xref: /openbmc/linux/mm/workingset.c (revision d774a589)
1 /*
2  * Workingset detection
3  *
4  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
5  */
6 
7 #include <linux/memcontrol.h>
8 #include <linux/writeback.h>
9 #include <linux/pagemap.h>
10 #include <linux/atomic.h>
11 #include <linux/module.h>
12 #include <linux/swap.h>
13 #include <linux/dax.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 
17 /*
18  *		Double CLOCK lists
19  *
20  * Per node, two clock lists are maintained for file pages: the
21  * inactive and the active list.  Freshly faulted pages start out at
22  * the head of the inactive list and page reclaim scans pages from the
23  * tail.  Pages that are accessed multiple times on the inactive list
24  * are promoted to the active list, to protect them from reclaim,
25  * whereas active pages are demoted to the inactive list when the
26  * active list grows too big.
27  *
28  *   fault ------------------------+
29  *                                 |
30  *              +--------------+   |            +-------------+
31  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
32  *              +--------------+                +-------------+    |
33  *                     |                                           |
34  *                     +-------------- promotion ------------------+
35  *
36  *
37  *		Access frequency and refault distance
38  *
39  * A workload is thrashing when its pages are frequently used but they
40  * are evicted from the inactive list every time before another access
41  * would have promoted them to the active list.
42  *
43  * In cases where the average access distance between thrashing pages
44  * is bigger than the size of memory there is nothing that can be
45  * done - the thrashing set could never fit into memory under any
46  * circumstance.
47  *
48  * However, the average access distance could be bigger than the
49  * inactive list, yet smaller than the size of memory.  In this case,
50  * the set could fit into memory if it weren't for the currently
51  * active pages - which may be used more, hopefully less frequently:
52  *
53  *      +-memory available to cache-+
54  *      |                           |
55  *      +-inactive------+-active----+
56  *  a b | c d e f g h i | J K L M N |
57  *      +---------------+-----------+
58  *
59  * It is prohibitively expensive to accurately track access frequency
60  * of pages.  But a reasonable approximation can be made to measure
61  * thrashing on the inactive list, after which refaulting pages can be
62  * activated optimistically to compete with the existing active pages.
63  *
64  * Approximating inactive page access frequency - Observations:
65  *
66  * 1. When a page is accessed for the first time, it is added to the
67  *    head of the inactive list, slides every existing inactive page
68  *    towards the tail by one slot, and pushes the current tail page
69  *    out of memory.
70  *
71  * 2. When a page is accessed for the second time, it is promoted to
72  *    the active list, shrinking the inactive list by one slot.  This
73  *    also slides all inactive pages that were faulted into the cache
74  *    more recently than the activated page towards the tail of the
75  *    inactive list.
76  *
77  * Thus:
78  *
79  * 1. The sum of evictions and activations between any two points in
80  *    time indicate the minimum number of inactive pages accessed in
81  *    between.
82  *
83  * 2. Moving one inactive page N page slots towards the tail of the
84  *    list requires at least N inactive page accesses.
85  *
86  * Combining these:
87  *
88  * 1. When a page is finally evicted from memory, the number of
89  *    inactive pages accessed while the page was in cache is at least
90  *    the number of page slots on the inactive list.
91  *
92  * 2. In addition, measuring the sum of evictions and activations (E)
93  *    at the time of a page's eviction, and comparing it to another
94  *    reading (R) at the time the page faults back into memory tells
95  *    the minimum number of accesses while the page was not cached.
96  *    This is called the refault distance.
97  *
98  * Because the first access of the page was the fault and the second
99  * access the refault, we combine the in-cache distance with the
100  * out-of-cache distance to get the complete minimum access distance
101  * of this page:
102  *
103  *      NR_inactive + (R - E)
104  *
105  * And knowing the minimum access distance of a page, we can easily
106  * tell if the page would be able to stay in cache assuming all page
107  * slots in the cache were available:
108  *
109  *   NR_inactive + (R - E) <= NR_inactive + NR_active
110  *
111  * which can be further simplified to
112  *
113  *   (R - E) <= NR_active
114  *
115  * Put into words, the refault distance (out-of-cache) can be seen as
116  * a deficit in inactive list space (in-cache).  If the inactive list
117  * had (R - E) more page slots, the page would not have been evicted
118  * in between accesses, but activated instead.  And on a full system,
119  * the only thing eating into inactive list space is active pages.
