDDY_MASK;
449 }
450 
451 /*
452  * Encodes the handle of a particular buddy within a z3fold page
453  * Pool lock should be held as this function accesses first_num
454  */
455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 				struct z3fold_buddy_slots *slots,
457 				enum buddy bud)
458 {
459 	unsigned long h = (unsigned long)zhdr;
460 	int idx = 0;
461 
462 	/*
463 	 * For a headless page, its handle is its pointer with the extra
464 	 * PAGE_HEADLESS bit set
465 	 */
466 	if (bud == HEADLESS)
467 		return h | (1 << PAGE_HEADLESS);
468 
469 	/* otherwise, return pointer to encoded handle */
470 	idx = __idx(zhdr, bud);
471 	h += idx;
472 	if (bud == LAST)
473 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
474 
475 	write_lock(&slots->lock);
476 	slots->slot[idx] = h;
477 	write_unlock(&slots->lock);
478 	return (unsigned long)&slots->slot[idx];
479 }
480 
481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
482 {
483 	return __encode_handle(zhdr, zhdr->slots, bud);
484 }
485 
486 /* only for LAST bud, returns zero otherwise */
487 static unsigned short handle_to_chunks(unsigned long handle)
488 {
489 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 	unsigned long addr;
491 
492 	read_lock(&slots->lock);
493 	addr = *(unsigned long *)handle;
494 	read_unlock(&slots->lock);
495 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
496 }
497 
498 /*
499  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500  *  but that doesn't matter. because the masking will result in the
501  *  correct buddy number.
502  */
503 static enum buddy handle_to_buddy(unsigned long handle)
504 {
505 	struct z3fold_header *zhdr;
506 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 	unsigned long addr;
508 
509 	read_lock(&slots->lock);
510 	WARN_ON(handle & (1 << PAGE_HEADLESS));
511 	addr = *(unsigned long *)handle;
512 	read_unlock(&slots->lock);
513 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 	return (addr - zhdr->first_num) & BUDDY_MASK;
515 }
516 
517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
518 {
519 	return zhdr->pool;
520 }
521 
522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
523 {
524 	struct page *page = virt_to_page(zhdr);
525 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526 	bool is_free = true;
527 	int i;
528 
529 	WARN_ON(!list_empty(&zhdr->buddy));
530 	set_bit(PAGE_STALE, &page->private);
531 	clear_bit(NEEDS_COMPACTING, &page->private);
532 	spin_lock(&pool->lock);
533 	if (!list_empty(&page->lru))
534 		list_del_init(&page->lru);
535 	spin_unlock(&pool->lock);
536 
537 	/* If there are no foreign handles, free the handles array */
538 	read_lock(&zhdr->slots->lock);
539 	for (i = 0; i <= BUDDY_MASK; i++) {
540 		if (zhdr->slots->slot[i]) {
541 			is_free = false;
542 			break;
543 		}
544 	}
545 	if (!is_free)
546 		set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
547 	read_unlock(&zhdr->slots->lock);
548 
549 	if (is_free)
550 		kmem_cache_free(pool->c_handle, zhdr->slots);
551 
552 	if (locked)
553 		z3fold_page_unlock(zhdr);
554 
555 	spin_lock(&pool->stale_lock);
556 	list_add(&zhdr->buddy, &pool->stale);
557 	queue_work(pool->release_wq, &pool->work);
558 	spin_unlock(&pool->stale_lock);
559 }
560 
561 static void __attribute__((__unused__))
562 			release_z3fold_page(struct kref *ref)
563 {
564 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
565 						refcount);
566 	__release_z3fold_page(zhdr, false);
567 }
568 
569 static void release_z3fold_page_locked(struct kref *ref)
570 {
571 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
572 						refcount);
573 	WARN_ON(z3fold_page_trylock(zhdr));
574 	__release_z3fold_page(zhdr, true);
575 }
576 
577 static void release_z3fold_page_locked_list(struct kref *ref)
578 {
579 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
580 					       refcount);
581 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
582 
583 	spin_lock(&pool->lock);
584 	list_del_init(&zhdr->buddy);
585 	spin_unlock(&pool->lock);
586 
587 	WARN_ON(z3fold_page_trylock(zhdr));
588 	__release_z3fold_page(zhdr, true);
589 }
590 
591 static void free_pages_work(struct work_struct *w)
592 {
593 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
594 
595 	spin_lock(&pool->stale_lock);
596 	while (!list_empty(&pool->stale)) {
597 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
598 						struct z3fold_header, buddy);
599 		struct page *page = virt_to_page(zhdr);
600 
601 		list_del(&zhdr->buddy);
602 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
603 			continue;
604 		spin_unlock(&pool->stale_lock);
605 		cancel_work_sync(&zhdr->work);
606 		free_z3fold_page(page, false);
607 		cond_resched();
608 		spin_lock(&pool->stale_lock);
609 	}
610 	spin_unlock(&pool->stale_lock);
611 }
612 
613 /*
614  * Returns the number of free chunks in a z3fold page.
615  * NB: can't be used with HEADLESS pages.
616  */
617 static int num_free_chunks(struct z3fold_header *zhdr)
618 {
619 	int nfree;
620 	/*
621 	 * If there is a middle object, pick up the bigger free space
622 	 * either before or after it. Otherwise just subtract the number
623 	 * of chunks occupied by the first and the last objects.
624 	 */
625 	if (zhdr->middle_chunks != 0) {
626 		int nfree_before = zhdr->first_chunks ?
627 			0 : zhdr->start_middle - ZHDR_CHUNKS;
628 		int nfree_after = zhdr->last_chunks ?
