xref: /openbmc/linux/mm/vmstat.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/vmstat.h>
17 #include <linux/sched.h>
18 
19 #ifdef CONFIG_VM_EVENT_COUNTERS
20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
21 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 
23 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 {
25 	int cpu;
26 	int i;
27 
28 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 
30 	for_each_cpu_mask_nr(cpu, *cpumask) {
31 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32 
33 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
34 			ret[i] += this->event[i];
35 	}
36 }
37 
38 /*
39  * Accumulate the vm event counters across all CPUs.
40  * The result is unavoidably approximate - it can change
41  * during and after execution of this function.
42 */
43 void all_vm_events(unsigned long *ret)
44 {
45 	get_online_cpus();
46 	sum_vm_events(ret, &cpu_online_map);
47 	put_online_cpus();
48 }
49 EXPORT_SYMBOL_GPL(all_vm_events);
50 
51 #ifdef CONFIG_HOTPLUG
52 /*
53  * Fold the foreign cpu events into our own.
54  *
55  * This is adding to the events on one processor
56  * but keeps the global counts constant.
57  */
58 void vm_events_fold_cpu(int cpu)
59 {
60 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
61 	int i;
62 
63 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
64 		count_vm_events(i, fold_state->event[i]);
65 		fold_state->event[i] = 0;
66 	}
67 }
68 #endif /* CONFIG_HOTPLUG */
69 
70 #endif /* CONFIG_VM_EVENT_COUNTERS */
71 
72 /*
73  * Manage combined zone based / global counters
74  *
75  * vm_stat contains the global counters
76  */
77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
78 EXPORT_SYMBOL(vm_stat);
79 
80 #ifdef CONFIG_SMP
81 
82 static int calculate_threshold(struct zone *zone)
83 {
84 	int threshold;
85 	int mem;	/* memory in 128 MB units */
86 
87 	/*
88 	 * The threshold scales with the number of processors and the amount
89 	 * of memory per zone. More memory means that we can defer updates for
90 	 * longer, more processors could lead to more contention.
91  	 * fls() is used to have a cheap way of logarithmic scaling.
92 	 *
93 	 * Some sample thresholds:
94 	 *
95 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
96 	 * ------------------------------------------------------------------
97 	 * 8		1		1	0.9-1 GB	4
98 	 * 16		2		2	0.9-1 GB	4
99 	 * 20 		2		2	1-2 GB		5
100 	 * 24		2		2	2-4 GB		6
101 	 * 28		2		2	4-8 GB		7
102 	 * 32		2		2	8-16 GB		8
103 	 * 4		2		2	<128M		1
104 	 * 30		4		3	2-4 GB		5
105 	 * 48		4		3	8-16 GB		8
106 	 * 32		8		4	1-2 GB		4
107 	 * 32		8		4	0.9-1GB		4
108 	 * 10		16		5	<128M		1
109 	 * 40		16		5	900M		4
110 	 * 70		64		7	2-4 GB		5
111 	 * 84		64		7	4-8 GB		6
112 	 * 108		512		9	4-8 GB		6
113 	 * 125		1024		10	8-16 GB		8
114 	 * 125		1024		10	16-32 GB	9
115 	 */
116 
117 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
118 
119 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
120 
121 	/*
122 	 * Maximum threshold is 125
123 	 */
124 	threshold = min(125, threshold);
125 
126 	return threshold;
127 }
128 
129 /*
130  * Refresh the thresholds for each zone.
131  */
132 static void refresh_zone_stat_thresholds(void)
133 {
134 	struct zone *zone;
135 	int cpu;
136 	int threshold;
137 
138 	for_each_zone(zone) {
139 
140 		if (!zone->present_pages)
141 			continue;
142 
143 		threshold = calculate_threshold(zone);
144 
145 		for_each_online_cpu(cpu)
146 			zone_pcp(zone, cpu)->stat_threshold = threshold;
147 	}
148 }
149 
150 /*
151  * For use when we know that interrupts are disabled.
