xref: /openbmc/linux/mm/vmstat.c (revision cf028200)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int watermark_distance;
90 
91 	/*
92 	 * As vmstats are not up to date, there is drift between the estimated
93 	 * and real values. For high thresholds and a high number of CPUs, it
94 	 * is possible for the min watermark to be breached while the estimated
95 	 * value looks fine. The pressure threshold is a reduced value such
96 	 * that even the maximum amount of drift will not accidentally breach
97 	 * the min watermark
98 	 */
99 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101 
102 	/*
103 	 * Maximum threshold is 125
104 	 */
105 	threshold = min(125, threshold);
106 
107 	return threshold;
108 }
109 
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 	int threshold;
113 	int mem;	/* memory in 128 MB units */
114 
115 	/*
116 	 * The threshold scales with the number of processors and the amount
117 	 * of memory per zone. More memory means that we can defer updates for
118 	 * longer, more processors could lead to more contention.
119  	 * fls() is used to have a cheap way of logarithmic scaling.
120 	 *
121 	 * Some sample thresholds:
122 	 *
123 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
124 	 * ------------------------------------------------------------------
125 	 * 8		1		1	0.9-1 GB	4
126 	 * 16		2		2	0.9-1 GB	4
127 	 * 20 		2		2	1-2 GB		5
128 	 * 24		2		2	2-4 GB		6
129 	 * 28		2		2	4-8 GB		7
130 	 * 32		2		2	8-16 GB		8
131 	 * 4		2		2	<128M		1
132 	 * 30		4		3	2-4 GB		5
133 	 * 48		4		3	8-16 GB		8
134 	 * 32		8		4	1-2 GB		4
135 	 * 32		8		4	0.9-1GB		4
136 	 * 10		16		5	<128M		1
137 	 * 40		16		5	900M		4
138 	 * 70		64		7	2-4 GB		5
139 	 * 84		64		7	4-8 GB		6
140 	 * 108		512		9	4-8 GB		6
141 	 * 125		1024		10	8-16 GB		8
142 	 * 125		1024		10	16-32 GB	9
143 	 */
144 
145 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
146 
147 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148 
149 	/*
150 	 * Maximum threshold is 125
151 	 */
152 	threshold = min(125, threshold);
153 
154 	return threshold;
155 }
156 
157 /*
158  * Refresh the thresholds for each zone.
159  */
160 void refresh_zone_stat_thresholds(void)
161 {
162 	struct zone *zone;
163 	int cpu;
164 	int threshold;
165 
166 	for_each_populated_zone(zone) {
167 		unsigned long max_drift, tolerate_drift;
168 
169 		threshold = calculate_normal_threshold(zone);
170 
171 		for_each_online_cpu(cpu)
172 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 							= threshold;
174 
175 		/*
176 		 * Only set percpu_drift_mark if there is a danger that
177 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 		 * the min watermark could be breached by an allocation
179 		 */
180 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 		max_drift = num_online_cpus() * threshold;
182 		if (max_drift > tolerate_drift)
183 			zone->percpu_drift_mark = high_wmark_pages(zone) +
184 					max_drift;
185 	}
186 }
187 
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 				int (*calculate_pressure)(struct zone *))
190 {
191 	struct zone *zone;
192 	int cpu;
193 	int threshold;
194 	int i;
195 
196 	for (i = 0; i < pgdat->nr_zones; i++) {
197 		zone = &pgdat->node_zones[i];
198 		if (!zone->percpu_drift_mark)
199 			continue;
200 
201 		threshold = (*calculate_pressure)(zone);
202 		for_each_possible_cpu(cpu)
203 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 							= threshold;
205 	}
206 }
207 
208 /*
209  * For use when we know that interrupts are disabled.
210  */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 				int delta)
213 {
214 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 	s8 __percpu *p = pcp->vm_stat_diff + item;
216 	long x;
217 	long t;
218 
219 	x = delta + __this_cpu_read(*p);
220 
221 	t = __this_cpu_read(pcp->stat_threshold);
222 
223 	if (unlikely(x > t || x < -t)) {
224 		zone_page_state_add(x, zone, item);
225 		x = 0;
226 	}
227 	__this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230 
231 /*
232  * Optimized increment and decrement functions.
233  *
234  * These are only for a single page and therefore can take a struct page *
235  * argument instead of struct zone *. This allows the inclusion of the code
236  * generated for page_zone(page) into the optimized functions.
237  *
238  * No overflow check is necessary and therefore the differential can be
239  * incremented or decremented in place which may allow the compilers to
240  * generate better code.
241  * The increment or decrement is known and therefore one boundary check can
242  * be omitted.
243  *
244  * NOTE: These functions are very performance sensitive. Change only
245  * with care.
246  *
247  * Some processors have inc/dec instructions that are atomic vs an interrupt.
248  * However, the code must first determine the differential location in a zone
249  * based on the processor number and then inc/dec the counter. There is no
250  * guarantee without disabling preemption that the processor will not change
251  * in between and therefore the atomicity vs. interrupt cannot be exploited
252  * in a useful way here.
