xref: /openbmc/linux/mm/workingset.c (revision fadbafc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * which can be further simplified to
115  *
116  *   (R - E) <= NR_active
117  *
118  * Put into words, the refault distance (out-of-cache) can be seen as
119  * a deficit in inactive list space (in-cache).  If the inactive list
120  * had (R - E) more page slots, the page would not have been evicted
121  * in between accesses, but activated instead.  And on a full system,
122  * the only thing eating into inactive list space is active pages.
123  *
124  *
125  *		Refaulting inactive pages
126  *
127  * All that is known about the active list is that the pages have been
128  * accessed more than once in the past.  This means that at any given
129  * time there is actually a good chance that pages on the active list
130  * are no longer in active use.
131  *
132  * So when a refault distance of (R - E) is observed and there are at
133  * least (R - E) active pages, the refaulting page is activated
134  * optimistically in the hope that (R - E) active pages are actually
135  * used less frequently than the refaulting page - or even not used at
136  * all anymore.
137  *
138  * That means if inactive cache is refaulting with a suitable refault
139  * distance, we assume the cache workingset is transitioning and put
140  * pressure on the current active list.
141  *
142  * If this is wrong and demotion kicks in, the pages which are truly
143  * used more frequently will be reactivated while the less frequently
144  * used once will be evicted from memory.
145  *
146  * But if this is right, the stale pages will be pushed out of memory
147  * and the used pages get to stay in cache.
148  *
149  *		Refaulting active pages
150  *
151  * If on the other hand the refaulting pages have recently been
152  * deactivated, it means that the active list is no longer protecting
153  * actively used cache from reclaim. The cache is NOT transitioning to
154  * a different workingset; the existing workingset is thrashing in the
155  * space allocated to the page cache.
156  *
157  *
158  *		Implementation
159  *
160  * For each node's LRU lists, a counter for inactive evictions and
161  * activations is maintained (node->nonresident_age).
162  *
163  * On eviction, a snapshot of this counter (along with some bits to
164  * identify the node) is stored in the now empty page cache
165  * slot of the evicted page.  This is called a shadow entry.
166  *
167  * On cache misses for which there are shadow entries, an eligible
168  * refault distance will immediately activate the refaulting page.
169  */
170 
171 #define WORKINGSET_SHIFT 1
172 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
173 			 WORKINGSET_SHIFT + NODES_SHIFT + \
174 			 MEM_CGROUP_ID_SHIFT)
175 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
176 
177 /*
178  * Eviction timestamps need to be able to cover the full range of
179  * actionable refaults. However, bits are tight in the xarray
180  * entry, and after storing the identifier for the lruvec there might
181  * not be enough left to represent every single actionable refault. In
182  * that case, we have to sacrifice granularity for distance, and group
183  * evictions into coarser buckets by shaving off lower timestamp bits.
184  */
185 static unsigned int bucket_order __read_mostly;
186 
187 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
188 			 bool workingset)
189 {
190 	eviction &= EVICTION_MASK;
191 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
192 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
193 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
194 
195 	return xa_mk_value(eviction);
196 }
197 
198 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
199 			  unsigned long *evictionp, bool *workingsetp)
200 {
201 	unsigned long entry = xa_to_value(shadow);
202 	int memcgid, nid;
203 	bool workingset;
204 
205 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
206 	entry >>= WORKINGSET_SHIFT;
207 	nid = entry & ((1UL << NODES_SHIFT) - 1);
208 	entry >>= NODES_SHIFT;
209 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
210 	entry >>= MEM_CGROUP_ID_SHIFT;
211 
212 	*memcgidp = memcgid;
213 	*pgdat = NODE_DATA(nid);
214 	*evictionp = entry;
215 	*workingsetp = workingset;
216 }
217 
218 #ifdef CONFIG_LRU_GEN
219 
220 static void *lru_gen_eviction(struct folio *folio)
221 {
222 	int hist;
223 	unsigned long token;
224 	unsigned long min_seq;
225 	struct lruvec *lruvec;
226 	struct lru_gen_struct *lrugen;
227 	int type = folio_is_file_lru(folio);
228 	int delta = folio_nr_pages(folio);
229 	int refs = folio_lru_refs(folio);
230 	int tier = lru_tier_from_refs(refs);
231 	struct mem_cgroup *memcg = folio_memcg(folio);
232 	struct pglist_data *pgdat = folio_pgdat(folio);
233 
234 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
235 
236 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