120  *
121  *
122  *		Activating refaulting pages
123  *
124  * All that is known about the active list is that the pages have been
125  * accessed more than once in the past.  This means that at any given
126  * time there is actually a good chance that pages on the active list
127  * are no longer in active use.
128  *
129  * So when a refault distance of (R - E) is observed and there are at
130  * least (R - E) active pages, the refaulting page is activated
131  * optimistically in the hope that (R - E) active pages are actually
132  * used less frequently than the refaulting page - or even not used at
133  * all anymore.
134  *
135  * If this is wrong and demotion kicks in, the pages which are truly
136  * used more frequently will be reactivated while the less frequently
137  * used once will be evicted from memory.
138  *
139  * But if this is right, the stale pages will be pushed out of memory
140  * and the used pages get to stay in cache.
141  *
142  *
143  *		Implementation
144  *
145  * For each node's file LRU lists, a counter for inactive evictions
146  * and activations is maintained (node->inactive_age).
147  *
148  * On eviction, a snapshot of this counter (along with some bits to
149  * identify the node) is stored in the now empty page cache radix tree
150  * slot of the evicted page.  This is called a shadow entry.
151  *
152  * On cache misses for which there are shadow entries, an eligible
153  * refault distance will immediately activate the refaulting page.
154  */
155 
156 #define EVICTION_SHIFT	(RADIX_TREE_EXCEPTIONAL_ENTRY + \
157 			 NODES_SHIFT +	\
158 			 MEM_CGROUP_ID_SHIFT)
159 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
160 
161 /*
162  * Eviction timestamps need to be able to cover the full range of
163  * actionable refaults. However, bits are tight in the radix tree
164  * entry, and after storing the identifier for the lruvec there might
165  * not be enough left to represent every single actionable refault. In
166  * that case, we have to sacrifice granularity for distance, and group
167  * evictions into coarser buckets by shaving off lower timestamp bits.
168  */
169 static unsigned int bucket_order __read_mostly;
170 
171 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction)
172 {
173 	eviction >>= bucket_order;
174 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
175 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
176 	eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
177 
178 	return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
179 }
180 
181 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
182 			  unsigned long *evictionp)
183 {
184 	unsigned long entry = (unsigned long)shadow;
185 	int memcgid, nid;
186 
187 	entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
188 	nid = entry & ((1UL << NODES_SHIFT) - 1);
189 	entry >>= NODES_SHIFT;
190 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
191 	entry >>= MEM_CGROUP_ID_SHIFT;
192 
193 	*memcgidp = memcgid;
194 	*pgdat = NODE_DATA(nid);
195 	*evictionp = entry << bucket_order;
196 }
197 
198 /**
199  * workingset_eviction - note the eviction of a page from memory
200  * @mapping: address space the page was backing
201  * @page: the page being evicted
202  *
203  * Returns a shadow entry to be stored in @mapping->page_tree in place
204  * of the evicted @page so that a later refault can be detected.
205  */
206 void *workingset_eviction(struct address_space *mapping, struct page *page)
207 {
208 	struct mem_cgroup *memcg = page_memcg(page);
209 	struct pglist_data *pgdat = page_pgdat(page);
210 	int memcgid = mem_cgroup_id(memcg);
211 	unsigned long eviction;
212 	struct lruvec *lruvec;
213 
214 	/* Page is fully exclusive and pins page->mem_cgroup */
215 	VM_BUG_ON_PAGE(PageLRU(page), page);
216 	VM_BUG_ON_PAGE(page_count(page), page);
217 	VM_BUG_ON_PAGE(!PageLocked(page), page);
218 
219 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
220 	eviction = atomic_long_inc_return(&lruvec->inactive_age);
221 	return pack_shadow(memcgid, pgdat, eviction);
222 }
223 
224 /**
225  * workingset_refault - evaluate the refault of a previously evicted page
226  * @shadow: shadow entry of the evicted page
227  *
228  * Calculates and evaluates the refault distance of the previously
229  * evicted page in the context of the node it was allocated in.
