1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2) 35 36 #ifdef CONFIG_NUMA 37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39 /* zero numa counters within a zone */ 40 static void zero_zone_numa_counters(struct zone *zone) 41 { 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_stat[item], 0); 46 for_each_online_cpu(cpu) 47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 48 = 0; 49 } 50 } 51 52 /* zero numa counters of all the populated zones */ 53 static void zero_zones_numa_counters(void) 54 { 55 struct zone *zone; 56 57 for_each_populated_zone(zone) 58 zero_zone_numa_counters(zone); 59 } 60 61 /* zero global numa counters */ 62 static void zero_global_numa_counters(void) 63 { 64 int item; 65 66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 67 atomic_long_set(&vm_numa_stat[item], 0); 68 } 69 70 static void invalid_numa_statistics(void) 71 { 72 zero_zones_numa_counters(); 73 zero_global_numa_counters(); 74 } 75 76 static DEFINE_MUTEX(vm_numa_stat_lock); 77 78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 79 void *buffer, size_t *length, loff_t *ppos) 80 { 81 int ret, oldval; 82 83 mutex_lock(&vm_numa_stat_lock); 84 if (write) 85 oldval = sysctl_vm_numa_stat; 86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 87 if (ret || !write) 88 goto out; 89 90 if (oldval == sysctl_vm_numa_stat) 91 goto out; 92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 93 static_branch_enable(&vm_numa_stat_key); 94 pr_info("enable numa statistics\n"); 95 } else { 96 static_branch_disable(&vm_numa_stat_key); 97 invalid_numa_statistics(); 98 pr_info("disable numa statistics, and clear numa counters\n"); 99 } 100 101 out: 102 mutex_unlock(&vm_numa_stat_lock); 103 return ret; 104 } 105 #endif 106 107 #ifdef CONFIG_VM_EVENT_COUNTERS 108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 109 EXPORT_PER_CPU_SYMBOL(vm_event_states); 110 111 static void sum_vm_events(unsigned long *ret) 112 { 113 int cpu; 114 int i; 115 116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 117 118 for_each_online_cpu(cpu) { 119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 120 121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 122 ret[i] += this->event[i]; 123 } 124 } 125 126 /* 127 * Accumulate the vm event counters across all CPUs. 128 * The result is unavoidably approximate - it can change 129 * during and after execution of this function. 130 */ 131 void all_vm_events(unsigned long *ret) 132 { 133 get_online_cpus(); 134 sum_vm_events(ret); 135 put_online_cpus(); 136 } 137 EXPORT_SYMBOL_GPL(all_vm_events); 138 139 /* 140 * Fold the foreign cpu events into our own. 141 * 142 * This is adding to the events on one processor 143 * but keeps the global counts constant. 144 */ 145 void vm_events_fold_cpu(int cpu) 146 { 147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 148 int i; 149 150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 151 count_vm_events(i, fold_state->event[i]); 152 fold_state->event[i] = 0; 153 } 154 } 155 156 #endif /* CONFIG_VM_EVENT_COUNTERS */ 157 158 /* 159 * Manage combined zone based / global counters 160 * 161 * vm_stat contains the global counters 162 */ 163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 166 EXPORT_SYMBOL(vm_zone_stat); 167 EXPORT_SYMBOL(vm_numa_stat); 168 EXPORT_SYMBOL(vm_node_stat); 169 170 #ifdef CONFIG_SMP 171 172 int calculate_pressure_threshold(struct zone *zone) 173 { 174 int threshold; 175 int watermark_distance; 176 177 /* 178 * As vmstats are not up to date, there is drift between the estimated 179 * and real values. For high thresholds and a high number of CPUs, it 180 * is possible for the min watermark to be breached while the estimated 181 * value looks fine. The pressure threshold is a reduced value such 182 * that even the maximum amount of drift will not accidentally breach 183 * the min watermark 184 */ 185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 186 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 187 188 /* 189 * Maximum threshold is 125 190 */ 191 threshold = min(125, threshold); 192 193 return threshold; 194 } 195 196 int calculate_normal_threshold(struct zone *zone) 197 { 198 int threshold; 199 int mem; /* memory in 128 MB units */ 200 201 /* 202 * The threshold scales with the number of processors and the amount 203 * of memory per zone. More memory means that we can defer updates for 204 * longer, more processors could lead to more contention. 205 * fls() is used to have a cheap way of logarithmic scaling. 206 * 207 * Some sample thresholds: 208 * 209 * Threshold Processors (fls) Zonesize fls(mem+1) 210 * ------------------------------------------------------------------ 211 * 8 1 1 0.9-1 GB 4 212 * 16 2 2 0.9-1 GB 4 213 * 20 2 2 1-2 GB 5 214 * 24 2 2 2-4 GB 6 215 * 28 2 2 4-8 GB 7 216 * 32 2 2 8-16 GB 8 217 * 4 2 2 <128M 1 218 * 30 4 3 2-4 GB 5 219 * 48 4 3 8-16 GB 8 220 * 32 8 4 1-2 GB 4 221 * 32 8 4 0.9-1GB 4 222 * 10 16 5 <128M 1 223 * 40 16 5 900M 4 224 * 70 64 7 2-4 GB 5 225 * 84 64 7 4-8 GB 6 226 * 108 512 9 4-8 GB 6 227 * 125 1024 10 8-16 GB 8 228 * 125 1024 10 16-32 GB 9 229 */ 230 231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 232 233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 234 235 /* 236 * Maximum threshold is 125 237 */ 238 threshold = min(125, threshold); 239 240 return threshold; 241 } 242 243 /* 244 * Refresh the thresholds for each zone. 245 */ 246 void refresh_zone_stat_thresholds(void) 247 { 248 struct pglist_data *pgdat; 249 struct zone *zone; 250 int cpu; 251 int threshold; 252 253 /* Zero current pgdat thresholds */ 254 for_each_online_pgdat(pgdat) { 255 for_each_online_cpu(cpu) { 256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 257 } 258 } 259 260 for_each_populated_zone(zone) { 261 struct pglist_data *pgdat = zone->zone_pgdat; 262 unsigned long max_drift, tolerate_drift; 263 264 threshold = calculate_normal_threshold(zone); 265 266 for_each_online_cpu(cpu) { 267 int pgdat_threshold; 268 269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 270 = threshold; 271 272 /* Base nodestat threshold on the largest populated zone. */ 273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 275 = max(threshold, pgdat_threshold); 276 } 277 278 /* 279 * Only set percpu_drift_mark if there is a danger that 280 * NR_FREE_PAGES reports the low watermark is ok when in fact 281 * the min watermark could be breached by an allocation 282 */ 283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 284 max_drift = num_online_cpus() * threshold; 285 if (max_drift > tolerate_drift) 286 zone->percpu_drift_mark = high_wmark_pages(zone) + 287 max_drift; 288 } 289 } 290 291 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 292 int (*calculate_pressure)(struct zone *)) 293 { 294 struct zone *zone; 295 int cpu; 296 int threshold; 297 int i; 298 299 for (i = 0; i < pgdat->nr_zones; i++) { 300 zone = &pgdat->node_zones[i]; 301 if (!zone->percpu_drift_mark) 302 continue; 303 304 threshold = (*calculate_pressure)(zone); 305 for_each_online_cpu(cpu) 306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 307 = threshold; 308 } 309 } 310 311 /* 312 * For use when we know that interrupts are disabled, 313 * or when we know that preemption is disabled and that 314 * particular counter cannot be updated from interrupt context. 