237 	lrugen = &lruvec->lrugen;
238 	min_seq = READ_ONCE(lrugen->min_seq[type]);
239 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
240 
241 	hist = lru_hist_from_seq(min_seq);
242 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
243 
244 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
245 }
246 
247 static void lru_gen_refault(struct folio *folio, void *shadow)
248 {
249 	int hist, tier, refs;
250 	int memcg_id;
251 	bool workingset;
252 	unsigned long token;
253 	unsigned long min_seq;
254 	struct lruvec *lruvec;
255 	struct lru_gen_struct *lrugen;
256 	struct mem_cgroup *memcg;
257 	struct pglist_data *pgdat;
258 	int type = folio_is_file_lru(folio);
259 	int delta = folio_nr_pages(folio);
260 
261 	unpack_shadow(shadow, &memcg_id, &pgdat, &token, &workingset);
262 
263 	if (pgdat != folio_pgdat(folio))
264 		return;
265 
266 	rcu_read_lock();
267 
268 	memcg = folio_memcg_rcu(folio);
269 	if (memcg_id != mem_cgroup_id(memcg))
270 		goto unlock;
271 
272 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
273 	lrugen = &lruvec->lrugen;
274 
275 	min_seq = READ_ONCE(lrugen->min_seq[type]);
276 	if ((token >> LRU_REFS_WIDTH) != (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH)))
277 		goto unlock;
278 
279 	hist = lru_hist_from_seq(min_seq);
280 	/* see the comment in folio_lru_refs() */
281 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
282 	tier = lru_tier_from_refs(refs);
283 
284 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
285 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
286 
287 	/*
288 	 * Count the following two cases as stalls:
289 	 * 1. For pages accessed through page tables, hotter pages pushed out
290 	 *    hot pages which refaulted immediately.
291 	 * 2. For pages accessed multiple times through file descriptors,
292 	 *    numbers of accesses might have been out of the range.
293 	 */
294 	if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
295 		folio_set_workingset(folio);
296 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
297 	}
298 unlock:
299 	rcu_read_unlock();
300 }
301 
302 #else /* !CONFIG_LRU_GEN */
303 
304 static void *lru_gen_eviction(struct folio *folio)
305 {
306 	return NULL;
307 }
308 
309 static void lru_gen_refault(struct folio *folio, void *shadow)
310 {
311 }
312 
313 #endif /* CONFIG_LRU_GEN */
314 
315 /**
316  * workingset_age_nonresident - age non-resident entries as LRU ages
317  * @lruvec: the lruvec that was aged
318  * @nr_pages: the number of pages to count
319  *
320  * As in-memory pages are aged, non-resident pages need to be aged as
321  * well, in order for the refault distances later on to be comparable
322  * to the in-memory dimensions. This function allows reclaim and LRU
323  * operations to drive the non-resident aging along in parallel.
324  */
325 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
326 {
327 	/*
328 	 * Reclaiming a cgroup means reclaiming all its children in a
329 	 * round-robin fashion. That means that each cgroup has an LRU
330 	 * order that is composed of the LRU orders of its child
331 	 * cgroups; and every page has an LRU position not just in the
332 	 * cgroup that owns it, but in all of that group's ancestors.
333 	 *
334 	 * So when the physical inactive list of a leaf cgroup ages,
335 	 * the virtual inactive lists of all its parents, including
336 	 * the root cgroup's, age as well.
337 	 */
338 	do {
339 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
340 	} while ((lruvec = parent_lruvec(lruvec)));
341 }
342 
343 /**
344  * workingset_eviction - note the eviction of a folio from memory
345  * @target_memcg: the cgroup that is causing the reclaim
346  * @folio: the folio being evicted
347  *
348  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
349  * of the evicted @folio so that a later refault can be detected.
350  */
351 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
352 {
353 	struct pglist_data *pgdat = folio_pgdat(folio);
354 	unsigned long eviction;
355 	struct lruvec *lruvec;
356 	int memcgid;
357 
358 	/* Folio is fully exclusive and pins folio's memory cgroup pointer */
359 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
360 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
361 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
362 
363 	if (lru_gen_enabled())
364 		return lru_gen_eviction(folio);
365 
366 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
367 	/* XXX: target_memcg can be NULL, go through lruvec */
368 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
369 	eviction = atomic_long_read(&lruvec->nonresident_age);
370 	eviction >>= bucket_order;
371 	workingset_age_nonresident(lruvec, folio_nr_pages(folio));
372 	return pack_shadow(memcgid, pgdat, eviction,
373 				folio_test_workingset(folio));
374 }
375 
376 /**
377  * workingset_refault - Evaluate the refault of a previously evicted folio.