253  */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 	s8 __percpu *p = pcp->vm_stat_diff + item;
258 	s8 v, t;
259 
260 	v = __this_cpu_inc_return(*p);
261 	t = __this_cpu_read(pcp->stat_threshold);
262 	if (unlikely(v > t)) {
263 		s8 overstep = t >> 1;
264 
265 		zone_page_state_add(v + overstep, zone, item);
266 		__this_cpu_write(*p, -overstep);
267 	}
268 }
269 
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	__inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275 
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 	s8 __percpu *p = pcp->vm_stat_diff + item;
280 	s8 v, t;
281 
282 	v = __this_cpu_dec_return(*p);
283 	t = __this_cpu_read(pcp->stat_threshold);
284 	if (unlikely(v < - t)) {
285 		s8 overstep = t >> 1;
286 
287 		zone_page_state_add(v - overstep, zone, item);
288 		__this_cpu_write(*p, overstep);
289 	}
290 }
291 
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 	__dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297 
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299 /*
300  * If we have cmpxchg_local support then we do not need to incur the overhead
301  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302  *
303  * mod_state() modifies the zone counter state through atomic per cpu
304  * operations.
305  *
306  * Overstep mode specifies how overstep should handled:
307  *     0       No overstepping
308  *     1       Overstepping half of threshold
309  *     -1      Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312        enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 	s8 __percpu *p = pcp->vm_stat_diff + item;
316 	long o, n, t, z;
317 
318 	do {
319 		z = 0;  /* overflow to zone counters */
320 
321 		/*
322 		 * The fetching of the stat_threshold is racy. We may apply
323 		 * a counter threshold to the wrong the cpu if we get
324 		 * rescheduled while executing here. However, the next
325 		 * counter update will apply the threshold again and
326 		 * therefore bring the counter under the threshold again.
327 		 *
328 		 * Most of the time the thresholds are the same anyways
329 		 * for all cpus in a zone.
330 		 */
331 		t = this_cpu_read(pcp->stat_threshold);
332 
333 		o = this_cpu_read(*p);
334 		n = delta + o;
335 
336 		if (n > t || n < -t) {
337 			int os = overstep_mode * (t >> 1) ;
338 
339 			/* Overflow must be added to zone counters */
340 			z = n + os;
341 			n = -os;
342 		}
343 	} while (this_cpu_cmpxchg(*p, o, n) != o);
344 
345 	if (z)
346 		zone_page_state_add(z, zone, item);
347 }
348 
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350 					int delta)
351 {
352 	mod_state(zone, item, delta, 0);
353 }
354 EXPORT_SYMBOL(mod_zone_page_state);
355 
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357 {
358 	mod_state(zone, item, 1, 1);
359 }
360 
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362 {
363 	mod_state(page_zone(page), item, 1, 1);
364 }
365 EXPORT_SYMBOL(inc_zone_page_state);
366 
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368 {
369 	mod_state(page_zone(page), item, -1, -1);
370 }
371 EXPORT_SYMBOL(dec_zone_page_state);
372 #else
373 /*
374  * Use interrupt disable to serialize counter updates
375  */
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377 					int delta)
378 {
379 	unsigned long flags;
380 
381 	local_irq_save(flags);
382 	__mod_zone_page_state(zone, item, delta);
383 	local_irq_restore(flags);
384 }
385 EXPORT_SYMBOL(mod_zone_page_state);
386 
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388 {
389 	unsigned long flags;
390 
391 	local_irq_save(flags);
392 	__inc_zone_state(zone, item);
393 	local_irq_restore(flags);
394 }
395 
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397 {
398 	unsigned long flags;
399 	struct zone *zone;
400 
401 	zone = page_zone(page);
402 	local_irq_save(flags);
403 	__inc_zone_state(zone, item);
404 	local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL(inc_zone_page_state);
407 
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409 {
410 	unsigned long flags;
411 
412 	local_irq_save(flags);
413 	__dec_zone_page_state(page, item);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(dec_zone_page_state);
417 #endif
418 
419 /*
420  * Update the zone counters for one cpu.
421  *
422  * The cpu specified must be either the current cpu or a processor that
423  * is not online. If it is the current cpu then the execution thread must
424  * be pinned to the current cpu.
425  *
426  * Note that refresh_cpu_vm_stats strives to only access
427  * node local memory. The per cpu pagesets on remote zones are placed
428  * in the memory local to the processor using that pageset. So the
429  * loop over all zones will access a series of cachelines local to
430  * the processor.
431  *
432  * The call to zone_page_state_add updates the cachelines with the
433  * statistics in the remote zone struct as well as the global cachelines
434  * with the global counters. These could cause remote node cache line
435  * bouncing and will have to be only done when necessary.