315 */ 316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 317 long delta) 318 { 319 struct per_cpu_pageset __percpu *pcp = zone->pageset; 320 s8 __percpu *p = pcp->vm_stat_diff + item; 321 long x; 322 long t; 323 324 x = delta + __this_cpu_read(*p); 325 326 t = __this_cpu_read(pcp->stat_threshold); 327 328 if (unlikely(x > t || x < -t)) { 329 zone_page_state_add(x, zone, item); 330 x = 0; 331 } 332 __this_cpu_write(*p, x); 333 } 334 EXPORT_SYMBOL(__mod_zone_page_state); 335 336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 337 long delta) 338 { 339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 340 s8 __percpu *p = pcp->vm_node_stat_diff + item; 341 long x; 342 long t; 343 344 if (vmstat_item_in_bytes(item)) { 345 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 346 delta >>= PAGE_SHIFT; 347 } 348 349 x = delta + __this_cpu_read(*p); 350 351 t = __this_cpu_read(pcp->stat_threshold); 352 353 if (unlikely(x > t || x < -t)) { 354 node_page_state_add(x, pgdat, item); 355 x = 0; 356 } 357 __this_cpu_write(*p, x); 358 } 359 EXPORT_SYMBOL(__mod_node_page_state); 360 361 /* 362 * Optimized increment and decrement functions. 363 * 364 * These are only for a single page and therefore can take a struct page * 365 * argument instead of struct zone *. This allows the inclusion of the code 366 * generated for page_zone(page) into the optimized functions. 367 * 368 * No overflow check is necessary and therefore the differential can be 369 * incremented or decremented in place which may allow the compilers to 370 * generate better code. 371 * The increment or decrement is known and therefore one boundary check can 372 * be omitted. 373 * 374 * NOTE: These functions are very performance sensitive. Change only 375 * with care. 376 * 377 * Some processors have inc/dec instructions that are atomic vs an interrupt. 378 * However, the code must first determine the differential location in a zone 379 * based on the processor number and then inc/dec the counter. There is no 380 * guarantee without disabling preemption that the processor will not change 381 * in between and therefore the atomicity vs. interrupt cannot be exploited 382 * in a useful way here. 383 */ 384 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 385 { 386 struct per_cpu_pageset __percpu *pcp = zone->pageset; 387 s8 __percpu *p = pcp->vm_stat_diff + item; 388 s8 v, t; 389 390 v = __this_cpu_inc_return(*p); 391 t = __this_cpu_read(pcp->stat_threshold); 392 if (unlikely(v > t)) { 393 s8 overstep = t >> 1; 394 395 zone_page_state_add(v + overstep, zone, item); 396 __this_cpu_write(*p, -overstep); 397 } 398 } 399 400 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 401 { 402 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 403 s8 __percpu *p = pcp->vm_node_stat_diff + item; 404 s8 v, t; 405 406 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 407 408 v = __this_cpu_inc_return(*p); 409 t = __this_cpu_read(pcp->stat_threshold); 410 if (unlikely(v > t)) { 411 s8 overstep = t >> 1; 412 413 node_page_state_add(v + overstep, pgdat, item); 414 __this_cpu_write(*p, -overstep); 415 } 416 } 417 418 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 __inc_zone_state(page_zone(page), item); 421 } 422 EXPORT_SYMBOL(__inc_zone_page_state); 423 424 void __inc_node_page_state(struct page *page, enum node_stat_item item) 425 { 426 __inc_node_state(page_pgdat(page), item); 427 } 428 EXPORT_SYMBOL(__inc_node_page_state); 429 430 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 431 { 432 struct per_cpu_pageset __percpu *pcp = zone->pageset; 433 s8 __percpu *p = pcp->vm_stat_diff + item; 434 s8 v, t; 435 436 v = __this_cpu_dec_return(*p); 437 t = __this_cpu_read(pcp->stat_threshold); 438 if (unlikely(v < - t)) { 439 s8 overstep = t >> 1; 440 441 zone_page_state_add(v - overstep, zone, item); 442 __this_cpu_write(*p, overstep); 443 } 444 } 445 446 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 447 { 448 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 449 s8 __percpu *p = pcp->vm_node_stat_diff + item; 450 s8 v, t; 451 452 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 453 454 v = __this_cpu_dec_return(*p); 455 t = __this_cpu_read(pcp->stat_threshold); 456 if (unlikely(v < - t)) { 457 s8 overstep = t >> 1; 458 459 node_page_state_add(v - overstep, pgdat, item); 460 __this_cpu_write(*p, overstep); 461 } 462 } 463 464 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 465 { 466 __dec_zone_state(page_zone(page), item); 467 } 468 EXPORT_SYMBOL(__dec_zone_page_state); 469 470 void __dec_node_page_state(struct page *page, enum node_stat_item item) 471 { 472 __dec_node_state(page_pgdat(page), item); 473 } 474 EXPORT_SYMBOL(__dec_node_page_state); 475 476 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 477 /* 478 * If we have cmpxchg_local support then we do not need to incur the overhead 479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 480 * 481 * mod_state() modifies the zone counter state through atomic per cpu 482 * operations. 483 * 484 * Overstep mode specifies how overstep should handled: 485 * 0 No overstepping 486 * 1 Overstepping half of threshold 487 * -1 Overstepping minus half of threshold 488 */ 489 static inline void mod_zone_state(struct zone *zone, 490 enum zone_stat_item item, long delta, int overstep_mode) 491 { 492 struct per_cpu_pageset __percpu *pcp = zone->pageset; 493 s8 __percpu *p = pcp->vm_stat_diff + item; 494 long o, n, t, z; 495 496 do { 497 z = 0; /* overflow to zone counters */ 498 499 /* 500 * The fetching of the stat_threshold is racy. We may apply 501 * a counter threshold to the wrong the cpu if we get 502 * rescheduled while executing here. However, the next 503 * counter update will apply the threshold again and 504 * therefore bring the counter under the threshold again. 505 * 506 * Most of the time the thresholds are the same anyways 507 * for all cpus in a zone. 508 */ 509 t = this_cpu_read(pcp->stat_threshold); 510 511 o = this_cpu_read(*p); 512 n = delta + o; 513 514 if (n > t || n < -t) { 515 int os = overstep_mode * (t >> 1) ; 516 517 /* Overflow must be added to zone counters */ 518 z = n + os; 519 n = -os; 520 } 521 } while (this_cpu_cmpxchg(*p, o, n) != o); 522 523 if (z) 524 zone_page_state_add(z, zone, item); 525 } 526 527 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 528 long delta) 529 { 530 mod_zone_state(zone, item, delta, 0); 531 } 532 EXPORT_SYMBOL(mod_zone_page_state); 533 534 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 535 { 536 mod_zone_state(page_zone(page), item, 1, 1); 537 } 538 EXPORT_SYMBOL(inc_zone_page_state); 539 540 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 541 { 542 mod_zone_state(page_zone(page), item, -1, -1); 543 } 544 EXPORT_SYMBOL(dec_zone_page_state); 545 546 static inline void mod_node_state(struct pglist_data *pgdat, 547 enum node_stat_item item, int delta, int overstep_mode) 548 { 549 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 550 s8 __percpu *p = pcp->vm_node_stat_diff + item; 551 long o, n, t, z; 552 553 if (vmstat_item_in_bytes(item)) { 554 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 555 delta >>= PAGE_SHIFT; 556 } 557 558 do { 559 z = 0; /* overflow to node counters */ 560 561 /* 562 * The fetching of the stat_threshold is racy. We may apply 563 * a counter threshold to the wrong the cpu if we get 564 * rescheduled while executing here. However, the next 565 * counter update will apply the threshold again and 566 * therefore bring the counter under the threshold again. 