xref: /openbmc/linux/mm/workingset.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/writeback.h>
10 #include <linux/shmem_fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/swap.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 
19 /*
20  *		Double CLOCK lists
21  *
22  * Per node, two clock lists are maintained for file pages: the
23  * inactive and the active list.  Freshly faulted pages start out at
24  * the head of the inactive list and page reclaim scans pages from the
25  * tail.  Pages that are accessed multiple times on the inactive list
26  * are promoted to the active list, to protect them from reclaim,
27  * whereas active pages are demoted to the inactive list when the
28  * active list grows too big.
29  *
30  *   fault ------------------------+
31  *                                 |
32  *              +--------------+   |            +-------------+
33  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
34  *              +--------------+                +-------------+    |
35  *                     |                                           |
36  *                     +-------------- promotion ------------------+
37  *
38  *
39  *		Access frequency and refault distance
40  *
41  * A workload is thrashing when its pages are frequently used but they
42  * are evicted from the inactive list every time before another access
43  * would have promoted them to the active list.
44  *
45  * In cases where the average access distance between thrashing pages
46  * is bigger than the size of memory there is nothing that can be
47  * done - the thrashing set could never fit into memory under any
48  * circumstance.
49  *
50  * However, the average access distance could be bigger than the
51  * inactive list, yet smaller than the size of memory.  In this case,
52  * the set could fit into memory if it weren't for the currently
53  * active pages - which may be used more, hopefully less frequently:
54  *
55  *      +-memory available to cache-+
56  *      |                           |
57  *      +-inactive------+-active----+
58  *  a b | c d e f g h i | J K L M N |
59  *      +---------------+-----------+
60  *
61  * It is prohibitively expensive to accurately track access frequency
62  * of pages.  But a reasonable approximation can be made to measure
63  * thrashing on the inactive list, after which refaulting pages can be
64  * activated optimistically to compete with the existing active pages.
65  *
66  * Approximating inactive page access frequency - Observations:
67  *
68  * 1. When a page is accessed for the first time, it is added to the
69  *    head of the inactive list, slides every existing inactive page
70  *    towards the tail by one slot, and pushes the current tail page
71  *    out of memory.
72  *
73  * 2. When a page is accessed for the second time, it is promoted to
74  *    the active list, shrinking the inactive list by one slot.  This
75  *    also slides all inactive pages that were faulted into the cache
76  *    more recently than the activated page towards the tail of the
77  *    inactive list.
78  *
79  * Thus:
80  *
81  * 1. The sum of evictions and activations between any two points in
82  *    time indicate the minimum number of inactive pages accessed in
83  *    between.
84  *
85  * 2. Moving one inactive page N page slots towards the tail of the
86  *    list requires at least N inactive page accesses.
87  *
88  * Combining these:
89  *
90  * 1. When a page is finally evicted from memory, the number of
91  *    inactive pages accessed while the page was in cache is at least
92  *    the number of page slots on the inactive list.
93  *
94  * 2. In addition, measuring the sum of evictions and activations (E)
95  *    at the time of a page's eviction, and comparing it to another
96  *    reading (R) at the time the page faults back into memory tells
97  *    the minimum number of accesses while the page was not cached.
98  *    This is called the refault distance.
99  *
100  * Because the first access of the page was the fault and the second
101  * access the refault, we combine the in-cache distance with the
102  * out-of-cache distance to get the complete minimum access distance
103  * of this page:
104  *
105  *      NR_inactive + (R - E)
106  *
107  * And knowing the minimum access distance of a page, we can easily
108  * tell if the page would be able to stay in cache assuming all page
109  * slots in the cache were available:
110  *
111  *   NR_inactive + (R - E) <= NR_inactive + NR_active
112  *
113  * which can be further simplified to
114  *
115  *   (R - E) <= NR_active
116  *
117  * Put into words, the refault distance (out-of-cache) can be seen as
118  * a deficit in inactive list space (in-cache).  If the inactive list
119  * had (R - E) more page slots, the page would not have been evicted
120  * in between accesses, but activated instead.  And on a full system,
121  * the only thing eating into inactive list space is active pages.