436  */
437 void refresh_cpu_vm_stats(int cpu)
438 {
439 	struct zone *zone;
440 	int i;
441 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442 
443 	for_each_populated_zone(zone) {
444 		struct per_cpu_pageset *p;
445 
446 		p = per_cpu_ptr(zone->pageset, cpu);
447 
448 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449 			if (p->vm_stat_diff[i]) {
450 				unsigned long flags;
451 				int v;
452 
453 				local_irq_save(flags);
454 				v = p->vm_stat_diff[i];
455 				p->vm_stat_diff[i] = 0;
456 				local_irq_restore(flags);
457 				atomic_long_add(v, &zone->vm_stat[i]);
458 				global_diff[i] += v;
459 #ifdef CONFIG_NUMA
460 				/* 3 seconds idle till flush */
461 				p->expire = 3;
462 #endif
463 			}
464 		cond_resched();
465 #ifdef CONFIG_NUMA
466 		/*
467 		 * Deal with draining the remote pageset of this
468 		 * processor
469 		 *
470 		 * Check if there are pages remaining in this pageset
471 		 * if not then there is nothing to expire.
472 		 */
473 		if (!p->expire || !p->pcp.count)
474 			continue;
475 
476 		/*
477 		 * We never drain zones local to this processor.
478 		 */
479 		if (zone_to_nid(zone) == numa_node_id()) {
480 			p->expire = 0;
481 			continue;
482 		}
483 
484 		p->expire--;
485 		if (p->expire)
486 			continue;
487 
488 		if (p->pcp.count)
489 			drain_zone_pages(zone, &p->pcp);
490 #endif
491 	}
492 
493 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494 		if (global_diff[i])
495 			atomic_long_add(global_diff[i], &vm_stat[i]);
496 }
497 
498 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
499 {
500 	int i;
501 
502 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
503 		if (pset->vm_stat_diff[i]) {
504 			int v = pset->vm_stat_diff[i];
505 			pset->vm_stat_diff[i] = 0;
506 			atomic_long_add(v, &zone->vm_stat[i]);
507 			atomic_long_add(v, &vm_stat[i]);
508 		}
509 }
510 #endif
511 
512 #ifdef CONFIG_NUMA
513 /*
514  * zonelist = the list of zones passed to the allocator
515  * z 	    = the zone from which the allocation occurred.
516  *
517  * Must be called with interrupts disabled.
518  *
519  * When __GFP_OTHER_NODE is set assume the node of the preferred
520  * zone is the local node. This is useful for daemons who allocate
521  * memory on behalf of other processes.
522  */
523 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
524 {
525 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
526 		__inc_zone_state(z, NUMA_HIT);
527 	} else {
528 		__inc_zone_state(z, NUMA_MISS);
529 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
530 	}
531 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
532 			preferred_zone->node : numa_node_id()))
533 		__inc_zone_state(z, NUMA_LOCAL);
534 	else
535 		__inc_zone_state(z, NUMA_OTHER);
536 }
537 #endif
538 
539 #ifdef CONFIG_COMPACTION
540 
541 struct contig_page_info {
542 	unsigned long free_pages;
543 	unsigned long free_blocks_total;
544 	unsigned long free_blocks_suitable;
545 };
546 
547 /*
548  * Calculate the number of free pages in a zone, how many contiguous
549  * pages are free and how many are large enough to satisfy an allocation of
550  * the target size. Note that this function makes no attempt to estimate
551  * how many suitable free blocks there *might* be if MOVABLE pages were
552  * migrated. Calculating that is possible, but expensive and can be
553  * figured out from userspace
554  */
555 static void fill_contig_page_info(struct zone *zone,
556 				unsigned int suitable_order,
557 				struct contig_page_info *info)
558 {
559 	unsigned int order;
560 
561 	info->free_pages = 0;
562 	info->free_blocks_total = 0;
563 	info->free_blocks_suitable = 0;
564 
565 	for (order = 0; order < MAX_ORDER; order++) {
566 		unsigned long blocks;
567 
568 		/* Count number of free blocks */
569 		blocks = zone->free_area[order].nr_free;
570 		info->free_blocks_total += blocks;
571 
572 		/* Count free base pages */
573 		info->free_pages += blocks << order;
574 
575 		/* Count the suitable free blocks */
576 		if (order >= suitable_order)
577 			info->free_blocks_suitable += blocks <<
578 						(order - suitable_order);
579 	}
580 }
581 
582 /*
583  * A fragmentation index only makes sense if an allocation of a requested
584  * size would fail. If that is true, the fragmentation index indicates
585  * whether external fragmentation or a lack of memory was the problem.