567 * 568 * Most of the time the thresholds are the same anyways 569 * for all cpus in a node. 570 */ 571 t = this_cpu_read(pcp->stat_threshold); 572 573 o = this_cpu_read(*p); 574 n = delta + o; 575 576 if (n > t || n < -t) { 577 int os = overstep_mode * (t >> 1) ; 578 579 /* Overflow must be added to node counters */ 580 z = n + os; 581 n = -os; 582 } 583 } while (this_cpu_cmpxchg(*p, o, n) != o); 584 585 if (z) 586 node_page_state_add(z, pgdat, item); 587 } 588 589 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 590 long delta) 591 { 592 mod_node_state(pgdat, item, delta, 0); 593 } 594 EXPORT_SYMBOL(mod_node_page_state); 595 596 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 597 { 598 mod_node_state(pgdat, item, 1, 1); 599 } 600 601 void inc_node_page_state(struct page *page, enum node_stat_item item) 602 { 603 mod_node_state(page_pgdat(page), item, 1, 1); 604 } 605 EXPORT_SYMBOL(inc_node_page_state); 606 607 void dec_node_page_state(struct page *page, enum node_stat_item item) 608 { 609 mod_node_state(page_pgdat(page), item, -1, -1); 610 } 611 EXPORT_SYMBOL(dec_node_page_state); 612 #else 613 /* 614 * Use interrupt disable to serialize counter updates 615 */ 616 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 617 long delta) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __mod_zone_page_state(zone, item, delta); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL(mod_zone_page_state); 626 627 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 628 { 629 unsigned long flags; 630 struct zone *zone; 631 632 zone = page_zone(page); 633 local_irq_save(flags); 634 __inc_zone_state(zone, item); 635 local_irq_restore(flags); 636 } 637 EXPORT_SYMBOL(inc_zone_page_state); 638 639 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 640 { 641 unsigned long flags; 642 643 local_irq_save(flags); 644 __dec_zone_page_state(page, item); 645 local_irq_restore(flags); 646 } 647 EXPORT_SYMBOL(dec_zone_page_state); 648 649 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 650 { 651 unsigned long flags; 652 653 local_irq_save(flags); 654 __inc_node_state(pgdat, item); 655 local_irq_restore(flags); 656 } 657 EXPORT_SYMBOL(inc_node_state); 658 659 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 660 long delta) 661 { 662 unsigned long flags; 663 664 local_irq_save(flags); 665 __mod_node_page_state(pgdat, item, delta); 666 local_irq_restore(flags); 667 } 668 EXPORT_SYMBOL(mod_node_page_state); 669 670 void inc_node_page_state(struct page *page, enum node_stat_item item) 671 { 672 unsigned long flags; 673 struct pglist_data *pgdat; 674 675 pgdat = page_pgdat(page); 676 local_irq_save(flags); 677 __inc_node_state(pgdat, item); 678 local_irq_restore(flags); 679 } 680 EXPORT_SYMBOL(inc_node_page_state); 681 682 void dec_node_page_state(struct page *page, enum node_stat_item item) 683 { 684 unsigned long flags; 685 686 local_irq_save(flags); 687 __dec_node_page_state(page, item); 688 local_irq_restore(flags); 689 } 690 EXPORT_SYMBOL(dec_node_page_state); 691 #endif 692 693 /* 694 * Fold a differential into the global counters. 695 * Returns the number of counters updated. 696 */ 697 #ifdef CONFIG_NUMA 698 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 699 { 700 int i; 701 int changes = 0; 702 703 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 704 if (zone_diff[i]) { 705 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 706 changes++; 707 } 708 709 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 710 if (numa_diff[i]) { 711 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 712 changes++; 713 } 714 715 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 716 if (node_diff[i]) { 717 atomic_long_add(node_diff[i], &vm_node_stat[i]); 718 changes++; 719 } 720 return changes; 721 } 722 #else 723 static int fold_diff(int *zone_diff, int *node_diff) 724 { 725 int i; 726 int changes = 0; 727 728 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 729 if (zone_diff[i]) { 730 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 731 changes++; 732 } 733 734 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 735 if (node_diff[i]) { 736 atomic_long_add(node_diff[i], &vm_node_stat[i]); 737 changes++; 738 } 739 return changes; 740 } 741 #endif /* CONFIG_NUMA */ 742 743 /* 744 * Update the zone counters for the current cpu. 745 * 746 * Note that refresh_cpu_vm_stats strives to only access 747 * node local memory. The per cpu pagesets on remote zones are placed 748 * in the memory local to the processor using that pageset. So the 749 * loop over all zones will access a series of cachelines local to 750 * the processor. 751 * 752 * The call to zone_page_state_add updates the cachelines with the 753 * statistics in the remote zone struct as well as the global cachelines 754 * with the global counters. These could cause remote node cache line 755 * bouncing and will have to be only done when necessary. 756 * 757 * The function returns the number of global counters updated. 758 */ 759 static int refresh_cpu_vm_stats(bool do_pagesets) 760 { 761 struct pglist_data *pgdat; 762 struct zone *zone; 763 int i; 764 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 765 #ifdef CONFIG_NUMA 766 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 767 #endif 768 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 769 int changes = 0; 770 771 for_each_populated_zone(zone) { 772 struct per_cpu_pageset __percpu *p = zone->pageset; 773 774 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 775 int v; 776 777 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 778 if (v) { 779 780 atomic_long_add(v, &zone->vm_stat[i]); 781 global_zone_diff[i] += v; 782 #ifdef CONFIG_NUMA 783 /* 3 seconds idle till flush */ 784 __this_cpu_write(p->expire, 3); 785 #endif 786 } 787 } 788 #ifdef CONFIG_NUMA 789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 790 int v; 791 792 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 793 if (v) { 794 795 atomic_long_add(v, &zone->vm_numa_stat[i]); 796 global_numa_diff[i] += v; 797 __this_cpu_write(p->expire, 3); 798 } 799 } 800 801 if (do_pagesets) { 802 cond_resched(); 803 /* 804 * Deal with draining the remote pageset of this 805 * processor 806 * 807 * Check if there are pages remaining in this pageset 808 * if not then there is nothing to expire. 809 */ 810 if (!__this_cpu_read(p->expire) || 811 !__this_cpu_read(p->pcp.count)) 812 continue; 813 814 /* 815 * We never drain zones local to this processor. 816 */ 817 if (zone_to_nid(zone) == numa_node_id()) { 818 __this_cpu_write(p->expire, 0); 819 continue; 820 } 821 822 if (__this_cpu_dec_return(p->expire)) 823 continue; 824 825 if (__this_cpu_read(p->pcp.count)) { 826 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 827 changes++; 828 } 829 } 830 #endif 831 } 832 833 for_each_online_pgdat(pgdat) { 834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 835 836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 837 int v; 838 839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 840 if (v) { 841 atomic_long_add(v, &pgdat->vm_stat[i]); 842 global_node_diff[i] += v; 843 } 844 } 845 } 846 847 #ifdef CONFIG_NUMA 848 changes += fold_diff(global_zone_diff, global_numa_diff, 849 global_node_diff); 850 #else 851 changes += fold_diff(global_zone_diff, global_node_diff); 852 #endif 853 return changes; 854 } 855 856 /* 857 * Fold the data for an offline cpu into the global array. 