629 			0 : TOTAL_CHUNKS -
630 				(zhdr->start_middle + zhdr->middle_chunks);
631 		nfree = max(nfree_before, nfree_after);
632 	} else
633 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
634 	return nfree;
635 }
636 
637 /* Add to the appropriate unbuddied list */
638 static inline void add_to_unbuddied(struct z3fold_pool *pool,
639 				struct z3fold_header *zhdr)
640 {
641 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
642 			zhdr->middle_chunks == 0) {
643 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
644 
645 		int freechunks = num_free_chunks(zhdr);
646 		spin_lock(&pool->lock);
647 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
648 		spin_unlock(&pool->lock);
649 		zhdr->cpu = smp_processor_id();
650 		put_cpu_ptr(pool->unbuddied);
651 	}
652 }
653 
654 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
655 				unsigned short dst_chunk)
656 {
657 	void *beg = zhdr;
658 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
659 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
660 		       zhdr->middle_chunks << CHUNK_SHIFT);
661 }
662 
663 static inline bool buddy_single(struct z3fold_header *zhdr)
664 {
665 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
666 			(zhdr->first_chunks && zhdr->last_chunks) ||
667 			(zhdr->middle_chunks && zhdr->last_chunks));
668 }
669 
670 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
671 {
672 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
673 	void *p = zhdr;
674 	unsigned long old_handle = 0;
675 	size_t sz = 0;
676 	struct z3fold_header *new_zhdr = NULL;
677 	int first_idx = __idx(zhdr, FIRST);
678 	int middle_idx = __idx(zhdr, MIDDLE);
679 	int last_idx = __idx(zhdr, LAST);
680 	unsigned short *moved_chunks = NULL;
681 
682 	/*
683 	 * No need to protect slots here -- all the slots are "local" and
684 	 * the page lock is already taken
685 	 */
686 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
687 		p += ZHDR_SIZE_ALIGNED;
688 		sz = zhdr->first_chunks << CHUNK_SHIFT;
689 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
690 		moved_chunks = &zhdr->first_chunks;
691 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
692 		p += zhdr->start_middle << CHUNK_SHIFT;
693 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
694 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
695 		moved_chunks = &zhdr->middle_chunks;
696 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
697 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
698 		sz = zhdr->last_chunks << CHUNK_SHIFT;
699 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
700 		moved_chunks = &zhdr->last_chunks;
701 	}
702 
703 	if (sz > 0) {
704 		enum buddy new_bud = HEADLESS;
705 		short chunks = size_to_chunks(sz);
706 		void *q;
707 
708 		new_zhdr = __z3fold_alloc(pool, sz, false);
709 		if (!new_zhdr)
710 			return NULL;
711 
712 		if (WARN_ON(new_zhdr == zhdr))
713 			goto out_fail;
714 
715 		if (new_zhdr->first_chunks == 0) {
716 			if (new_zhdr->middle_chunks != 0 &&
717 					chunks >= new_zhdr->start_middle) {
718 				new_bud = LAST;
719 			} else {
720 				new_bud = FIRST;
721 			}
722 		} else if (new_zhdr->last_chunks == 0) {
723 			new_bud = LAST;
724 		} else if (new_zhdr->middle_chunks == 0) {
725 			new_bud = MIDDLE;
726 		}
727 		q = new_zhdr;
728 		switch (new_bud) {
729 		case FIRST:
730 			new_zhdr->first_chunks = chunks;
731 			q += ZHDR_SIZE_ALIGNED;
732 			break;
733 		case MIDDLE:
734 			new_zhdr->middle_chunks = chunks;
735 			new_zhdr->start_middle =
736 				new_zhdr->first_chunks + ZHDR_CHUNKS;
737 			q += new_zhdr->start_middle << CHUNK_SHIFT;
738 			break;
739 		case LAST:
740 			new_zhdr->last_chunks = chunks;
741 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
742 			break;
743 		default:
744 			goto out_fail;
745 		}
746 		new_zhdr->foreign_handles++;
747 		memcpy(q, p, sz);
748 		write_lock(&zhdr->slots->lock);
749 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
750 			__idx(new_zhdr, new_bud);
751 		if (new_bud == LAST)
752 			*(unsigned long *)old_handle |=
753 					(new_zhdr->last_chunks << BUDDY_SHIFT);
754 		write_unlock(&zhdr->slots->lock);
755 		add_to_unbuddied(pool, new_zhdr);
756 		z3fold_page_unlock(new_zhdr);
757 
758 		*moved_chunks = 0;
759 	}
760 
761 	return new_zhdr;
762 
763 out_fail:
764 	if (new_zhdr) {
765 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
766 			atomic64_dec(&pool->pages_nr);
767 		else {
768 			add_to_unbuddied(pool, new_zhdr);
769 			z3fold_page_unlock(new_zhdr);
770 		}
771 	}
772 	return NULL;
773 
774 }
775 
776 #define BIG_CHUNK_GAP	3
777 /* Has to be called with lock held */
778 static int z3fold_compact_page(struct z3fold_header *zhdr)
779 {
780 	struct page *page = virt_to_page(zhdr);
781 
782 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
783 		return 0; /* can't move middle chunk, it's used */
784 
785 	if (unlikely(PageIsolated(page)))
786 		return 0;
787 
788 	if (zhdr->middle_chunks == 0)
789 		return 0; /* nothing to compact */
790 
791 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
792 		/* move to the beginning */
793 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
794 		zhdr->first_chunks = zhdr->middle_chunks;
795 		zhdr->middle_chunks = 0;
796 		zhdr->start_middle = 0;
797 		zhdr->first_num++;
798 		return 1;
799 	}