378  * @folio: The freshly allocated replacement folio.
379  * @shadow: Shadow entry of the evicted folio.
380  *
381  * Calculates and evaluates the refault distance of the previously
382  * evicted folio in the context of the node and the memcg whose memory
383  * pressure caused the eviction.
384  */
385 void workingset_refault(struct folio *folio, void *shadow)
386 {
387 	bool file = folio_is_file_lru(folio);
388 	struct mem_cgroup *eviction_memcg;
389 	struct lruvec *eviction_lruvec;
390 	unsigned long refault_distance;
391 	unsigned long workingset_size;
392 	struct pglist_data *pgdat;
393 	struct mem_cgroup *memcg;
394 	unsigned long eviction;
395 	struct lruvec *lruvec;
396 	unsigned long refault;
397 	bool workingset;
398 	int memcgid;
399 	long nr;
400 
401 	if (lru_gen_enabled()) {
402 		lru_gen_refault(folio, shadow);
403 		return;
404 	}
405 
406 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
407 	eviction <<= bucket_order;
408 
409 	rcu_read_lock();
410 	/*
411 	 * Look up the memcg associated with the stored ID. It might
412 	 * have been deleted since the folio's eviction.
413 	 *
414 	 * Note that in rare events the ID could have been recycled
415 	 * for a new cgroup that refaults a shared folio. This is
416 	 * impossible to tell from the available data. However, this
417 	 * should be a rare and limited disturbance, and activations
418 	 * are always speculative anyway. Ultimately, it's the aging
419 	 * algorithm's job to shake out the minimum access frequency
420 	 * for the active cache.
421 	 *
422 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
423 	 * would be better if the root_mem_cgroup existed in all
424 	 * configurations instead.
425 	 */
426 	eviction_memcg = mem_cgroup_from_id(memcgid);
427 	if (!mem_cgroup_disabled() && !eviction_memcg)
428 		goto out;
429 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
430 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
431 
432 	/*
433 	 * Calculate the refault distance
434 	 *
435 	 * The unsigned subtraction here gives an accurate distance
436 	 * across nonresident_age overflows in most cases. There is a
437 	 * special case: usually, shadow entries have a short lifetime
438 	 * and are either refaulted or reclaimed along with the inode
439 	 * before they get too old.  But it is not impossible for the
440 	 * nonresident_age to lap a shadow entry in the field, which
441 	 * can then result in a false small refault distance, leading
442 	 * to a false activation should this old entry actually
443 	 * refault again.  However, earlier kernels used to deactivate
444 	 * unconditionally with *every* reclaim invocation for the
445 	 * longest time, so the occasional inappropriate activation
446 	 * leading to pressure on the active list is not a problem.
447 	 */
448 	refault_distance = (refault - eviction) & EVICTION_MASK;
449 
450 	/*
451 	 * The activation decision for this folio is made at the level
452 	 * where the eviction occurred, as that is where the LRU order
453 	 * during folio reclaim is being determined.
454 	 *
455 	 * However, the cgroup that will own the folio is the one that
456 	 * is actually experiencing the refault event.
457 	 */
458 	nr = folio_nr_pages(folio);
459 	memcg = folio_memcg(folio);
460 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
461 
462 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
463 
464 	mem_cgroup_flush_stats_delayed();
465 	/*
466 	 * Compare the distance to the existing workingset size. We
467 	 * don't activate pages that couldn't stay resident even if
468 	 * all the memory was available to the workingset. Whether
469 	 * workingset competition needs to consider anon or not depends
470 	 * on having swap.