858 * There cannot be any access by the offline cpu and therefore 859 * synchronization is simplified. 860 */ 861 void cpu_vm_stats_fold(int cpu) 862 { 863 struct pglist_data *pgdat; 864 struct zone *zone; 865 int i; 866 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 867 #ifdef CONFIG_NUMA 868 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 869 #endif 870 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 871 872 for_each_populated_zone(zone) { 873 struct per_cpu_pageset *p; 874 875 p = per_cpu_ptr(zone->pageset, cpu); 876 877 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 878 if (p->vm_stat_diff[i]) { 879 int v; 880 881 v = p->vm_stat_diff[i]; 882 p->vm_stat_diff[i] = 0; 883 atomic_long_add(v, &zone->vm_stat[i]); 884 global_zone_diff[i] += v; 885 } 886 887 #ifdef CONFIG_NUMA 888 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 889 if (p->vm_numa_stat_diff[i]) { 890 int v; 891 892 v = p->vm_numa_stat_diff[i]; 893 p->vm_numa_stat_diff[i] = 0; 894 atomic_long_add(v, &zone->vm_numa_stat[i]); 895 global_numa_diff[i] += v; 896 } 897 #endif 898 } 899 900 for_each_online_pgdat(pgdat) { 901 struct per_cpu_nodestat *p; 902 903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 904 905 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 906 if (p->vm_node_stat_diff[i]) { 907 int v; 908 909 v = p->vm_node_stat_diff[i]; 910 p->vm_node_stat_diff[i] = 0; 911 atomic_long_add(v, &pgdat->vm_stat[i]); 912 global_node_diff[i] += v; 913 } 914 } 915 916 #ifdef CONFIG_NUMA 917 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 918 #else 919 fold_diff(global_zone_diff, global_node_diff); 920 #endif 921 } 922 923 /* 924 * this is only called if !populated_zone(zone), which implies no other users of 925 * pset->vm_stat_diff[] exsist. 926 */ 927 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 928 { 929 int i; 930 931 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 932 if (pset->vm_stat_diff[i]) { 933 int v = pset->vm_stat_diff[i]; 934 pset->vm_stat_diff[i] = 0; 935 atomic_long_add(v, &zone->vm_stat[i]); 936 atomic_long_add(v, &vm_zone_stat[i]); 937 } 938 939 #ifdef CONFIG_NUMA 940 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 941 if (pset->vm_numa_stat_diff[i]) { 942 int v = pset->vm_numa_stat_diff[i]; 943 944 pset->vm_numa_stat_diff[i] = 0; 945 atomic_long_add(v, &zone->vm_numa_stat[i]); 946 atomic_long_add(v, &vm_numa_stat[i]); 947 } 948 #endif 949 } 950 #endif 951 952 #ifdef CONFIG_NUMA 953 void __inc_numa_state(struct zone *zone, 954 enum numa_stat_item item) 955 { 956 struct per_cpu_pageset __percpu *pcp = zone->pageset; 957 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 958 u16 v; 959 960 v = __this_cpu_inc_return(*p); 961 962 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 963 zone_numa_state_add(v, zone, item); 964 __this_cpu_write(*p, 0); 965 } 966 } 967 968 /* 969 * Determine the per node value of a stat item. This function 970 * is called frequently in a NUMA machine, so try to be as 971 * frugal as possible. 972 */ 973 unsigned long sum_zone_node_page_state(int node, 974 enum zone_stat_item item) 975 { 976 struct zone *zones = NODE_DATA(node)->node_zones; 977 int i; 978 unsigned long count = 0; 979 980 for (i = 0; i < MAX_NR_ZONES; i++) 981 count += zone_page_state(zones + i, item); 982 983 return count; 984 } 985 986 /* 987 * Determine the per node value of a numa stat item. To avoid deviation, 988 * the per cpu stat number in vm_numa_stat_diff[] is also included. 989 */ 990 unsigned long sum_zone_numa_state(int node, 991 enum numa_stat_item item) 992 { 993 struct zone *zones = NODE_DATA(node)->node_zones; 994 int i; 995 unsigned long count = 0; 996 997 for (i = 0; i < MAX_NR_ZONES; i++) 998 count += zone_numa_state_snapshot(zones + i, item); 999 1000 return count; 1001 } 1002 1003 /* 1004 * Determine the per node value of a stat item. 1005 */ 1006 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1007 enum node_stat_item item) 1008 { 1009 long x = atomic_long_read(&pgdat->vm_stat[item]); 1010 #ifdef CONFIG_SMP 1011 if (x < 0) 1012 x = 0; 1013 #endif 1014 return x; 1015 } 1016 1017 unsigned long node_page_state(struct pglist_data *pgdat, 1018 enum node_stat_item item) 1019 { 1020 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1021 1022 return node_page_state_pages(pgdat, item); 1023 } 1024 #endif 1025 1026 #ifdef CONFIG_COMPACTION 1027 1028 struct contig_page_info { 1029 unsigned long free_pages; 1030 unsigned long free_blocks_total; 1031 unsigned long free_blocks_suitable; 1032 }; 1033 1034 /* 1035 * Calculate the number of free pages in a zone, how many contiguous 1036 * pages are free and how many are large enough to satisfy an allocation of 1037 * the target size. Note that this function makes no attempt to estimate 1038 * how many suitable free blocks there *might* be if MOVABLE pages were 1039 * migrated. Calculating that is possible, but expensive and can be 1040 * figured out from userspace 1041 */ 1042 static void fill_contig_page_info(struct zone *zone, 1043 unsigned int suitable_order, 1044 struct contig_page_info *info) 1045 { 1046 unsigned int order; 1047 1048 info->free_pages = 0; 1049 info->free_blocks_total = 0; 1050 info->free_blocks_suitable = 0; 1051 1052 for (order = 0; order < MAX_ORDER; order++) { 1053 unsigned long blocks; 1054 1055 /* Count number of free blocks */ 1056 blocks = zone->free_area[order].nr_free; 1057 info->free_blocks_total += blocks; 1058 1059 /* Count free base pages */ 1060 info->free_pages += blocks << order; 1061 1062 /* Count the suitable free blocks */ 1063 if (order >= suitable_order) 1064 info->free_blocks_suitable += blocks << 1065 (order - suitable_order); 1066 } 1067 } 1068 1069 /* 1070 * A fragmentation index only makes sense if an allocation of a requested 1071 * size would fail. If that is true, the fragmentation index indicates 1072 * whether external fragmentation or a lack of memory was the problem. 