1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_NUMA 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 36 37 /* zero numa counters within a zone */ 38 static void zero_zone_numa_counters(struct zone *zone) 39 { 40 int item, cpu; 41 42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 43 atomic_long_set(&zone->vm_numa_event[item], 0); 44 for_each_online_cpu(cpu) { 45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 46 = 0; 47 } 48 } 49 } 50 51 /* zero numa counters of all the populated zones */ 52 static void zero_zones_numa_counters(void) 53 { 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58 } 59 60 /* zero global numa counters */ 61 static void zero_global_numa_counters(void) 62 { 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 66 atomic_long_set(&vm_numa_event[item], 0); 67 } 68 69 static void invalid_numa_statistics(void) 70 { 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73 } 74 75 static DEFINE_MUTEX(vm_numa_stat_lock); 76 77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void *buffer, size_t *length, loff_t *ppos) 79 { 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100 out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103 } 104 #endif 105 106 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110 static void sum_vm_events(unsigned long *ret) 111 { 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123 } 124 125 /* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129 */ 130 void all_vm_events(unsigned long *ret) 131 { 132 cpus_read_lock(); 133 sum_vm_events(ret); 134 cpus_read_unlock(); 135 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 137 138 /* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144 void vm_events_fold_cpu(int cpu) 145 { 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153 } 154 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157 /* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 165 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_node_stat); 167 168 #ifdef CONFIG_SMP 169 170 int calculate_pressure_threshold(struct zone *zone) 171 { 172 int threshold; 173 int watermark_distance; 174 175 /* 176 * As vmstats are not up to date, there is drift between the estimated 177 * and real values. For high thresholds and a high number of CPUs, it 178 * is possible for the min watermark to be breached while the estimated 179 * value looks fine. The pressure threshold is a reduced value such 180 * that even the maximum amount of drift will not accidentally breach 181 * the min watermark 182 */ 183 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 184 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 185 186 /* 187 * Maximum threshold is 125 188 */ 189 threshold = min(125, threshold); 190 191 return threshold; 192 } 193 194 int calculate_normal_threshold(struct zone *zone) 195 { 196 int threshold; 197 int mem; /* memory in 128 MB units */ 198 199 /* 200 * The threshold scales with the number of processors and the amount 201 * of memory per zone. More memory means that we can defer updates for 202 * longer, more processors could lead to more contention. 203 * fls() is used to have a cheap way of logarithmic scaling. 204 * 205 * Some sample thresholds: 206 * 207 * Threshold Processors (fls) Zonesize fls(mem)+1 208 * ------------------------------------------------------------------ 209 * 8 1 1 0.9-1 GB 4 210 * 16 2 2 0.9-1 GB 4 211 * 20 2 2 1-2 GB 5 212 * 24 2 2 2-4 GB 6 213 * 28 2 2 4-8 GB 7 214 * 32 2 2 8-16 GB 8 215 * 4 2 2 <128M 1 216 * 30 4 3 2-4 GB 5 217 * 48 4 3 8-16 GB 8 218 * 32 8 4 1-2 GB 4 219 * 32 8 4 0.9-1GB 4 220 * 10 16 5 <128M 1 221 * 40 16 5 900M 4 222 * 70 64 7 2-4 GB 5 223 * 84 64 7 4-8 GB 6 224 * 108 512 9 4-8 GB 6 225 * 125 1024 10 8-16 GB 8 226 * 125 1024 10 16-32 GB 9 227 */ 228 229 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 230 231 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 232 233 /* 234 * Maximum threshold is 125 235 */ 236 threshold = min(125, threshold); 237 238 return threshold; 239 } 240 241 /* 242 * Refresh the thresholds for each zone. 243 */ 244 void refresh_zone_stat_thresholds(void) 245 { 246 struct pglist_data *pgdat; 247 struct zone *zone; 248 int cpu; 249 int threshold; 250 251 /* Zero current pgdat thresholds */ 252 for_each_online_pgdat(pgdat) { 253 for_each_online_cpu(cpu) { 254 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 255 } 256 } 257 258 for_each_populated_zone(zone) { 259 struct pglist_data *pgdat = zone->zone_pgdat; 260 unsigned long max_drift, tolerate_drift; 261 262 threshold = calculate_normal_threshold(zone); 263 264 for_each_online_cpu(cpu) { 265 int pgdat_threshold; 266 267 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 268 = threshold; 269 270 /* Base nodestat threshold on the largest populated zone. */ 271 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 272 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 273 = max(threshold, pgdat_threshold); 274 } 275 276 /* 277 * Only set percpu_drift_mark if there is a danger that 278 * NR_FREE_PAGES reports the low watermark is ok when in fact 279 * the min watermark could be breached by an allocation 280 */ 281 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 282 max_drift = num_online_cpus() * threshold; 283 if (max_drift > tolerate_drift) 284 zone->percpu_drift_mark = high_wmark_pages(zone) + 285 max_drift; 286 } 287 } 288 289 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 290 int (*calculate_pressure)(struct zone *)) 291 { 292 struct zone *zone; 293 int cpu; 294 int threshold; 295 int i; 296 297 for (i = 0; i < pgdat->nr_zones; i++) { 298 zone = &pgdat->node_zones[i]; 299 if (!zone->percpu_drift_mark) 300 continue; 301 302 threshold = (*calculate_pressure)(zone); 303 for_each_online_cpu(cpu) 304 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 305 = threshold; 306 } 307 } 308 309 /* 310 * For use when we know that interrupts are disabled, 311 * or when we know that preemption is disabled and that 312 * particular counter cannot be updated from interrupt context. 313 */ 314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 315 long delta) 316 { 317 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 318 s8 __percpu *p = pcp->vm_stat_diff + item; 319 long x; 320 long t; 321 322 /* 323 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 324 * atomicity is provided by IRQs being disabled -- either explicitly 325 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 326 * CPU migrations and preemption potentially corrupts a counter so 327 * disable preemption. 328 */ 329 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 330 preempt_disable(); 331 332 x = delta + __this_cpu_read(*p); 333 334 t = __this_cpu_read(pcp->stat_threshold); 335 336 if (unlikely(abs(x) > t)) { 337 zone_page_state_add(x, zone, item); 338 x = 0; 339 } 340 __this_cpu_write(*p, x); 341 342 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 343 preempt_enable(); 344 } 345 EXPORT_SYMBOL(__mod_zone_page_state); 346 347 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 348 long delta) 349 { 350 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 351 s8 __percpu *p = pcp->vm_node_stat_diff + item; 352 long x; 353 long t; 354 355 if (vmstat_item_in_bytes(item)) { 356 /* 357 * Only cgroups use subpage accounting right now; at 358 * the global level, these items still change in 359 * multiples of whole pages. Store them as pages 360 * internally to keep the per-cpu counters compact. 