xref: /openbmc/linux/mm/workingset.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * If we have swap we should consider about NR_inactive_anon and
115  * NR_active_anon, so for page cache and anonymous respectively:
116  *
117  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
118  *   + NR_inactive_anon + NR_active_anon
119  *
120  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
121  *   + NR_inactive_file + NR_active_file
122  *
123  * Which can be further simplified to:
124  *
125  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
126  *
127  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
128  *
129  * Put into words, the refault distance (out-of-cache) can be seen as
130  * a deficit in inactive list space (in-cache).  If the inactive list
131  * had (R - E) more page slots, the page would not have been evicted
132  * in between accesses, but activated instead.  And on a full system,
133  * the only thing eating into inactive list space is active pages.
134  *
135  *
136  *		Refaulting inactive pages
137  *
138  * All that is known about the active list is that the pages have been
139  * accessed more than once in the past.  This means that at any given
140  * time there is actually a good chance that pages on the active list
141  * are no longer in active use.
142  *
143  * So when a refault distance of (R - E) is observed and there are at
144  * least (R - E) pages in the userspace workingset, the refaulting page
145  * is activated optimistically in the hope that (R - E) pages are actually
146  * used less frequently than the refaulting page - or even not used at
147  * all anymore.
148  *
149  * That means if inactive cache is refaulting with a suitable refault
150  * distance, we assume the cache workingset is transitioning and put
151  * pressure on the current workingset.
152  *
153  * If this is wrong and demotion kicks in, the pages which are truly
154  * used more frequently will be reactivated while the less frequently
155  * used once will be evicted from memory.
156  *
157  * But if this is right, the stale pages will be pushed out of memory
158  * and the used pages get to stay in cache.
159  *
160  *		Refaulting active pages
161  *
162  * If on the other hand the refaulting pages have recently been
163  * deactivated, it means that the active list is no longer protecting
164  * actively used cache from reclaim. The cache is NOT transitioning to
165  * a different workingset; the existing workingset is thrashing in the
166  * space allocated to the page cache.
167  *
168  *
169  *		Implementation
170  *
171  * For each node's LRU lists, a counter for inactive evictions and
172  * activations is maintained (node->nonresident_age).
173  *
174  * On eviction, a snapshot of this counter (along with some bits to
175  * identify the node) is stored in the now empty page cache
176  * slot of the evicted page.  This is called a shadow entry.
177  *
178  * On cache misses for which there are shadow entries, an eligible
179  * refault distance will immediately activate the refaulting page.
180  */
181 
182 #define WORKINGSET_SHIFT 1
183 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
184 			 WORKINGSET_SHIFT + NODES_SHIFT + \
185 			 MEM_CGROUP_ID_SHIFT)
186 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
187 
188 /*
189  * Eviction timestamps need to be able to cover the full range of
190  * actionable refaults. However, bits are tight in the xarray
191  * entry, and after storing the identifier for the lruvec there might
192  * not be enough left to represent every single actionable refault. In
193  * that case, we have to sacrifice granularity for distance, and group
194  * evictions into coarser buckets by shaving off lower timestamp bits.
195  */
196 static unsigned int bucket_order __read_mostly;
197 
198 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
199 			 bool workingset)
200 {
201 	eviction &= EVICTION_MASK;
202 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
203 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
204 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
205 
206 	return xa_mk_value(eviction);
207 }
208 
209 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
210 			  unsigned long *evictionp, bool *workingsetp)
211 {
212 	unsigned long entry = xa_to_value(shadow);
213 	int memcgid, nid;
214 	bool workingset;
215 
216 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
217 	entry >>= WORKINGSET_SHIFT;
218 	nid = entry & ((1UL << NODES_SHIFT) - 1);
219 	entry >>= NODES_SHIFT;
220 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
221 	entry >>= MEM_CGROUP_ID_SHIFT;
222 
223 	*memcgidp = memcgid;
224 	*pgdat = NODE_DATA(nid);
225 	*evictionp = entry;
226 	*workingsetp = workingset;
227 }
228 
229 #ifdef CONFIG_LRU_GEN
230 
231 static void *lru_gen_eviction(struct folio *folio)
232 {
233 	int hist;
234 	unsigned long token;
235 	unsigned long min_seq;
236 	struct lruvec *lruvec;
237 	struct lru_gen_folio *lrugen;
238 	int type = folio_is_file_lru(folio);
239 	int delta = folio_nr_pages(folio);
240 	int refs = folio_lru_refs(folio);
241 	int tier = lru_tier_from_refs(refs);