1073 * The value can be used to determine if page reclaim or compaction 1074 * should be used 1075 */ 1076 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1077 { 1078 unsigned long requested = 1UL << order; 1079 1080 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1081 return 0; 1082 1083 if (!info->free_blocks_total) 1084 return 0; 1085 1086 /* Fragmentation index only makes sense when a request would fail */ 1087 if (info->free_blocks_suitable) 1088 return -1000; 1089 1090 /* 1091 * Index is between 0 and 1 so return within 3 decimal places 1092 * 1093 * 0 => allocation would fail due to lack of memory 1094 * 1 => allocation would fail due to fragmentation 1095 */ 1096 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1097 } 1098 1099 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1100 int fragmentation_index(struct zone *zone, unsigned int order) 1101 { 1102 struct contig_page_info info; 1103 1104 fill_contig_page_info(zone, order, &info); 1105 return __fragmentation_index(order, &info); 1106 } 1107 #endif 1108 1109 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1110 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1111 #ifdef CONFIG_ZONE_DMA 1112 #define TEXT_FOR_DMA(xx) xx "_dma", 1113 #else 1114 #define TEXT_FOR_DMA(xx) 1115 #endif 1116 1117 #ifdef CONFIG_ZONE_DMA32 1118 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1119 #else 1120 #define TEXT_FOR_DMA32(xx) 1121 #endif 1122 1123 #ifdef CONFIG_HIGHMEM 1124 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1125 #else 1126 #define TEXT_FOR_HIGHMEM(xx) 1127 #endif 1128 1129 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1130 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1131 1132 const char * const vmstat_text[] = { 1133 /* enum zone_stat_item counters */ 1134 "nr_free_pages", 1135 "nr_zone_inactive_anon", 1136 "nr_zone_active_anon", 1137 "nr_zone_inactive_file", 1138 "nr_zone_active_file", 1139 "nr_zone_unevictable", 1140 "nr_zone_write_pending", 1141 "nr_mlock", 1142 "nr_page_table_pages", 1143 "nr_bounce", 1144 #if IS_ENABLED(CONFIG_ZSMALLOC) 1145 "nr_zspages", 1146 #endif 1147 "nr_free_cma", 1148 1149 /* enum numa_stat_item counters */ 1150 #ifdef CONFIG_NUMA 1151 "numa_hit", 1152 "numa_miss", 1153 "numa_foreign", 1154 "numa_interleave", 1155 "numa_local", 1156 "numa_other", 1157 #endif 1158 1159 /* enum node_stat_item counters */ 1160 "nr_inactive_anon", 1161 "nr_active_anon", 1162 "nr_inactive_file", 1163 "nr_active_file", 1164 "nr_unevictable", 1165 "nr_slab_reclaimable", 1166 "nr_slab_unreclaimable", 1167 "nr_isolated_anon", 1168 "nr_isolated_file", 1169 "workingset_nodes", 1170 "workingset_refault", 1171 "workingset_activate", 1172 "workingset_restore", 1173 "workingset_nodereclaim", 1174 "nr_anon_pages", 1175 "nr_mapped", 1176 "nr_file_pages", 1177 "nr_dirty", 1178 "nr_writeback", 1179 "nr_writeback_temp", 1180 "nr_shmem", 1181 "nr_shmem_hugepages", 1182 "nr_shmem_pmdmapped", 1183 "nr_file_hugepages", 1184 "nr_file_pmdmapped", 1185 "nr_anon_transparent_hugepages", 1186 "nr_vmscan_write", 1187 "nr_vmscan_immediate_reclaim", 1188 "nr_dirtied", 1189 "nr_written", 1190 "nr_kernel_misc_reclaimable", 1191 "nr_foll_pin_acquired", 1192 "nr_foll_pin_released", 1193 "nr_kernel_stack", 1194 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1195 "nr_shadow_call_stack", 1196 #endif 1197 1198 /* enum writeback_stat_item counters */ 1199 "nr_dirty_threshold", 1200 "nr_dirty_background_threshold", 1201 1202 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1203 /* enum vm_event_item counters */ 1204 "pgpgin", 1205 "pgpgout", 1206 "pswpin", 1207 "pswpout", 1208 1209 TEXTS_FOR_ZONES("pgalloc") 1210 TEXTS_FOR_ZONES("allocstall") 1211 TEXTS_FOR_ZONES("pgskip") 1212 1213 "pgfree", 1214 "pgactivate", 1215 "pgdeactivate", 1216 "pglazyfree", 1217 1218 "pgfault", 1219 "pgmajfault", 1220 "pglazyfreed", 1221 1222 "pgrefill", 1223 "pgsteal_kswapd", 1224 "pgsteal_direct", 1225 "pgscan_kswapd", 1226 "pgscan_direct", 1227 "pgscan_direct_throttle", 1228 "pgscan_anon", 1229 "pgscan_file", 1230 "pgsteal_anon", 1231 "pgsteal_file", 1232 1233 #ifdef CONFIG_NUMA 1234 "zone_reclaim_failed", 1235 #endif 1236 "pginodesteal", 1237 "slabs_scanned", 1238 "kswapd_inodesteal", 1239 "kswapd_low_wmark_hit_quickly", 1240 "kswapd_high_wmark_hit_quickly", 1241 "pageoutrun", 1242 1243 "pgrotated", 1244 1245 "drop_pagecache", 1246 "drop_slab", 1247 "oom_kill", 1248 1249 #ifdef CONFIG_NUMA_BALANCING 1250 "numa_pte_updates", 1251 "numa_huge_pte_updates", 1252 "numa_hint_faults", 1253 "numa_hint_faults_local", 1254 "numa_pages_migrated", 1255 #endif 1256 #ifdef CONFIG_MIGRATION 1257 "pgmigrate_success", 1258 "pgmigrate_fail", 1259 #endif 1260 #ifdef CONFIG_COMPACTION 1261 "compact_migrate_scanned", 1262 "compact_free_scanned", 1263 "compact_isolated", 1264 "compact_stall", 1265 "compact_fail", 1266 "compact_success", 1267 "compact_daemon_wake", 1268 "compact_daemon_migrate_scanned", 1269 "compact_daemon_free_scanned", 1270 #endif 1271 1272 #ifdef CONFIG_HUGETLB_PAGE 1273 "htlb_buddy_alloc_success", 1274 "htlb_buddy_alloc_fail", 1275 #endif 1276 "unevictable_pgs_culled", 1277 "unevictable_pgs_scanned", 1278 "unevictable_pgs_rescued", 1279 "unevictable_pgs_mlocked", 1280 "unevictable_pgs_munlocked", 1281 "unevictable_pgs_cleared", 1282 "unevictable_pgs_stranded", 1283 1284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1285 "thp_fault_alloc", 1286 "thp_fault_fallback", 1287 "thp_fault_fallback_charge", 1288 "thp_collapse_alloc", 1289 "thp_collapse_alloc_failed", 1290 "thp_file_alloc", 1291 "thp_file_fallback", 1292 "thp_file_fallback_charge", 1293 "thp_file_mapped", 1294 "thp_split_page", 1295 "thp_split_page_failed", 1296 "thp_deferred_split_page", 1297 "thp_split_pmd", 1298 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1299 "thp_split_pud", 1300 #endif 1301 "thp_zero_page_alloc", 1302 "thp_zero_page_alloc_failed", 1303 "thp_swpout", 1304 "thp_swpout_fallback", 1305 #endif 1306 #ifdef CONFIG_MEMORY_BALLOON 1307 "balloon_inflate", 1308 "balloon_deflate", 1309 #ifdef CONFIG_BALLOON_COMPACTION 1310 "balloon_migrate", 1311 #endif 1312 #endif /* CONFIG_MEMORY_BALLOON */ 1313 #ifdef CONFIG_DEBUG_TLBFLUSH 1314 "nr_tlb_remote_flush", 1315 "nr_tlb_remote_flush_received", 1316 "nr_tlb_local_flush_all", 1317 "nr_tlb_local_flush_one", 1318 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1319 1320 #ifdef CONFIG_DEBUG_VM_VMACACHE 1321 "vmacache_find_calls", 1322 "vmacache_find_hits", 1323 #endif 1324 #ifdef CONFIG_SWAP 1325 "swap_ra", 1326 "swap_ra_hit", 1327 #endif 1328 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1329 }; 1330 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1331 1332 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1333 defined(CONFIG_PROC_FS) 1334 static void *frag_start(struct seq_file *m, loff_t *pos) 1335 { 1336 pg_data_t *pgdat; 1337 loff_t node = *pos; 1338 1339 for (pgdat = first_online_pgdat(); 1340 pgdat && node; 1341 pgdat = next_online_pgdat(pgdat)) 1342 --node; 1343 1344 return pgdat; 1345 } 1346 1347 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1348 { 1349 pg_data_t *pgdat = (pg_data_t *)arg; 1350 1351 (*pos)++; 1352 return next_online_pgdat(pgdat); 1353 } 1354 1355 static void frag_stop(struct seq_file *m, void *arg) 1356 { 1357 } 1358 1359 /* 1360 * Walk zones in a node and print using a callback. 1361 * If @assert_populated is true, only use callback for zones that are populated. 