361 */ 362 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 363 delta >>= PAGE_SHIFT; 364 } 365 366 /* See __mod_node_page_state */ 367 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 368 preempt_disable(); 369 370 x = delta + __this_cpu_read(*p); 371 372 t = __this_cpu_read(pcp->stat_threshold); 373 374 if (unlikely(abs(x) > t)) { 375 node_page_state_add(x, pgdat, item); 376 x = 0; 377 } 378 __this_cpu_write(*p, x); 379 380 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 381 preempt_enable(); 382 } 383 EXPORT_SYMBOL(__mod_node_page_state); 384 385 /* 386 * Optimized increment and decrement functions. 387 * 388 * These are only for a single page and therefore can take a struct page * 389 * argument instead of struct zone *. This allows the inclusion of the code 390 * generated for page_zone(page) into the optimized functions. 391 * 392 * No overflow check is necessary and therefore the differential can be 393 * incremented or decremented in place which may allow the compilers to 394 * generate better code. 395 * The increment or decrement is known and therefore one boundary check can 396 * be omitted. 397 * 398 * NOTE: These functions are very performance sensitive. Change only 399 * with care. 400 * 401 * Some processors have inc/dec instructions that are atomic vs an interrupt. 402 * However, the code must first determine the differential location in a zone 403 * based on the processor number and then inc/dec the counter. There is no 404 * guarantee without disabling preemption that the processor will not change 405 * in between and therefore the atomicity vs. interrupt cannot be exploited 406 * in a useful way here. 407 */ 408 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 409 { 410 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 411 s8 __percpu *p = pcp->vm_stat_diff + item; 412 s8 v, t; 413 414 /* See __mod_node_page_state */ 415 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 416 preempt_disable(); 417 418 v = __this_cpu_inc_return(*p); 419 t = __this_cpu_read(pcp->stat_threshold); 420 if (unlikely(v > t)) { 421 s8 overstep = t >> 1; 422 423 zone_page_state_add(v + overstep, zone, item); 424 __this_cpu_write(*p, -overstep); 425 } 426 427 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 428 preempt_enable(); 429 } 430 431 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 432 { 433 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 434 s8 __percpu *p = pcp->vm_node_stat_diff + item; 435 s8 v, t; 436 437 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 438 439 /* See __mod_node_page_state */ 440 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 441 preempt_disable(); 442 443 v = __this_cpu_inc_return(*p); 444 t = __this_cpu_read(pcp->stat_threshold); 445 if (unlikely(v > t)) { 446 s8 overstep = t >> 1; 447 448 node_page_state_add(v + overstep, pgdat, item); 449 __this_cpu_write(*p, -overstep); 450 } 451 452 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 453 preempt_enable(); 454 } 455 456 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 457 { 458 __inc_zone_state(page_zone(page), item); 459 } 460 EXPORT_SYMBOL(__inc_zone_page_state); 461 462 void __inc_node_page_state(struct page *page, enum node_stat_item item) 463 { 464 __inc_node_state(page_pgdat(page), item); 465 } 466 EXPORT_SYMBOL(__inc_node_page_state); 467 468 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 469 { 470 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 471 s8 __percpu *p = pcp->vm_stat_diff + item; 472 s8 v, t; 473 474 /* See __mod_node_page_state */ 475 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 476 preempt_disable(); 477 478 v = __this_cpu_dec_return(*p); 479 t = __this_cpu_read(pcp->stat_threshold); 480 if (unlikely(v < - t)) { 481 s8 overstep = t >> 1; 482 483 zone_page_state_add(v - overstep, zone, item); 484 __this_cpu_write(*p, overstep); 485 } 486 487 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 488 preempt_enable(); 489 } 490 491 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 492 { 493 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 494 s8 __percpu *p = pcp->vm_node_stat_diff + item; 495 s8 v, t; 496 497 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 498 499 /* See __mod_node_page_state */ 500 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 501 preempt_disable(); 502 503 v = __this_cpu_dec_return(*p); 504 t = __this_cpu_read(pcp->stat_threshold); 505 if (unlikely(v < - t)) { 506 s8 overstep = t >> 1; 507 508 node_page_state_add(v - overstep, pgdat, item); 509 __this_cpu_write(*p, overstep); 510 } 511 512 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 513 preempt_enable(); 514 } 515 516 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 517 { 518 __dec_zone_state(page_zone(page), item); 519 } 520 EXPORT_SYMBOL(__dec_zone_page_state); 521 522 void __dec_node_page_state(struct page *page, enum node_stat_item item) 523 { 524 __dec_node_state(page_pgdat(page), item); 525 } 526 EXPORT_SYMBOL(__dec_node_page_state); 527 528 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 529 /* 530 * If we have cmpxchg_local support then we do not need to incur the overhead 531 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 532 * 533 * mod_state() modifies the zone counter state through atomic per cpu 534 * operations. 535 * 536 * Overstep mode specifies how overstep should handled: 537 * 0 No overstepping 538 * 1 Overstepping half of threshold 539 * -1 Overstepping minus half of threshold 540 */ 541 static inline void mod_zone_state(struct zone *zone, 542 enum zone_stat_item item, long delta, int overstep_mode) 543 { 544 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 545 s8 __percpu *p = pcp->vm_stat_diff + item; 546 long o, n, t, z; 547 548 do { 549 z = 0; /* overflow to zone counters */ 550 551 /* 552 * The fetching of the stat_threshold is racy. We may apply 553 * a counter threshold to the wrong the cpu if we get 554 * rescheduled while executing here. However, the next 555 * counter update will apply the threshold again and 556 * therefore bring the counter under the threshold again. 557 * 558 * Most of the time the thresholds are the same anyways 559 * for all cpus in a zone. 560 */ 561 t = this_cpu_read(pcp->stat_threshold); 562 563 o = this_cpu_read(*p); 564 n = delta + o; 565 566 if (abs(n) > t) { 567 int os = overstep_mode * (t >> 1) ; 568 569 /* Overflow must be added to zone counters */ 570 z = n + os; 571 n = -os; 572 } 573 } while (this_cpu_cmpxchg(*p, o, n) != o); 574 575 if (z) 576 zone_page_state_add(z, zone, item); 577 } 578 579 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 580 long delta) 581 { 582 mod_zone_state(zone, item, delta, 0); 583 } 584 EXPORT_SYMBOL(mod_zone_page_state); 585 586 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 587 { 588 mod_zone_state(page_zone(page), item, 1, 1); 589 } 590 EXPORT_SYMBOL(inc_zone_page_state); 591 592 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 593 { 594 mod_zone_state(page_zone(page), item, -1, -1); 595 } 596 EXPORT_SYMBOL(dec_zone_page_state); 597 598 static inline void mod_node_state(struct pglist_data *pgdat, 599 enum node_stat_item item, int delta, int overstep_mode) 600 { 601 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 602 s8 __percpu *p = pcp->vm_node_stat_diff + item; 603 long o, n, t, z; 604 605 if (vmstat_item_in_bytes(item)) { 606 /* 607 * Only cgroups use subpage accounting right now; at 608 * the global level, these items still change in 609 * multiples of whole pages. Store them as pages 610 * internally to keep the per-cpu counters compact. 