152  */
153 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
154 				int delta)
155 {
156 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
157 	s8 *p = pcp->vm_stat_diff + item;
158 	long x;
159 
160 	x = delta + *p;
161 
162 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 		zone_page_state_add(x, zone, item);
164 		x = 0;
165 	}
166 	*p = x;
167 }
168 EXPORT_SYMBOL(__mod_zone_page_state);
169 
170 /*
171  * For an unknown interrupt state
172  */
173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
174 					int delta)
175 {
176 	unsigned long flags;
177 
178 	local_irq_save(flags);
179 	__mod_zone_page_state(zone, item, delta);
180 	local_irq_restore(flags);
181 }
182 EXPORT_SYMBOL(mod_zone_page_state);
183 
184 /*
185  * Optimized increment and decrement functions.
186  *
187  * These are only for a single page and therefore can take a struct page *
188  * argument instead of struct zone *. This allows the inclusion of the code
189  * generated for page_zone(page) into the optimized functions.
190  *
191  * No overflow check is necessary and therefore the differential can be
192  * incremented or decremented in place which may allow the compilers to
193  * generate better code.
194  * The increment or decrement is known and therefore one boundary check can
195  * be omitted.
196  *
197  * NOTE: These functions are very performance sensitive. Change only
198  * with care.
199  *
200  * Some processors have inc/dec instructions that are atomic vs an interrupt.
201  * However, the code must first determine the differential location in a zone
202  * based on the processor number and then inc/dec the counter. There is no
203  * guarantee without disabling preemption that the processor will not change
204  * in between and therefore the atomicity vs. interrupt cannot be exploited
205  * in a useful way here.
206  */
207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 {
209 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
210 	s8 *p = pcp->vm_stat_diff + item;
211 
212 	(*p)++;
213 
214 	if (unlikely(*p > pcp->stat_threshold)) {
215 		int overstep = pcp->stat_threshold / 2;
216 
217 		zone_page_state_add(*p + overstep, zone, item);
218 		*p = -overstep;
219 	}
220 }
221 
222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 {
224 	__inc_zone_state(page_zone(page), item);
225 }
226 EXPORT_SYMBOL(__inc_zone_page_state);
227 
228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 {
230 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
231 	s8 *p = pcp->vm_stat_diff + item;
232 
233 	(*p)--;
234 
235 	if (unlikely(*p < - pcp->stat_threshold)) {
236 		int overstep = pcp->stat_threshold / 2;
237 
238 		zone_page_state_add(*p - overstep, zone, item);
239 		*p = overstep;
240 	}
241 }
242 
243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 {
245 	__dec_zone_state(page_zone(page), item);
246 }
247 EXPORT_SYMBOL(__dec_zone_page_state);
248 
249 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 {
251 	unsigned long flags;
252 
253 	local_irq_save(flags);
254 	__inc_zone_state(zone, item);
255 	local_irq_restore(flags);
256 }
257 
258 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 	unsigned long flags;
261 	struct zone *zone;
262 
263 	zone = page_zone(page);
264 	local_irq_save(flags);
265 	__inc_zone_state(zone, item);
266 	local_irq_restore(flags);
267 }
268 EXPORT_SYMBOL(inc_zone_page_state);
269 
270 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	unsigned long flags;
273 
274 	local_irq_save(flags);
275 	__dec_zone_page_state(page, item);
276 	local_irq_restore(flags);
277 }
278 EXPORT_SYMBOL(dec_zone_page_state);
279 
280 /*
281  * Update the zone counters for one cpu.
282  *
283  * The cpu specified must be either the current cpu or a processor that
284  * is not online. If it is the current cpu then the execution thread must
285  * be pinned to the current cpu.
286  *
287  * Note that refresh_cpu_vm_stats strives to only access
288  * node local memory. The per cpu pagesets on remote zones are placed
289  * in the memory local to the processor using that pageset. So the
290  * loop over all zones will access a series of cachelines local to
291  * the processor.
292  *
293  * The call to zone_page_state_add updates the cachelines with the
294  * statistics in the remote zone struct as well as the global cachelines
295  * with the global counters. These could cause remote node cache line
296  * bouncing and will have to be only done when necessary.