1362 */ 1363 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1364 bool assert_populated, bool nolock, 1365 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1366 { 1367 struct zone *zone; 1368 struct zone *node_zones = pgdat->node_zones; 1369 unsigned long flags; 1370 1371 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1372 if (assert_populated && !populated_zone(zone)) 1373 continue; 1374 1375 if (!nolock) 1376 spin_lock_irqsave(&zone->lock, flags); 1377 print(m, pgdat, zone); 1378 if (!nolock) 1379 spin_unlock_irqrestore(&zone->lock, flags); 1380 } 1381 } 1382 #endif 1383 1384 #ifdef CONFIG_PROC_FS 1385 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1386 struct zone *zone) 1387 { 1388 int order; 1389 1390 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1391 for (order = 0; order < MAX_ORDER; ++order) 1392 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1393 seq_putc(m, '\n'); 1394 } 1395 1396 /* 1397 * This walks the free areas for each zone. 1398 */ 1399 static int frag_show(struct seq_file *m, void *arg) 1400 { 1401 pg_data_t *pgdat = (pg_data_t *)arg; 1402 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1403 return 0; 1404 } 1405 1406 static void pagetypeinfo_showfree_print(struct seq_file *m, 1407 pg_data_t *pgdat, struct zone *zone) 1408 { 1409 int order, mtype; 1410 1411 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1412 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1413 pgdat->node_id, 1414 zone->name, 1415 migratetype_names[mtype]); 1416 for (order = 0; order < MAX_ORDER; ++order) { 1417 unsigned long freecount = 0; 1418 struct free_area *area; 1419 struct list_head *curr; 1420 bool overflow = false; 1421 1422 area = &(zone->free_area[order]); 1423 1424 list_for_each(curr, &area->free_list[mtype]) { 1425 /* 1426 * Cap the free_list iteration because it might 1427 * be really large and we are under a spinlock 1428 * so a long time spent here could trigger a 1429 * hard lockup detector. Anyway this is a 1430 * debugging tool so knowing there is a handful 1431 * of pages of this order should be more than 1432 * sufficient. 1433 */ 1434 if (++freecount >= 100000) { 1435 overflow = true; 1436 break; 1437 } 1438 } 1439 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1440 spin_unlock_irq(&zone->lock); 1441 cond_resched(); 1442 spin_lock_irq(&zone->lock); 1443 } 1444 seq_putc(m, '\n'); 1445 } 1446 } 1447 1448 /* Print out the free pages at each order for each migatetype */ 1449 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1450 { 1451 int order; 1452 pg_data_t *pgdat = (pg_data_t *)arg; 1453 1454 /* Print header */ 1455 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1456 for (order = 0; order < MAX_ORDER; ++order) 1457 seq_printf(m, "%6d ", order); 1458 seq_putc(m, '\n'); 1459 1460 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1461 1462 return 0; 1463 } 1464 1465 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1466 pg_data_t *pgdat, struct zone *zone) 1467 { 1468 int mtype; 1469 unsigned long pfn; 1470 unsigned long start_pfn = zone->zone_start_pfn; 1471 unsigned long end_pfn = zone_end_pfn(zone); 1472 unsigned long count[MIGRATE_TYPES] = { 0, }; 1473 1474 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1475 struct page *page; 1476 1477 page = pfn_to_online_page(pfn); 1478 if (!page) 1479 continue; 1480 1481 /* Watch for unexpected holes punched in the memmap */ 1482 if (!memmap_valid_within(pfn, page, zone)) 1483 continue; 1484 1485 if (page_zone(page) != zone) 1486 continue; 1487 1488 mtype = get_pageblock_migratetype(page); 1489 1490 if (mtype < MIGRATE_TYPES) 1491 count[mtype]++; 1492 } 1493 1494 /* Print counts */ 1495 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1496 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1497 seq_printf(m, "%12lu ", count[mtype]); 1498 seq_putc(m, '\n'); 1499 } 1500 1501 /* Print out the number of pageblocks for each migratetype */ 1502 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1503 { 1504 int mtype; 1505 pg_data_t *pgdat = (pg_data_t *)arg; 1506 1507 seq_printf(m, "\n%-23s", "Number of blocks type "); 1508 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1509 seq_printf(m, "%12s ", migratetype_names[mtype]); 1510 seq_putc(m, '\n'); 1511 walk_zones_in_node(m, pgdat, true, false, 1512 pagetypeinfo_showblockcount_print); 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * Print out the number of pageblocks for each migratetype that contain pages 1519 * of other types. This gives an indication of how well fallbacks are being 1520 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1521 * to determine what is going on 1522 */ 1523 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1524 { 1525 #ifdef CONFIG_PAGE_OWNER 1526 int mtype; 1527 1528 if (!static_branch_unlikely(&page_owner_inited)) 1529 return; 1530 1531 drain_all_pages(NULL); 1532 1533 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1534 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1535 seq_printf(m, "%12s ", migratetype_names[mtype]); 1536 seq_putc(m, '\n'); 1537 1538 walk_zones_in_node(m, pgdat, true, true, 1539 pagetypeinfo_showmixedcount_print); 1540 #endif /* CONFIG_PAGE_OWNER */ 1541 } 1542 1543 /* 1544 * This prints out statistics in relation to grouping pages by mobility. 1545 * It is expensive to collect so do not constantly read the file. 1546 */ 1547 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1548 { 1549 pg_data_t *pgdat = (pg_data_t *)arg; 1550 1551 /* check memoryless node */ 1552 if (!node_state(pgdat->node_id, N_MEMORY)) 1553 return 0; 1554 1555 seq_printf(m, "Page block order: %d\n", pageblock_order); 1556 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1557 seq_putc(m, '\n'); 1558 pagetypeinfo_showfree(m, pgdat); 1559 pagetypeinfo_showblockcount(m, pgdat); 1560 pagetypeinfo_showmixedcount(m, pgdat); 1561 1562 return 0; 1563 } 1564 1565 static const struct seq_operations fragmentation_op = { 1566 .start = frag_start, 1567 .next = frag_next, 1568 .stop = frag_stop, 1569 .show = frag_show, 1570 }; 1571 1572 static const struct seq_operations pagetypeinfo_op = { 1573 .start = frag_start, 1574 .next = frag_next, 1575 .stop = frag_stop, 1576 .show = pagetypeinfo_show, 1577 }; 1578 1579 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1580 { 1581 int zid; 1582 1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1584 struct zone *compare = &pgdat->node_zones[zid]; 1585 1586 if (populated_zone(compare)) 1587 return zone == compare; 1588 } 1589 1590 return false; 1591 } 1592 1593 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1594 struct zone *zone) 1595 { 1596 int i; 1597 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1598 if (is_zone_first_populated(pgdat, zone)) { 1599 seq_printf(m, "\n per-node stats"); 1600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1601 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1602 node_page_state_pages(pgdat, i)); 1603 } 1604 } 1605 seq_printf(m, 1606 "\n pages free %lu" 1607 "\n min %lu" 1608 "\n low %lu" 1609 "\n high %lu" 1610 "\n spanned %lu" 1611 "\n present %lu" 1612 "\n managed %lu", 1613 zone_page_state(zone, NR_FREE_PAGES), 1614 min_wmark_pages(zone), 1615 low_wmark_pages(zone), 1616 high_wmark_pages(zone), 1617 zone->spanned_pages, 1618 zone->present_pages, 1619 zone_managed_pages(zone)); 1620 1621 /* If unpopulated, no other information is useful */ 1622 if (!populated_zone(zone)) { 1623 seq_putc(m, '\n'); 1624 return; 1625 } 1626 1627 seq_printf(m, 1628 "\n protection: (%ld", 1629 zone->lowmem_reserve[0]); 1630 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1631 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1632 seq_putc(m, ')'); 1633 1634 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1635 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1636 zone_page_state(zone, i)); 1637 1638 #ifdef CONFIG_NUMA 1639 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1640 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1641 zone_numa_state_snapshot(zone, i)); 1642 #endif 