242 	struct mem_cgroup *memcg = folio_memcg(folio);
243 	struct pglist_data *pgdat = folio_pgdat(folio);
244 
245 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
246 
247 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
248 	lrugen = &lruvec->lrugen;
249 	min_seq = READ_ONCE(lrugen->min_seq[type]);
250 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
251 
252 	hist = lru_hist_from_seq(min_seq);
253 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
254 
255 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
256 }
257 
258 static void lru_gen_refault(struct folio *folio, void *shadow)
259 {
260 	int hist, tier, refs;
261 	int memcg_id;
262 	bool workingset;
263 	unsigned long token;
264 	unsigned long min_seq;
265 	struct lruvec *lruvec;
266 	struct lru_gen_folio *lrugen;
267 	struct mem_cgroup *memcg;
268 	struct pglist_data *pgdat;
269 	int type = folio_is_file_lru(folio);
270 	int delta = folio_nr_pages(folio);
271 
272 	unpack_shadow(shadow, &memcg_id, &pgdat, &token, &workingset);
273 
274 	if (pgdat != folio_pgdat(folio))
275 		return;
276 
277 	rcu_read_lock();
278 
279 	memcg = folio_memcg_rcu(folio);
280 	if (memcg_id != mem_cgroup_id(memcg))
281 		goto unlock;
282 
283 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
284 	lrugen = &lruvec->lrugen;
285 
286 	min_seq = READ_ONCE(lrugen->min_seq[type]);
287 	if ((token >> LRU_REFS_WIDTH) != (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH)))
288 		goto unlock;
289 
290 	hist = lru_hist_from_seq(min_seq);
291 	/* see the comment in folio_lru_refs() */
292 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
293 	tier = lru_tier_from_refs(refs);
294 
295 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
296 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
297 
298 	/*
299 	 * Count the following two cases as stalls:
300 	 * 1. For pages accessed through page tables, hotter pages pushed out
301 	 *    hot pages which refaulted immediately.
302 	 * 2. For pages accessed multiple times through file descriptors,
303 	 *    numbers of accesses might have been out of the range.
304 	 */
305 	if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
306 		folio_set_workingset(folio);
307 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
308 	}
309 unlock:
310 	rcu_read_unlock();
311 }
312 
313 #else /* !CONFIG_LRU_GEN */
314 
315 static void *lru_gen_eviction(struct folio *folio)
316 {
317 	return NULL;
318 }
319 
320 static void lru_gen_refault(struct folio *folio, void *shadow)
321 {
322 }
323 
324 #endif /* CONFIG_LRU_GEN */
325 
326 /**
327  * workingset_age_nonresident - age non-resident entries as LRU ages
328  * @lruvec: the lruvec that was aged
329  * @nr_pages: the number of pages to count
330  *
331  * As in-memory pages are aged, non-resident pages need to be aged as
332  * well, in order for the refault distances later on to be comparable
333  * to the in-memory dimensions. This function allows reclaim and LRU
334  * operations to drive the non-resident aging along in parallel.
335  */
336 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
337 {
338 	/*
339 	 * Reclaiming a cgroup means reclaiming all its children in a
340 	 * round-robin fashion. That means that each cgroup has an LRU
341 	 * order that is composed of the LRU orders of its child
342 	 * cgroups; and every page has an LRU position not just in the
343 	 * cgroup that owns it, but in all of that group's ancestors.
344 	 *
345 	 * So when the physical inactive list of a leaf cgroup ages,
346 	 * the virtual inactive lists of all its parents, including
347 	 * the root cgroup's, age as well.
348 	 */
349 	do {
350 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
351 	} while ((lruvec = parent_lruvec(lruvec)));
352 }
353 
354 /**
355  * workingset_eviction - note the eviction of a folio from memory
356  * @target_memcg: the cgroup that is causing the reclaim
357  * @folio: the folio being evicted
358  *
359  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
360  * of the evicted @folio so that a later refault can be detected.
361  */
362 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
363 {
364 	struct pglist_data *pgdat = folio_pgdat(folio);
365 	unsigned long eviction;
366 	struct lruvec *lruvec;
367 	int memcgid;
368 
369 	/* Folio is fully exclusive and pins folio's memory cgroup pointer */
370 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
371 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
372 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
373 
374 	if (lru_gen_enabled())
375 		return lru_gen_eviction(folio);
376 
377 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
378 	/* XXX: target_memcg can be NULL, go through lruvec */
379 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
380 	eviction = atomic_long_read(&lruvec->nonresident_age);
381 	eviction >>= bucket_order;
382 	workingset_age_nonresident(lruvec, folio_nr_pages(folio));
383 	return pack_shadow(memcgid, pgdat, eviction,
384 				folio_test_workingset(folio));
385 }
386 
387 /**
388  * workingset_refault - Evaluate the refault of a previously evicted folio.