586  * The value can be used to determine if page reclaim or compaction
587  * should be used
588  */
589 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
590 {
591 	unsigned long requested = 1UL << order;
592 
593 	if (!info->free_blocks_total)
594 		return 0;
595 
596 	/* Fragmentation index only makes sense when a request would fail */
597 	if (info->free_blocks_suitable)
598 		return -1000;
599 
600 	/*
601 	 * Index is between 0 and 1 so return within 3 decimal places
602 	 *
603 	 * 0 => allocation would fail due to lack of memory
604 	 * 1 => allocation would fail due to fragmentation
605 	 */
606 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
607 }
608 
609 /* Same as __fragmentation index but allocs contig_page_info on stack */
610 int fragmentation_index(struct zone *zone, unsigned int order)
611 {
612 	struct contig_page_info info;
613 
614 	fill_contig_page_info(zone, order, &info);
615 	return __fragmentation_index(order, &info);
616 }
617 #endif
618 
619 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
620 #include <linux/proc_fs.h>
621 #include <linux/seq_file.h>
622 
623 static char * const migratetype_names[MIGRATE_TYPES] = {
624 	"Unmovable",
625 	"Reclaimable",
626 	"Movable",
627 	"Reserve",
628 #ifdef CONFIG_CMA
629 	"CMA",
630 #endif
631 	"Isolate",
632 };
633 
634 static void *frag_start(struct seq_file *m, loff_t *pos)
635 {
636 	pg_data_t *pgdat;
637 	loff_t node = *pos;
638 	for (pgdat = first_online_pgdat();
639 	     pgdat && node;
640 	     pgdat = next_online_pgdat(pgdat))
641 		--node;
642 
643 	return pgdat;
644 }
645 
646 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
647 {
648 	pg_data_t *pgdat = (pg_data_t *)arg;
649 
650 	(*pos)++;
651 	return next_online_pgdat(pgdat);
652 }
653 
654 static void frag_stop(struct seq_file *m, void *arg)
655 {
656 }
657 
658 /* Walk all the zones in a node and print using a callback */
659 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
660 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
661 {
662 	struct zone *zone;
663 	struct zone *node_zones = pgdat->node_zones;
664 	unsigned long flags;
665 
666 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
667 		if (!populated_zone(zone))
668 			continue;
669 
670 		spin_lock_irqsave(&zone->lock, flags);
671 		print(m, pgdat, zone);
672 		spin_unlock_irqrestore(&zone->lock, flags);
673 	}
674 }
675 #endif
676 
677 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
678 #ifdef CONFIG_ZONE_DMA
679 #define TEXT_FOR_DMA(xx) xx "_dma",
680 #else
681 #define TEXT_FOR_DMA(xx)
682 #endif
683 
684 #ifdef CONFIG_ZONE_DMA32
685 #define TEXT_FOR_DMA32(xx) xx "_dma32",
686 #else
687 #define TEXT_FOR_DMA32(xx)
688 #endif
689 
690 #ifdef CONFIG_HIGHMEM
691 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
692 #else
693 #define TEXT_FOR_HIGHMEM(xx)
694 #endif
695 
696 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
697 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
698 
699 const char * const vmstat_text[] = {
700 	/* Zoned VM counters */
701 	"nr_free_pages",
702 	"nr_inactive_anon",
703 	"nr_active_anon",
704 	"nr_inactive_file",
705 	"nr_active_file",
706 	"nr_unevictable",
707 	"nr_mlock",
708 	"nr_anon_pages",
709 	"nr_mapped",
710 	"nr_file_pages",
711 	"nr_dirty",
712 	"nr_writeback",
713 	"nr_slab_reclaimable",
714 	"nr_slab_unreclaimable",
715 	"nr_page_table_pages",
716 	"nr_kernel_stack",
717 	"nr_unstable",
718 	"nr_bounce",
719 	"nr_vmscan_write",
720 	"nr_vmscan_immediate_reclaim",
721 	"nr_writeback_temp",
722 	"nr_isolated_anon",
723 	"nr_isolated_file",
724 	"nr_shmem",
725 	"nr_dirtied",
726 	"nr_written",
727 
728 #ifdef CONFIG_NUMA
729 	"numa_hit",
730 	"numa_miss",
731 	"numa_foreign",
732 	"numa_interleave",
733 	"numa_local",
734 	"numa_other",
735 #endif
736 	"nr_anon_transparent_hugepages",
737 	"nr_free_cma",
738 	"nr_dirty_threshold",
739 	"nr_dirty_background_threshold",
740 
741 #ifdef CONFIG_VM_EVENT_COUNTERS
742 	"pgpgin",
743 	"pgpgout",
744 	"pswpin",
745 	"pswpout",
746 
747 	TEXTS_FOR_ZONES("pgalloc")
748 
749 	"pgfree",
750 	"pgactivate",
751 	"pgdeactivate",
752 
753 	"pgfault",
754 	"pgmajfault",
755 
756 	TEXTS_FOR_ZONES("pgrefill")
757 	TEXTS_FOR_ZONES("pgsteal_kswapd")
758 	TEXTS_FOR_ZONES("pgsteal_direct")
759 	TEXTS_FOR_ZONES("pgscan_kswapd")
760 	TEXTS_FOR_ZONES("pgscan_direct")
761 	"pgscan_direct_throttle",
762 
763 #ifdef CONFIG_NUMA
764 	"zone_reclaim_failed",
765 #endif
766 	"pginodesteal",