800 
801 	/*
802 	 * moving data is expensive, so let's only do that if
803 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
804 	 */
805 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
806 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
807 			BIG_CHUNK_GAP) {
808 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
809 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
810 		return 1;
811 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
812 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
813 					+ zhdr->middle_chunks) >=
814 			BIG_CHUNK_GAP) {
815 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
816 			zhdr->middle_chunks;
817 		mchunk_memmove(zhdr, new_start);
818 		zhdr->start_middle = new_start;
819 		return 1;
820 	}
821 
822 	return 0;
823 }
824 
825 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
826 {
827 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
828 	struct page *page;
829 
830 	page = virt_to_page(zhdr);
831 	if (locked)
832 		WARN_ON(z3fold_page_trylock(zhdr));
833 	else
834 		z3fold_page_lock(zhdr);
835 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
836 		z3fold_page_unlock(zhdr);
837 		return;
838 	}
839 	spin_lock(&pool->lock);
840 	list_del_init(&zhdr->buddy);
841 	spin_unlock(&pool->lock);
842 
843 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
844 		atomic64_dec(&pool->pages_nr);
845 		return;
846 	}
847 
848 	if (unlikely(PageIsolated(page) ||
849 		     test_bit(PAGE_CLAIMED, &page->private) ||
850 		     test_bit(PAGE_STALE, &page->private))) {
851 		z3fold_page_unlock(zhdr);
852 		return;
853 	}
854 
855 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
856 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
857 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
858 			atomic64_dec(&pool->pages_nr);
859 		else
860 			z3fold_page_unlock(zhdr);
861 		return;
862 	}
863 
864 	z3fold_compact_page(zhdr);
865 	add_to_unbuddied(pool, zhdr);
866 	z3fold_page_unlock(zhdr);
867 }
868 
869 static void compact_page_work(struct work_struct *w)
870 {
871 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
872 						work);
873 
874 	do_compact_page(zhdr, false);
875 }
876 
877 /* returns _locked_ z3fold page header or NULL */
878 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
879 						size_t size, bool can_sleep)
880 {
881 	struct z3fold_header *zhdr = NULL;
882 	struct page *page;
883 	struct list_head *unbuddied;
884 	int chunks = size_to_chunks(size), i;
885 
886 lookup:
887 	/* First, try to find an unbuddied z3fold page. */
888 	unbuddied = get_cpu_ptr(pool->unbuddied);
889 	for_each_unbuddied_list(i, chunks) {
890 		struct list_head *l = &unbuddied[i];
891 
892 		zhdr = list_first_entry_or_null(READ_ONCE(l),
893 					struct z3fold_header, buddy);
894 
895 		if (!zhdr)
896 			continue;
897 
898 		/* Re-check under lock. */
899 		spin_lock(&pool->lock);
900 		l = &unbuddied[i];
901 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
902 						struct z3fold_header, buddy)) ||
903 		    !z3fold_page_trylock(zhdr)) {
904 			spin_unlock(&pool->lock);
905 			zhdr = NULL;
906 			put_cpu_ptr(pool->unbuddied);
907 			if (can_sleep)
908 				cond_resched();
909 			goto lookup;
910 		}
911 		list_del_init(&zhdr->buddy);
912 		zhdr->cpu = -1;
913 		spin_unlock(&pool->lock);
914 
915 		page = virt_to_page(zhdr);
916 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
917 		    test_bit(PAGE_CLAIMED, &page->private)) {
918 			z3fold_page_unlock(zhdr);
919 			zhdr = NULL;
920 			put_cpu_ptr(pool->unbuddied);
921 			if (can_sleep)
922 				cond_resched();
923 			goto lookup;
924 		}
925 
926 		/*
927 		 * this page could not be removed from its unbuddied
928 		 * list while pool lock was held, and then we've taken
929 		 * page lock so kref_put could not be called before
930 		 * we got here, so it's safe to just call kref_get()
931 		 */
932 		kref_get(&zhdr->refcount);
933 		break;
934 	}
935 	put_cpu_ptr(pool->unbuddied);
936 
937 	if (!zhdr) {
938 		int cpu;
939 
940 		/* look for _exact_ match on other cpus' lists */
941 		for_each_online_cpu(cpu) {
942 			struct list_head *l;
943 
944 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
945 			spin_lock(&pool->lock);
946 			l = &unbuddied[chunks];
947 
948 			zhdr = list_first_entry_or_null(READ_ONCE(l),
949 						struct z3fold_header, buddy);
950 
951 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
952 				spin_unlock(&pool->lock);
953 				zhdr = NULL;
954 				continue;
955 			}
956 			list_del_init(&zhdr->buddy);
957 			zhdr->cpu = -1;
958 			spin_unlock(&pool->lock);
959 
960 			page = virt_to_page(zhdr);
961 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
962 			    test_bit(PAGE_CLAIMED, &page->private)) {
963 				z3fold_page_unlock(zhdr);
964 				zhdr = NULL;
965 				if (can_sleep)
966 					cond_resched();
967 				continue;
968 			}
969 			kref_get(&zhdr->refcount);
970 			break;
971 		}
972 	}
973 
974 	return zhdr;
975 }
976 
977 /*
978  * API Functions
979  */
980 
981 /**
982  * z3fold_create_pool() - create a new z3fold pool
983  * @name:	pool name
984  * @gfp:	gfp flags when allocating the z3fold pool structure
985  * @ops:	user-defined operations for the z3fold pool
986  *
987  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
988  * failed.
