xref: /openbmc/linux/mm/vmstat.c (revision f6723b56)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23 
24 #include "internal.h"
25 
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29 
30 static void sum_vm_events(unsigned long *ret)
31 {
32 	int cpu;
33 	int i;
34 
35 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36 
37 	for_each_online_cpu(cpu) {
38 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39 
40 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 			ret[i] += this->event[i];
42 	}
43 }
44 
45 /*
46  * Accumulate the vm event counters across all CPUs.
47  * The result is unavoidably approximate - it can change
48  * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 	get_online_cpus();
53 	sum_vm_events(ret);
54 	put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57 
58 /*
59  * Fold the foreign cpu events into our own.
60  *
61  * This is adding to the events on one processor
62  * but keeps the global counts constant.
63  */
64 void vm_events_fold_cpu(int cpu)
65 {
66 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 	int i;
68 
69 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 		count_vm_events(i, fold_state->event[i]);
71 		fold_state->event[i] = 0;
72 	}
73 }
74 
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76 
77 /*
78  * Manage combined zone based / global counters
79  *
80  * vm_stat contains the global counters
81  */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84 
85 #ifdef CONFIG_SMP
86 
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 	int threshold;
90 	int watermark_distance;
91 
92 	/*
93 	 * As vmstats are not up to date, there is drift between the estimated
94 	 * and real values. For high thresholds and a high number of CPUs, it
95 	 * is possible for the min watermark to be breached while the estimated
96 	 * value looks fine. The pressure threshold is a reduced value such
97 	 * that even the maximum amount of drift will not accidentally breach
98 	 * the min watermark
99 	 */
100 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102 
103 	/*
104 	 * Maximum threshold is 125
105 	 */
106 	threshold = min(125, threshold);
107 
108 	return threshold;
109 }
110 
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 	int threshold;
114 	int mem;	/* memory in 128 MB units */
115 
116 	/*
117 	 * The threshold scales with the number of processors and the amount
118 	 * of memory per zone. More memory means that we can defer updates for
119 	 * longer, more processors could lead to more contention.
120  	 * fls() is used to have a cheap way of logarithmic scaling.
121 	 *
122 	 * Some sample thresholds:
123 	 *
124 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
125 	 * ------------------------------------------------------------------
126 	 * 8		1		1	0.9-1 GB	4
127 	 * 16		2		2	0.9-1 GB	4
128 	 * 20 		2		2	1-2 GB		5
129 	 * 24		2		2	2-4 GB		6
130 	 * 28		2		2	4-8 GB		7
131 	 * 32		2		2	8-16 GB		8
132 	 * 4		2		2	<128M		1
133 	 * 30		4		3	2-4 GB		5
134 	 * 48		4		3	8-16 GB		8
135 	 * 32		8		4	1-2 GB		4
136 	 * 32		8		4	0.9-1GB		4
137 	 * 10		16		5	<128M		1
138 	 * 40		16		5	900M		4
139 	 * 70		64		7	2-4 GB		5
140 	 * 84		64		7	4-8 GB		6
141 	 * 108		512		9	4-8 GB		6
142 	 * 125		1024		10	8-16 GB		8
143 	 * 125		1024		10	16-32 GB	9
144 	 */
145 
146 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147 
148 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149 
150 	/*
151 	 * Maximum threshold is 125
152 	 */
153 	threshold = min(125, threshold);
154 
155 	return threshold;
156 }
157 
158 /*
159  * Refresh the thresholds for each zone.
160  */
161 void refresh_zone_stat_thresholds(void)
162 {
163 	struct zone *zone;
164 	int cpu;
165 	int threshold;
166 
167 	for_each_populated_zone(zone) {
168 		unsigned long max_drift, tolerate_drift;
169 
170 		threshold = calculate_normal_threshold(zone);
171 
172 		for_each_online_cpu(cpu)
173 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 							= threshold;
175 
176 		/*
177 		 * Only set percpu_drift_mark if there is a danger that
178 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 		 * the min watermark could be breached by an allocation
180 		 */
181 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 		max_drift = num_online_cpus() * threshold;
183 		if (max_drift > tolerate_drift)
184 			zone->percpu_drift_mark = high_wmark_pages(zone) +
185 					max_drift;
186 	}
187 }
188 
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 				int (*calculate_pressure)(struct zone *))
191 {
192 	struct zone *zone;
193 	int cpu;
194 	int threshold;
195 	int i;
196 
197 	for (i = 0; i < pgdat->nr_zones; i++) {
198 		zone = &pgdat->node_zones[i];
199 		if (!zone->percpu_drift_mark)
200 			continue;
201 
202 		threshold = (*calculate_pressure)(zone);
203 		for_each_possible_cpu(cpu)
204 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 							= threshold;
206 	}
207 }
208 
209 /*
210  * For use when we know that interrupts are disabled.
211  */
212 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
213 				int delta)
214 {
215 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
216 	s8 __percpu *p = pcp->vm_stat_diff + item;
217 	long x;
218 	long t;
219 
220 	x = delta + __this_cpu_read(*p);
221 
222 	t = __this_cpu_read(pcp->stat_threshold);
223 
224 	if (unlikely(x > t || x < -t)) {
225 		zone_page_state_add(x, zone, item);
226 		x = 0;
227 	}
228 	__this_cpu_write(*p, x);
229 }
230 EXPORT_SYMBOL(__mod_zone_page_state);
231 
232 /*
233  * Optimized increment and decrement functions.