230  *
231  * Returns %true if the page should be activated, %false otherwise.
232  */
233 bool workingset_refault(void *shadow)
234 {
235 	unsigned long refault_distance;
236 	unsigned long active_file;
237 	struct mem_cgroup *memcg;
238 	unsigned long eviction;
239 	struct lruvec *lruvec;
240 	unsigned long refault;
241 	struct pglist_data *pgdat;
242 	int memcgid;
243 
244 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction);
245 
246 	rcu_read_lock();
247 	/*
248 	 * Look up the memcg associated with the stored ID. It might
249 	 * have been deleted since the page's eviction.
250 	 *
251 	 * Note that in rare events the ID could have been recycled
252 	 * for a new cgroup that refaults a shared page. This is
253 	 * impossible to tell from the available data. However, this
254 	 * should be a rare and limited disturbance, and activations
255 	 * are always speculative anyway. Ultimately, it's the aging
256 	 * algorithm's job to shake out the minimum access frequency
257 	 * for the active cache.
258 	 *
259 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
260 	 * would be better if the root_mem_cgroup existed in all
261 	 * configurations instead.
262 	 */
263 	memcg = mem_cgroup_from_id(memcgid);
264 	if (!mem_cgroup_disabled() && !memcg) {
265 		rcu_read_unlock();
266 		return false;
267 	}
268 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
269 	refault = atomic_long_read(&lruvec->inactive_age);
270 	active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
271 	rcu_read_unlock();
272 
273 	/*
274 	 * The unsigned subtraction here gives an accurate distance
275 	 * across inactive_age overflows in most cases.
276 	 *
277 	 * There is a special case: usually, shadow entries have a
278 	 * short lifetime and are either refaulted or reclaimed along
279 	 * with the inode before they get too old.  But it is not
280 	 * impossible for the inactive_age to lap a shadow entry in
281 	 * the field, which can then can result in a false small
282 	 * refault distance, leading to a false activation should this
283 	 * old entry actually refault again.  However, earlier kernels
284 	 * used to deactivate unconditionally with *every* reclaim
285 	 * invocation for the longest time, so the occasional
286 	 * inappropriate activation leading to pressure on the active
287 	 * list is not a problem.
288 	 */
289 	refault_distance = (refault - eviction) & EVICTION_MASK;
290 
291 	inc_node_state(pgdat, WORKINGSET_REFAULT);
292 
293 	if (refault_distance <= active_file) {
294 		inc_node_state(pgdat, WORKINGSET_ACTIVATE);
295 		return true;
296 	}
297 	return false;
298 }
299 
300 /**
301  * workingset_activation - note a page activation
302  * @page: page that is being activated
303  */
304 void workingset_activation(struct page *page)
305 {
306 	struct mem_cgroup *memcg;
307 	struct lruvec *lruvec;
308 
309 	rcu_read_lock();
310 	/*
311 	 * Filter non-memcg pages here, e.g. unmap can call
312 	 * mark_page_accessed() on VDSO pages.
313 	 *
314 	 * XXX: See workingset_refault() - this should return
315 	 * root_mem_cgroup even for !CONFIG_MEMCG.
316 	 */
317 	memcg = page_memcg_rcu(page);
318 	if (!mem_cgroup_disabled() && !memcg)
319 		goto out;
320 	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
321 	atomic_long_inc(&lruvec->inactive_age);
322 out:
323 	rcu_read_unlock();
324 }
325 
326 /*
327  * Shadow entries reflect the share of the working set that does not
328  * fit into memory, so their number depends on the access pattern of
329  * the workload.  In most cases, they will refault or get reclaimed
330  * along with the inode, but a (malicious) workload that streams
331  * through files with a total size several times that of available
332  * memory, while preventing the inodes from being reclaimed, can
333  * create excessive amounts of shadow nodes.  To keep a lid on this,
334  * track shadow nodes and reclaim them when they grow way past the
335  * point where they would still be useful.