122  *
123  *
124  *		Refaulting inactive pages
125  *
126  * All that is known about the active list is that the pages have been
127  * accessed more than once in the past.  This means that at any given
128  * time there is actually a good chance that pages on the active list
129  * are no longer in active use.
130  *
131  * So when a refault distance of (R - E) is observed and there are at
132  * least (R - E) active pages, the refaulting page is activated
133  * optimistically in the hope that (R - E) active pages are actually
134  * used less frequently than the refaulting page - or even not used at
135  * all anymore.
136  *
137  * That means if inactive cache is refaulting with a suitable refault
138  * distance, we assume the cache workingset is transitioning and put
139  * pressure on the current active list.
140  *
141  * If this is wrong and demotion kicks in, the pages which are truly
142  * used more frequently will be reactivated while the less frequently
143  * used once will be evicted from memory.
144  *
145  * But if this is right, the stale pages will be pushed out of memory
146  * and the used pages get to stay in cache.
147  *
148  *		Refaulting active pages
149  *
150  * If on the other hand the refaulting pages have recently been
151  * deactivated, it means that the active list is no longer protecting
152  * actively used cache from reclaim. The cache is NOT transitioning to
153  * a different workingset; the existing workingset is thrashing in the
154  * space allocated to the page cache.
155  *
156  *
157  *		Implementation
158  *
159  * For each node's file LRU lists, a counter for inactive evictions
160  * and activations is maintained (node->inactive_age).
161  *
162  * On eviction, a snapshot of this counter (along with some bits to
163  * identify the node) is stored in the now empty page cache
164  * slot of the evicted page.  This is called a shadow entry.
165  *
166  * On cache misses for which there are shadow entries, an eligible
167  * refault distance will immediately activate the refaulting page.
168  */
169 
170 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
171 			 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
172 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
173 
174 /*
175  * Eviction timestamps need to be able to cover the full range of
176  * actionable refaults. However, bits are tight in the xarray
177  * entry, and after storing the identifier for the lruvec there might
178  * not be enough left to represent every single actionable refault. In
179  * that case, we have to sacrifice granularity for distance, and group
180  * evictions into coarser buckets by shaving off lower timestamp bits.
181  */
182 static unsigned int bucket_order __read_mostly;
183 
184 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
185 			 bool workingset)
186 {
187 	eviction >>= bucket_order;
188 	eviction &= EVICTION_MASK;
189 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
190 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
191 	eviction = (eviction << 1) | workingset;
192 
193 	return xa_mk_value(eviction);
194 }
195 
196 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
197 			  unsigned long *evictionp, bool *workingsetp)
198 {
199 	unsigned long entry = xa_to_value(shadow);
200 	int memcgid, nid;
201 	bool workingset;
202 
203 	workingset = entry & 1;
204 	entry >>= 1;
205 	nid = entry & ((1UL << NODES_SHIFT) - 1);
206 	entry >>= NODES_SHIFT;
207 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
208 	entry >>= MEM_CGROUP_ID_SHIFT;
209 
210 	*memcgidp = memcgid;
211 	*pgdat = NODE_DATA(nid);
212 	*evictionp = entry << bucket_order;
213 	*workingsetp = workingset;
214 }
215 
216 /**
217  * workingset_eviction - note the eviction of a page from memory
218  * @page: the page being evicted
219  *
220  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
221  * of the evicted @page so that a later refault can be detected.