234  *
235  * These are only for a single page and therefore can take a struct page *
236  * argument instead of struct zone *. This allows the inclusion of the code
237  * generated for page_zone(page) into the optimized functions.
238  *
239  * No overflow check is necessary and therefore the differential can be
240  * incremented or decremented in place which may allow the compilers to
241  * generate better code.
242  * The increment or decrement is known and therefore one boundary check can
243  * be omitted.
244  *
245  * NOTE: These functions are very performance sensitive. Change only
246  * with care.
247  *
248  * Some processors have inc/dec instructions that are atomic vs an interrupt.
249  * However, the code must first determine the differential location in a zone
250  * based on the processor number and then inc/dec the counter. There is no
251  * guarantee without disabling preemption that the processor will not change
252  * in between and therefore the atomicity vs. interrupt cannot be exploited
253  * in a useful way here.
254  */
255 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256 {
257 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
258 	s8 __percpu *p = pcp->vm_stat_diff + item;
259 	s8 v, t;
260 
261 	v = __this_cpu_inc_return(*p);
262 	t = __this_cpu_read(pcp->stat_threshold);
263 	if (unlikely(v > t)) {
264 		s8 overstep = t >> 1;
265 
266 		zone_page_state_add(v + overstep, zone, item);
267 		__this_cpu_write(*p, -overstep);
268 	}
269 }
270 
271 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 {
273 	__inc_zone_state(page_zone(page), item);
274 }
275 EXPORT_SYMBOL(__inc_zone_page_state);
276 
277 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278 {
279 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
280 	s8 __percpu *p = pcp->vm_stat_diff + item;
281 	s8 v, t;
282 
283 	v = __this_cpu_dec_return(*p);
284 	t = __this_cpu_read(pcp->stat_threshold);
285 	if (unlikely(v < - t)) {
286 		s8 overstep = t >> 1;
287 
288 		zone_page_state_add(v - overstep, zone, item);
289 		__this_cpu_write(*p, overstep);
290 	}
291 }
292 
293 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294 {
295 	__dec_zone_state(page_zone(page), item);
296 }
297 EXPORT_SYMBOL(__dec_zone_page_state);
298 
299 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 /*
301  * If we have cmpxchg_local support then we do not need to incur the overhead
302  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303  *
304  * mod_state() modifies the zone counter state through atomic per cpu
305  * operations.
306  *
307  * Overstep mode specifies how overstep should handled:
308  *     0       No overstepping
309  *     1       Overstepping half of threshold
310  *     -1      Overstepping minus half of threshold
311 */
312 static inline void mod_state(struct zone *zone,
313        enum zone_stat_item item, int delta, int overstep_mode)
314 {
315 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
316 	s8 __percpu *p = pcp->vm_stat_diff + item;
317 	long o, n, t, z;
318 
319 	do {
320 		z = 0;  /* overflow to zone counters */
321 
322 		/*
323 		 * The fetching of the stat_threshold is racy. We may apply
324 		 * a counter threshold to the wrong the cpu if we get
325 		 * rescheduled while executing here. However, the next
326 		 * counter update will apply the threshold again and
327 		 * therefore bring the counter under the threshold again.
328 		 *
329 		 * Most of the time the thresholds are the same anyways
330 		 * for all cpus in a zone.
331 		 */
332 		t = this_cpu_read(pcp->stat_threshold);
333 
334 		o = this_cpu_read(*p);
335 		n = delta + o;
336 
337 		if (n > t || n < -t) {
338 			int os = overstep_mode * (t >> 1) ;
339 
340 			/* Overflow must be added to zone counters */
341 			z = n + os;
342 			n = -os;
343 		}
344 	} while (this_cpu_cmpxchg(*p, o, n) != o);
345 
346 	if (z)
347 		zone_page_state_add(z, zone, item);
348 }
349 
350 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
351 					int delta)
352 {
353 	mod_state(zone, item, delta, 0);
354 }
355 EXPORT_SYMBOL(mod_zone_page_state);
356 
357 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358 {
359 	mod_state(zone, item, 1, 1);
360 }
361 
362 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363 {
364 	mod_state(page_zone(page), item, 1, 1);
365 }
366 EXPORT_SYMBOL(inc_zone_page_state);
367 
368 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369 {
370 	mod_state(page_zone(page), item, -1, -1);
371 }
372 EXPORT_SYMBOL(dec_zone_page_state);
373 #else
374 /*
375  * Use interrupt disable to serialize counter updates
376  */
377 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
378 					int delta)
379 {
380 	unsigned long flags;
381 
382 	local_irq_save(flags);
383 	__mod_zone_page_state(zone, item, delta);
384 	local_irq_restore(flags);
385 }
386 EXPORT_SYMBOL(mod_zone_page_state);
387 
388 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390 	unsigned long flags;
391 
392 	local_irq_save(flags);
393 	__inc_zone_state(zone, item);
394 	local_irq_restore(flags);
395 }
396 
397 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
398 {
399 	unsigned long flags;
400 	struct zone *zone;
401 
402 	zone = page_zone(page);
403 	local_irq_save(flags);
404 	__inc_zone_state(zone, item);
405 	local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL(inc_zone_page_state);
408 
409 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
410 {
411 	unsigned long flags;
412 
413 	local_irq_save(flags);
414 	__dec_zone_page_state(page, item);
415 	local_irq_restore(flags);
416 }
417 EXPORT_SYMBOL(dec_zone_page_state);
418 #endif
419 
420 static inline void fold_diff(int *diff)
421 {
422 	int i;
423 
424 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
425 		if (diff[i])
426 			atomic_long_add(diff[i], &vm_stat[i]);
427 }
428 
429 /*
430  * Update the zone counters for the current cpu.