611 */ 612 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 613 delta >>= PAGE_SHIFT; 614 } 615 616 do { 617 z = 0; /* overflow to node counters */ 618 619 /* 620 * The fetching of the stat_threshold is racy. We may apply 621 * a counter threshold to the wrong the cpu if we get 622 * rescheduled while executing here. However, the next 623 * counter update will apply the threshold again and 624 * therefore bring the counter under the threshold again. 625 * 626 * Most of the time the thresholds are the same anyways 627 * for all cpus in a node. 628 */ 629 t = this_cpu_read(pcp->stat_threshold); 630 631 o = this_cpu_read(*p); 632 n = delta + o; 633 634 if (abs(n) > t) { 635 int os = overstep_mode * (t >> 1) ; 636 637 /* Overflow must be added to node counters */ 638 z = n + os; 639 n = -os; 640 } 641 } while (this_cpu_cmpxchg(*p, o, n) != o); 642 643 if (z) 644 node_page_state_add(z, pgdat, item); 645 } 646 647 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 648 long delta) 649 { 650 mod_node_state(pgdat, item, delta, 0); 651 } 652 EXPORT_SYMBOL(mod_node_page_state); 653 654 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 655 { 656 mod_node_state(pgdat, item, 1, 1); 657 } 658 659 void inc_node_page_state(struct page *page, enum node_stat_item item) 660 { 661 mod_node_state(page_pgdat(page), item, 1, 1); 662 } 663 EXPORT_SYMBOL(inc_node_page_state); 664 665 void dec_node_page_state(struct page *page, enum node_stat_item item) 666 { 667 mod_node_state(page_pgdat(page), item, -1, -1); 668 } 669 EXPORT_SYMBOL(dec_node_page_state); 670 #else 671 /* 672 * Use interrupt disable to serialize counter updates 673 */ 674 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 675 long delta) 676 { 677 unsigned long flags; 678 679 local_irq_save(flags); 680 __mod_zone_page_state(zone, item, delta); 681 local_irq_restore(flags); 682 } 683 EXPORT_SYMBOL(mod_zone_page_state); 684 685 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 686 { 687 unsigned long flags; 688 struct zone *zone; 689 690 zone = page_zone(page); 691 local_irq_save(flags); 692 __inc_zone_state(zone, item); 693 local_irq_restore(flags); 694 } 695 EXPORT_SYMBOL(inc_zone_page_state); 696 697 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 698 { 699 unsigned long flags; 700 701 local_irq_save(flags); 702 __dec_zone_page_state(page, item); 703 local_irq_restore(flags); 704 } 705 EXPORT_SYMBOL(dec_zone_page_state); 706 707 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 708 { 709 unsigned long flags; 710 711 local_irq_save(flags); 712 __inc_node_state(pgdat, item); 713 local_irq_restore(flags); 714 } 715 EXPORT_SYMBOL(inc_node_state); 716 717 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 718 long delta) 719 { 720 unsigned long flags; 721 722 local_irq_save(flags); 723 __mod_node_page_state(pgdat, item, delta); 724 local_irq_restore(flags); 725 } 726 EXPORT_SYMBOL(mod_node_page_state); 727 728 void inc_node_page_state(struct page *page, enum node_stat_item item) 729 { 730 unsigned long flags; 731 struct pglist_data *pgdat; 732 733 pgdat = page_pgdat(page); 734 local_irq_save(flags); 735 __inc_node_state(pgdat, item); 736 local_irq_restore(flags); 737 } 738 EXPORT_SYMBOL(inc_node_page_state); 739 740 void dec_node_page_state(struct page *page, enum node_stat_item item) 741 { 742 unsigned long flags; 743 744 local_irq_save(flags); 745 __dec_node_page_state(page, item); 746 local_irq_restore(flags); 747 } 748 EXPORT_SYMBOL(dec_node_page_state); 749 #endif 750 751 /* 752 * Fold a differential into the global counters. 753 * Returns the number of counters updated. 754 */ 755 static int fold_diff(int *zone_diff, int *node_diff) 756 { 757 int i; 758 int changes = 0; 759 760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 761 if (zone_diff[i]) { 762 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 763 changes++; 764 } 765 766 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 767 if (node_diff[i]) { 768 atomic_long_add(node_diff[i], &vm_node_stat[i]); 769 changes++; 770 } 771 return changes; 772 } 773 774 #ifdef CONFIG_NUMA 775 static void fold_vm_zone_numa_events(struct zone *zone) 776 { 777 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 778 int cpu; 779 enum numa_stat_item item; 780 781 for_each_online_cpu(cpu) { 782 struct per_cpu_zonestat *pzstats; 783 784 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 785 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 786 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 787 } 788 789 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 790 zone_numa_event_add(zone_numa_events[item], zone, item); 791 } 792 793 void fold_vm_numa_events(void) 794 { 795 struct zone *zone; 796 797 for_each_populated_zone(zone) 798 fold_vm_zone_numa_events(zone); 799 } 800 #endif 801 802 /* 803 * Update the zone counters for the current cpu. 804 * 805 * Note that refresh_cpu_vm_stats strives to only access 806 * node local memory. The per cpu pagesets on remote zones are placed 807 * in the memory local to the processor using that pageset. So the 808 * loop over all zones will access a series of cachelines local to 809 * the processor. 810 * 811 * The call to zone_page_state_add updates the cachelines with the 812 * statistics in the remote zone struct as well as the global cachelines 813 * with the global counters. These could cause remote node cache line 814 * bouncing and will have to be only done when necessary. 815 * 816 * The function returns the number of global counters updated. 817 */ 818 static int refresh_cpu_vm_stats(bool do_pagesets) 819 { 820 struct pglist_data *pgdat; 821 struct zone *zone; 822 int i; 823 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 824 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 825 int changes = 0; 826 827 for_each_populated_zone(zone) { 828 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 829 #ifdef CONFIG_NUMA 830 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 831 #endif 832 833 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 834 int v; 835 836 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 837 if (v) { 838 839 atomic_long_add(v, &zone->vm_stat[i]); 840 global_zone_diff[i] += v; 841 #ifdef CONFIG_NUMA 842 /* 3 seconds idle till flush */ 843 __this_cpu_write(pcp->expire, 3); 844 #endif 845 } 846 } 847 #ifdef CONFIG_NUMA 848 849 if (do_pagesets) { 850 cond_resched(); 851 /* 852 * Deal with draining the remote pageset of this 853 * processor 854 * 855 * Check if there are pages remaining in this pageset 856 * if not then there is nothing to expire. 857 */ 858 if (!__this_cpu_read(pcp->expire) || 859 !__this_cpu_read(pcp->count)) 860 continue; 861 862 /* 863 * We never drain zones local to this processor. 