989  */
990 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
991 		const struct z3fold_ops *ops)
992 {
993 	struct z3fold_pool *pool = NULL;
994 	int i, cpu;
995 
996 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
997 	if (!pool)
998 		goto out;
999 	pool->c_handle = kmem_cache_create("z3fold_handle",
1000 				sizeof(struct z3fold_buddy_slots),
1001 				SLOTS_ALIGN, 0, NULL);
1002 	if (!pool->c_handle)
1003 		goto out_c;
1004 	spin_lock_init(&pool->lock);
1005 	spin_lock_init(&pool->stale_lock);
1006 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1007 	if (!pool->unbuddied)
1008 		goto out_pool;
1009 	for_each_possible_cpu(cpu) {
1010 		struct list_head *unbuddied =
1011 				per_cpu_ptr(pool->unbuddied, cpu);
1012 		for_each_unbuddied_list(i, 0)
1013 			INIT_LIST_HEAD(&unbuddied[i]);
1014 	}
1015 	INIT_LIST_HEAD(&pool->lru);
1016 	INIT_LIST_HEAD(&pool->stale);
1017 	atomic64_set(&pool->pages_nr, 0);
1018 	pool->name = name;
1019 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1020 	if (!pool->compact_wq)
1021 		goto out_unbuddied;
1022 	pool->release_wq = create_singlethread_workqueue(pool->name);
1023 	if (!pool->release_wq)
1024 		goto out_wq;
1025 	if (z3fold_register_migration(pool))
1026 		goto out_rwq;
1027 	INIT_WORK(&pool->work, free_pages_work);
1028 	pool->ops = ops;
1029 	return pool;
1030 
1031 out_rwq:
1032 	destroy_workqueue(pool->release_wq);
1033 out_wq:
1034 	destroy_workqueue(pool->compact_wq);
1035 out_unbuddied:
1036 	free_percpu(pool->unbuddied);
1037 out_pool:
1038 	kmem_cache_destroy(pool->c_handle);
1039 out_c:
1040 	kfree(pool);
1041 out:
1042 	return NULL;
1043 }
1044 
1045 /**
1046  * z3fold_destroy_pool() - destroys an existing z3fold pool
1047  * @pool:	the z3fold pool to be destroyed
1048  *
1049  * The pool should be emptied before this function is called.
1050  */
1051 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1052 {
1053 	kmem_cache_destroy(pool->c_handle);
1054 
1055 	/*
1056 	 * We need to destroy pool->compact_wq before pool->release_wq,
1057 	 * as any pending work on pool->compact_wq will call
1058 	 * queue_work(pool->release_wq, &pool->work).
1059 	 *
1060 	 * There are still outstanding pages until both workqueues are drained,
1061 	 * so we cannot unregister migration until then.
1062 	 */
1063 
1064 	destroy_workqueue(pool->compact_wq);
1065 	destroy_workqueue(pool->release_wq);
1066 	z3fold_unregister_migration(pool);
1067 	kfree(pool);
1068 }
1069 
1070 /**
1071  * z3fold_alloc() - allocates a region of a given size
1072  * @pool:	z3fold pool from which to allocate
1073  * @size:	size in bytes of the desired allocation
1074  * @gfp:	gfp flags used if the pool needs to grow
1075  * @handle:	handle of the new allocation
1076  *
1077  * This function will attempt to find a free region in the pool large enough to
1078  * satisfy the allocation request.  A search of the unbuddied lists is
1079  * performed first. If no suitable free region is found, then a new page is
1080  * allocated and added to the pool to satisfy the request.
1081  *
1082  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1083  * as z3fold pool pages.
1084  *
1085  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1086  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1087  * a new page.
1088  */
1089 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1090 			unsigned long *handle)
1091 {
1092 	int chunks = size_to_chunks(size);
1093 	struct z3fold_header *zhdr = NULL;
1094 	struct page *page = NULL;
1095 	enum buddy bud;
1096 	bool can_sleep = gfpflags_allow_blocking(gfp);
1097 
1098 	if (!size)
1099 		return -EINVAL;
1100 
1101 	if (size > PAGE_SIZE)
1102 		return -ENOSPC;
1103 
1104 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1105 		bud = HEADLESS;
1106 	else {
1107 retry:
1108 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1109 		if (zhdr) {
1110 			if (zhdr->first_chunks == 0) {
1111 				if (zhdr->middle_chunks != 0 &&
1112 				    chunks >= zhdr->start_middle)
1113 					bud = LAST;
1114 				else
1115 					bud = FIRST;
1116 			} else if (zhdr->last_chunks == 0)
1117 				bud = LAST;
1118 			else if (zhdr->middle_chunks == 0)
1119 				bud = MIDDLE;
1120 			else {
1121 				if (kref_put(&zhdr->refcount,
1122 					     release_z3fold_page_locked))
1123 					atomic64_dec(&pool->pages_nr);
1124 				else
1125 					z3fold_page_unlock(zhdr);
1126 				pr_err("No free chunks in unbuddied\n");
1127 				WARN_ON(1);
1128 				goto retry;
1129 			}
1130 			page = virt_to_page(zhdr);
1131 			goto found;
1132 		}
1133 		bud = FIRST;
1134 	}
1135 
1136 	page = NULL;
1137 	if (can_sleep) {
1138 		spin_lock(&pool->stale_lock);
1139 		zhdr = list_first_entry_or_null(&pool->stale,
1140 						struct z3fold_header, buddy);
1141 		/*
1142 		 * Before allocating a page, let's see if we can take one from
1143 		 * the stale pages list. cancel_work_sync() can sleep so we
1144 		 * limit this case to the contexts where we can sleep
1145 		 */
1146 		if (zhdr) {