431  *
432  * Note that refresh_cpu_vm_stats strives to only access
433  * node local memory. The per cpu pagesets on remote zones are placed
434  * in the memory local to the processor using that pageset. So the
435  * loop over all zones will access a series of cachelines local to
436  * the processor.
437  *
438  * The call to zone_page_state_add updates the cachelines with the
439  * statistics in the remote zone struct as well as the global cachelines
440  * with the global counters. These could cause remote node cache line
441  * bouncing and will have to be only done when necessary.
442  */
443 static void refresh_cpu_vm_stats(void)
444 {
445 	struct zone *zone;
446 	int i;
447 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
448 
449 	for_each_populated_zone(zone) {
450 		struct per_cpu_pageset __percpu *p = zone->pageset;
451 
452 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
453 			int v;
454 
455 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
456 			if (v) {
457 
458 				atomic_long_add(v, &zone->vm_stat[i]);
459 				global_diff[i] += v;
460 #ifdef CONFIG_NUMA
461 				/* 3 seconds idle till flush */
462 				__this_cpu_write(p->expire, 3);
463 #endif
464 			}
465 		}
466 		cond_resched();
467 #ifdef CONFIG_NUMA
468 		/*
469 		 * Deal with draining the remote pageset of this
470 		 * processor
471 		 *
472 		 * Check if there are pages remaining in this pageset
473 		 * if not then there is nothing to expire.
474 		 */
475 		if (!__this_cpu_read(p->expire) ||
476 			       !__this_cpu_read(p->pcp.count))
477 			continue;
478 
479 		/*
480 		 * We never drain zones local to this processor.
481 		 */
482 		if (zone_to_nid(zone) == numa_node_id()) {
483 			__this_cpu_write(p->expire, 0);
484 			continue;
485 		}
486 
487 
488 		if (__this_cpu_dec_return(p->expire))
489 			continue;
490 
491 		if (__this_cpu_read(p->pcp.count))
492 			drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
493 #endif
494 	}
495 	fold_diff(global_diff);
496 }
497 
498 /*
499  * Fold the data for an offline cpu into the global array.
500  * There cannot be any access by the offline cpu and therefore
501  * synchronization is simplified.
502  */
503 void cpu_vm_stats_fold(int cpu)
504 {
505 	struct zone *zone;
506 	int i;
507 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
508 
509 	for_each_populated_zone(zone) {
510 		struct per_cpu_pageset *p;
511 
512 		p = per_cpu_ptr(zone->pageset, cpu);
513 
514 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
515 			if (p->vm_stat_diff[i]) {
516 				int v;
517 
518 				v = p->vm_stat_diff[i];
519 				p->vm_stat_diff[i] = 0;
520 				atomic_long_add(v, &zone->vm_stat[i]);
521 				global_diff[i] += v;
522 			}
523 	}
524 
525 	fold_diff(global_diff);
526 }
527 
528 /*
529  * this is only called if !populated_zone(zone), which implies no other users of
530  * pset->vm_stat_diff[] exsist.
531  */
532 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
533 {
534 	int i;
535 
536 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
537 		if (pset->vm_stat_diff[i]) {
538 			int v = pset->vm_stat_diff[i];
539 			pset->vm_stat_diff[i] = 0;
540 			atomic_long_add(v, &zone->vm_stat[i]);
541 			atomic_long_add(v, &vm_stat[i]);
542 		}
543 }
544 #endif
545 
546 #ifdef CONFIG_NUMA
547 /*
548  * zonelist = the list of zones passed to the allocator
549  * z 	    = the zone from which the allocation occurred.
550  *
551  * Must be called with interrupts disabled.
552  *
553  * When __GFP_OTHER_NODE is set assume the node of the preferred
554  * zone is the local node. This is useful for daemons who allocate
555  * memory on behalf of other processes.
556  */
557 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
558 {
559 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
560 		__inc_zone_state(z, NUMA_HIT);
561 	} else {
562 		__inc_zone_state(z, NUMA_MISS);
563 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
564 	}
565 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
566 			preferred_zone->node : numa_node_id()))
567 		__inc_zone_state(z, NUMA_LOCAL);
568 	else
569 		__inc_zone_state(z, NUMA_OTHER);
570 }
571 #endif
572 
573 #ifdef CONFIG_COMPACTION
574 
575 struct contig_page_info {
576 	unsigned long free_pages;
577 	unsigned long free_blocks_total;
578 	unsigned long free_blocks_suitable;
579 };
580 
581 /*
582  * Calculate the number of free pages in a zone, how many contiguous
583  * pages are free and how many are large enough to satisfy an allocation of
584  * the target size. Note that this function makes no attempt to estimate
585  * how many suitable free blocks there *might* be if MOVABLE pages were
586  * migrated. Calculating that is possible, but expensive and can be
587  * figured out from userspace
588  */
589 static void fill_contig_page_info(struct zone *zone,
590 				unsigned int suitable_order,
591 				struct contig_page_info *info)
592 {
593 	unsigned int order;
594 
595 	info->free_pages = 0;
596 	info->free_blocks_total = 0;
597 	info->free_blocks_suitable = 0;
598 
599 	for (order = 0; order < MAX_ORDER; order++) {
600 		unsigned long blocks;
601 
602 		/* Count number of free blocks */
603 		blocks = zone->free_area[order].nr_free;
604 		info->free_blocks_total += blocks;
605 
606 		/* Count free base pages */
607 		info->free_pages += blocks << order;
608 
609 		/* Count the suitable free blocks */
610 		if (order >= suitable_order)
611 			info->free_blocks_suitable += blocks <<
612 						(order - suitable_order);
613 	}
614 }
615 
616 /*
617  * A fragmentation index only makes sense if an allocation of a requested
618  * size would fail. If that is true, the fragmentation index indicates
619  * whether external fragmentation or a lack of memory was the problem.