767 	"slabs_scanned",
768 	"kswapd_inodesteal",
769 	"kswapd_low_wmark_hit_quickly",
770 	"kswapd_high_wmark_hit_quickly",
771 	"kswapd_skip_congestion_wait",
772 	"pageoutrun",
773 	"allocstall",
774 
775 	"pgrotated",
776 
777 #ifdef CONFIG_COMPACTION
778 	"compact_blocks_moved",
779 	"compact_pages_moved",
780 	"compact_pagemigrate_failed",
781 	"compact_stall",
782 	"compact_fail",
783 	"compact_success",
784 #endif
785 
786 #ifdef CONFIG_HUGETLB_PAGE
787 	"htlb_buddy_alloc_success",
788 	"htlb_buddy_alloc_fail",
789 #endif
790 	"unevictable_pgs_culled",
791 	"unevictable_pgs_scanned",
792 	"unevictable_pgs_rescued",
793 	"unevictable_pgs_mlocked",
794 	"unevictable_pgs_munlocked",
795 	"unevictable_pgs_cleared",
796 	"unevictable_pgs_stranded",
797 
798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
799 	"thp_fault_alloc",
800 	"thp_fault_fallback",
801 	"thp_collapse_alloc",
802 	"thp_collapse_alloc_failed",
803 	"thp_split",
804 #endif
805 
806 #endif /* CONFIG_VM_EVENTS_COUNTERS */
807 };
808 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
809 
810 
811 #ifdef CONFIG_PROC_FS
812 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
813 						struct zone *zone)
814 {
815 	int order;
816 
817 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
818 	for (order = 0; order < MAX_ORDER; ++order)
819 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
820 	seq_putc(m, '\n');
821 }
822 
823 /*
824  * This walks the free areas for each zone.
825  */
826 static int frag_show(struct seq_file *m, void *arg)
827 {
828 	pg_data_t *pgdat = (pg_data_t *)arg;
829 	walk_zones_in_node(m, pgdat, frag_show_print);
830 	return 0;
831 }
832 
833 static void pagetypeinfo_showfree_print(struct seq_file *m,
834 					pg_data_t *pgdat, struct zone *zone)
835 {
836 	int order, mtype;
837 
838 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
839 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
840 					pgdat->node_id,
841 					zone->name,
842 					migratetype_names[mtype]);
843 		for (order = 0; order < MAX_ORDER; ++order) {
844 			unsigned long freecount = 0;
845 			struct free_area *area;
846 			struct list_head *curr;
847 
848 			area = &(zone->free_area[order]);
849 
850 			list_for_each(curr, &area->free_list[mtype])
851 				freecount++;
852 			seq_printf(m, "%6lu ", freecount);
853 		}
854 		seq_putc(m, '\n');
855 	}
856 }
857 
858 /* Print out the free pages at each order for each migatetype */
859 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
860 {
861 	int order;
862 	pg_data_t *pgdat = (pg_data_t *)arg;
863 
864 	/* Print header */
865 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
866 	for (order = 0; order < MAX_ORDER; ++order)
867 		seq_printf(m, "%6d ", order);
868 	seq_putc(m, '\n');
869 
870 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
871 
872 	return 0;
873 }
874 
875 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
876 					pg_data_t *pgdat, struct zone *zone)
877 {
878 	int mtype;
879 	unsigned long pfn;
880 	unsigned long start_pfn = zone->zone_start_pfn;
881 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
882 	unsigned long count[MIGRATE_TYPES] = { 0, };
883 
884 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
885 		struct page *page;
886 
887 		if (!pfn_valid(pfn))
888 			continue;
889 
890 		page = pfn_to_page(pfn);
891 
892 		/* Watch for unexpected holes punched in the memmap */
893 		if (!memmap_valid_within(pfn, page, zone))
894 			continue;
895 
896 		mtype = get_pageblock_migratetype(page);
897 
898 		if (mtype < MIGRATE_TYPES)
899 			count[mtype]++;
900 	}
901 
902 	/* Print counts */
903 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
904 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
905 		seq_printf(m, "%12lu ", count[mtype]);
906 	seq_putc(m, '\n');
907 }
908 
909 /* Print out the free pages at each order for each migratetype */
910 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
911 {
912 	int mtype;
913 	pg_data_t *pgdat = (pg_data_t *)arg;
914 
915 	seq_printf(m, "\n%-23s", "Number of blocks type ");
916 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
917 		seq_printf(m, "%12s ", migratetype_names[mtype]);
918 	seq_putc(m, '\n');
919 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
920 
921 	return 0;
922 }
923 
924 /*
925  * This prints out statistics in relation to grouping pages by mobility.
926  * It is expensive to collect so do not constantly read the file.