336  */
337 
338 static struct list_lru shadow_nodes;
339 
340 void workingset_update_node(struct radix_tree_node *node, void *private)
341 {
342 	struct address_space *mapping = private;
343 
344 	/* Only regular page cache has shadow entries */
345 	if (dax_mapping(mapping) || shmem_mapping(mapping))
346 		return;
347 
348 	/*
349 	 * Track non-empty nodes that contain only shadow entries;
350 	 * unlink those that contain pages or are being freed.
351 	 *
352 	 * Avoid acquiring the list_lru lock when the nodes are
353 	 * already where they should be. The list_empty() test is safe
354 	 * as node->private_list is protected by &mapping->tree_lock.
355 	 */
356 	if (node->count && node->count == node->exceptional) {
357 		if (list_empty(&node->private_list)) {
358 			node->private_data = mapping;
359 			list_lru_add(&shadow_nodes, &node->private_list);
360 		}
361 	} else {
362 		if (!list_empty(&node->private_list))
363 			list_lru_del(&shadow_nodes, &node->private_list);
364 	}
365 }
366 
367 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
368 					struct shrink_control *sc)
369 {
370 	unsigned long max_nodes;
371 	unsigned long nodes;
372 	unsigned long cache;
373 
374 	/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
375 	local_irq_disable();
376 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
377 	local_irq_enable();
378 
379 	/*
380 	 * Approximate a reasonable limit for the radix tree nodes
381 	 * containing shadow entries. We don't need to keep more
382 	 * shadow entries than possible pages on the active list,
383 	 * since refault distances bigger than that are dismissed.
384 	 *
385 	 * The size of the active list converges toward 100% of
386 	 * overall page cache as memory grows, with only a tiny
387 	 * inactive list. Assume the total cache size for that.
388 	 *
389 	 * Nodes might be sparsely populated, with only one shadow
390 	 * entry in the extreme case. Obviously, we cannot keep one
391 	 * node for every eligible shadow entry, so compromise on a
392 	 * worst-case density of 1/8th. Below that, not all eligible
393 	 * refaults can be detected anymore.
394 	 *
395 	 * On 64-bit with 7 radix_tree_nodes per page and 64 slots
396 	 * each, this will reclaim shadow entries when they consume
397 	 * ~1.8% of available memory:
398 	 *
399 	 * PAGE_SIZE / radix_tree_nodes / node_entries * 8 / PAGE_SIZE
400 	 */
401 	if (sc->memcg) {
402 		cache = mem_cgroup_node_nr_lru_pages(sc->memcg, sc->nid,
403 						     LRU_ALL_FILE);
404 	} else {
405 		cache = node_page_state(NODE_DATA(sc->nid), NR_ACTIVE_FILE) +
406 			node_page_state(NODE_DATA(sc->nid), NR_INACTIVE_FILE);
407 	}
408 	max_nodes = cache >> (RADIX_TREE_MAP_SHIFT - 3);
409 
410 	if (nodes <= max_nodes)
411 		return 0;
412 	return nodes - max_nodes;
413 }
414 
415 static enum lru_status shadow_lru_isolate(struct list_head *item,
416 					  struct list_lru_one *lru,
417 					  spinlock_t *lru_lock,
418 					  void *arg)
419 {
420 	struct address_space *mapping;
421 	struct radix_tree_node *node;
422 	unsigned int i;
423 	int ret;
424 
425 	/*
426 	 * Page cache insertions and deletions synchroneously maintain
427 	 * the shadow node LRU under the mapping->tree_lock and the
428 	 * lru_lock.  Because the page cache tree is emptied before
429 	 * the inode can be destroyed, holding the lru_lock pins any
430 	 * address_space that has radix tree nodes on the LRU.