620  * The value can be used to determine if page reclaim or compaction
621  * should be used
622  */
623 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
624 {
625 	unsigned long requested = 1UL << order;
626 
627 	if (!info->free_blocks_total)
628 		return 0;
629 
630 	/* Fragmentation index only makes sense when a request would fail */
631 	if (info->free_blocks_suitable)
632 		return -1000;
633 
634 	/*
635 	 * Index is between 0 and 1 so return within 3 decimal places
636 	 *
637 	 * 0 => allocation would fail due to lack of memory
638 	 * 1 => allocation would fail due to fragmentation
639 	 */
640 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
641 }
642 
643 /* Same as __fragmentation index but allocs contig_page_info on stack */
644 int fragmentation_index(struct zone *zone, unsigned int order)
645 {
646 	struct contig_page_info info;
647 
648 	fill_contig_page_info(zone, order, &info);
649 	return __fragmentation_index(order, &info);
650 }
651 #endif
652 
653 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
654 #include <linux/proc_fs.h>
655 #include <linux/seq_file.h>
656 
657 static char * const migratetype_names[MIGRATE_TYPES] = {
658 	"Unmovable",
659 	"Reclaimable",
660 	"Movable",
661 	"Reserve",
662 #ifdef CONFIG_CMA
663 	"CMA",
664 #endif
665 #ifdef CONFIG_MEMORY_ISOLATION
666 	"Isolate",
667 #endif
668 };
669 
670 static void *frag_start(struct seq_file *m, loff_t *pos)
671 {
672 	pg_data_t *pgdat;
673 	loff_t node = *pos;
674 	for (pgdat = first_online_pgdat();
675 	     pgdat && node;
676 	     pgdat = next_online_pgdat(pgdat))
677 		--node;
678 
679 	return pgdat;
680 }
681 
682 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
683 {
684 	pg_data_t *pgdat = (pg_data_t *)arg;
685 
686 	(*pos)++;
687 	return next_online_pgdat(pgdat);
688 }
689 
690 static void frag_stop(struct seq_file *m, void *arg)
691 {
692 }
693 
694 /* Walk all the zones in a node and print using a callback */
695 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
696 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
697 {
698 	struct zone *zone;
699 	struct zone *node_zones = pgdat->node_zones;
700 	unsigned long flags;
701 
702 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
703 		if (!populated_zone(zone))
704 			continue;
705 
706 		spin_lock_irqsave(&zone->lock, flags);
707 		print(m, pgdat, zone);
708 		spin_unlock_irqrestore(&zone->lock, flags);
709 	}
710 }
711 #endif
712 
713 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
714 #ifdef CONFIG_ZONE_DMA
715 #define TEXT_FOR_DMA(xx) xx "_dma",
716 #else
717 #define TEXT_FOR_DMA(xx)
718 #endif
719 
720 #ifdef CONFIG_ZONE_DMA32
721 #define TEXT_FOR_DMA32(xx) xx "_dma32",
722 #else
723 #define TEXT_FOR_DMA32(xx)
724 #endif
725 
726 #ifdef CONFIG_HIGHMEM
727 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
728 #else
729 #define TEXT_FOR_HIGHMEM(xx)
730 #endif
731 
732 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
733 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
734 
735 const char * const vmstat_text[] = {
736 	/* Zoned VM counters */
737 	"nr_free_pages",
738 	"nr_alloc_batch",
739 	"nr_inactive_anon",
740 	"nr_active_anon",
741 	"nr_inactive_file",
742 	"nr_active_file",
743 	"nr_unevictable",
744 	"nr_mlock",
745 	"nr_anon_pages",
746 	"nr_mapped",
747 	"nr_file_pages",
748 	"nr_dirty",
749 	"nr_writeback",
750 	"nr_slab_reclaimable",
751 	"nr_slab_unreclaimable",
752 	"nr_page_table_pages",
753 	"nr_kernel_stack",
754 	"nr_unstable",
755 	"nr_bounce",
756 	"nr_vmscan_write",
757 	"nr_vmscan_immediate_reclaim",
758 	"nr_writeback_temp",
759 	"nr_isolated_anon",
760 	"nr_isolated_file",
761 	"nr_shmem",
762 	"nr_dirtied",
763 	"nr_written",
764 
765 #ifdef CONFIG_NUMA
766 	"numa_hit",
767 	"numa_miss",
768 	"numa_foreign",
769 	"numa_interleave",
770 	"numa_local",
771 	"numa_other",
772 #endif
773 	"nr_anon_transparent_hugepages",
774 	"nr_free_cma",
775 	"nr_dirty_threshold",
776 	"nr_dirty_background_threshold",
777 
778 #ifdef CONFIG_VM_EVENT_COUNTERS
779 	"pgpgin",
780 	"pgpgout",
781 	"pswpin",
782 	"pswpout",
783 
784 	TEXTS_FOR_ZONES("pgalloc")
785 
786 	"pgfree",
787 	"pgactivate",
788 	"pgdeactivate",
789 
790 	"pgfault",
791 	"pgmajfault",
792 
793 	TEXTS_FOR_ZONES("pgrefill")
794 	TEXTS_FOR_ZONES("pgsteal_kswapd")
795 	TEXTS_FOR_ZONES("pgsteal_direct")
796 	TEXTS_FOR_ZONES("pgscan_kswapd")
797 	TEXTS_FOR_ZONES("pgscan_direct")
798 	"pgscan_direct_throttle",
799 
800 #ifdef CONFIG_NUMA
801 	"zone_reclaim_failed",
802 #endif
803 	"pginodesteal",
804 	"slabs_scanned",
805 	"kswapd_inodesteal",
806 	"kswapd_low_wmark_hit_quickly",
807 	"kswapd_high_wmark_hit_quickly",
808 	"pageoutrun",
809 	"allocstall",
810 
811 	"pgrotated",
812 