927  */
928 static int pagetypeinfo_show(struct seq_file *m, void *arg)
929 {
930 	pg_data_t *pgdat = (pg_data_t *)arg;
931 
932 	/* check memoryless node */
933 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
934 		return 0;
935 
936 	seq_printf(m, "Page block order: %d\n", pageblock_order);
937 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
938 	seq_putc(m, '\n');
939 	pagetypeinfo_showfree(m, pgdat);
940 	pagetypeinfo_showblockcount(m, pgdat);
941 
942 	return 0;
943 }
944 
945 static const struct seq_operations fragmentation_op = {
946 	.start	= frag_start,
947 	.next	= frag_next,
948 	.stop	= frag_stop,
949 	.show	= frag_show,
950 };
951 
952 static int fragmentation_open(struct inode *inode, struct file *file)
953 {
954 	return seq_open(file, &fragmentation_op);
955 }
956 
957 static const struct file_operations fragmentation_file_operations = {
958 	.open		= fragmentation_open,
959 	.read		= seq_read,
960 	.llseek		= seq_lseek,
961 	.release	= seq_release,
962 };
963 
964 static const struct seq_operations pagetypeinfo_op = {
965 	.start	= frag_start,
966 	.next	= frag_next,
967 	.stop	= frag_stop,
968 	.show	= pagetypeinfo_show,
969 };
970 
971 static int pagetypeinfo_open(struct inode *inode, struct file *file)
972 {
973 	return seq_open(file, &pagetypeinfo_op);
974 }
975 
976 static const struct file_operations pagetypeinfo_file_ops = {
977 	.open		= pagetypeinfo_open,
978 	.read		= seq_read,
979 	.llseek		= seq_lseek,
980 	.release	= seq_release,
981 };
982 
983 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
984 							struct zone *zone)
985 {
986 	int i;
987 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
988 	seq_printf(m,
989 		   "\n  pages free     %lu"
990 		   "\n        min      %lu"
991 		   "\n        low      %lu"
992 		   "\n        high     %lu"
993 		   "\n        scanned  %lu"
994 		   "\n        spanned  %lu"
995 		   "\n        present  %lu",
996 		   zone_page_state(zone, NR_FREE_PAGES),
997 		   min_wmark_pages(zone),
998 		   low_wmark_pages(zone),
999 		   high_wmark_pages(zone),
1000 		   zone->pages_scanned,
1001 		   zone->spanned_pages,
1002 		   zone->present_pages);
1003 
1004 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1005 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1006 				zone_page_state(zone, i));
1007 
1008 	seq_printf(m,
1009 		   "\n        protection: (%lu",
1010 		   zone->lowmem_reserve[0]);
1011 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1012 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1013 	seq_printf(m,
1014 		   ")"
1015 		   "\n  pagesets");
1016 	for_each_online_cpu(i) {
1017 		struct per_cpu_pageset *pageset;
1018 
1019 		pageset = per_cpu_ptr(zone->pageset, i);
1020 		seq_printf(m,
1021 			   "\n    cpu: %i"
1022 			   "\n              count: %i"
1023 			   "\n              high:  %i"
1024 			   "\n              batch: %i",
1025 			   i,
1026 			   pageset->pcp.count,
1027 			   pageset->pcp.high,
1028 			   pageset->pcp.batch);
1029 #ifdef CONFIG_SMP
1030 		seq_printf(m, "\n  vm stats threshold: %d",
1031 				pageset->stat_threshold);
1032 #endif
1033 	}
1034 	seq_printf(m,
1035 		   "\n  all_unreclaimable: %u"
1036 		   "\n  start_pfn:         %lu"
1037 		   "\n  inactive_ratio:    %u",
1038 		   zone->all_unreclaimable,
1039 		   zone->zone_start_pfn,
1040 		   zone->inactive_ratio);
1041 	seq_putc(m, '\n');
1042 }
1043 
1044 /*
1045  * Output information about zones in @pgdat.