222  */
223 void *workingset_eviction(struct page *page)
224 {
225 	struct pglist_data *pgdat = page_pgdat(page);
226 	struct mem_cgroup *memcg = page_memcg(page);
227 	int memcgid = mem_cgroup_id(memcg);
228 	unsigned long eviction;
229 	struct lruvec *lruvec;
230 
231 	/* Page is fully exclusive and pins page->mem_cgroup */
232 	VM_BUG_ON_PAGE(PageLRU(page), page);
233 	VM_BUG_ON_PAGE(page_count(page), page);
234 	VM_BUG_ON_PAGE(!PageLocked(page), page);
235 
236 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
237 	eviction = atomic_long_inc_return(&lruvec->inactive_age);
238 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
239 }
240 
241 /**
242  * workingset_refault - evaluate the refault of a previously evicted page
243  * @page: the freshly allocated replacement page
244  * @shadow: shadow entry of the evicted page
245  *
246  * Calculates and evaluates the refault distance of the previously
247  * evicted page in the context of the node it was allocated in.
248  */
249 void workingset_refault(struct page *page, void *shadow)
250 {
251 	unsigned long refault_distance;
252 	struct pglist_data *pgdat;
253 	unsigned long active_file;
254 	struct mem_cgroup *memcg;
255 	unsigned long eviction;
256 	struct lruvec *lruvec;
257 	unsigned long refault;
258 	bool workingset;
259 	int memcgid;
260 
261 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
262 
263 	rcu_read_lock();
264 	/*
265 	 * Look up the memcg associated with the stored ID. It might
266 	 * have been deleted since the page's eviction.
267 	 *
268 	 * Note that in rare events the ID could have been recycled
269 	 * for a new cgroup that refaults a shared page. This is
270 	 * impossible to tell from the available data. However, this
271 	 * should be a rare and limited disturbance, and activations
272 	 * are always speculative anyway. Ultimately, it's the aging
273 	 * algorithm's job to shake out the minimum access frequency
274 	 * for the active cache.
275 	 *
276 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
277 	 * would be better if the root_mem_cgroup existed in all
278 	 * configurations instead.
279 	 */
280 	memcg = mem_cgroup_from_id(memcgid);
281 	if (!mem_cgroup_disabled() && !memcg)
282 		goto out;
283 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
284 	refault = atomic_long_read(&lruvec->inactive_age);
285 	active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES);
286 
287 	/*
288 	 * Calculate the refault distance
289 	 *
290 	 * The unsigned subtraction here gives an accurate distance
291 	 * across inactive_age overflows in most cases. There is a
292 	 * special case: usually, shadow entries have a short lifetime
293 	 * and are either refaulted or reclaimed along with the inode
294 	 * before they get too old.  But it is not impossible for the
295 	 * inactive_age to lap a shadow entry in the field, which can
296 	 * then result in a false small refault distance, leading to a
297 	 * false activation should this old entry actually refault
298 	 * again.  However, earlier kernels used to deactivate
299 	 * unconditionally with *every* reclaim invocation for the
300 	 * longest time, so the occasional inappropriate activation
301 	 * leading to pressure on the active list is not a problem.
302 	 */
303 	refault_distance = (refault - eviction) & EVICTION_MASK;
304 
305 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
306 
307 	/*
308 	 * Compare the distance to the existing workingset size. We
309 	 * don't act on pages that couldn't stay resident even if all
310 	 * the memory was available to the page cache.
311 	 */
312 	if (refault_distance > active_file)
313 		goto out;
314 
315 	SetPageActive(page);
316 	atomic_long_inc(&lruvec->inactive_age);
317 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
318 
319 	/* Page was active prior to eviction */
320 	if (workingset) {
321 		SetPageWorkingset(page);
322 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE);
323 	}
324 out:
325 	rcu_read_unlock();
326 }
327 
328 /**
329  * workingset_activation - note a page activation
330  * @page: page that is being activated
331  */
332 void workingset_activation(struct page *page)
333 {
334 	struct mem_cgroup *memcg;
335 	struct lruvec *lruvec;
336 
337 	rcu_read_lock();
338 	/*
339 	 * Filter non-memcg pages here, e.g. unmap can call
340 	 * mark_page_accessed() on VDSO pages.
341 	 *
342 	 * XXX: See workingset_refault() - this should return
343 	 * root_mem_cgroup even for !CONFIG_MEMCG.