431 	 *
432 	 * We can then safely transition to the mapping->tree_lock to
433 	 * pin only the address_space of the particular node we want
434 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
435 	 */
436 
437 	node = container_of(item, struct radix_tree_node, private_list);
438 	mapping = node->private_data;
439 
440 	/* Coming from the list, invert the lock order */
441 	if (!spin_trylock(&mapping->tree_lock)) {
442 		spin_unlock(lru_lock);
443 		ret = LRU_RETRY;
444 		goto out;
445 	}
446 
447 	list_lru_isolate(lru, item);
448 	spin_unlock(lru_lock);
449 
450 	/*
451 	 * The nodes should only contain one or more shadow entries,
452 	 * no pages, so we expect to be able to remove them all and
453 	 * delete and free the empty node afterwards.
454 	 */
455 	if (WARN_ON_ONCE(!node->exceptional))
456 		goto out_invalid;
457 	if (WARN_ON_ONCE(node->count != node->exceptional))
458 		goto out_invalid;
459 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
460 		if (node->slots[i]) {
461 			if (WARN_ON_ONCE(!radix_tree_exceptional_entry(node->slots[i])))
462 				goto out_invalid;
463 			if (WARN_ON_ONCE(!node->exceptional))
464 				goto out_invalid;
465 			if (WARN_ON_ONCE(!mapping->nrexceptional))
466 				goto out_invalid;
467 			node->slots[i] = NULL;
468 			node->exceptional--;
469 			node->count--;
470 			mapping->nrexceptional--;
471 		}
472 	}
473 	if (WARN_ON_ONCE(node->exceptional))
474 		goto out_invalid;
475 	inc_node_state(page_pgdat(virt_to_page(node)), WORKINGSET_NODERECLAIM);
476 	__radix_tree_delete_node(&mapping->page_tree, node);
477 
478 out_invalid:
479 	spin_unlock(&mapping->tree_lock);
480 	ret = LRU_REMOVED_RETRY;
481 out:
482 	local_irq_enable();
483 	cond_resched();
484 	local_irq_disable();
485 	spin_lock(lru_lock);
486 	return ret;
487 }
488 
489 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
490 				       struct shrink_control *sc)
491 {
492 	unsigned long ret;
493 
494 	/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
495 	local_irq_disable();
496 	ret = list_lru_shrink_walk(&shadow_nodes, sc, shadow_lru_isolate, NULL);
497 	local_irq_enable();
498 	return ret;
499 }
500 
501 static struct shrinker workingset_shadow_shrinker = {
502 	.count_objects = count_shadow_nodes,
503 	.scan_objects = scan_shadow_nodes,
504 	.seeks = DEFAULT_SEEKS,
505 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
506 };
507 
508 /*
509  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
510  * mapping->tree_lock.
511  */
512 static struct lock_class_key shadow_nodes_key;
513 
514 static int __init workingset_init(void)
515 {
516 	unsigned int timestamp_bits;
517 	unsigned int max_order;
518 	int ret;
519 
520 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
521 	/*
522 	 * Calculate the eviction bucket size to cover the longest
523 	 * actionable refault distance, which is currently half of
524 	 * memory (totalram_pages/2). However, memory hotplug may add
525 	 * some more pages at runtime, so keep working with up to
526 	 * double the initial memory by using totalram_pages as-is.
527 	 */
528 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
529 	max_order = fls_long(totalram_pages - 1);
530 	if (max_order > timestamp_bits)
531 		bucket_order = max_order - timestamp_bits;
532 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
533 	       timestamp_bits, max_order, bucket_order);
534 
535 	ret = list_lru_init_key(&shadow_nodes, &shadow_nodes_key);
536 	if (ret)
537 		goto err;
538 	ret = register_shrinker(&workingset_shadow_shrinker);
539 	if (ret)
540 		goto err_list_lru;
541 	return 0;
542 err_list_lru:
543 	list_lru_destroy(&shadow_nodes);
544 err:
545 	return ret;
546 }
547 module_init(workingset_init);
548