297  */
298 void refresh_cpu_vm_stats(int cpu)
299 {
300 	struct zone *zone;
301 	int i;
302 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303 
304 	for_each_zone(zone) {
305 		struct per_cpu_pageset *p;
306 
307 		if (!populated_zone(zone))
308 			continue;
309 
310 		p = zone_pcp(zone, cpu);
311 
312 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313 			if (p->vm_stat_diff[i]) {
314 				unsigned long flags;
315 				int v;
316 
317 				local_irq_save(flags);
318 				v = p->vm_stat_diff[i];
319 				p->vm_stat_diff[i] = 0;
320 				local_irq_restore(flags);
321 				atomic_long_add(v, &zone->vm_stat[i]);
322 				global_diff[i] += v;
323 #ifdef CONFIG_NUMA
324 				/* 3 seconds idle till flush */
325 				p->expire = 3;
326 #endif
327 			}
328 		cond_resched();
329 #ifdef CONFIG_NUMA
330 		/*
331 		 * Deal with draining the remote pageset of this
332 		 * processor
333 		 *
334 		 * Check if there are pages remaining in this pageset
335 		 * if not then there is nothing to expire.
336 		 */
337 		if (!p->expire || !p->pcp.count)
338 			continue;
339 
340 		/*
341 		 * We never drain zones local to this processor.
342 		 */
343 		if (zone_to_nid(zone) == numa_node_id()) {
344 			p->expire = 0;
345 			continue;
346 		}
347 
348 		p->expire--;
349 		if (p->expire)
350 			continue;
351 
352 		if (p->pcp.count)
353 			drain_zone_pages(zone, &p->pcp);
354 #endif
355 	}
356 
357 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
358 		if (global_diff[i])
359 			atomic_long_add(global_diff[i], &vm_stat[i]);
360 }
361 
362 #endif
363 
364 #ifdef CONFIG_NUMA
365 /*
366  * zonelist = the list of zones passed to the allocator
367  * z 	    = the zone from which the allocation occurred.
368  *
369  * Must be called with interrupts disabled.
370  */
371 void zone_statistics(struct zone *preferred_zone, struct zone *z)
372 {
373 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
374 		__inc_zone_state(z, NUMA_HIT);
375 	} else {
376 		__inc_zone_state(z, NUMA_MISS);
377 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
378 	}
379 	if (z->node == numa_node_id())
380 		__inc_zone_state(z, NUMA_LOCAL);
381 	else
382 		__inc_zone_state(z, NUMA_OTHER);
383 }
384 #endif
385 
386 #ifdef CONFIG_PROC_FS
387 
388 #include <linux/seq_file.h>
389 
390 static char * const migratetype_names[MIGRATE_TYPES] = {
391 	"Unmovable",
392 	"Reclaimable",
393 	"Movable",
394 	"Reserve",
395 	"Isolate",
396 };
397 
398 static void *frag_start(struct seq_file *m, loff_t *pos)
399 {
400 	pg_data_t *pgdat;
401 	loff_t node = *pos;
402 	for (pgdat = first_online_pgdat();
403 	     pgdat && node;
404 	     pgdat = next_online_pgdat(pgdat))
405 		--node;
406 
407 	return pgdat;
408 }
409 
410 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
411 {
412 	pg_data_t *pgdat = (pg_data_t *)arg;
413 
414 	(*pos)++;
415 	return next_online_pgdat(pgdat);
416 }
417 
418 static void frag_stop(struct seq_file *m, void *arg)
419 {
420 }
421 
422 /* Walk all the zones in a node and print using a callback */
423 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
424 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
425 {
426 	struct zone *zone;
427 	struct zone *node_zones = pgdat->node_zones;
428 	unsigned long flags;
429 
430 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
431 		if (!populated_zone(zone))
432 			continue;
433 
434 		spin_lock_irqsave(&zone->lock, flags);
435 		print(m, pgdat, zone);
436 		spin_unlock_irqrestore(&zone->lock, flags);
437 	}
438 }
439 
440 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
441 						struct zone *zone)
442 {
443 	int order;
444 
445 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
446 	for (order = 0; order < MAX_ORDER; ++order)
447 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
448 	seq_putc(m, '\n');
449 }
450 
451 /*
452  * This walks the free areas for each zone.