471 	 */
472 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
473 	if (!file) {
474 		workingset_size += lruvec_page_state(eviction_lruvec,
475 						     NR_INACTIVE_FILE);
476 	}
477 	if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
478 		workingset_size += lruvec_page_state(eviction_lruvec,
479 						     NR_ACTIVE_ANON);
480 		if (file) {
481 			workingset_size += lruvec_page_state(eviction_lruvec,
482 						     NR_INACTIVE_ANON);
483 		}
484 	}
485 	if (refault_distance > workingset_size)
486 		goto out;
487 
488 	folio_set_active(folio);
489 	workingset_age_nonresident(lruvec, nr);
490 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
491 
492 	/* Folio was active prior to eviction */
493 	if (workingset) {
494 		folio_set_workingset(folio);
495 		/* XXX: Move to lru_cache_add() when it supports new vs putback */
496 		lru_note_cost_folio(folio);
497 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
498 	}
499 out:
500 	rcu_read_unlock();
501 }
502 
503 /**
504  * workingset_activation - note a page activation
505  * @folio: Folio that is being activated.
506  */
507 void workingset_activation(struct folio *folio)
508 {
509 	struct mem_cgroup *memcg;
510 
511 	rcu_read_lock();
512 	/*
513 	 * Filter non-memcg pages here, e.g. unmap can call
514 	 * mark_page_accessed() on VDSO pages.
515 	 *
516 	 * XXX: See workingset_refault() - this should return
517 	 * root_mem_cgroup even for !CONFIG_MEMCG.
518 	 */
519 	memcg = folio_memcg_rcu(folio);
520 	if (!mem_cgroup_disabled() && !memcg)
521 		goto out;
522 	workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
523 out:
524 	rcu_read_unlock();
525 }
526 
527 /*
528  * Shadow entries reflect the share of the working set that does not
529  * fit into memory, so their number depends on the access pattern of
530  * the workload.  In most cases, they will refault or get reclaimed
531  * along with the inode, but a (malicious) workload that streams
532  * through files with a total size several times that of available
533  * memory, while preventing the inodes from being reclaimed, can
534  * create excessive amounts of shadow nodes.  To keep a lid on this,
535  * track shadow nodes and reclaim them when they grow way past the
536  * point where they would still be useful.
537  */
538 
539 struct list_lru shadow_nodes;
540 
541 void workingset_update_node(struct xa_node *node)
542 {
543 	struct address_space *mapping;
544 
545 	/*
546 	 * Track non-empty nodes that contain only shadow entries;
547 	 * unlink those that contain pages or are being freed.
548 	 *
549 	 * Avoid acquiring the list_lru lock when the nodes are
550 	 * already where they should be. The list_empty() test is safe
551 	 * as node->private_list is protected by the i_pages lock.
552 	 */
553 	mapping = container_of(node->array, struct address_space, i_pages);
554 	lockdep_assert_held(&mapping->i_pages.xa_lock);
555 
556 	if (node->count && node->count == node->nr_values) {
557 		if (list_empty(&node->private_list)) {
558 			list_lru_add(&shadow_nodes, &node->private_list);
559 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
560 		}
561 	} else {
562 		if (!list_empty(&node->private_list)) {
563 			list_lru_del(&shadow_nodes, &node->private_list);
564 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
565 		}
566 	}
567 }
568 
569 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
570 					struct shrink_control *sc)
571 {
572 	unsigned long max_nodes;
573 	unsigned long nodes;
574 	unsigned long pages;
575 
576 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
577 	if (!nodes)
578 		return SHRINK_EMPTY;
579 
580 	/*
581 	 * Approximate a reasonable limit for the nodes
582 	 * containing shadow entries. We don't need to keep more
583 	 * shadow entries than possible pages on the active list,
584 	 * since refault distances bigger than that are dismissed.
585 	 *
586 	 * The size of the active list converges toward 100% of
587 	 * overall page cache as memory grows, with only a tiny
588 	 * inactive list. Assume the total cache size for that.
589 	 *
590 	 * Nodes might be sparsely populated, with only one shadow
591 	 * entry in the extreme case. Obviously, we cannot keep one
592 	 * node for every eligible shadow entry, so compromise on a
593 	 * worst-case density of 1/8th. Below that, not all eligible
594 	 * refaults can be detected anymore.