389  * @folio: The freshly allocated replacement folio.
390  * @shadow: Shadow entry of the evicted folio.
391  *
392  * Calculates and evaluates the refault distance of the previously
393  * evicted folio in the context of the node and the memcg whose memory
394  * pressure caused the eviction.
395  */
396 void workingset_refault(struct folio *folio, void *shadow)
397 {
398 	bool file = folio_is_file_lru(folio);
399 	struct mem_cgroup *eviction_memcg;
400 	struct lruvec *eviction_lruvec;
401 	unsigned long refault_distance;
402 	unsigned long workingset_size;
403 	struct pglist_data *pgdat;
404 	struct mem_cgroup *memcg;
405 	unsigned long eviction;
406 	struct lruvec *lruvec;
407 	unsigned long refault;
408 	bool workingset;
409 	int memcgid;
410 	long nr;
411 
412 	if (lru_gen_enabled()) {
413 		lru_gen_refault(folio, shadow);
414 		return;
415 	}
416 
417 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
418 	eviction <<= bucket_order;
419 
420 	/* Flush stats (and potentially sleep) before holding RCU read lock */
421 	mem_cgroup_flush_stats_ratelimited();
422 
423 	rcu_read_lock();
424 	/*
425 	 * Look up the memcg associated with the stored ID. It might
426 	 * have been deleted since the folio's eviction.
427 	 *
428 	 * Note that in rare events the ID could have been recycled
429 	 * for a new cgroup that refaults a shared folio. This is
430 	 * impossible to tell from the available data. However, this
431 	 * should be a rare and limited disturbance, and activations
432 	 * are always speculative anyway. Ultimately, it's the aging
433 	 * algorithm's job to shake out the minimum access frequency
434 	 * for the active cache.
435 	 *
436 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
437 	 * would be better if the root_mem_cgroup existed in all
438 	 * configurations instead.
439 	 */
440 	eviction_memcg = mem_cgroup_from_id(memcgid);
441 	if (!mem_cgroup_disabled() && !eviction_memcg)
442 		goto out;
443 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
444 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
445 
446 	/*
447 	 * Calculate the refault distance
448 	 *
449 	 * The unsigned subtraction here gives an accurate distance
450 	 * across nonresident_age overflows in most cases. There is a
451 	 * special case: usually, shadow entries have a short lifetime
452 	 * and are either refaulted or reclaimed along with the inode
453 	 * before they get too old.  But it is not impossible for the
454 	 * nonresident_age to lap a shadow entry in the field, which
455 	 * can then result in a false small refault distance, leading
456 	 * to a false activation should this old entry actually
457 	 * refault again.  However, earlier kernels used to deactivate
458 	 * unconditionally with *every* reclaim invocation for the
459 	 * longest time, so the occasional inappropriate activation
460 	 * leading to pressure on the active list is not a problem.
461 	 */
462 	refault_distance = (refault - eviction) & EVICTION_MASK;
463 
464 	/*
465 	 * The activation decision for this folio is made at the level
466 	 * where the eviction occurred, as that is where the LRU order
467 	 * during folio reclaim is being determined.
468 	 *
469 	 * However, the cgroup that will own the folio is the one that
470 	 * is actually experiencing the refault event.
471 	 */
472 	nr = folio_nr_pages(folio);
473 	memcg = folio_memcg(folio);
474 	pgdat = folio_pgdat(folio);
475 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
476 
477 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
478 	/*
479 	 * Compare the distance to the existing workingset size. We
480 	 * don't activate pages that couldn't stay resident even if
481 	 * all the memory was available to the workingset. Whether
482 	 * workingset competition needs to consider anon or not depends
483 	 * on having free swap space.