864 */ 865 if (zone_to_nid(zone) == numa_node_id()) { 866 __this_cpu_write(pcp->expire, 0); 867 continue; 868 } 869 870 if (__this_cpu_dec_return(pcp->expire)) 871 continue; 872 873 if (__this_cpu_read(pcp->count)) { 874 drain_zone_pages(zone, this_cpu_ptr(pcp)); 875 changes++; 876 } 877 } 878 #endif 879 } 880 881 for_each_online_pgdat(pgdat) { 882 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 883 884 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 885 int v; 886 887 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 888 if (v) { 889 atomic_long_add(v, &pgdat->vm_stat[i]); 890 global_node_diff[i] += v; 891 } 892 } 893 } 894 895 changes += fold_diff(global_zone_diff, global_node_diff); 896 return changes; 897 } 898 899 /* 900 * Fold the data for an offline cpu into the global array. 901 * There cannot be any access by the offline cpu and therefore 902 * synchronization is simplified. 903 */ 904 void cpu_vm_stats_fold(int cpu) 905 { 906 struct pglist_data *pgdat; 907 struct zone *zone; 908 int i; 909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 911 912 for_each_populated_zone(zone) { 913 struct per_cpu_zonestat *pzstats; 914 915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 916 917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 918 if (pzstats->vm_stat_diff[i]) { 919 int v; 920 921 v = pzstats->vm_stat_diff[i]; 922 pzstats->vm_stat_diff[i] = 0; 923 atomic_long_add(v, &zone->vm_stat[i]); 924 global_zone_diff[i] += v; 925 } 926 } 927 #ifdef CONFIG_NUMA 928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 929 if (pzstats->vm_numa_event[i]) { 930 unsigned long v; 931 932 v = pzstats->vm_numa_event[i]; 933 pzstats->vm_numa_event[i] = 0; 934 zone_numa_event_add(v, zone, i); 935 } 936 } 937 #endif 938 } 939 940 for_each_online_pgdat(pgdat) { 941 struct per_cpu_nodestat *p; 942 943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 944 945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 946 if (p->vm_node_stat_diff[i]) { 947 int v; 948 949 v = p->vm_node_stat_diff[i]; 950 p->vm_node_stat_diff[i] = 0; 951 atomic_long_add(v, &pgdat->vm_stat[i]); 952 global_node_diff[i] += v; 953 } 954 } 955 956 fold_diff(global_zone_diff, global_node_diff); 957 } 958 959 /* 960 * this is only called if !populated_zone(zone), which implies no other users of 961 * pset->vm_stat_diff[] exist. 962 */ 963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 964 { 965 unsigned long v; 966 int i; 967 968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 969 if (pzstats->vm_stat_diff[i]) { 970 v = pzstats->vm_stat_diff[i]; 971 pzstats->vm_stat_diff[i] = 0; 972 zone_page_state_add(v, zone, i); 973 } 974 } 975 976 #ifdef CONFIG_NUMA 977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 978 if (pzstats->vm_numa_event[i]) { 979 v = pzstats->vm_numa_event[i]; 980 pzstats->vm_numa_event[i] = 0; 981 zone_numa_event_add(v, zone, i); 982 } 983 } 984 #endif 985 } 986 #endif 987 988 #ifdef CONFIG_NUMA 989 /* 990 * Determine the per node value of a stat item. This function 991 * is called frequently in a NUMA machine, so try to be as 992 * frugal as possible. 993 */ 994 unsigned long sum_zone_node_page_state(int node, 995 enum zone_stat_item item) 996 { 997 struct zone *zones = NODE_DATA(node)->node_zones; 998 int i; 999 unsigned long count = 0; 1000 1001 for (i = 0; i < MAX_NR_ZONES; i++) 1002 count += zone_page_state(zones + i, item); 1003 1004 return count; 1005 } 1006 1007 /* Determine the per node value of a numa stat item. */ 1008 unsigned long sum_zone_numa_event_state(int node, 1009 enum numa_stat_item item) 1010 { 1011 struct zone *zones = NODE_DATA(node)->node_zones; 1012 unsigned long count = 0; 1013 int i; 1014 1015 for (i = 0; i < MAX_NR_ZONES; i++) 1016 count += zone_numa_event_state(zones + i, item); 1017 1018 return count; 1019 } 1020 1021 /* 1022 * Determine the per node value of a stat item. 1023 */ 1024 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1025 enum node_stat_item item) 1026 { 1027 long x = atomic_long_read(&pgdat->vm_stat[item]); 1028 #ifdef CONFIG_SMP 1029 if (x < 0) 1030 x = 0; 1031 #endif 1032 return x; 1033 } 1034 1035 unsigned long node_page_state(struct pglist_data *pgdat, 1036 enum node_stat_item item) 1037 { 1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1039 1040 return node_page_state_pages(pgdat, item); 1041 } 1042 #endif 1043 1044 #ifdef CONFIG_COMPACTION 1045 1046 struct contig_page_info { 1047 unsigned long free_pages; 1048 unsigned long free_blocks_total; 1049 unsigned long free_blocks_suitable; 1050 }; 1051 1052 /* 1053 * Calculate the number of free pages in a zone, how many contiguous 1054 * pages are free and how many are large enough to satisfy an allocation of 1055 * the target size. Note that this function makes no attempt to estimate 1056 * how many suitable free blocks there *might* be if MOVABLE pages were 1057 * migrated. Calculating that is possible, but expensive and can be 1058 * figured out from userspace 1059 */ 1060 static void fill_contig_page_info(struct zone *zone, 1061 unsigned int suitable_order, 1062 struct contig_page_info *info) 1063 { 1064 unsigned int order; 1065 1066 info->free_pages = 0; 1067 info->free_blocks_total = 0; 1068 info->free_blocks_suitable = 0; 1069 1070 for (order = 0; order < MAX_ORDER; order++) { 1071 unsigned long blocks; 1072 1073 /* Count number of free blocks */ 1074 blocks = zone->free_area[order].nr_free; 1075 info->free_blocks_total += blocks; 1076 1077 /* Count free base pages */ 1078 info->free_pages += blocks << order; 1079 1080 /* Count the suitable free blocks */ 1081 if (order >= suitable_order) 1082 info->free_blocks_suitable += blocks << 1083 (order - suitable_order); 1084 } 1085 } 1086 1087 /* 1088 * A fragmentation index only makes sense if an allocation of a requested 1089 * size would fail. If that is true, the fragmentation index indicates 1090 * whether external fragmentation or a lack of memory was the problem. 1091 * The value can be used to determine if page reclaim or compaction 1092 * should be used 1093 */ 1094 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1095 { 1096 unsigned long requested = 1UL << order; 1097 1098 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1099 return 0; 1100 1101 if (!info->free_blocks_total) 1102 return 0; 1103 1104 /* Fragmentation index only makes sense when a request would fail */ 1105 if (info->free_blocks_suitable) 1106 return -1000; 1107 1108 /* 1109 * Index is between 0 and 1 so return within 3 decimal places 1110 * 1111 * 0 => allocation would fail due to lack of memory 1112 * 1 => allocation would fail due to fragmentation 1113 */ 1114 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1115 } 1116 1117 /* 1118 * Calculates external fragmentation within a zone wrt the given order. 1119 * It is defined as the percentage of pages found in blocks of size 1120 * less than 1 << order. It returns values in range [0, 100]. 