344 	 */
345 	memcg = page_memcg_rcu(page);
346 	if (!mem_cgroup_disabled() && !memcg)
347 		goto out;
348 	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
349 	atomic_long_inc(&lruvec->inactive_age);
350 out:
351 	rcu_read_unlock();
352 }
353 
354 /*
355  * Shadow entries reflect the share of the working set that does not
356  * fit into memory, so their number depends on the access pattern of
357  * the workload.  In most cases, they will refault or get reclaimed
358  * along with the inode, but a (malicious) workload that streams
359  * through files with a total size several times that of available
360  * memory, while preventing the inodes from being reclaimed, can
361  * create excessive amounts of shadow nodes.  To keep a lid on this,
362  * track shadow nodes and reclaim them when they grow way past the
363  * point where they would still be useful.
364  */
365 
366 static struct list_lru shadow_nodes;
367 
368 void workingset_update_node(struct xa_node *node)
369 {
370 	/*
371 	 * Track non-empty nodes that contain only shadow entries;
372 	 * unlink those that contain pages or are being freed.
373 	 *
374 	 * Avoid acquiring the list_lru lock when the nodes are
375 	 * already where they should be. The list_empty() test is safe
376 	 * as node->private_list is protected by the i_pages lock.
377 	 */
378 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
379 
380 	if (node->count && node->count == node->nr_values) {
381 		if (list_empty(&node->private_list)) {
382 			list_lru_add(&shadow_nodes, &node->private_list);
383 			__inc_lruvec_slab_state(node, WORKINGSET_NODES);
384 		}
385 	} else {
386 		if (!list_empty(&node->private_list)) {
387 			list_lru_del(&shadow_nodes, &node->private_list);
388 			__dec_lruvec_slab_state(node, WORKINGSET_NODES);
389 		}
390 	}
391 }
392 
393 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
394 					struct shrink_control *sc)
395 {
396 	unsigned long max_nodes;
397 	unsigned long nodes;
398 	unsigned long pages;
399 
400 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
401 
402 	/*
403 	 * Approximate a reasonable limit for the nodes
404 	 * containing shadow entries. We don't need to keep more
405 	 * shadow entries than possible pages on the active list,
406 	 * since refault distances bigger than that are dismissed.
407 	 *
408 	 * The size of the active list converges toward 100% of
409 	 * overall page cache as memory grows, with only a tiny
410 	 * inactive list. Assume the total cache size for that.
411 	 *
412 	 * Nodes might be sparsely populated, with only one shadow
413 	 * entry in the extreme case. Obviously, we cannot keep one
414 	 * node for every eligible shadow entry, so compromise on a
415 	 * worst-case density of 1/8th. Below that, not all eligible
416 	 * refaults can be detected anymore.
417 	 *
418 	 * On 64-bit with 7 xa_nodes per page and 64 slots
419 	 * each, this will reclaim shadow entries when they consume
420 	 * ~1.8% of available memory:
421 	 *
422 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
423 	 */
424 #ifdef CONFIG_MEMCG
425 	if (sc->memcg) {
426 		struct lruvec *lruvec;
427 		int i;
428 
429 		lruvec = mem_cgroup_lruvec(NODE_DATA(sc->nid), sc->memcg);
430 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
431 			pages += lruvec_page_state_local(lruvec,
432 							 NR_LRU_BASE + i);
433 		pages += lruvec_page_state_local(lruvec, NR_SLAB_RECLAIMABLE);
434 		pages += lruvec_page_state_local(lruvec, NR_SLAB_UNRECLAIMABLE);
435 	} else
436 #endif
437 		pages = node_present_pages(sc->nid);
438 
439 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
440 
441 	if (!nodes)
442 		return SHRINK_EMPTY;
443 
444 	if (nodes <= max_nodes)
445 		return 0;
446 	return nodes - max_nodes;
447 }
448 
449 static enum lru_status shadow_lru_isolate(struct list_head *item,
450 					  struct list_lru_one *lru,
451 					  spinlock_t *lru_lock,
452 					  void *arg) __must_hold(lru_lock)
453 {
454 	struct xa_node *node = container_of(item, struct xa_node, private_list);
455 	XA_STATE(xas, node->array, 0);
456 	struct address_space *mapping;
457 	int ret;
458 
459 	/*
460 	 * Page cache insertions and deletions synchroneously maintain
461 	 * the shadow node LRU under the i_pages lock and the
462 	 * lru_lock.  Because the page cache tree is emptied before
463 	 * the inode can be destroyed, holding the lru_lock pins any
464 	 * address_space that has nodes on the LRU.