1147 			list_del(&zhdr->buddy);
1148 			spin_unlock(&pool->stale_lock);
1149 			cancel_work_sync(&zhdr->work);
1150 			page = virt_to_page(zhdr);
1151 		} else {
1152 			spin_unlock(&pool->stale_lock);
1153 		}
1154 	}
1155 	if (!page)
1156 		page = alloc_page(gfp);
1157 
1158 	if (!page)
1159 		return -ENOMEM;
1160 
1161 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1162 	if (!zhdr) {
1163 		__free_page(page);
1164 		return -ENOMEM;
1165 	}
1166 	atomic64_inc(&pool->pages_nr);
1167 
1168 	if (bud == HEADLESS) {
1169 		set_bit(PAGE_HEADLESS, &page->private);
1170 		goto headless;
1171 	}
1172 	if (can_sleep) {
1173 		lock_page(page);
1174 		__SetPageMovable(page, pool->inode->i_mapping);
1175 		unlock_page(page);
1176 	} else {
1177 		if (trylock_page(page)) {
1178 			__SetPageMovable(page, pool->inode->i_mapping);
1179 			unlock_page(page);
1180 		}
1181 	}
1182 	z3fold_page_lock(zhdr);
1183 
1184 found:
1185 	if (bud == FIRST)
1186 		zhdr->first_chunks = chunks;
1187 	else if (bud == LAST)
1188 		zhdr->last_chunks = chunks;
1189 	else {
1190 		zhdr->middle_chunks = chunks;
1191 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1192 	}
1193 	add_to_unbuddied(pool, zhdr);
1194 
1195 headless:
1196 	spin_lock(&pool->lock);
1197 	/* Add/move z3fold page to beginning of LRU */
1198 	if (!list_empty(&page->lru))
1199 		list_del(&page->lru);
1200 
1201 	list_add(&page->lru, &pool->lru);
1202 
1203 	*handle = encode_handle(zhdr, bud);
1204 	spin_unlock(&pool->lock);
1205 	if (bud != HEADLESS)
1206 		z3fold_page_unlock(zhdr);
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * z3fold_free() - frees the allocation associated with the given handle
1213  * @pool:	pool in which the allocation resided
1214  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1215  *
1216  * In the case that the z3fold page in which the allocation resides is under
1217  * reclaim, as indicated by the PG_reclaim flag being set, this function
1218  * only sets the first|last_chunks to 0.  The page is actually freed
1219  * once both buddies are evicted (see z3fold_reclaim_page() below).
1220  */
1221 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1222 {
1223 	struct z3fold_header *zhdr;
1224 	struct page *page;
1225 	enum buddy bud;
1226 	bool page_claimed;
1227 
1228 	zhdr = get_z3fold_header(handle);
1229 	page = virt_to_page(zhdr);
1230 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1231 
1232 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1233 		/* if a headless page is under reclaim, just leave.
1234 		 * NB: we use test_and_set_bit for a reason: if the bit
1235 		 * has not been set before, we release this page
1236 		 * immediately so we don't care about its value any more.
1237 		 */
1238 		if (!page_claimed) {
1239 			spin_lock(&pool->lock);
1240 			list_del(&page->lru);
1241 			spin_unlock(&pool->lock);
1242 			put_z3fold_header(zhdr);
1243 			free_z3fold_page(page, true);
1244 			atomic64_dec(&pool->pages_nr);
1245 		}
1246 		return;
1247 	}
1248 
1249 	/* Non-headless case */
1250 	bud = handle_to_buddy(handle);
1251 
1252 	switch (bud) {
1253 	case FIRST:
1254 		zhdr->first_chunks = 0;
1255 		break;
1256 	case MIDDLE:
1257 		zhdr->middle_chunks = 0;
1258 		break;
1259 	case LAST:
1260 		zhdr->last_chunks = 0;
1261 		break;
1262 	default:
1263 		pr_err("%s: unknown bud %d\n", __func__, bud);
1264 		WARN_ON(1);
1265 		put_z3fold_header(zhdr);
1266 		clear_bit(PAGE_CLAIMED, &page->private);
1267 		return;
1268 	}
1269 
1270 	if (!page_claimed)
1271 		free_handle(handle);
1272 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1273 		atomic64_dec(&pool->pages_nr);
1274 		return;
1275 	}
1276 	if (page_claimed) {
1277 		/* the page has not been claimed by us */
1278 		z3fold_page_unlock(zhdr);
1279 		return;
1280 	}
1281 	if (unlikely(PageIsolated(page)) ||
1282 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1283 		put_z3fold_header(zhdr);
1284 		clear_bit(PAGE_CLAIMED, &page->private);
1285 		return;
1286 	}
1287 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1288 		spin_lock(&pool->lock);
1289 		list_del_init(&zhdr->buddy);
1290 		spin_unlock(&pool->lock);
1291 		zhdr->cpu = -1;
1292 		kref_get(&zhdr->refcount);
1293 		clear_bit(PAGE_CLAIMED, &page->private);
1294 		do_compact_page(zhdr, true);
1295 		return;
1296 	}
1297 	kref_get(&zhdr->refcount);
1298 	clear_bit(PAGE_CLAIMED, &page->private);
1299 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1300 	put_z3fold_header(zhdr);
1301 }
1302 
1303 /**
1304  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1305  * @pool:	pool from which a page will attempt to be evicted
1306  * @retries:	number of pages on the LRU list for which eviction will
1307  *		be attempted before failing
1308  *
1309  * z3fold reclaim is different from normal system reclaim in that it is done
1310  * from the bottom, up. This is because only the bottom layer, z3fold, has
1311  * information on how the allocations are organized within each z3fold page.