1046  */
1047 static int zoneinfo_show(struct seq_file *m, void *arg)
1048 {
1049 	pg_data_t *pgdat = (pg_data_t *)arg;
1050 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1051 	return 0;
1052 }
1053 
1054 static const struct seq_operations zoneinfo_op = {
1055 	.start	= frag_start, /* iterate over all zones. The same as in
1056 			       * fragmentation. */
1057 	.next	= frag_next,
1058 	.stop	= frag_stop,
1059 	.show	= zoneinfo_show,
1060 };
1061 
1062 static int zoneinfo_open(struct inode *inode, struct file *file)
1063 {
1064 	return seq_open(file, &zoneinfo_op);
1065 }
1066 
1067 static const struct file_operations proc_zoneinfo_file_operations = {
1068 	.open		= zoneinfo_open,
1069 	.read		= seq_read,
1070 	.llseek		= seq_lseek,
1071 	.release	= seq_release,
1072 };
1073 
1074 enum writeback_stat_item {
1075 	NR_DIRTY_THRESHOLD,
1076 	NR_DIRTY_BG_THRESHOLD,
1077 	NR_VM_WRITEBACK_STAT_ITEMS,
1078 };
1079 
1080 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1081 {
1082 	unsigned long *v;
1083 	int i, stat_items_size;
1084 
1085 	if (*pos >= ARRAY_SIZE(vmstat_text))
1086 		return NULL;
1087 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1088 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1089 
1090 #ifdef CONFIG_VM_EVENT_COUNTERS
1091 	stat_items_size += sizeof(struct vm_event_state);
1092 #endif
1093 
1094 	v = kmalloc(stat_items_size, GFP_KERNEL);
1095 	m->private = v;
1096 	if (!v)
1097 		return ERR_PTR(-ENOMEM);
1098 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1099 		v[i] = global_page_state(i);
1100 	v += NR_VM_ZONE_STAT_ITEMS;
1101 
1102 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1103 			    v + NR_DIRTY_THRESHOLD);
1104 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1105 
1106 #ifdef CONFIG_VM_EVENT_COUNTERS
1107 	all_vm_events(v);
1108 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1109 	v[PGPGOUT] /= 2;
1110 #endif
1111 	return (unsigned long *)m->private + *pos;
1112 }
1113 
1114 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1115 {
1116 	(*pos)++;
1117 	if (*pos >= ARRAY_SIZE(vmstat_text))
1118 		return NULL;
1119 	return (unsigned long *)m->private + *pos;
1120 }
1121 
1122 static int vmstat_show(struct seq_file *m, void *arg)
1123 {
1124 	unsigned long *l = arg;
1125 	unsigned long off = l - (unsigned long *)m->private;
1126 
1127 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1128 	return 0;
1129 }
1130 
1131 static void vmstat_stop(struct seq_file *m, void *arg)
1132 {
1133 	kfree(m->private);
1134 	m->private = NULL;
1135 }
1136 
1137 static const struct seq_operations vmstat_op = {
1138 	.start	= vmstat_start,
1139 	.next	= vmstat_next,
1140 	.stop	= vmstat_stop,
1141 	.show	= vmstat_show,
1142 };
1143 
1144 static int vmstat_open(struct inode *inode, struct file *file)
1145 {
1146 	return seq_open(file, &vmstat_op);
1147 }
1148 
1149 static const struct file_operations proc_vmstat_file_operations = {
1150 	.open		= vmstat_open,
1151 	.read		= seq_read,
1152 	.llseek		= seq_lseek,
1153 	.release	= seq_release,
1154 };
1155 #endif /* CONFIG_PROC_FS */
1156 
1157 #ifdef CONFIG_SMP
1158 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1159 int sysctl_stat_interval __read_mostly = HZ;
1160 
1161 static void vmstat_update(struct work_struct *w)
1162 {
1163 	refresh_cpu_vm_stats(smp_processor_id());
1164 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1165 		round_jiffies_relative(sysctl_stat_interval));
1166 }
1167 
1168 static void __cpuinit start_cpu_timer(int cpu)
1169 {
1170 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1171 
1172 	INIT_DEFERRABLE_WORK(work, vmstat_update);
1173 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1174 }
1175 
1176 /*
1177  * Use the cpu notifier to insure that the thresholds are recalculated
1178  * when necessary.
1179  */
1180 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1181 		unsigned long action,
1182 		void *hcpu)
1183 {
1184 	long cpu = (long)hcpu;
1185 
1186 	switch (action) {
1187 	case CPU_ONLINE:
1188 	case CPU_ONLINE_FROZEN:
1189 		refresh_zone_stat_thresholds();
1190 		start_cpu_timer(cpu);
1191 		node_set_state(cpu_to_node(cpu), N_CPU);
1192 		break;
1193 	case CPU_DOWN_PREPARE:
1194 	case CPU_DOWN_PREPARE_FROZEN:
1195 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1196 		per_cpu(vmstat_work, cpu).work.func = NULL;
1197 		break;
1198 	case CPU_DOWN_FAILED:
1199 	case CPU_DOWN_FAILED_FROZEN:
1200 		start_cpu_timer(cpu);
1201 		break;
1202 	case CPU_DEAD:
1203 	case CPU_DEAD_FROZEN:
1204 		refresh_zone_stat_thresholds();
1205 		break;
1206 	default:
1207 		break;
1208 	}
1209 	return NOTIFY_OK;
1210 }
1211 
1212 static struct notifier_block __cpuinitdata vmstat_notifier =
1213 	{ &vmstat_cpuup_callback, NULL, 0 };
1214 #endif
1215 
1216 static int __init setup_vmstat(void)
1217 {
1218 #ifdef CONFIG_SMP
1219 	int cpu;
1220 
1221 	register_cpu_notifier(&vmstat_notifier);
1222 
1223 	for_each_online_cpu(cpu)
1224 		start_cpu_timer(cpu);
1225 #endif
1226 #ifdef CONFIG_PROC_FS
1227 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1228 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1229 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1230 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1231 #endif
1232 	return 0;
1233 }
1234 module_init(setup_vmstat)
1235 
1236 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1237 #include <linux/debugfs.h>
1238 
1239 
1240 /*
1241  * Return an index indicating how much of the available free memory is
1242  * unusable for an allocation of the requested size.