1121 */ 1122 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1123 { 1124 struct contig_page_info info; 1125 1126 fill_contig_page_info(zone, order, &info); 1127 if (info.free_pages == 0) 1128 return 0; 1129 1130 return div_u64((info.free_pages - 1131 (info.free_blocks_suitable << order)) * 100, 1132 info.free_pages); 1133 } 1134 1135 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1136 int fragmentation_index(struct zone *zone, unsigned int order) 1137 { 1138 struct contig_page_info info; 1139 1140 fill_contig_page_info(zone, order, &info); 1141 return __fragmentation_index(order, &info); 1142 } 1143 #endif 1144 1145 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1146 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1147 #ifdef CONFIG_ZONE_DMA 1148 #define TEXT_FOR_DMA(xx) xx "_dma", 1149 #else 1150 #define TEXT_FOR_DMA(xx) 1151 #endif 1152 1153 #ifdef CONFIG_ZONE_DMA32 1154 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1155 #else 1156 #define TEXT_FOR_DMA32(xx) 1157 #endif 1158 1159 #ifdef CONFIG_HIGHMEM 1160 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1161 #else 1162 #define TEXT_FOR_HIGHMEM(xx) 1163 #endif 1164 1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1166 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1167 1168 const char * const vmstat_text[] = { 1169 /* enum zone_stat_item counters */ 1170 "nr_free_pages", 1171 "nr_zone_inactive_anon", 1172 "nr_zone_active_anon", 1173 "nr_zone_inactive_file", 1174 "nr_zone_active_file", 1175 "nr_zone_unevictable", 1176 "nr_zone_write_pending", 1177 "nr_mlock", 1178 "nr_bounce", 1179 #if IS_ENABLED(CONFIG_ZSMALLOC) 1180 "nr_zspages", 1181 #endif 1182 "nr_free_cma", 1183 1184 /* enum numa_stat_item counters */ 1185 #ifdef CONFIG_NUMA 1186 "numa_hit", 1187 "numa_miss", 1188 "numa_foreign", 1189 "numa_interleave", 1190 "numa_local", 1191 "numa_other", 1192 #endif 1193 1194 /* enum node_stat_item counters */ 1195 "nr_inactive_anon", 1196 "nr_active_anon", 1197 "nr_inactive_file", 1198 "nr_active_file", 1199 "nr_unevictable", 1200 "nr_slab_reclaimable", 1201 "nr_slab_unreclaimable", 1202 "nr_isolated_anon", 1203 "nr_isolated_file", 1204 "workingset_nodes", 1205 "workingset_refault_anon", 1206 "workingset_refault_file", 1207 "workingset_activate_anon", 1208 "workingset_activate_file", 1209 "workingset_restore_anon", 1210 "workingset_restore_file", 1211 "workingset_nodereclaim", 1212 "nr_anon_pages", 1213 "nr_mapped", 1214 "nr_file_pages", 1215 "nr_dirty", 1216 "nr_writeback", 1217 "nr_writeback_temp", 1218 "nr_shmem", 1219 "nr_shmem_hugepages", 1220 "nr_shmem_pmdmapped", 1221 "nr_file_hugepages", 1222 "nr_file_pmdmapped", 1223 "nr_anon_transparent_hugepages", 1224 "nr_vmscan_write", 1225 "nr_vmscan_immediate_reclaim", 1226 "nr_dirtied", 1227 "nr_written", 1228 "nr_kernel_misc_reclaimable", 1229 "nr_foll_pin_acquired", 1230 "nr_foll_pin_released", 1231 "nr_kernel_stack", 1232 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1233 "nr_shadow_call_stack", 1234 #endif 1235 "nr_page_table_pages", 1236 #ifdef CONFIG_SWAP 1237 "nr_swapcached", 1238 #endif 1239 1240 /* enum writeback_stat_item counters */ 1241 "nr_dirty_threshold", 1242 "nr_dirty_background_threshold", 1243 1244 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1245 /* enum vm_event_item counters */ 1246 "pgpgin", 1247 "pgpgout", 1248 "pswpin", 1249 "pswpout", 1250 1251 TEXTS_FOR_ZONES("pgalloc") 1252 TEXTS_FOR_ZONES("allocstall") 1253 TEXTS_FOR_ZONES("pgskip") 1254 1255 "pgfree", 1256 "pgactivate", 1257 "pgdeactivate", 1258 "pglazyfree", 1259 1260 "pgfault", 1261 "pgmajfault", 1262 "pglazyfreed", 1263 1264 "pgrefill", 1265 "pgreuse", 1266 "pgsteal_kswapd", 1267 "pgsteal_direct", 1268 "pgdemote_kswapd", 1269 "pgdemote_direct", 1270 "pgscan_kswapd", 1271 "pgscan_direct", 1272 "pgscan_direct_throttle", 1273 "pgscan_anon", 1274 "pgscan_file", 1275 "pgsteal_anon", 1276 "pgsteal_file", 1277 1278 #ifdef CONFIG_NUMA 1279 "zone_reclaim_failed", 1280 #endif 1281 "pginodesteal", 1282 "slabs_scanned", 1283 "kswapd_inodesteal", 1284 "kswapd_low_wmark_hit_quickly", 1285 "kswapd_high_wmark_hit_quickly", 1286 "pageoutrun", 1287 1288 "pgrotated", 1289 1290 "drop_pagecache", 1291 "drop_slab", 1292 "oom_kill", 1293 1294 #ifdef CONFIG_NUMA_BALANCING 1295 "numa_pte_updates", 1296 "numa_huge_pte_updates", 1297 "numa_hint_faults", 1298 "numa_hint_faults_local", 1299 "numa_pages_migrated", 1300 #endif 1301 #ifdef CONFIG_MIGRATION 1302 "pgmigrate_success", 1303 "pgmigrate_fail", 1304 "thp_migration_success", 1305 "thp_migration_fail", 1306 "thp_migration_split", 1307 #endif 1308 #ifdef CONFIG_COMPACTION 1309 "compact_migrate_scanned", 1310 "compact_free_scanned", 1311 "compact_isolated", 1312 "compact_stall", 1313 "compact_fail", 1314 "compact_success", 1315 "compact_daemon_wake", 1316 "compact_daemon_migrate_scanned", 1317 "compact_daemon_free_scanned", 1318 #endif 1319 1320 #ifdef CONFIG_HUGETLB_PAGE 1321 "htlb_buddy_alloc_success", 1322 "htlb_buddy_alloc_fail", 1323 #endif 1324 #ifdef CONFIG_CMA 1325 "cma_alloc_success", 1326 "cma_alloc_fail", 1327 #endif 1328 "unevictable_pgs_culled", 1329 "unevictable_pgs_scanned", 1330 "unevictable_pgs_rescued", 1331 "unevictable_pgs_mlocked", 1332 "unevictable_pgs_munlocked", 1333 "unevictable_pgs_cleared", 1334 "unevictable_pgs_stranded", 1335 1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1337 "thp_fault_alloc", 1338 "thp_fault_fallback", 1339 "thp_fault_fallback_charge", 1340 "thp_collapse_alloc", 1341 "thp_collapse_alloc_failed", 1342 "thp_file_alloc", 1343 "thp_file_fallback", 1344 "thp_file_fallback_charge", 1345 "thp_file_mapped", 1346 "thp_split_page", 1347 "thp_split_page_failed", 1348 "thp_deferred_split_page", 1349 "thp_split_pmd", 1350 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1351 "thp_split_pud", 1352 #endif 1353 "thp_zero_page_alloc", 1354 "thp_zero_page_alloc_failed", 1355 "thp_swpout", 1356 "thp_swpout_fallback", 1357 #endif 1358 #ifdef CONFIG_MEMORY_BALLOON 1359 "balloon_inflate", 1360 "balloon_deflate", 1361 #ifdef CONFIG_BALLOON_COMPACTION 1362 "balloon_migrate", 1363 #endif 1364 #endif /* CONFIG_MEMORY_BALLOON */ 1365 #ifdef CONFIG_DEBUG_TLBFLUSH 1366 "nr_tlb_remote_flush", 1367 "nr_tlb_remote_flush_received", 1368 "nr_tlb_local_flush_all", 1369 "nr_tlb_local_flush_one", 1370 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1371 1372 #ifdef CONFIG_DEBUG_VM_VMACACHE 1373 "vmacache_find_calls", 1374 "vmacache_find_hits", 1375 #endif 1376 #ifdef CONFIG_SWAP 1377 "swap_ra", 1378 "swap_ra_hit", 1379 #endif 1380 #ifdef CONFIG_X86 1381 "direct_map_level2_splits", 1382 "direct_map_level3_splits", 1383 #endif 1384 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1385 }; 1386 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1387 1388 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1389 defined(CONFIG_PROC_FS) 1390 static void *frag_start(struct seq_file *m, loff_t *pos) 1391 { 1392 pg_data_t *pgdat; 1393 loff_t node = *pos; 1394 1395 for (pgdat = first_online_pgdat(); 1396 pgdat && node; 1397 pgdat = next_online_pgdat(pgdat)) 1398 --node; 1399 1400 return pgdat; 1401 } 1402 1403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1404 { 1405 pg_data_t *pgdat = (pg_data_t *)arg; 1406 1407 (*pos)++; 1408 return next_online_pgdat(pgdat); 1409 } 1410 1411 static void frag_stop(struct seq_file *m, void *arg) 1412 { 1413 } 1414 1415 /* 1416 * Walk zones in a node and print using a callback. 1417 * If @assert_populated is true, only use callback for zones that are populated. 