1312  * This has the potential to create interesting locking situations between
1313  * z3fold and the user, however.
1314  *
1315  * To avoid these, this is how z3fold_reclaim_page() should be called:
1316  *
1317  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1318  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1319  * call the user-defined eviction handler with the pool and handle as
1320  * arguments.
1321  *
1322  * If the handle can not be evicted, the eviction handler should return
1323  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1324  * appropriate list and try the next z3fold page on the LRU up to
1325  * a user defined number of retries.
1326  *
1327  * If the handle is successfully evicted, the eviction handler should
1328  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1329  * contains logic to delay freeing the page if the page is under reclaim,
1330  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1331  *
1332  * If all buddies in the z3fold page are successfully evicted, then the
1333  * z3fold page can be freed.
1334  *
1335  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1336  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1337  * the retry limit was hit.
1338  */
1339 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1340 {
1341 	int i, ret = -1;
1342 	struct z3fold_header *zhdr = NULL;
1343 	struct page *page = NULL;
1344 	struct list_head *pos;
1345 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1346 
1347 	spin_lock(&pool->lock);
1348 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1349 		spin_unlock(&pool->lock);
1350 		return -EINVAL;
1351 	}
1352 	for (i = 0; i < retries; i++) {
1353 		if (list_empty(&pool->lru)) {
1354 			spin_unlock(&pool->lock);
1355 			return -EINVAL;
1356 		}
1357 		list_for_each_prev(pos, &pool->lru) {
1358 			page = list_entry(pos, struct page, lru);
1359 
1360 			/* this bit could have been set by free, in which case
1361 			 * we pass over to the next page in the pool.
1362 			 */
1363 			if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1364 				page = NULL;
1365 				continue;
1366 			}
1367 
1368 			if (unlikely(PageIsolated(page))) {
1369 				clear_bit(PAGE_CLAIMED, &page->private);
1370 				page = NULL;
1371 				continue;
1372 			}
1373 			zhdr = page_address(page);
1374 			if (test_bit(PAGE_HEADLESS, &page->private))
1375 				break;
1376 
1377 			if (!z3fold_page_trylock(zhdr)) {
1378 				clear_bit(PAGE_CLAIMED, &page->private);
1379 				zhdr = NULL;
1380 				continue; /* can't evict at this point */
1381 			}
1382 			if (zhdr->foreign_handles) {
1383 				clear_bit(PAGE_CLAIMED, &page->private);
1384 				z3fold_page_unlock(zhdr);
1385 				zhdr = NULL;
1386 				continue; /* can't evict such page */
1387 			}
1388 			kref_get(&zhdr->refcount);
1389 			list_del_init(&zhdr->buddy);
1390 			zhdr->cpu = -1;
1391 			break;
1392 		}
1393 
1394 		if (!zhdr)
1395 			break;
1396 
1397 		list_del_init(&page->lru);
1398 		spin_unlock(&pool->lock);
1399 
1400 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1401 			/*
1402 			 * We need encode the handles before unlocking, and
1403 			 * use our local slots structure because z3fold_free
1404 			 * can zero out zhdr->slots and we can't do much
1405 			 * about that
1406 			 */
1407 			first_handle = 0;
1408 			last_handle = 0;
1409 			middle_handle = 0;
1410 			if (zhdr->first_chunks)
1411 				first_handle = encode_handle(zhdr, FIRST);
1412 			if (zhdr->middle_chunks)
1413 				middle_handle = encode_handle(zhdr, MIDDLE);
1414 			if (zhdr->last_chunks)
1415 				last_handle = encode_handle(zhdr, LAST);
1416 			/*
1417 			 * it's safe to unlock here because we hold a
1418 			 * reference to this page
1419 			 */
1420 			z3fold_page_unlock(zhdr);
1421 		} else {
1422 			first_handle = encode_handle(zhdr, HEADLESS);
1423 			last_handle = middle_handle = 0;
1424 		}
1425 		/* Issue the eviction callback(s) */
1426 		if (middle_handle) {
1427 			ret = pool->ops->evict(pool, middle_handle);
1428 			if (ret)
1429 				goto next;
1430 			free_handle(middle_handle);
1431 		}
1432 		if (first_handle) {
1433 			ret = pool->ops->evict(pool, first_handle);
1434 			if (ret)
1435 				goto next;
1436 			free_handle(first_handle);
1437 		}
1438 		if (last_handle) {
1439 			ret = pool->ops->evict(pool, last_handle);
1440 			if (ret)
1441 				goto next;
1442 			free_handle(last_handle);
1443 		}
1444 next:
1445 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1446 			if (ret == 0) {
1447 				free_z3fold_page(page, true);
1448 				atomic64_dec(&pool->pages_nr);
1449 				return 0;
1450 			}
1451 			spin_lock(&pool->lock);
1452 			list_add(&page->lru, &pool->lru);
1453 			spin_unlock(&pool->lock);
1454 			clear_bit(PAGE_CLAIMED, &page->private);
1455 		} else {
1456 			z3fold_page_lock(zhdr);
1457 			if (kref_put(&zhdr->refcount,
1458 					release_z3fold_page_locked)) {
1459 				atomic64_dec(&pool->pages_nr);
1460 				return 0;
1461 			}
1462 			/*
1463 			 * if we are here, the page is still not completely
1464 			 * free. Take the global pool lock then to be able
1465 			 * to add it back to the lru list
1466 			 */
1467 			spin_lock(&pool->lock);
1468 			list_add(&page->lru, &pool->lru);
1469 			spin_unlock(&pool->lock);
1470 			z3fold_page_unlock(zhdr);
1471 			clear_bit(PAGE_CLAIMED, &page->private);
1472 		}
1473 
1474 		/* We started off locked to we need to lock the pool back */
1475 		spin_lock(&pool->lock);
1476 	}
1477 	spin_unlock(&pool->lock);
1478 	return -EAGAIN;
1479 }
1480 
1481 /**
1482  * z3fold_map() - maps the allocation associated with the given handle
1483  * @pool:	pool in which the allocation resides
1484  * @handle:	handle associated with the allocation to be mapped
1485  *
1486  * Extracts the buddy number from handle and constructs the pointer to the
1487  * correct starting chunk within the page.