453  */
454 static int frag_show(struct seq_file *m, void *arg)
455 {
456 	pg_data_t *pgdat = (pg_data_t *)arg;
457 	walk_zones_in_node(m, pgdat, frag_show_print);
458 	return 0;
459 }
460 
461 static void pagetypeinfo_showfree_print(struct seq_file *m,
462 					pg_data_t *pgdat, struct zone *zone)
463 {
464 	int order, mtype;
465 
466 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
467 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
468 					pgdat->node_id,
469 					zone->name,
470 					migratetype_names[mtype]);
471 		for (order = 0; order < MAX_ORDER; ++order) {
472 			unsigned long freecount = 0;
473 			struct free_area *area;
474 			struct list_head *curr;
475 
476 			area = &(zone->free_area[order]);
477 
478 			list_for_each(curr, &area->free_list[mtype])
479 				freecount++;
480 			seq_printf(m, "%6lu ", freecount);
481 		}
482 		seq_putc(m, '\n');
483 	}
484 }
485 
486 /* Print out the free pages at each order for each migatetype */
487 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
488 {
489 	int order;
490 	pg_data_t *pgdat = (pg_data_t *)arg;
491 
492 	/* Print header */
493 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
494 	for (order = 0; order < MAX_ORDER; ++order)
495 		seq_printf(m, "%6d ", order);
496 	seq_putc(m, '\n');
497 
498 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
499 
500 	return 0;
501 }
502 
503 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
504 					pg_data_t *pgdat, struct zone *zone)
505 {
506 	int mtype;
507 	unsigned long pfn;
508 	unsigned long start_pfn = zone->zone_start_pfn;
509 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
510 	unsigned long count[MIGRATE_TYPES] = { 0, };
511 
512 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
513 		struct page *page;
514 
515 		if (!pfn_valid(pfn))
516 			continue;
517 
518 		page = pfn_to_page(pfn);
519 		mtype = get_pageblock_migratetype(page);
520 
521 		count[mtype]++;
522 	}
523 
524 	/* Print counts */
525 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
526 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
527 		seq_printf(m, "%12lu ", count[mtype]);
528 	seq_putc(m, '\n');
529 }
530 
531 /* Print out the free pages at each order for each migratetype */
532 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
533 {
534 	int mtype;
535 	pg_data_t *pgdat = (pg_data_t *)arg;
536 
537 	seq_printf(m, "\n%-23s", "Number of blocks type ");
538 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
539 		seq_printf(m, "%12s ", migratetype_names[mtype]);
540 	seq_putc(m, '\n');
541 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
542 
543 	return 0;
544 }
545 
546 /*
547  * This prints out statistics in relation to grouping pages by mobility.
548  * It is expensive to collect so do not constantly read the file.
549  */
550 static int pagetypeinfo_show(struct seq_file *m, void *arg)
551 {
552 	pg_data_t *pgdat = (pg_data_t *)arg;
553 
554 	/* check memoryless node */
555 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
556 		return 0;
557 
558 	seq_printf(m, "Page block order: %d\n", pageblock_order);
559 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
560 	seq_putc(m, '\n');
561 	pagetypeinfo_showfree(m, pgdat);
562 	pagetypeinfo_showblockcount(m, pgdat);
563 
564 	return 0;
565 }
566 
567 const struct seq_operations fragmentation_op = {
568 	.start	= frag_start,
569 	.next	= frag_next,
570 	.stop	= frag_stop,
571 	.show	= frag_show,
572 };
573 
574 const struct seq_operations pagetypeinfo_op = {
575 	.start	= frag_start,
576 	.next	= frag_next,
577 	.stop	= frag_stop,
578 	.show	= pagetypeinfo_show,
579 };
580 
581 #ifdef CONFIG_ZONE_DMA