1418 */ 1419 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1420 bool assert_populated, bool nolock, 1421 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1422 { 1423 struct zone *zone; 1424 struct zone *node_zones = pgdat->node_zones; 1425 unsigned long flags; 1426 1427 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1428 if (assert_populated && !populated_zone(zone)) 1429 continue; 1430 1431 if (!nolock) 1432 spin_lock_irqsave(&zone->lock, flags); 1433 print(m, pgdat, zone); 1434 if (!nolock) 1435 spin_unlock_irqrestore(&zone->lock, flags); 1436 } 1437 } 1438 #endif 1439 1440 #ifdef CONFIG_PROC_FS 1441 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1442 struct zone *zone) 1443 { 1444 int order; 1445 1446 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1447 for (order = 0; order < MAX_ORDER; ++order) 1448 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1449 seq_putc(m, '\n'); 1450 } 1451 1452 /* 1453 * This walks the free areas for each zone. 1454 */ 1455 static int frag_show(struct seq_file *m, void *arg) 1456 { 1457 pg_data_t *pgdat = (pg_data_t *)arg; 1458 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1459 return 0; 1460 } 1461 1462 static void pagetypeinfo_showfree_print(struct seq_file *m, 1463 pg_data_t *pgdat, struct zone *zone) 1464 { 1465 int order, mtype; 1466 1467 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1468 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1469 pgdat->node_id, 1470 zone->name, 1471 migratetype_names[mtype]); 1472 for (order = 0; order < MAX_ORDER; ++order) { 1473 unsigned long freecount = 0; 1474 struct free_area *area; 1475 struct list_head *curr; 1476 bool overflow = false; 1477 1478 area = &(zone->free_area[order]); 1479 1480 list_for_each(curr, &area->free_list[mtype]) { 1481 /* 1482 * Cap the free_list iteration because it might 1483 * be really large and we are under a spinlock 1484 * so a long time spent here could trigger a 1485 * hard lockup detector. Anyway this is a 1486 * debugging tool so knowing there is a handful 1487 * of pages of this order should be more than 1488 * sufficient. 1489 */ 1490 if (++freecount >= 100000) { 1491 overflow = true; 1492 break; 1493 } 1494 } 1495 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1496 spin_unlock_irq(&zone->lock); 1497 cond_resched(); 1498 spin_lock_irq(&zone->lock); 1499 } 1500 seq_putc(m, '\n'); 1501 } 1502 } 1503 1504 /* Print out the free pages at each order for each migatetype */ 1505 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1506 { 1507 int order; 1508 pg_data_t *pgdat = (pg_data_t *)arg; 1509 1510 /* Print header */ 1511 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1512 for (order = 0; order < MAX_ORDER; ++order) 1513 seq_printf(m, "%6d ", order); 1514 seq_putc(m, '\n'); 1515 1516 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1517 } 1518 1519 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1520 pg_data_t *pgdat, struct zone *zone) 1521 { 1522 int mtype; 1523 unsigned long pfn; 1524 unsigned long start_pfn = zone->zone_start_pfn; 1525 unsigned long end_pfn = zone_end_pfn(zone); 1526 unsigned long count[MIGRATE_TYPES] = { 0, }; 1527 1528 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1529 struct page *page; 1530 1531 page = pfn_to_online_page(pfn); 1532 if (!page) 1533 continue; 1534 1535 if (page_zone(page) != zone) 1536 continue; 1537 1538 mtype = get_pageblock_migratetype(page); 1539 1540 if (mtype < MIGRATE_TYPES) 1541 count[mtype]++; 1542 } 1543 1544 /* Print counts */ 1545 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1546 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1547 seq_printf(m, "%12lu ", count[mtype]); 1548 seq_putc(m, '\n'); 1549 } 1550 1551 /* Print out the number of pageblocks for each migratetype */ 1552 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1553 { 1554 int mtype; 1555 pg_data_t *pgdat = (pg_data_t *)arg; 1556 1557 seq_printf(m, "\n%-23s", "Number of blocks type "); 1558 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1559 seq_printf(m, "%12s ", migratetype_names[mtype]); 1560 seq_putc(m, '\n'); 1561 walk_zones_in_node(m, pgdat, true, false, 1562 pagetypeinfo_showblockcount_print); 1563 } 1564 1565 /* 1566 * Print out the number of pageblocks for each migratetype that contain pages 1567 * of other types. This gives an indication of how well fallbacks are being 1568 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1569 * to determine what is going on 1570 */ 1571 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1572 { 1573 #ifdef CONFIG_PAGE_OWNER 1574 int mtype; 1575 1576 if (!static_branch_unlikely(&page_owner_inited)) 1577 return; 1578 1579 drain_all_pages(NULL); 1580 1581 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1582 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1583 seq_printf(m, "%12s ", migratetype_names[mtype]); 1584 seq_putc(m, '\n'); 1585 1586 walk_zones_in_node(m, pgdat, true, true, 1587 pagetypeinfo_showmixedcount_print); 1588 #endif /* CONFIG_PAGE_OWNER */ 1589 } 1590 1591 /* 1592 * This prints out statistics in relation to grouping pages by mobility. 1593 * It is expensive to collect so do not constantly read the file. 1594 */ 1595 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1596 { 1597 pg_data_t *pgdat = (pg_data_t *)arg; 1598 1599 /* check memoryless node */ 1600 if (!node_state(pgdat->node_id, N_MEMORY)) 1601 return 0; 1602 1603 seq_printf(m, "Page block order: %d\n", pageblock_order); 1604 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1605 seq_putc(m, '\n'); 1606 pagetypeinfo_showfree(m, pgdat); 1607 pagetypeinfo_showblockcount(m, pgdat); 1608 pagetypeinfo_showmixedcount(m, pgdat); 1609 1610 return 0; 1611 } 1612 1613 static const struct seq_operations fragmentation_op = { 1614 .start = frag_start, 1615 .next = frag_next, 1616 .stop = frag_stop, 1617 .show = frag_show, 1618 }; 1619 1620 static const struct seq_operations pagetypeinfo_op = { 1621 .start = frag_start, 1622 .next = frag_next, 1623 .stop = frag_stop, 1624 .show = pagetypeinfo_show, 1625 }; 1626 1627 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1628 { 1629 int zid; 1630 1631 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1632 struct zone *compare = &pgdat->node_zones[zid]; 1633 1634 if (populated_zone(compare)) 1635 return zone == compare; 1636 } 1637 1638 return false; 1639 } 1640 1641 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1642 struct zone *zone) 1643 { 1644 int i; 1645 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1646 if (is_zone_first_populated(pgdat, zone)) { 1647 seq_printf(m, "\n per-node stats"); 1648 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1649 unsigned long pages = node_page_state_pages(pgdat, i); 1650 1651 if (vmstat_item_print_in_thp(i)) 1652 pages /= HPAGE_PMD_NR; 1653 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1654 pages); 1655 } 1656 } 1657 seq_printf(m, 1658 "\n pages free %lu" 1659 "\n min %lu" 1660 "\n low %lu" 1661 "\n high %lu" 1662 "\n spanned %lu" 1663 "\n present %lu" 1664 "\n managed %lu" 1665 "\n cma %lu", 1666 zone_page_state(zone, NR_FREE_PAGES), 1667 min_wmark_pages(zone), 1668 low_wmark_pages(zone), 1669 high_wmark_pages(zone), 1670 zone->spanned_pages, 1671 zone->present_pages, 1672 zone_managed_pages(zone), 1673 zone_cma_pages(zone)); 1674 1675 seq_printf(m, 1676 "\n protection: (%ld", 1677 zone->lowmem_reserve[0]); 1678 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1679 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1680 seq_putc(m, ')'); 1681 1682 /* If unpopulated, no other information is useful */ 1683 if (!populated_zone(zone)) { 1684 seq_putc(m, '\n'); 1685 return; 1686 } 1687 1688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1689 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1690 zone_page_state(zone, i)); 1691 1692 #ifdef CONFIG_NUMA 1693 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1694 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1695 zone_numa_event_state(zone, i)); 