465 	 *
466 	 * We can then safely transition to the i_pages lock to
467 	 * pin only the address_space of the particular node we want
468 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
469 	 */
470 
471 	mapping = container_of(node->array, struct address_space, i_pages);
472 
473 	/* Coming from the list, invert the lock order */
474 	if (!xa_trylock(&mapping->i_pages)) {
475 		spin_unlock_irq(lru_lock);
476 		ret = LRU_RETRY;
477 		goto out;
478 	}
479 
480 	list_lru_isolate(lru, item);
481 	__dec_lruvec_slab_state(node, WORKINGSET_NODES);
482 
483 	spin_unlock(lru_lock);
484 
485 	/*
486 	 * The nodes should only contain one or more shadow entries,
487 	 * no pages, so we expect to be able to remove them all and
488 	 * delete and free the empty node afterwards.
489 	 */
490 	if (WARN_ON_ONCE(!node->nr_values))
491 		goto out_invalid;
492 	if (WARN_ON_ONCE(node->count != node->nr_values))
493 		goto out_invalid;
494 	mapping->nrexceptional -= node->nr_values;
495 	xas.xa_node = xa_parent_locked(&mapping->i_pages, node);
496 	xas.xa_offset = node->offset;
497 	xas.xa_shift = node->shift + XA_CHUNK_SHIFT;
498 	xas_set_update(&xas, workingset_update_node);
499 	/*
500 	 * We could store a shadow entry here which was the minimum of the
501 	 * shadow entries we were tracking ...
502 	 */
503 	xas_store(&xas, NULL);
504 	__inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
505 
506 out_invalid:
507 	xa_unlock_irq(&mapping->i_pages);
508 	ret = LRU_REMOVED_RETRY;
509 out:
510 	cond_resched();
511 	spin_lock_irq(lru_lock);
512 	return ret;
513 }
514 
515 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
516 				       struct shrink_control *sc)
517 {
518 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
519 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
520 					NULL);
521 }
522 
523 static struct shrinker workingset_shadow_shrinker = {
524 	.count_objects = count_shadow_nodes,
525 	.scan_objects = scan_shadow_nodes,
526 	.seeks = 0, /* ->count reports only fully expendable nodes */
527 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
528 };
529 
530 /*
531  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
532  * i_pages lock.
533  */
534 static struct lock_class_key shadow_nodes_key;
535 
536 static int __init workingset_init(void)
537 {
538 	unsigned int timestamp_bits;
539 	unsigned int max_order;
540 	int ret;
541 
542 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
543 	/*
544 	 * Calculate the eviction bucket size to cover the longest
545 	 * actionable refault distance, which is currently half of
546 	 * memory (totalram_pages/2). However, memory hotplug may add
547 	 * some more pages at runtime, so keep working with up to
548 	 * double the initial memory by using totalram_pages as-is.
549 	 */
550 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
551 	max_order = fls_long(totalram_pages() - 1);
552 	if (max_order > timestamp_bits)
553 		bucket_order = max_order - timestamp_bits;
554 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
555 	       timestamp_bits, max_order, bucket_order);
556 
557 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
558 	if (ret)
559 		goto err;
560 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
561 			      &workingset_shadow_shrinker);
562 	if (ret)
563 		goto err_list_lru;
564 	register_shrinker_prepared(&workingset_shadow_shrinker);
565 	return 0;
566 err_list_lru:
567 	free_prealloced_shrinker(&workingset_shadow_shrinker);
568 err:
569 	return ret;
570 }
571 module_init(workingset_init);
572