1643 1644 seq_printf(m, "\n pagesets"); 1645 for_each_online_cpu(i) { 1646 struct per_cpu_pageset *pageset; 1647 1648 pageset = per_cpu_ptr(zone->pageset, i); 1649 seq_printf(m, 1650 "\n cpu: %i" 1651 "\n count: %i" 1652 "\n high: %i" 1653 "\n batch: %i", 1654 i, 1655 pageset->pcp.count, 1656 pageset->pcp.high, 1657 pageset->pcp.batch); 1658 #ifdef CONFIG_SMP 1659 seq_printf(m, "\n vm stats threshold: %d", 1660 pageset->stat_threshold); 1661 #endif 1662 } 1663 seq_printf(m, 1664 "\n node_unreclaimable: %u" 1665 "\n start_pfn: %lu", 1666 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1667 zone->zone_start_pfn); 1668 seq_putc(m, '\n'); 1669 } 1670 1671 /* 1672 * Output information about zones in @pgdat. All zones are printed regardless 1673 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1674 * set of all zones and userspace would not be aware of such zones if they are 1675 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1676 */ 1677 static int zoneinfo_show(struct seq_file *m, void *arg) 1678 { 1679 pg_data_t *pgdat = (pg_data_t *)arg; 1680 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1681 return 0; 1682 } 1683 1684 static const struct seq_operations zoneinfo_op = { 1685 .start = frag_start, /* iterate over all zones. The same as in 1686 * fragmentation. */ 1687 .next = frag_next, 1688 .stop = frag_stop, 1689 .show = zoneinfo_show, 1690 }; 1691 1692 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1693 NR_VM_NUMA_STAT_ITEMS + \ 1694 NR_VM_NODE_STAT_ITEMS + \ 1695 NR_VM_WRITEBACK_STAT_ITEMS + \ 1696 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1697 NR_VM_EVENT_ITEMS : 0)) 1698 1699 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1700 { 1701 unsigned long *v; 1702 int i; 1703 1704 if (*pos >= NR_VMSTAT_ITEMS) 1705 return NULL; 1706 1707 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1708 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1709 m->private = v; 1710 if (!v) 1711 return ERR_PTR(-ENOMEM); 1712 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1713 v[i] = global_zone_page_state(i); 1714 v += NR_VM_ZONE_STAT_ITEMS; 1715 1716 #ifdef CONFIG_NUMA 1717 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1718 v[i] = global_numa_state(i); 1719 v += NR_VM_NUMA_STAT_ITEMS; 1720 #endif 1721 1722 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1723 v[i] = global_node_page_state_pages(i); 1724 v += NR_VM_NODE_STAT_ITEMS; 1725 1726 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1727 v + NR_DIRTY_THRESHOLD); 1728 v += NR_VM_WRITEBACK_STAT_ITEMS; 1729 1730 #ifdef CONFIG_VM_EVENT_COUNTERS 1731 all_vm_events(v); 1732 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1733 v[PGPGOUT] /= 2; 1734 #endif 1735 return (unsigned long *)m->private + *pos; 1736 } 1737 1738 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1739 { 1740 (*pos)++; 1741 if (*pos >= NR_VMSTAT_ITEMS) 1742 return NULL; 1743 return (unsigned long *)m->private + *pos; 1744 } 1745 1746 static int vmstat_show(struct seq_file *m, void *arg) 1747 { 1748 unsigned long *l = arg; 1749 unsigned long off = l - (unsigned long *)m->private; 1750 1751 seq_puts(m, vmstat_text[off]); 1752 seq_put_decimal_ull(m, " ", *l); 1753 seq_putc(m, '\n'); 1754 1755 if (off == NR_VMSTAT_ITEMS - 1) { 1756 /* 1757 * We've come to the end - add any deprecated counters to avoid 1758 * breaking userspace which might depend on them being present. 1759 */ 1760 seq_puts(m, "nr_unstable 0\n"); 1761 } 1762 return 0; 1763 } 1764 1765 static void vmstat_stop(struct seq_file *m, void *arg) 1766 { 1767 kfree(m->private); 1768 m->private = NULL; 1769 } 1770 1771 static const struct seq_operations vmstat_op = { 1772 .start = vmstat_start, 1773 .next = vmstat_next, 1774 .stop = vmstat_stop, 1775 .show = vmstat_show, 1776 }; 1777 #endif /* CONFIG_PROC_FS */ 1778 1779 #ifdef CONFIG_SMP 1780 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1781 int sysctl_stat_interval __read_mostly = HZ; 1782 1783 #ifdef CONFIG_PROC_FS 1784 static void refresh_vm_stats(struct work_struct *work) 1785 { 1786 refresh_cpu_vm_stats(true); 1787 } 1788 1789 int vmstat_refresh(struct ctl_table *table, int write, 1790 void *buffer, size_t *lenp, loff_t *ppos) 1791 { 1792 long val; 1793 int err; 1794 int i; 1795 1796 /* 1797 * The regular update, every sysctl_stat_interval, may come later 1798 * than expected: leaving a significant amount in per_cpu buckets. 1799 * This is particularly misleading when checking a quantity of HUGE 1800 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1801 * which can equally be echo'ed to or cat'ted from (by root), 1802 * can be used to update the stats just before reading them. 1803 * 1804 * Oh, and since global_zone_page_state() etc. are so careful to hide 1805 * transiently negative values, report an error here if any of 1806 * the stats is negative, so we know to go looking for imbalance. 1807 */ 1808 err = schedule_on_each_cpu(refresh_vm_stats); 1809 if (err) 1810 return err; 1811 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1812 val = atomic_long_read(&vm_zone_stat[i]); 1813 if (val < 0) { 1814 pr_warn("%s: %s %ld\n", 1815 __func__, zone_stat_name(i), val); 1816 err = -EINVAL; 1817 } 1818 } 1819 #ifdef CONFIG_NUMA 1820 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1821 val = atomic_long_read(&vm_numa_stat[i]); 1822 if (val < 0) { 1823 pr_warn("%s: %s %ld\n", 1824 __func__, numa_stat_name(i), val); 1825 err = -EINVAL; 1826 } 1827 } 1828 #endif 1829 if (err) 1830 return err; 1831 if (write) 1832 *ppos += *lenp; 1833 else 1834 *lenp = 0; 1835 return 0; 1836 } 1837 #endif /* CONFIG_PROC_FS */ 1838 1839 static void vmstat_update(struct work_struct *w) 1840 { 1841 if (refresh_cpu_vm_stats(true)) { 1842 /* 1843 * Counters were updated so we expect more updates 1844 * to occur in the future. Keep on running the 1845 * update worker thread. 1846 */ 1847 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1848 this_cpu_ptr(&vmstat_work), 1849 round_jiffies_relative(sysctl_stat_interval)); 1850 } 1851 } 1852 1853 /* 1854 * Switch off vmstat processing and then fold all the remaining differentials 1855 * until the diffs stay at zero. The function is used by NOHZ and can only be 1856 * invoked when tick processing is not active. 1857 */ 1858 /* 1859 * Check if the diffs for a certain cpu indicate that 1860 * an update is needed. 1861 */ 1862 static bool need_update(int cpu) 1863 { 1864 struct zone *zone; 1865 1866 for_each_populated_zone(zone) { 1867 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1868 1869 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1870 #ifdef CONFIG_NUMA 1871 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1872 #endif 1873 1874 /* 1875 * The fast way of checking if there are any vmstat diffs. 1876 */ 1877 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * 1878 sizeof(p->vm_stat_diff[0]))) 1879 return true; 1880 #ifdef CONFIG_NUMA 1881 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * 1882 sizeof(p->vm_numa_stat_diff[0]))) 1883 return true; 1884 #endif 1885 } 1886 return false; 1887 } 1888 1889 /* 1890 * Switch off vmstat processing and then fold all the remaining differentials 1891 * until the diffs stay at zero. The function is used by NOHZ and can only be 1892 * invoked when tick processing is not active. 