1696 #endif 1697 1698 seq_printf(m, "\n pagesets"); 1699 for_each_online_cpu(i) { 1700 struct per_cpu_pages *pcp; 1701 struct per_cpu_zonestat __maybe_unused *pzstats; 1702 1703 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1704 seq_printf(m, 1705 "\n cpu: %i" 1706 "\n count: %i" 1707 "\n high: %i" 1708 "\n batch: %i", 1709 i, 1710 pcp->count, 1711 pcp->high, 1712 pcp->batch); 1713 #ifdef CONFIG_SMP 1714 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1715 seq_printf(m, "\n vm stats threshold: %d", 1716 pzstats->stat_threshold); 1717 #endif 1718 } 1719 seq_printf(m, 1720 "\n node_unreclaimable: %u" 1721 "\n start_pfn: %lu", 1722 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1723 zone->zone_start_pfn); 1724 seq_putc(m, '\n'); 1725 } 1726 1727 /* 1728 * Output information about zones in @pgdat. All zones are printed regardless 1729 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1730 * set of all zones and userspace would not be aware of such zones if they are 1731 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1732 */ 1733 static int zoneinfo_show(struct seq_file *m, void *arg) 1734 { 1735 pg_data_t *pgdat = (pg_data_t *)arg; 1736 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1737 return 0; 1738 } 1739 1740 static const struct seq_operations zoneinfo_op = { 1741 .start = frag_start, /* iterate over all zones. The same as in 1742 * fragmentation. */ 1743 .next = frag_next, 1744 .stop = frag_stop, 1745 .show = zoneinfo_show, 1746 }; 1747 1748 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1749 NR_VM_NUMA_EVENT_ITEMS + \ 1750 NR_VM_NODE_STAT_ITEMS + \ 1751 NR_VM_WRITEBACK_STAT_ITEMS + \ 1752 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1753 NR_VM_EVENT_ITEMS : 0)) 1754 1755 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1756 { 1757 unsigned long *v; 1758 int i; 1759 1760 if (*pos >= NR_VMSTAT_ITEMS) 1761 return NULL; 1762 1763 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1764 fold_vm_numa_events(); 1765 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1766 m->private = v; 1767 if (!v) 1768 return ERR_PTR(-ENOMEM); 1769 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1770 v[i] = global_zone_page_state(i); 1771 v += NR_VM_ZONE_STAT_ITEMS; 1772 1773 #ifdef CONFIG_NUMA 1774 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1775 v[i] = global_numa_event_state(i); 1776 v += NR_VM_NUMA_EVENT_ITEMS; 1777 #endif 1778 1779 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1780 v[i] = global_node_page_state_pages(i); 1781 if (vmstat_item_print_in_thp(i)) 1782 v[i] /= HPAGE_PMD_NR; 1783 } 1784 v += NR_VM_NODE_STAT_ITEMS; 1785 1786 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1787 v + NR_DIRTY_THRESHOLD); 1788 v += NR_VM_WRITEBACK_STAT_ITEMS; 1789 1790 #ifdef CONFIG_VM_EVENT_COUNTERS 1791 all_vm_events(v); 1792 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1793 v[PGPGOUT] /= 2; 1794 #endif 1795 return (unsigned long *)m->private + *pos; 1796 } 1797 1798 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1799 { 1800 (*pos)++; 1801 if (*pos >= NR_VMSTAT_ITEMS) 1802 return NULL; 1803 return (unsigned long *)m->private + *pos; 1804 } 1805 1806 static int vmstat_show(struct seq_file *m, void *arg) 1807 { 1808 unsigned long *l = arg; 1809 unsigned long off = l - (unsigned long *)m->private; 1810 1811 seq_puts(m, vmstat_text[off]); 1812 seq_put_decimal_ull(m, " ", *l); 1813 seq_putc(m, '\n'); 1814 1815 if (off == NR_VMSTAT_ITEMS - 1) { 1816 /* 1817 * We've come to the end - add any deprecated counters to avoid 1818 * breaking userspace which might depend on them being present. 1819 */ 1820 seq_puts(m, "nr_unstable 0\n"); 1821 } 1822 return 0; 1823 } 1824 1825 static void vmstat_stop(struct seq_file *m, void *arg) 1826 { 1827 kfree(m->private); 1828 m->private = NULL; 1829 } 1830 1831 static const struct seq_operations vmstat_op = { 1832 .start = vmstat_start, 1833 .next = vmstat_next, 1834 .stop = vmstat_stop, 1835 .show = vmstat_show, 1836 }; 1837 #endif /* CONFIG_PROC_FS */ 1838 1839 #ifdef CONFIG_SMP 1840 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1841 int sysctl_stat_interval __read_mostly = HZ; 1842 1843 #ifdef CONFIG_PROC_FS 1844 static void refresh_vm_stats(struct work_struct *work) 1845 { 1846 refresh_cpu_vm_stats(true); 1847 } 1848 1849 int vmstat_refresh(struct ctl_table *table, int write, 1850 void *buffer, size_t *lenp, loff_t *ppos) 1851 { 1852 long val; 1853 int err; 1854 int i; 1855 1856 /* 1857 * The regular update, every sysctl_stat_interval, may come later 1858 * than expected: leaving a significant amount in per_cpu buckets. 1859 * This is particularly misleading when checking a quantity of HUGE 1860 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1861 * which can equally be echo'ed to or cat'ted from (by root), 1862 * can be used to update the stats just before reading them. 1863 * 1864 * Oh, and since global_zone_page_state() etc. are so careful to hide 1865 * transiently negative values, report an error here if any of 1866 * the stats is negative, so we know to go looking for imbalance. 1867 */ 1868 err = schedule_on_each_cpu(refresh_vm_stats); 1869 if (err) 1870 return err; 1871 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1872 /* 1873 * Skip checking stats known to go negative occasionally. 1874 */ 1875 switch (i) { 1876 case NR_ZONE_WRITE_PENDING: 1877 case NR_FREE_CMA_PAGES: 1878 continue; 1879 } 1880 val = atomic_long_read(&vm_zone_stat[i]); 1881 if (val < 0) { 1882 pr_warn("%s: %s %ld\n", 1883 __func__, zone_stat_name(i), val); 1884 } 1885 } 1886 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1887 /* 1888 * Skip checking stats known to go negative occasionally. 1889 */ 1890 switch (i) { 1891 case NR_WRITEBACK: 1892 continue; 1893 } 1894 val = atomic_long_read(&vm_node_stat[i]); 1895 if (val < 0) { 1896 pr_warn("%s: %s %ld\n", 1897 __func__, node_stat_name(i), val); 1898 } 1899 } 1900 if (write) 1901 *ppos += *lenp; 1902 else 1903 *lenp = 0; 1904 return 0; 1905 } 1906 #endif /* CONFIG_PROC_FS */ 1907 1908 static void vmstat_update(struct work_struct *w) 1909 { 1910 if (refresh_cpu_vm_stats(true)) { 1911 /* 1912 * Counters were updated so we expect more updates 1913 * to occur in the future. Keep on running the 1914 * update worker thread. 1915 */ 1916 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1917 this_cpu_ptr(&vmstat_work), 1918 round_jiffies_relative(sysctl_stat_interval)); 1919 } 1920 } 1921 1922 /* 1923 * Check if the diffs for a certain cpu indicate that 1924 * an update is needed. 1925 */ 1926 static bool need_update(int cpu) 1927 { 1928 pg_data_t *last_pgdat = NULL; 1929 struct zone *zone; 1930 1931 for_each_populated_zone(zone) { 1932 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 1933 struct per_cpu_nodestat *n; 1934 1935 /* 1936 * The fast way of checking if there are any vmstat diffs. 1937 */ 1938 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 1939 return true; 1940 1941 if (last_pgdat == zone->zone_pgdat) 1942 continue; 1943 last_pgdat = zone->zone_pgdat; 1944 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 1945 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 1946 return true; 1947 } 1948 return false; 1949 } 1950 1951 /* 1952 * Switch off vmstat processing and then fold all the remaining differentials 1953 * until the diffs stay at zero. The function is used by NOHZ and can only be 1954 * invoked when tick processing is not active. 