813 #ifdef CONFIG_NUMA_BALANCING
814 	"numa_pte_updates",
815 	"numa_huge_pte_updates",
816 	"numa_hint_faults",
817 	"numa_hint_faults_local",
818 	"numa_pages_migrated",
819 #endif
820 #ifdef CONFIG_MIGRATION
821 	"pgmigrate_success",
822 	"pgmigrate_fail",
823 #endif
824 #ifdef CONFIG_COMPACTION
825 	"compact_migrate_scanned",
826 	"compact_free_scanned",
827 	"compact_isolated",
828 	"compact_stall",
829 	"compact_fail",
830 	"compact_success",
831 #endif
832 
833 #ifdef CONFIG_HUGETLB_PAGE
834 	"htlb_buddy_alloc_success",
835 	"htlb_buddy_alloc_fail",
836 #endif
837 	"unevictable_pgs_culled",
838 	"unevictable_pgs_scanned",
839 	"unevictable_pgs_rescued",
840 	"unevictable_pgs_mlocked",
841 	"unevictable_pgs_munlocked",
842 	"unevictable_pgs_cleared",
843 	"unevictable_pgs_stranded",
844 
845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
846 	"thp_fault_alloc",
847 	"thp_fault_fallback",
848 	"thp_collapse_alloc",
849 	"thp_collapse_alloc_failed",
850 	"thp_split",
851 	"thp_zero_page_alloc",
852 	"thp_zero_page_alloc_failed",
853 #endif
854 #ifdef CONFIG_DEBUG_TLBFLUSH
855 #ifdef CONFIG_SMP
856 	"nr_tlb_remote_flush",
857 	"nr_tlb_remote_flush_received",
858 #endif /* CONFIG_SMP */
859 	"nr_tlb_local_flush_all",
860 	"nr_tlb_local_flush_one",
861 #endif /* CONFIG_DEBUG_TLBFLUSH */
862 
863 #endif /* CONFIG_VM_EVENTS_COUNTERS */
864 };
865 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
866 
867 
868 #ifdef CONFIG_PROC_FS
869 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
870 						struct zone *zone)
871 {
872 	int order;
873 
874 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
875 	for (order = 0; order < MAX_ORDER; ++order)
876 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
877 	seq_putc(m, '\n');
878 }
879 
880 /*
881  * This walks the free areas for each zone.
882  */
883 static int frag_show(struct seq_file *m, void *arg)
884 {
885 	pg_data_t *pgdat = (pg_data_t *)arg;
886 	walk_zones_in_node(m, pgdat, frag_show_print);
887 	return 0;
888 }
889 
890 static void pagetypeinfo_showfree_print(struct seq_file *m,
891 					pg_data_t *pgdat, struct zone *zone)
892 {
893 	int order, mtype;
894 
895 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
896 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
897 					pgdat->node_id,
898 					zone->name,
899 					migratetype_names[mtype]);
900 		for (order = 0; order < MAX_ORDER; ++order) {
901 			unsigned long freecount = 0;
902 			struct free_area *area;
903 			struct list_head *curr;
904 
905 			area = &(zone->free_area[order]);
906 
907 			list_for_each(curr, &area->free_list[mtype])
908 				freecount++;
909 			seq_printf(m, "%6lu ", freecount);
910 		}
911 		seq_putc(m, '\n');
912 	}
913 }
914 
915 /* Print out the free pages at each order for each migatetype */
916 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
917 {
918 	int order;
919 	pg_data_t *pgdat = (pg_data_t *)arg;
920 
921 	/* Print header */
922 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
923 	for (order = 0; order < MAX_ORDER; ++order)
924 		seq_printf(m, "%6d ", order);
925 	seq_putc(m, '\n');
926 
927 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
928 
929 	return 0;
930 }
931 
932 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
933 					pg_data_t *pgdat, struct zone *zone)
934 {
935 	int mtype;
936 	unsigned long pfn;
937 	unsigned long start_pfn = zone->zone_start_pfn;
938 	unsigned long end_pfn = zone_end_pfn(zone);
939 	unsigned long count[MIGRATE_TYPES] = { 0, };
940 
941 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
942 		struct page *page;
943 
944 		if (!pfn_valid(pfn))
945 			continue;
946 
947 		page = pfn_to_page(pfn);
948 
949 		/* Watch for unexpected holes punched in the memmap */
950 		if (!memmap_valid_within(pfn, page, zone))
951 			continue;
952 
953 		mtype = get_pageblock_migratetype(page);
954 
955 		if (mtype < MIGRATE_TYPES)
956 			count[mtype]++;
957 	}
958 
959 	/* Print counts */
960 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
961 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
962 		seq_printf(m, "%12lu ", count[mtype]);
963 	seq_putc(m, '\n');
964 }
965 
966 /* Print out the free pages at each order for each migratetype */
967 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
968 {
969 	int mtype;
970 	pg_data_t *pgdat = (pg_data_t *)arg;
971 
972 	seq_printf(m, "\n%-23s", "Number of blocks type ");
973 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
974 		seq_printf(m, "%12s ", migratetype_names[mtype]);
975 	seq_putc(m, '\n');
976 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
977 
978 	return 0;
979 }
980 
981 /*
982  * This prints out statistics in relation to grouping pages by mobility.