1243  */
1244 static int unusable_free_index(unsigned int order,
1245 				struct contig_page_info *info)
1246 {
1247 	/* No free memory is interpreted as all free memory is unusable */
1248 	if (info->free_pages == 0)
1249 		return 1000;
1250 
1251 	/*
1252 	 * Index should be a value between 0 and 1. Return a value to 3
1253 	 * decimal places.
1254 	 *
1255 	 * 0 => no fragmentation
1256 	 * 1 => high fragmentation
1257 	 */
1258 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1259 
1260 }
1261 
1262 static void unusable_show_print(struct seq_file *m,
1263 					pg_data_t *pgdat, struct zone *zone)
1264 {
1265 	unsigned int order;
1266 	int index;
1267 	struct contig_page_info info;
1268 
1269 	seq_printf(m, "Node %d, zone %8s ",
1270 				pgdat->node_id,
1271 				zone->name);
1272 	for (order = 0; order < MAX_ORDER; ++order) {
1273 		fill_contig_page_info(zone, order, &info);
1274 		index = unusable_free_index(order, &info);
1275 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1276 	}
1277 
1278 	seq_putc(m, '\n');
1279 }
1280 
1281 /*
1282  * Display unusable free space index
1283  *
1284  * The unusable free space index measures how much of the available free
1285  * memory cannot be used to satisfy an allocation of a given size and is a
1286  * value between 0 and 1. The higher the value, the more of free memory is
1287  * unusable and by implication, the worse the external fragmentation is. This
1288  * can be expressed as a percentage by multiplying by 100.
1289  */
1290 static int unusable_show(struct seq_file *m, void *arg)
1291 {
1292 	pg_data_t *pgdat = (pg_data_t *)arg;
1293 
1294 	/* check memoryless node */
1295 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1296 		return 0;
1297 
1298 	walk_zones_in_node(m, pgdat, unusable_show_print);
1299 
1300 	return 0;
1301 }
1302 
1303 static const struct seq_operations unusable_op = {
1304 	.start	= frag_start,
1305 	.next	= frag_next,
1306 	.stop	= frag_stop,
1307 	.show	= unusable_show,
1308 };
1309 
1310 static int unusable_open(struct inode *inode, struct file *file)
1311 {
1312 	return seq_open(file, &unusable_op);
1313 }
1314 
1315 static const struct file_operations unusable_file_ops = {
1316 	.open		= unusable_open,
1317 	.read		= seq_read,
1318 	.llseek		= seq_lseek,
1319 	.release	= seq_release,
1320 };
1321 
1322 static void extfrag_show_print(struct seq_file *m,
1323 					pg_data_t *pgdat, struct zone *zone)
1324 {
1325 	unsigned int order;
1326 	int index;
1327 
1328 	/* Alloc on stack as interrupts are disabled for zone walk */
1329 	struct contig_page_info info;
1330 
1331 	seq_printf(m, "Node %d, zone %8s ",
1332 				pgdat->node_id,
1333 				zone->name);
1334 	for (order = 0; order < MAX_ORDER; ++order) {
1335 		fill_contig_page_info(zone, order, &info);
1336 		index = __fragmentation_index(order, &info);
1337 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1338 	}
1339 
1340 	seq_putc(m, '\n');
1341 }
1342 
1343 /*
1344  * Display fragmentation index for orders that allocations would fail for
1345  */
1346 static int extfrag_show(struct seq_file *m, void *arg)
1347 {
1348 	pg_data_t *pgdat = (pg_data_t *)arg;
1349 
1350 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1351 
1352 	return 0;
1353 }
1354 
1355 static const struct seq_operations extfrag_op = {
1356 	.start	= frag_start,
1357 	.next	= frag_next,
1358 	.stop	= frag_stop,
1359 	.show	= extfrag_show,
1360 };
1361 
1362 static int extfrag_open(struct inode *inode, struct file *file)
1363 {
1364 	return seq_open(file, &extfrag_op);
1365 }
1366 
1367 static const struct file_operations extfrag_file_ops = {
1368 	.open		= extfrag_open,
1369 	.read		= seq_read,
1370 	.llseek		= seq_lseek,
1371 	.release	= seq_release,
1372 };
1373 
1374 static int __init extfrag_debug_init(void)
1375 {
1376 	struct dentry *extfrag_debug_root;
1377 
1378 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1379 	if (!extfrag_debug_root)
1380 		return -ENOMEM;
1381 
1382 	if (!debugfs_create_file("unusable_index", 0444,
1383 			extfrag_debug_root, NULL, &unusable_file_ops))
1384 		goto fail;
1385 
1386 	if (!debugfs_create_file("extfrag_index", 0444,
1387 			extfrag_debug_root, NULL, &extfrag_file_ops))
1388 		goto fail;
1389 
1390 	return 0;
1391 fail:
1392 	debugfs_remove_recursive(extfrag_debug_root);
1393 	return -ENOMEM;
1394 }
1395 
1396 module_init(extfrag_debug_init);
1397 #endif
1398