1955 */ 1956 void quiet_vmstat(void) 1957 { 1958 if (system_state != SYSTEM_RUNNING) 1959 return; 1960 1961 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1962 return; 1963 1964 if (!need_update(smp_processor_id())) 1965 return; 1966 1967 /* 1968 * Just refresh counters and do not care about the pending delayed 1969 * vmstat_update. It doesn't fire that often to matter and canceling 1970 * it would be too expensive from this path. 1971 * vmstat_shepherd will take care about that for us. 1972 */ 1973 refresh_cpu_vm_stats(false); 1974 } 1975 1976 /* 1977 * Shepherd worker thread that checks the 1978 * differentials of processors that have their worker 1979 * threads for vm statistics updates disabled because of 1980 * inactivity. 1981 */ 1982 static void vmstat_shepherd(struct work_struct *w); 1983 1984 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1985 1986 static void vmstat_shepherd(struct work_struct *w) 1987 { 1988 int cpu; 1989 1990 cpus_read_lock(); 1991 /* Check processors whose vmstat worker threads have been disabled */ 1992 for_each_online_cpu(cpu) { 1993 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1994 1995 if (!delayed_work_pending(dw) && need_update(cpu)) 1996 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1997 1998 cond_resched(); 1999 } 2000 cpus_read_unlock(); 2001 2002 schedule_delayed_work(&shepherd, 2003 round_jiffies_relative(sysctl_stat_interval)); 2004 } 2005 2006 static void __init start_shepherd_timer(void) 2007 { 2008 int cpu; 2009 2010 for_each_possible_cpu(cpu) 2011 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2012 vmstat_update); 2013 2014 schedule_delayed_work(&shepherd, 2015 round_jiffies_relative(sysctl_stat_interval)); 2016 } 2017 2018 static void __init init_cpu_node_state(void) 2019 { 2020 int node; 2021 2022 for_each_online_node(node) { 2023 if (cpumask_weight(cpumask_of_node(node)) > 0) 2024 node_set_state(node, N_CPU); 2025 } 2026 } 2027 2028 static int vmstat_cpu_online(unsigned int cpu) 2029 { 2030 refresh_zone_stat_thresholds(); 2031 node_set_state(cpu_to_node(cpu), N_CPU); 2032 return 0; 2033 } 2034 2035 static int vmstat_cpu_down_prep(unsigned int cpu) 2036 { 2037 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2038 return 0; 2039 } 2040 2041 static int vmstat_cpu_dead(unsigned int cpu) 2042 { 2043 const struct cpumask *node_cpus; 2044 int node; 2045 2046 node = cpu_to_node(cpu); 2047 2048 refresh_zone_stat_thresholds(); 2049 node_cpus = cpumask_of_node(node); 2050 if (cpumask_weight(node_cpus) > 0) 2051 return 0; 2052 2053 node_clear_state(node, N_CPU); 2054 return 0; 2055 } 2056 2057 #endif 2058 2059 struct workqueue_struct *mm_percpu_wq; 2060 2061 void __init init_mm_internals(void) 2062 { 2063 int ret __maybe_unused; 2064 2065 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2066 2067 #ifdef CONFIG_SMP 2068 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2069 NULL, vmstat_cpu_dead); 2070 if (ret < 0) 2071 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2072 2073 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2074 vmstat_cpu_online, 2075 vmstat_cpu_down_prep); 2076 if (ret < 0) 2077 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2078 2079 cpus_read_lock(); 2080 init_cpu_node_state(); 2081 cpus_read_unlock(); 2082 2083 start_shepherd_timer(); 2084 #endif 2085 #ifdef CONFIG_PROC_FS 2086 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2087 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2088 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2089 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2090 #endif 2091 } 2092 2093 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2094 2095 /* 2096 * Return an index indicating how much of the available free memory is 2097 * unusable for an allocation of the requested size. 2098 */ 2099 static int unusable_free_index(unsigned int order, 2100 struct contig_page_info *info) 2101 { 2102 /* No free memory is interpreted as all free memory is unusable */ 2103 if (info->free_pages == 0) 2104 return 1000; 2105 2106 /* 2107 * Index should be a value between 0 and 1. Return a value to 3 2108 * decimal places. 2109 * 2110 * 0 => no fragmentation 2111 * 1 => high fragmentation 2112 */ 2113 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2114 2115 } 2116 2117 static void unusable_show_print(struct seq_file *m, 2118 pg_data_t *pgdat, struct zone *zone) 2119 { 2120 unsigned int order; 2121 int index; 2122 struct contig_page_info info; 2123 2124 seq_printf(m, "Node %d, zone %8s ", 2125 pgdat->node_id, 2126 zone->name); 2127 for (order = 0; order < MAX_ORDER; ++order) { 2128 fill_contig_page_info(zone, order, &info); 2129 index = unusable_free_index(order, &info); 2130 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2131 } 2132 2133 seq_putc(m, '\n'); 2134 } 2135 2136 /* 2137 * Display unusable free space index 2138 * 2139 * The unusable free space index measures how much of the available free 2140 * memory cannot be used to satisfy an allocation of a given size and is a 2141 * value between 0 and 1. The higher the value, the more of free memory is 2142 * unusable and by implication, the worse the external fragmentation is. This 2143 * can be expressed as a percentage by multiplying by 100. 2144 */ 2145 static int unusable_show(struct seq_file *m, void *arg) 2146 { 2147 pg_data_t *pgdat = (pg_data_t *)arg; 2148 2149 /* check memoryless node */ 2150 if (!node_state(pgdat->node_id, N_MEMORY)) 2151 return 0; 2152 2153 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2154 2155 return 0; 2156 } 2157 2158 static const struct seq_operations unusable_sops = { 2159 .start = frag_start, 2160 .next = frag_next, 2161 .stop = frag_stop, 2162 .show = unusable_show, 2163 }; 2164 2165 DEFINE_SEQ_ATTRIBUTE(unusable); 2166 2167 static void extfrag_show_print(struct seq_file *m, 2168 pg_data_t *pgdat, struct zone *zone) 2169 { 2170 unsigned int order; 2171 int index; 2172 2173 /* Alloc on stack as interrupts are disabled for zone walk */ 2174 struct contig_page_info info; 2175 2176 seq_printf(m, "Node %d, zone %8s ", 2177 pgdat->node_id, 2178 zone->name); 2179 for (order = 0; order < MAX_ORDER; ++order) { 2180 fill_contig_page_info(zone, order, &info); 2181 index = __fragmentation_index(order, &info); 2182 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2183 } 2184 2185 seq_putc(m, '\n'); 2186 } 2187 2188 /* 2189 * Display fragmentation index for orders that allocations would fail for 2190 */ 2191 static int extfrag_show(struct seq_file *m, void *arg) 2192 { 2193 pg_data_t *pgdat = (pg_data_t *)arg; 2194 2195 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2196 2197 return 0; 2198 } 2199 2200 static const struct seq_operations extfrag_sops = { 2201 .start = frag_start, 2202 .next = frag_next, 2203 .stop = frag_stop, 2204 .show = extfrag_show, 2205 }; 2206 2207 DEFINE_SEQ_ATTRIBUTE(extfrag); 2208 2209 static int __init extfrag_debug_init(void) 2210 { 2211 struct dentry *extfrag_debug_root; 2212 2213 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2214 2215 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2216 &unusable_fops); 2217 2218 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2219 &extfrag_fops); 2220 2221 return 0; 2222 } 2223 2224 module_init(extfrag_debug_init); 2225 #endif 2226