983  * It is expensive to collect so do not constantly read the file.
984  */
985 static int pagetypeinfo_show(struct seq_file *m, void *arg)
986 {
987 	pg_data_t *pgdat = (pg_data_t *)arg;
988 
989 	/* check memoryless node */
990 	if (!node_state(pgdat->node_id, N_MEMORY))
991 		return 0;
992 
993 	seq_printf(m, "Page block order: %d\n", pageblock_order);
994 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
995 	seq_putc(m, '\n');
996 	pagetypeinfo_showfree(m, pgdat);
997 	pagetypeinfo_showblockcount(m, pgdat);
998 
999 	return 0;
1000 }
1001 
1002 static const struct seq_operations fragmentation_op = {
1003 	.start	= frag_start,
1004 	.next	= frag_next,
1005 	.stop	= frag_stop,
1006 	.show	= frag_show,
1007 };
1008 
1009 static int fragmentation_open(struct inode *inode, struct file *file)
1010 {
1011 	return seq_open(file, &fragmentation_op);
1012 }
1013 
1014 static const struct file_operations fragmentation_file_operations = {
1015 	.open		= fragmentation_open,
1016 	.read		= seq_read,
1017 	.llseek		= seq_lseek,
1018 	.release	= seq_release,
1019 };
1020 
1021 static const struct seq_operations pagetypeinfo_op = {
1022 	.start	= frag_start,
1023 	.next	= frag_next,
1024 	.stop	= frag_stop,
1025 	.show	= pagetypeinfo_show,
1026 };
1027 
1028 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1029 {
1030 	return seq_open(file, &pagetypeinfo_op);
1031 }
1032 
1033 static const struct file_operations pagetypeinfo_file_ops = {
1034 	.open		= pagetypeinfo_open,
1035 	.read		= seq_read,
1036 	.llseek		= seq_lseek,
1037 	.release	= seq_release,
1038 };
1039 
1040 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1041 							struct zone *zone)
1042 {
1043 	int i;
1044 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1045 	seq_printf(m,
1046 		   "\n  pages free     %lu"
1047 		   "\n        min      %lu"
1048 		   "\n        low      %lu"
1049 		   "\n        high     %lu"
1050 		   "\n        scanned  %lu"
1051 		   "\n        spanned  %lu"
1052 		   "\n        present  %lu"
1053 		   "\n        managed  %lu",
1054 		   zone_page_state(zone, NR_FREE_PAGES),
1055 		   min_wmark_pages(zone),
1056 		   low_wmark_pages(zone),
1057 		   high_wmark_pages(zone),
1058 		   zone->pages_scanned,
1059 		   zone->spanned_pages,
1060 		   zone->present_pages,
1061 		   zone->managed_pages);
1062 
1063 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1064 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1065 				zone_page_state(zone, i));
1066 
1067 	seq_printf(m,
1068 		   "\n        protection: (%lu",
1069 		   zone->lowmem_reserve[0]);
1070 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1071 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1072 	seq_printf(m,
1073 		   ")"
1074 		   "\n  pagesets");
1075 	for_each_online_cpu(i) {
1076 		struct per_cpu_pageset *pageset;
1077 
1078 		pageset = per_cpu_ptr(zone->pageset, i);
1079 		seq_printf(m,
1080 			   "\n    cpu: %i"
1081 			   "\n              count: %i"
1082 			   "\n              high:  %i"
1083 			   "\n              batch: %i",
1084 			   i,
1085 			   pageset->pcp.count,
1086 			   pageset->pcp.high,
1087 			   pageset->pcp.batch);
1088 #ifdef CONFIG_SMP
1089 		seq_printf(m, "\n  vm stats threshold: %d",
1090 				pageset->stat_threshold);
1091 #endif
1092 	}
1093 	seq_printf(m,
1094 		   "\n  all_unreclaimable: %u"
1095 		   "\n  start_pfn:         %lu"
1096 		   "\n  inactive_ratio:    %u",
1097 		   !zone_reclaimable(zone),
1098 		   zone->zone_start_pfn,
1099 		   zone->inactive_ratio);
1100 	seq_putc(m, '\n');
1101 }
1102 
1103 /*
1104  * Output information about zones in @pgdat.