1893 */ 1894 void quiet_vmstat(void) 1895 { 1896 if (system_state != SYSTEM_RUNNING) 1897 return; 1898 1899 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1900 return; 1901 1902 if (!need_update(smp_processor_id())) 1903 return; 1904 1905 /* 1906 * Just refresh counters and do not care about the pending delayed 1907 * vmstat_update. It doesn't fire that often to matter and canceling 1908 * it would be too expensive from this path. 1909 * vmstat_shepherd will take care about that for us. 1910 */ 1911 refresh_cpu_vm_stats(false); 1912 } 1913 1914 /* 1915 * Shepherd worker thread that checks the 1916 * differentials of processors that have their worker 1917 * threads for vm statistics updates disabled because of 1918 * inactivity. 1919 */ 1920 static void vmstat_shepherd(struct work_struct *w); 1921 1922 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1923 1924 static void vmstat_shepherd(struct work_struct *w) 1925 { 1926 int cpu; 1927 1928 get_online_cpus(); 1929 /* Check processors whose vmstat worker threads have been disabled */ 1930 for_each_online_cpu(cpu) { 1931 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1932 1933 if (!delayed_work_pending(dw) && need_update(cpu)) 1934 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1935 } 1936 put_online_cpus(); 1937 1938 schedule_delayed_work(&shepherd, 1939 round_jiffies_relative(sysctl_stat_interval)); 1940 } 1941 1942 static void __init start_shepherd_timer(void) 1943 { 1944 int cpu; 1945 1946 for_each_possible_cpu(cpu) 1947 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1948 vmstat_update); 1949 1950 schedule_delayed_work(&shepherd, 1951 round_jiffies_relative(sysctl_stat_interval)); 1952 } 1953 1954 static void __init init_cpu_node_state(void) 1955 { 1956 int node; 1957 1958 for_each_online_node(node) { 1959 if (cpumask_weight(cpumask_of_node(node)) > 0) 1960 node_set_state(node, N_CPU); 1961 } 1962 } 1963 1964 static int vmstat_cpu_online(unsigned int cpu) 1965 { 1966 refresh_zone_stat_thresholds(); 1967 node_set_state(cpu_to_node(cpu), N_CPU); 1968 return 0; 1969 } 1970 1971 static int vmstat_cpu_down_prep(unsigned int cpu) 1972 { 1973 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1974 return 0; 1975 } 1976 1977 static int vmstat_cpu_dead(unsigned int cpu) 1978 { 1979 const struct cpumask *node_cpus; 1980 int node; 1981 1982 node = cpu_to_node(cpu); 1983 1984 refresh_zone_stat_thresholds(); 1985 node_cpus = cpumask_of_node(node); 1986 if (cpumask_weight(node_cpus) > 0) 1987 return 0; 1988 1989 node_clear_state(node, N_CPU); 1990 return 0; 1991 } 1992 1993 #endif 1994 1995 struct workqueue_struct *mm_percpu_wq; 1996 1997 void __init init_mm_internals(void) 1998 { 1999 int ret __maybe_unused; 2000 2001 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2002 2003 #ifdef CONFIG_SMP 2004 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2005 NULL, vmstat_cpu_dead); 2006 if (ret < 0) 2007 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2008 2009 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2010 vmstat_cpu_online, 2011 vmstat_cpu_down_prep); 2012 if (ret < 0) 2013 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2014 2015 get_online_cpus(); 2016 init_cpu_node_state(); 2017 put_online_cpus(); 2018 2019 start_shepherd_timer(); 2020 #endif 2021 #ifdef CONFIG_PROC_FS 2022 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2023 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2024 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2025 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2026 #endif 2027 } 2028 2029 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2030 2031 /* 2032 * Return an index indicating how much of the available free memory is 2033 * unusable for an allocation of the requested size. 2034 */ 2035 static int unusable_free_index(unsigned int order, 2036 struct contig_page_info *info) 2037 { 2038 /* No free memory is interpreted as all free memory is unusable */ 2039 if (info->free_pages == 0) 2040 return 1000; 2041 2042 /* 2043 * Index should be a value between 0 and 1. Return a value to 3 2044 * decimal places. 2045 * 2046 * 0 => no fragmentation 2047 * 1 => high fragmentation 2048 */ 2049 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2050 2051 } 2052 2053 static void unusable_show_print(struct seq_file *m, 2054 pg_data_t *pgdat, struct zone *zone) 2055 { 2056 unsigned int order; 2057 int index; 2058 struct contig_page_info info; 2059 2060 seq_printf(m, "Node %d, zone %8s ", 2061 pgdat->node_id, 2062 zone->name); 2063 for (order = 0; order < MAX_ORDER; ++order) { 2064 fill_contig_page_info(zone, order, &info); 2065 index = unusable_free_index(order, &info); 2066 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2067 } 2068 2069 seq_putc(m, '\n'); 2070 } 2071 2072 /* 2073 * Display unusable free space index 2074 * 2075 * The unusable free space index measures how much of the available free 2076 * memory cannot be used to satisfy an allocation of a given size and is a 2077 * value between 0 and 1. The higher the value, the more of free memory is 2078 * unusable and by implication, the worse the external fragmentation is. This 2079 * can be expressed as a percentage by multiplying by 100. 2080 */ 2081 static int unusable_show(struct seq_file *m, void *arg) 2082 { 2083 pg_data_t *pgdat = (pg_data_t *)arg; 2084 2085 /* check memoryless node */ 2086 if (!node_state(pgdat->node_id, N_MEMORY)) 2087 return 0; 2088 2089 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2090 2091 return 0; 2092 } 2093 2094 static const struct seq_operations unusable_sops = { 2095 .start = frag_start, 2096 .next = frag_next, 2097 .stop = frag_stop, 2098 .show = unusable_show, 2099 }; 2100 2101 DEFINE_SEQ_ATTRIBUTE(unusable); 2102 2103 static void extfrag_show_print(struct seq_file *m, 2104 pg_data_t *pgdat, struct zone *zone) 2105 { 2106 unsigned int order; 2107 int index; 2108 2109 /* Alloc on stack as interrupts are disabled for zone walk */ 2110 struct contig_page_info info; 2111 2112 seq_printf(m, "Node %d, zone %8s ", 2113 pgdat->node_id, 2114 zone->name); 2115 for (order = 0; order < MAX_ORDER; ++order) { 2116 fill_contig_page_info(zone, order, &info); 2117 index = __fragmentation_index(order, &info); 2118 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2119 } 2120 2121 seq_putc(m, '\n'); 2122 } 2123 2124 /* 2125 * Display fragmentation index for orders that allocations would fail for 2126 */ 2127 static int extfrag_show(struct seq_file *m, void *arg) 2128 { 2129 pg_data_t *pgdat = (pg_data_t *)arg; 2130 2131 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2132 2133 return 0; 2134 } 2135 2136 static const struct seq_operations extfrag_sops = { 2137 .start = frag_start, 2138 .next = frag_next, 2139 .stop = frag_stop, 2140 .show = extfrag_show, 2141 }; 2142 2143 DEFINE_SEQ_ATTRIBUTE(extfrag); 2144 2145 static int __init extfrag_debug_init(void) 2146 { 2147 struct dentry *extfrag_debug_root; 2148 2149 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2150 2151 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2152 &unusable_fops); 2153 2154 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2155 &extfrag_fops); 2156 2157 return 0; 2158 } 2159 2160 module_init(extfrag_debug_init); 2161 #endif 2162