582 #define TEXT_FOR_DMA(xx) xx "_dma",
583 #else
584 #define TEXT_FOR_DMA(xx)
585 #endif
586 
587 #ifdef CONFIG_ZONE_DMA32
588 #define TEXT_FOR_DMA32(xx) xx "_dma32",
589 #else
590 #define TEXT_FOR_DMA32(xx)
591 #endif
592 
593 #ifdef CONFIG_HIGHMEM
594 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
595 #else
596 #define TEXT_FOR_HIGHMEM(xx)
597 #endif
598 
599 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
600 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
601 
602 static const char * const vmstat_text[] = {
603 	/* Zoned VM counters */
604 	"nr_free_pages",
605 	"nr_inactive",
606 	"nr_active",
607 	"nr_anon_pages",
608 	"nr_mapped",
609 	"nr_file_pages",
610 	"nr_dirty",
611 	"nr_writeback",
612 	"nr_slab_reclaimable",
613 	"nr_slab_unreclaimable",
614 	"nr_page_table_pages",
615 	"nr_unstable",
616 	"nr_bounce",
617 	"nr_vmscan_write",
618 	"nr_writeback_temp",
619 
620 #ifdef CONFIG_NUMA
621 	"numa_hit",
622 	"numa_miss",
623 	"numa_foreign",
624 	"numa_interleave",
625 	"numa_local",
626 	"numa_other",
627 #endif
628 
629 #ifdef CONFIG_VM_EVENT_COUNTERS
630 	"pgpgin",
631 	"pgpgout",
632 	"pswpin",
633 	"pswpout",
634 
635 	TEXTS_FOR_ZONES("pgalloc")
636 
637 	"pgfree",
638 	"pgactivate",
639 	"pgdeactivate",
640 
641 	"pgfault",
642 	"pgmajfault",
643 
644 	TEXTS_FOR_ZONES("pgrefill")
645 	TEXTS_FOR_ZONES("pgsteal")
646 	TEXTS_FOR_ZONES("pgscan_kswapd")
647 	TEXTS_FOR_ZONES("pgscan_direct")
648 
649 	"pginodesteal",
650 	"slabs_scanned",
651 	"kswapd_steal",
652 	"kswapd_inodesteal",
653 	"pageoutrun",
654 	"allocstall",
655 
656 	"pgrotated",
657 #ifdef CONFIG_HUGETLB_PAGE
658 	"htlb_buddy_alloc_success",
659 	"htlb_buddy_alloc_fail",
660 #endif
661 #endif
662 };
663 
664 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
665 							struct zone *zone)
666 {
667 	int i;
668 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
669 	seq_printf(m,
670 		   "\n  pages free     %lu"
671 		   "\n        min      %lu"
672 		   "\n        low      %lu"
673 		   "\n        high     %lu"
674 		   "\n        scanned  %lu (a: %lu i: %lu)"
675 		   "\n        spanned  %lu"
676 		   "\n        present  %lu",
677 		   zone_page_state(zone, NR_FREE_PAGES),
678 		   zone->pages_min,
679 		   zone->pages_low,
680 		   zone->pages_high,
681 		   zone->pages_scanned,
682 		   zone->nr_scan_active, zone->nr_scan_inactive,
683 		   zone->spanned_pages,
684 		   zone->present_pages);
685 
686 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
687 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
688 				zone_page_state(zone, i));
689 
690 	seq_printf(m,
691 		   "\n        protection: (%lu",
692 		   zone->lowmem_reserve[0]);
693 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
694 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
695 	seq_printf(m,
696 		   ")"
697 		   "\n  pagesets");
698 	for_each_online_cpu(i) {
699 		struct per_cpu_pageset *pageset;
700 
701 		pageset = zone_pcp(zone, i);
702 		seq_printf(m,
703 			   "\n    cpu: %i"
704 			   "\n              count: %i"
705 			   "\n              high:  %i"
706 			   "\n              batch: %i",
707 			   i,
708 			   pageset->pcp.count,
709 			   pageset->pcp.high,
710 			   pageset->pcp.batch);
711 #ifdef CONFIG_SMP
712 		seq_printf(m, "\n  vm stats threshold: %d",
713 				pageset->stat_threshold);
714 #endif
715 	}
716 	seq_printf(m,
717 		   "\n  all_unreclaimable: %u"
718 		   "\n  prev_priority:     %i"
719 		   "\n  start_pfn:         %lu",
720 			   zone_is_all_unreclaimable(zone),
721 		   zone->prev_priority,
722 		   zone->zone_start_pfn);
723 	seq_putc(m, '\n');
724 }
725 
726 /*
727  * Output information about zones in @pgdat.