1488  *
1489  * Returns: a pointer to the mapped allocation
1490  */
1491 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1492 {
1493 	struct z3fold_header *zhdr;
1494 	struct page *page;
1495 	void *addr;
1496 	enum buddy buddy;
1497 
1498 	zhdr = get_z3fold_header(handle);
1499 	addr = zhdr;
1500 	page = virt_to_page(zhdr);
1501 
1502 	if (test_bit(PAGE_HEADLESS, &page->private))
1503 		goto out;
1504 
1505 	buddy = handle_to_buddy(handle);
1506 	switch (buddy) {
1507 	case FIRST:
1508 		addr += ZHDR_SIZE_ALIGNED;
1509 		break;
1510 	case MIDDLE:
1511 		addr += zhdr->start_middle << CHUNK_SHIFT;
1512 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1513 		break;
1514 	case LAST:
1515 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1516 		break;
1517 	default:
1518 		pr_err("unknown buddy id %d\n", buddy);
1519 		WARN_ON(1);
1520 		addr = NULL;
1521 		break;
1522 	}
1523 
1524 	if (addr)
1525 		zhdr->mapped_count++;
1526 out:
1527 	put_z3fold_header(zhdr);
1528 	return addr;
1529 }
1530 
1531 /**
1532  * z3fold_unmap() - unmaps the allocation associated with the given handle
1533  * @pool:	pool in which the allocation resides
1534  * @handle:	handle associated with the allocation to be unmapped
1535  */
1536 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1537 {
1538 	struct z3fold_header *zhdr;
1539 	struct page *page;
1540 	enum buddy buddy;
1541 
1542 	zhdr = get_z3fold_header(handle);
1543 	page = virt_to_page(zhdr);
1544 
1545 	if (test_bit(PAGE_HEADLESS, &page->private))
1546 		return;
1547 
1548 	buddy = handle_to_buddy(handle);
1549 	if (buddy == MIDDLE)
1550 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1551 	zhdr->mapped_count--;
1552 	put_z3fold_header(zhdr);
1553 }
1554 
1555 /**
1556  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1557  * @pool:	pool whose size is being queried
1558  *
1559  * Returns: size in pages of the given pool.
1560  */
1561 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1562 {
1563 	return atomic64_read(&pool->pages_nr);
1564 }
1565 
1566 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1567 {
1568 	struct z3fold_header *zhdr;
1569 	struct z3fold_pool *pool;
1570 
1571 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1572 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1573 
1574 	if (test_bit(PAGE_HEADLESS, &page->private) ||
1575 	    test_bit(PAGE_CLAIMED, &page->private))
1576 		return false;
1577 
1578 	zhdr = page_address(page);
1579 	z3fold_page_lock(zhdr);
1580 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1581 	    test_bit(PAGE_STALE, &page->private))
1582 		goto out;
1583 
1584 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1585 		goto out;
1586 
1587 	pool = zhdr_to_pool(zhdr);
1588 	spin_lock(&pool->lock);
1589 	if (!list_empty(&zhdr->buddy))
1590 		list_del_init(&zhdr->buddy);
1591 	if (!list_empty(&page->lru))
1592 		list_del_init(&page->lru);
1593 	spin_unlock(&pool->lock);
1594 
1595 	kref_get(&zhdr->refcount);
1596 	z3fold_page_unlock(zhdr);
1597 	return true;
1598 
1599 out:
1600 	z3fold_page_unlock(zhdr);
1601 	return false;
1602 }
1603 
1604 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1605 			       struct page *page, enum migrate_mode mode)
1606 {
1607 	struct z3fold_header *zhdr, *new_zhdr;
1608 	struct z3fold_pool *pool;
1609 	struct address_space *new_mapping;
1610 
1611 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1612 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1613 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1614 
1615 	zhdr = page_address(page);
1616 	pool = zhdr_to_pool(zhdr);
1617 
1618 	if (!z3fold_page_trylock(zhdr)) {
1619 		return -EAGAIN;
1620 	}
1621 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1622 		z3fold_page_unlock(zhdr);
1623 		return -EBUSY;
1624 	}
1625 	if (work_pending(&zhdr->work)) {
1626 		z3fold_page_unlock(zhdr);
1627 		return -EAGAIN;
1628 	}
1629 	new_zhdr = page_address(newpage);
1630 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1631 	newpage->private = page->private;
1632 	page->private = 0;
1633 	z3fold_page_unlock(zhdr);
1634 	spin_lock_init(&new_zhdr->page_lock);
1635 	INIT_WORK(&new_zhdr->work, compact_page_work);
1636 	/*
1637 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1638 	 * so we only have to reinitialize it.