1105  */
1106 static int zoneinfo_show(struct seq_file *m, void *arg)
1107 {
1108 	pg_data_t *pgdat = (pg_data_t *)arg;
1109 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1110 	return 0;
1111 }
1112 
1113 static const struct seq_operations zoneinfo_op = {
1114 	.start	= frag_start, /* iterate over all zones. The same as in
1115 			       * fragmentation. */
1116 	.next	= frag_next,
1117 	.stop	= frag_stop,
1118 	.show	= zoneinfo_show,
1119 };
1120 
1121 static int zoneinfo_open(struct inode *inode, struct file *file)
1122 {
1123 	return seq_open(file, &zoneinfo_op);
1124 }
1125 
1126 static const struct file_operations proc_zoneinfo_file_operations = {
1127 	.open		= zoneinfo_open,
1128 	.read		= seq_read,
1129 	.llseek		= seq_lseek,
1130 	.release	= seq_release,
1131 };
1132 
1133 enum writeback_stat_item {
1134 	NR_DIRTY_THRESHOLD,
1135 	NR_DIRTY_BG_THRESHOLD,
1136 	NR_VM_WRITEBACK_STAT_ITEMS,
1137 };
1138 
1139 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1140 {
1141 	unsigned long *v;
1142 	int i, stat_items_size;
1143 
1144 	if (*pos >= ARRAY_SIZE(vmstat_text))
1145 		return NULL;
1146 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1147 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1148 
1149 #ifdef CONFIG_VM_EVENT_COUNTERS
1150 	stat_items_size += sizeof(struct vm_event_state);
1151 #endif
1152 
1153 	v = kmalloc(stat_items_size, GFP_KERNEL);
1154 	m->private = v;
1155 	if (!v)
1156 		return ERR_PTR(-ENOMEM);
1157 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1158 		v[i] = global_page_state(i);
1159 	v += NR_VM_ZONE_STAT_ITEMS;
1160 
1161 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1162 			    v + NR_DIRTY_THRESHOLD);
1163 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1164 
1165 #ifdef CONFIG_VM_EVENT_COUNTERS
1166 	all_vm_events(v);
1167 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1168 	v[PGPGOUT] /= 2;
1169 #endif
1170 	return (unsigned long *)m->private + *pos;
1171 }
1172 
1173 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1174 {
1175 	(*pos)++;
1176 	if (*pos >= ARRAY_SIZE(vmstat_text))
1177 		return NULL;
1178 	return (unsigned long *)m->private + *pos;
1179 }
1180 
1181 static int vmstat_show(struct seq_file *m, void *arg)
1182 {
1183 	unsigned long *l = arg;
1184 	unsigned long off = l - (unsigned long *)m->private;
1185 
1186 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1187 	return 0;
1188 }
1189 
1190 static void vmstat_stop(struct seq_file *m, void *arg)
1191 {
1192 	kfree(m->private);
1193 	m->private = NULL;
1194 }
1195 
1196 static const struct seq_operations vmstat_op = {
1197 	.start	= vmstat_start,
1198 	.next	= vmstat_next,
1199 	.stop	= vmstat_stop,
1200 	.show	= vmstat_show,
1201 };
1202 
1203 static int vmstat_open(struct inode *inode, struct file *file)
1204 {
1205 	return seq_open(file, &vmstat_op);
1206 }
1207 
1208 static const struct file_operations proc_vmstat_file_operations = {
1209 	.open		= vmstat_open,
1210 	.read		= seq_read,
1211 	.llseek		= seq_lseek,
1212 	.release	= seq_release,
1213 };
1214 #endif /* CONFIG_PROC_FS */
1215 
1216 #ifdef CONFIG_SMP
1217 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1218 int sysctl_stat_interval __read_mostly = HZ;
1219 
1220 static void vmstat_update(struct work_struct *w)
1221 {
1222 	refresh_cpu_vm_stats();
1223 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1224 		round_jiffies_relative(sysctl_stat_interval));
1225 }
1226 
1227 static void start_cpu_timer(int cpu)
1228 {
1229 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1230 
1231 	INIT_DEFERRABLE_WORK(work, vmstat_update);
1232 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1233 }
1234 
1235 static void vmstat_cpu_dead(int node)
1236 {
1237 	int cpu;
1238 
1239 	get_online_cpus();
1240 	for_each_online_cpu(cpu)
1241 		if (cpu_to_node(cpu) == node)
1242 			goto end;
1243 
1244 	node_clear_state(node, N_CPU);
1245 end:
1246 	put_online_cpus();
1247 }
1248 
1249 /*
1250  * Use the cpu notifier to insure that the thresholds are recalculated
1251  * when necessary.
1252  */
1253 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1254 		unsigned long action,
1255 		void *hcpu)
1256 {
1257 	long cpu = (long)hcpu;
1258 
1259 	switch (action) {
1260 	case CPU_ONLINE:
1261 	case CPU_ONLINE_FROZEN:
1262 		refresh_zone_stat_thresholds();
1263 		start_cpu_timer(cpu);
1264 		node_set_state(cpu_to_node(cpu), N_CPU);
1265 		break;
1266 	case CPU_DOWN_PREPARE:
1267 	case CPU_DOWN_PREPARE_FROZEN:
1268 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1269 		per_cpu(vmstat_work, cpu).work.func = NULL;
1270 		break;
1271 	case CPU_DOWN_FAILED:
1272 	case CPU_DOWN_FAILED_FROZEN:
1273 		start_cpu_timer(cpu);
1274 		break;
1275 	case CPU_DEAD:
1276 	case CPU_DEAD_FROZEN:
1277 		refresh_zone_stat_thresholds();
1278 		vmstat_cpu_dead(cpu_to_node(cpu));
1279 		break;
1280 	default:
1281 		break;
1282 	}
1283 	return NOTIFY_OK;
1284 }
1285 
1286 static struct notifier_block vmstat_notifier =
1287 	{ &vmstat_cpuup_callback, NULL, 0 };
1288 #endif
1289 
1290 static int __init setup_vmstat(void)
1291 {
1292 #ifdef CONFIG_SMP
1293 	int cpu;
1294 
1295 	register_cpu_notifier(&vmstat_notifier);
1296 
1297 	get_online_cpus();
1298 	for_each_online_cpu(cpu) {
1299 		start_cpu_timer(cpu);
1300 		node_set_state(cpu_to_node(cpu), N_CPU);
1301 	}
1302 	put_online_cpus();
1303 #endif
1304 #ifdef CONFIG_PROC_FS
1305 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1306 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1307 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1308 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1309 #endif
1310 	return 0;
1311 }
1312 module_init(setup_vmstat)
1313 
1314 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1315 #include <linux/debugfs.h>
1316 
1317 
1318 /*
1319  * Return an index indicating how much of the available free memory is
1320  * unusable for an allocation of the requested size.