728  */
729 static int zoneinfo_show(struct seq_file *m, void *arg)
730 {
731 	pg_data_t *pgdat = (pg_data_t *)arg;
732 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
733 	return 0;
734 }
735 
736 const struct seq_operations zoneinfo_op = {
737 	.start	= frag_start, /* iterate over all zones. The same as in
738 			       * fragmentation. */
739 	.next	= frag_next,
740 	.stop	= frag_stop,
741 	.show	= zoneinfo_show,
742 };
743 
744 static void *vmstat_start(struct seq_file *m, loff_t *pos)
745 {
746 	unsigned long *v;
747 #ifdef CONFIG_VM_EVENT_COUNTERS
748 	unsigned long *e;
749 #endif
750 	int i;
751 
752 	if (*pos >= ARRAY_SIZE(vmstat_text))
753 		return NULL;
754 
755 #ifdef CONFIG_VM_EVENT_COUNTERS
756 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
757 			+ sizeof(struct vm_event_state), GFP_KERNEL);
758 #else
759 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
760 			GFP_KERNEL);
761 #endif
762 	m->private = v;
763 	if (!v)
764 		return ERR_PTR(-ENOMEM);
765 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
766 		v[i] = global_page_state(i);
767 #ifdef CONFIG_VM_EVENT_COUNTERS
768 	e = v + NR_VM_ZONE_STAT_ITEMS;
769 	all_vm_events(e);
770 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
771 	e[PGPGOUT] /= 2;
772 #endif
773 	return v + *pos;
774 }
775 
776 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
777 {
778 	(*pos)++;
779 	if (*pos >= ARRAY_SIZE(vmstat_text))
780 		return NULL;
781 	return (unsigned long *)m->private + *pos;
782 }
783 
784 static int vmstat_show(struct seq_file *m, void *arg)
785 {
786 	unsigned long *l = arg;
787 	unsigned long off = l - (unsigned long *)m->private;
788 
789 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
790 	return 0;
791 }
792 
793 static void vmstat_stop(struct seq_file *m, void *arg)
794 {
795 	kfree(m->private);
796 	m->private = NULL;
797 }
798 
799 const struct seq_operations vmstat_op = {
800 	.start	= vmstat_start,
801 	.next	= vmstat_next,
802 	.stop	= vmstat_stop,
803 	.show	= vmstat_show,
804 };
805 
806 #endif /* CONFIG_PROC_FS */
807 
808 #ifdef CONFIG_SMP
809 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
810 int sysctl_stat_interval __read_mostly = HZ;
811 
812 static void vmstat_update(struct work_struct *w)
813 {
814 	refresh_cpu_vm_stats(smp_processor_id());
815 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
816 		sysctl_stat_interval);
817 }
818 
819 static void __cpuinit start_cpu_timer(int cpu)
820 {
821 	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
822 
823 	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
824 	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
825 }
826 
827 /*
828  * Use the cpu notifier to insure that the thresholds are recalculated
829  * when necessary.
830  */
831 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
832 		unsigned long action,
833 		void *hcpu)
834 {
835 	long cpu = (long)hcpu;
836 
837 	switch (action) {
838 	case CPU_ONLINE:
839 	case CPU_ONLINE_FROZEN:
840 		start_cpu_timer(cpu);
841 		break;
842 	case CPU_DOWN_PREPARE:
843 	case CPU_DOWN_PREPARE_FROZEN:
844 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
845 		per_cpu(vmstat_work, cpu).work.func = NULL;
846 		break;
847 	case CPU_DOWN_FAILED:
848 	case CPU_DOWN_FAILED_FROZEN:
849 		start_cpu_timer(cpu);
850 		break;
851 	case CPU_DEAD:
852 	case CPU_DEAD_FROZEN:
853 		refresh_zone_stat_thresholds();
854 		break;
855 	default:
856 		break;
857 	}
858 	return NOTIFY_OK;
859 }
860 
861 static struct notifier_block __cpuinitdata vmstat_notifier =
862 	{ &vmstat_cpuup_callback, NULL, 0 };
863 
864 static int __init setup_vmstat(void)
865 {
866 	int cpu;
867 
868 	refresh_zone_stat_thresholds();
869 	register_cpu_notifier(&vmstat_notifier);
870 
871 	for_each_online_cpu(cpu)
872 		start_cpu_timer(cpu);
873 	return 0;
874 }
875 module_init(setup_vmstat)
876 #endif
877