595 	 *
596 	 * On 64-bit with 7 xa_nodes per page and 64 slots
597 	 * each, this will reclaim shadow entries when they consume
598 	 * ~1.8% of available memory:
599 	 *
600 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
601 	 */
602 #ifdef CONFIG_MEMCG
603 	if (sc->memcg) {
604 		struct lruvec *lruvec;
605 		int i;
606 
607 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
608 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
609 			pages += lruvec_page_state_local(lruvec,
610 							 NR_LRU_BASE + i);
611 		pages += lruvec_page_state_local(
612 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
613 		pages += lruvec_page_state_local(
614 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
615 	} else
616 #endif
617 		pages = node_present_pages(sc->nid);
618 
619 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
620 
621 	if (nodes <= max_nodes)
622 		return 0;
623 	return nodes - max_nodes;
624 }
625 
626 static enum lru_status shadow_lru_isolate(struct list_head *item,
627 					  struct list_lru_one *lru,
628 					  spinlock_t *lru_lock,
629 					  void *arg) __must_hold(lru_lock)
630 {
631 	struct xa_node *node = container_of(item, struct xa_node, private_list);
632 	struct address_space *mapping;
633 	int ret;
634 
635 	/*
636 	 * Page cache insertions and deletions synchronously maintain
637 	 * the shadow node LRU under the i_pages lock and the
638 	 * lru_lock.  Because the page cache tree is emptied before
639 	 * the inode can be destroyed, holding the lru_lock pins any
640 	 * address_space that has nodes on the LRU.
641 	 *
642 	 * We can then safely transition to the i_pages lock to
643 	 * pin only the address_space of the particular node we want
644 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
645 	 */
646 
647 	mapping = container_of(node->array, struct address_space, i_pages);
648 
649 	/* Coming from the list, invert the lock order */
650 	if (!xa_trylock(&mapping->i_pages)) {
651 		spin_unlock_irq(lru_lock);
652 		ret = LRU_RETRY;
653 		goto out;
654 	}
655 
656 	if (!spin_trylock(&mapping->host->i_lock)) {
657 		xa_unlock(&mapping->i_pages);
658 		spin_unlock_irq(lru_lock);
659 		ret = LRU_RETRY;
660 		goto out;
661 	}
662 
663 	list_lru_isolate(lru, item);
664 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
665 
666 	spin_unlock(lru_lock);
667 
668 	/*
669 	 * The nodes should only contain one or more shadow entries,
670 	 * no pages, so we expect to be able to remove them all and
671 	 * delete and free the empty node afterwards.
672 	 */
673 	if (WARN_ON_ONCE(!node->nr_values))
674 		goto out_invalid;
675 	if (WARN_ON_ONCE(node->count != node->nr_values))
676 		goto out_invalid;
677 	xa_delete_node(node, workingset_update_node);
678 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
679 
680 out_invalid:
681 	xa_unlock_irq(&mapping->i_pages);
682 	if (mapping_shrinkable(mapping))
683 		inode_add_lru(mapping->host);
684 	spin_unlock(&mapping->host->i_lock);
685 	ret = LRU_REMOVED_RETRY;
686 out:
687 	cond_resched();
688 	spin_lock_irq(lru_lock);
689 	return ret;
690 }
691 
692 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
693 				       struct shrink_control *sc)
694 {
695 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
696 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
697 					NULL);
698 }
699 
700 static struct shrinker workingset_shadow_shrinker = {
701 	.count_objects = count_shadow_nodes,
702 	.scan_objects = scan_shadow_nodes,
703 	.seeks = 0, /* ->count reports only fully expendable nodes */
704 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
705 };
706 
707 /*
708  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
709  * i_pages lock.
710  */
711 static struct lock_class_key shadow_nodes_key;
712 
713 static int __init workingset_init(void)
714 {
715 	unsigned int timestamp_bits;
716 	unsigned int max_order;
717 	int ret;
718 
719 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
720 	/*
721 	 * Calculate the eviction bucket size to cover the longest
722 	 * actionable refault distance, which is currently half of
723 	 * memory (totalram_pages/2). However, memory hotplug may add
724 	 * some more pages at runtime, so keep working with up to
725 	 * double the initial memory by using totalram_pages as-is.
726 	 */
727 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
728 	max_order = fls_long(totalram_pages() - 1);
729 	if (max_order > timestamp_bits)
730 		bucket_order = max_order - timestamp_bits;
731 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
732 	       timestamp_bits, max_order, bucket_order);
733 
734 	ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
735 	if (ret)
736 		goto err;
737 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
738 			      &workingset_shadow_shrinker);
739 	if (ret)
740 		goto err_list_lru;
741 	register_shrinker_prepared(&workingset_shadow_shrinker);
742 	return 0;
743 err_list_lru:
744 	free_prealloced_shrinker(&workingset_shadow_shrinker);
745 err:
746 	return ret;
747 }
748 module_init(workingset_init);
749