1321  */
1322 static int unusable_free_index(unsigned int order,
1323 				struct contig_page_info *info)
1324 {
1325 	/* No free memory is interpreted as all free memory is unusable */
1326 	if (info->free_pages == 0)
1327 		return 1000;
1328 
1329 	/*
1330 	 * Index should be a value between 0 and 1. Return a value to 3
1331 	 * decimal places.
1332 	 *
1333 	 * 0 => no fragmentation
1334 	 * 1 => high fragmentation
1335 	 */
1336 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1337 
1338 }
1339 
1340 static void unusable_show_print(struct seq_file *m,
1341 					pg_data_t *pgdat, struct zone *zone)
1342 {
1343 	unsigned int order;
1344 	int index;
1345 	struct contig_page_info info;
1346 
1347 	seq_printf(m, "Node %d, zone %8s ",
1348 				pgdat->node_id,
1349 				zone->name);
1350 	for (order = 0; order < MAX_ORDER; ++order) {
1351 		fill_contig_page_info(zone, order, &info);
1352 		index = unusable_free_index(order, &info);
1353 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1354 	}
1355 
1356 	seq_putc(m, '\n');
1357 }
1358 
1359 /*
1360  * Display unusable free space index
1361  *
1362  * The unusable free space index measures how much of the available free
1363  * memory cannot be used to satisfy an allocation of a given size and is a
1364  * value between 0 and 1. The higher the value, the more of free memory is
1365  * unusable and by implication, the worse the external fragmentation is. This
1366  * can be expressed as a percentage by multiplying by 100.
1367  */
1368 static int unusable_show(struct seq_file *m, void *arg)
1369 {
1370 	pg_data_t *pgdat = (pg_data_t *)arg;
1371 
1372 	/* check memoryless node */
1373 	if (!node_state(pgdat->node_id, N_MEMORY))
1374 		return 0;
1375 
1376 	walk_zones_in_node(m, pgdat, unusable_show_print);
1377 
1378 	return 0;
1379 }
1380 
1381 static const struct seq_operations unusable_op = {
1382 	.start	= frag_start,
1383 	.next	= frag_next,
1384 	.stop	= frag_stop,
1385 	.show	= unusable_show,
1386 };
1387 
1388 static int unusable_open(struct inode *inode, struct file *file)
1389 {
1390 	return seq_open(file, &unusable_op);
1391 }
1392 
1393 static const struct file_operations unusable_file_ops = {
1394 	.open		= unusable_open,
1395 	.read		= seq_read,
1396 	.llseek		= seq_lseek,
1397 	.release	= seq_release,
1398 };
1399 
1400 static void extfrag_show_print(struct seq_file *m,
1401 					pg_data_t *pgdat, struct zone *zone)
1402 {
1403 	unsigned int order;
1404 	int index;
1405 
1406 	/* Alloc on stack as interrupts are disabled for zone walk */
1407 	struct contig_page_info info;
1408 
1409 	seq_printf(m, "Node %d, zone %8s ",
1410 				pgdat->node_id,
1411 				zone->name);
1412 	for (order = 0; order < MAX_ORDER; ++order) {
1413 		fill_contig_page_info(zone, order, &info);
1414 		index = __fragmentation_index(order, &info);
1415 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1416 	}
1417 
1418 	seq_putc(m, '\n');
1419 }
1420 
1421 /*
1422  * Display fragmentation index for orders that allocations would fail for
1423  */
1424 static int extfrag_show(struct seq_file *m, void *arg)
1425 {
1426 	pg_data_t *pgdat = (pg_data_t *)arg;
1427 
1428 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1429 
1430 	return 0;
1431 }
1432 
1433 static const struct seq_operations extfrag_op = {
1434 	.start	= frag_start,
1435 	.next	= frag_next,
1436 	.stop	= frag_stop,
1437 	.show	= extfrag_show,
1438 };
1439 
1440 static int extfrag_open(struct inode *inode, struct file *file)
1441 {
1442 	return seq_open(file, &extfrag_op);
1443 }
1444 
1445 static const struct file_operations extfrag_file_ops = {
1446 	.open		= extfrag_open,
1447 	.read		= seq_read,
1448 	.llseek		= seq_lseek,
1449 	.release	= seq_release,
1450 };
1451 
1452 static int __init extfrag_debug_init(void)
1453 {
1454 	struct dentry *extfrag_debug_root;
1455 
1456 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1457 	if (!extfrag_debug_root)
1458 		return -ENOMEM;
1459 
1460 	if (!debugfs_create_file("unusable_index", 0444,
1461 			extfrag_debug_root, NULL, &unusable_file_ops))
1462 		goto fail;
1463 
1464 	if (!debugfs_create_file("extfrag_index", 0444,
1465 			extfrag_debug_root, NULL, &extfrag_file_ops))
1466 		goto fail;
1467 
1468 	return 0;
1469 fail:
1470 	debugfs_remove_recursive(extfrag_debug_root);
1471 	return -ENOMEM;
1472 }
1473 
1474 module_init(extfrag_debug_init);
1475 #endif
1476