484 	 */
485 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
486 	if (!file) {
487 		workingset_size += lruvec_page_state(eviction_lruvec,
488 						     NR_INACTIVE_FILE);
489 	}
490 	if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
491 		workingset_size += lruvec_page_state(eviction_lruvec,
492 						     NR_ACTIVE_ANON);
493 		if (file) {
494 			workingset_size += lruvec_page_state(eviction_lruvec,
495 						     NR_INACTIVE_ANON);
496 		}
497 	}
498 	if (refault_distance > workingset_size)
499 		goto out;
500 
501 	folio_set_active(folio);
502 	workingset_age_nonresident(lruvec, nr);
503 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
504 
505 	/* Folio was active prior to eviction */
506 	if (workingset) {
507 		folio_set_workingset(folio);
508 		/*
509 		 * XXX: Move to folio_add_lru() when it supports new vs
510 		 * putback
511 		 */
512 		lru_note_cost_refault(folio);
513 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
514 	}
515 out:
516 	rcu_read_unlock();
517 }
518 
519 /**
520  * workingset_activation - note a page activation
521  * @folio: Folio that is being activated.
522  */
523 void workingset_activation(struct folio *folio)
524 {
525 	struct mem_cgroup *memcg;
526 
527 	rcu_read_lock();
528 	/*
529 	 * Filter non-memcg pages here, e.g. unmap can call
530 	 * mark_page_accessed() on VDSO pages.
531 	 *
532 	 * XXX: See workingset_refault() - this should return
533 	 * root_mem_cgroup even for !CONFIG_MEMCG.
534 	 */
535 	memcg = folio_memcg_rcu(folio);
536 	if (!mem_cgroup_disabled() && !memcg)
537 		goto out;
538 	workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
539 out:
540 	rcu_read_unlock();
541 }
542 
543 /*
544  * Shadow entries reflect the share of the working set that does not
545  * fit into memory, so their number depends on the access pattern of
546  * the workload.  In most cases, they will refault or get reclaimed
547  * along with the inode, but a (malicious) workload that streams
548  * through files with a total size several times that of available
549  * memory, while preventing the inodes from being reclaimed, can
550  * create excessive amounts of shadow nodes.  To keep a lid on this,
551  * track shadow nodes and reclaim them when they grow way past the
552  * point where they would still be useful.
553  */
554 
555 struct list_lru shadow_nodes;
556 
557 void workingset_update_node(struct xa_node *node)
558 {
559 	struct address_space *mapping;
560 
561 	/*
562 	 * Track non-empty nodes that contain only shadow entries;
563 	 * unlink those that contain pages or are being freed.
564 	 *
565 	 * Avoid acquiring the list_lru lock when the nodes are
566 	 * already where they should be. The list_empty() test is safe
567 	 * as node->private_list is protected by the i_pages lock.
568 	 */
569 	mapping = container_of(node->array, struct address_space, i_pages);
570 	lockdep_assert_held(&mapping->i_pages.xa_lock);
571 
572 	if (node->count && node->count == node->nr_values) {
573 		if (list_empty(&node->private_list)) {
574 			list_lru_add(&shadow_nodes, &node->private_list);
575 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
576 		}
577 	} else {
578 		if (!list_empty(&node->private_list)) {
579 			list_lru_del(&shadow_nodes, &node->private_list);
580 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
581 		}
582 	}
583 }
584 
585 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
586 					struct shrink_control *sc)
587 {
588 	unsigned long max_nodes;
589 	unsigned long nodes;
590 	unsigned long pages;
591 
592 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
593 	if (!nodes)
594 		return SHRINK_EMPTY;
595 
596 	/*
597 	 * Approximate a reasonable limit for the nodes
598 	 * containing shadow entries. We don't need to keep more
599 	 * shadow entries than possible pages on the active list,
600 	 * since refault distances bigger than that are dismissed.
601 	 *
602 	 * The size of the active list converges toward 100% of
603 	 * overall page cache as memory grows, with only a tiny
604 	 * inactive list. Assume the total cache size for that.
605 	 *
606 	 * Nodes might be sparsely populated, with only one shadow
607 	 * entry in the extreme case. Obviously, we cannot keep one
608 	 * node for every eligible shadow entry, so compromise on a
609 	 * worst-case density of 1/8th. Below that, not all eligible
610 	 * refaults can be detected anymore.