1639 	 */
1640 	INIT_LIST_HEAD(&new_zhdr->buddy);
1641 	new_mapping = page_mapping(page);
1642 	__ClearPageMovable(page);
1643 	ClearPagePrivate(page);
1644 
1645 	get_page(newpage);
1646 	z3fold_page_lock(new_zhdr);
1647 	if (new_zhdr->first_chunks)
1648 		encode_handle(new_zhdr, FIRST);
1649 	if (new_zhdr->last_chunks)
1650 		encode_handle(new_zhdr, LAST);
1651 	if (new_zhdr->middle_chunks)
1652 		encode_handle(new_zhdr, MIDDLE);
1653 	set_bit(NEEDS_COMPACTING, &newpage->private);
1654 	new_zhdr->cpu = smp_processor_id();
1655 	spin_lock(&pool->lock);
1656 	list_add(&newpage->lru, &pool->lru);
1657 	spin_unlock(&pool->lock);
1658 	__SetPageMovable(newpage, new_mapping);
1659 	z3fold_page_unlock(new_zhdr);
1660 
1661 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1662 
1663 	page_mapcount_reset(page);
1664 	put_page(page);
1665 	return 0;
1666 }
1667 
1668 static void z3fold_page_putback(struct page *page)
1669 {
1670 	struct z3fold_header *zhdr;
1671 	struct z3fold_pool *pool;
1672 
1673 	zhdr = page_address(page);
1674 	pool = zhdr_to_pool(zhdr);
1675 
1676 	z3fold_page_lock(zhdr);
1677 	if (!list_empty(&zhdr->buddy))
1678 		list_del_init(&zhdr->buddy);
1679 	INIT_LIST_HEAD(&page->lru);
1680 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1681 		atomic64_dec(&pool->pages_nr);
1682 		return;
1683 	}
1684 	spin_lock(&pool->lock);
1685 	list_add(&page->lru, &pool->lru);
1686 	spin_unlock(&pool->lock);
1687 	z3fold_page_unlock(zhdr);
1688 }
1689 
1690 static const struct address_space_operations z3fold_aops = {
1691 	.isolate_page = z3fold_page_isolate,
1692 	.migratepage = z3fold_page_migrate,
1693 	.putback_page = z3fold_page_putback,
1694 };
1695 
1696 /*****************
1697  * zpool
1698  ****************/
1699 
1700 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1701 {
1702 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1703 		return pool->zpool_ops->evict(pool->zpool, handle);
1704 	else
1705 		return -ENOENT;
1706 }
1707 
1708 static const struct z3fold_ops z3fold_zpool_ops = {
1709 	.evict =	z3fold_zpool_evict
1710 };
1711 
1712 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1713 			       const struct zpool_ops *zpool_ops,
1714 			       struct zpool *zpool)
1715 {
1716 	struct z3fold_pool *pool;
1717 
1718 	pool = z3fold_create_pool(name, gfp,
1719 				zpool_ops ? &z3fold_zpool_ops : NULL);
1720 	if (pool) {
1721 		pool->zpool = zpool;
1722 		pool->zpool_ops = zpool_ops;
1723 	}
1724 	return pool;
1725 }
1726 
1727 static void z3fold_zpool_destroy(void *pool)
1728 {
1729 	z3fold_destroy_pool(pool);
1730 }
1731 
1732 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1733 			unsigned long *handle)
1734 {
1735 	return z3fold_alloc(pool, size, gfp, handle);
1736 }
1737 static void z3fold_zpool_free(void *pool, unsigned long handle)
1738 {
1739 	z3fold_free(pool, handle);
1740 }
1741 
1742 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1743 			unsigned int *reclaimed)
1744 {
1745 	unsigned int total = 0;
1746 	int ret = -EINVAL;
1747 
1748 	while (total < pages) {
1749 		ret = z3fold_reclaim_page(pool, 8);
1750 		if (ret < 0)
1751 			break;
1752 		total++;
1753 	}
1754 
1755 	if (reclaimed)
1756 		*reclaimed = total;
1757 
1758 	return ret;
1759 }
1760 
1761 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1762 			enum zpool_mapmode mm)
1763 {
1764 	return z3fold_map(pool, handle);
1765 }
1766 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1767 {
1768 	z3fold_unmap(pool, handle);
1769 }
1770 
1771 static u64 z3fold_zpool_total_size(void *pool)
1772 {
1773 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1774 }
1775 
1776 static struct zpool_driver z3fold_zpool_driver = {
1777 	.type =		"z3fold",
1778 	.owner =	THIS_MODULE,
1779 	.create =	z3fold_zpool_create,
1780 	.destroy =	z3fold_zpool_destroy,
1781 	.malloc =	z3fold_zpool_malloc,
1782 	.free =		z3fold_zpool_free,
1783 	.shrink =	z3fold_zpool_shrink,
1784 	.map =		z3fold_zpool_map,
1785 	.unmap =	z3fold_zpool_unmap,
1786 	.total_size =	z3fold_zpool_total_size,
1787 };
1788 
1789 MODULE_ALIAS("zpool-z3fold");
1790 
1791 static int __init init_z3fold(void)
1792 {
1793 	int ret;
1794 
1795 	/* Make sure the z3fold header is not larger than the page size */
1796 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1797 	ret = z3fold_mount();
1798 	if (ret)
1799 		return ret;
1800 
1801 	zpool_register_driver(&z3fold_zpool_driver);
1802 
1803 	return 0;
1804 }
1805 
1806 static void __exit exit_z3fold(void)
1807 {
1808 	z3fold_unmount();
1809 	zpool_unregister_driver(&z3fold_zpool_driver);
1810 }
1811 
1812 module_init(init_z3fold);
1813 module_exit(exit_z3fold);
1814 
1815 MODULE_LICENSE("GPL");
1816 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1817 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1818