611 	 *
612 	 * On 64-bit with 7 xa_nodes per page and 64 slots
613 	 * each, this will reclaim shadow entries when they consume
614 	 * ~1.8% of available memory:
615 	 *
616 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
617 	 */
618 #ifdef CONFIG_MEMCG
619 	if (sc->memcg) {
620 		struct lruvec *lruvec;
621 		int i;
622 
623 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
624 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
625 			pages += lruvec_page_state_local(lruvec,
626 							 NR_LRU_BASE + i);
627 		pages += lruvec_page_state_local(
628 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
629 		pages += lruvec_page_state_local(
630 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
631 	} else
632 #endif
633 		pages = node_present_pages(sc->nid);
634 
635 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
636 
637 	if (nodes <= max_nodes)
638 		return 0;
639 	return nodes - max_nodes;
640 }
641 
642 static enum lru_status shadow_lru_isolate(struct list_head *item,
643 					  struct list_lru_one *lru,
644 					  spinlock_t *lru_lock,
645 					  void *arg) __must_hold(lru_lock)
646 {
647 	struct xa_node *node = container_of(item, struct xa_node, private_list);
648 	struct address_space *mapping;
649 	int ret;
650 
651 	/*
652 	 * Page cache insertions and deletions synchronously maintain
653 	 * the shadow node LRU under the i_pages lock and the
654 	 * lru_lock.  Because the page cache tree is emptied before
655 	 * the inode can be destroyed, holding the lru_lock pins any
656 	 * address_space that has nodes on the LRU.
657 	 *
658 	 * We can then safely transition to the i_pages lock to
659 	 * pin only the address_space of the particular node we want
660 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
661 	 */
662 
663 	mapping = container_of(node->array, struct address_space, i_pages);
664 
665 	/* Coming from the list, invert the lock order */
666 	if (!xa_trylock(&mapping->i_pages)) {
667 		spin_unlock_irq(lru_lock);
668 		ret = LRU_RETRY;
669 		goto out;
670 	}
671 
672 	/* For page cache we need to hold i_lock */
673 	if (mapping->host != NULL) {
674 		if (!spin_trylock(&mapping->host->i_lock)) {
675 			xa_unlock(&mapping->i_pages);
676 			spin_unlock_irq(lru_lock);
677 			ret = LRU_RETRY;
678 			goto out;
679 		}
680 	}
681 
682 	list_lru_isolate(lru, item);
683 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
684 
685 	spin_unlock(lru_lock);
686 
687 	/*
688 	 * The nodes should only contain one or more shadow entries,
689 	 * no pages, so we expect to be able to remove them all and
690 	 * delete and free the empty node afterwards.
691 	 */
692 	if (WARN_ON_ONCE(!node->nr_values))
693 		goto out_invalid;
694 	if (WARN_ON_ONCE(node->count != node->nr_values))
695 		goto out_invalid;
696 	xa_delete_node(node, workingset_update_node);
697 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
698 
699 out_invalid:
700 	xa_unlock_irq(&mapping->i_pages);
701 	if (mapping->host != NULL) {
702 		if (mapping_shrinkable(mapping))
703 			inode_add_lru(mapping->host);
704 		spin_unlock(&mapping->host->i_lock);
705 	}
706 	ret = LRU_REMOVED_RETRY;
707 out:
708 	cond_resched();
709 	spin_lock_irq(lru_lock);
710 	return ret;
711 }
712 
713 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
714 				       struct shrink_control *sc)
715 {
716 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
717 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
718 					NULL);
719 }
720 
721 static struct shrinker workingset_shadow_shrinker = {
722 	.count_objects = count_shadow_nodes,
723 	.scan_objects = scan_shadow_nodes,
724 	.seeks = 0, /* ->count reports only fully expendable nodes */
725 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
726 };
727 
728 /*
729  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
730  * i_pages lock.
731  */
732 static struct lock_class_key shadow_nodes_key;
733 
734 static int __init workingset_init(void)
735 {
736 	unsigned int timestamp_bits;
737 	unsigned int max_order;
738 	int ret;
739 
740 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
741 	/*
742 	 * Calculate the eviction bucket size to cover the longest
743 	 * actionable refault distance, which is currently half of
744 	 * memory (totalram_pages/2). However, memory hotplug may add
745 	 * some more pages at runtime, so keep working with up to
746 	 * double the initial memory by using totalram_pages as-is.
747 	 */
748 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
749 	max_order = fls_long(totalram_pages() - 1);
750 	if (max_order > timestamp_bits)
751 		bucket_order = max_order - timestamp_bits;
752 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
753 	       timestamp_bits, max_order, bucket_order);
754 
755 	ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
756 	if (ret)
757 		goto err;
758 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
759 			      &workingset_shadow_shrinker);
760 	if (ret)
761 		goto err_list_lru;
762 	register_shrinker_prepared(&workingset_shadow_shrinker);
763 	return 0;
764 err_list_lru:
765 	free_prealloced_shrinker(&workingset_shadow_shrinker);
766 err:
767 	return ret;
768 }
769 module_init(workingset_init);
770