1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/sched.h> 21 #include <linux/math64.h> 22 #include <linux/writeback.h> 23 #include <linux/compaction.h> 24 #include <linux/mm_inline.h> 25 26 #include "internal.h" 27 28 #ifdef CONFIG_VM_EVENT_COUNTERS 29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 30 EXPORT_PER_CPU_SYMBOL(vm_event_states); 31 32 static void sum_vm_events(unsigned long *ret) 33 { 34 int cpu; 35 int i; 36 37 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 38 39 for_each_online_cpu(cpu) { 40 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 41 42 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 43 ret[i] += this->event[i]; 44 } 45 } 46 47 /* 48 * Accumulate the vm event counters across all CPUs. 49 * The result is unavoidably approximate - it can change 50 * during and after execution of this function. 51 */ 52 void all_vm_events(unsigned long *ret) 53 { 54 get_online_cpus(); 55 sum_vm_events(ret); 56 put_online_cpus(); 57 } 58 EXPORT_SYMBOL_GPL(all_vm_events); 59 60 /* 61 * Fold the foreign cpu events into our own. 62 * 63 * This is adding to the events on one processor 64 * but keeps the global counts constant. 65 */ 66 void vm_events_fold_cpu(int cpu) 67 { 68 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 69 int i; 70 71 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 72 count_vm_events(i, fold_state->event[i]); 73 fold_state->event[i] = 0; 74 } 75 } 76 77 #endif /* CONFIG_VM_EVENT_COUNTERS */ 78 79 /* 80 * Manage combined zone based / global counters 81 * 82 * vm_stat contains the global counters 83 */ 84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 85 EXPORT_SYMBOL(vm_stat); 86 87 #ifdef CONFIG_SMP 88 89 int calculate_pressure_threshold(struct zone *zone) 90 { 91 int threshold; 92 int watermark_distance; 93 94 /* 95 * As vmstats are not up to date, there is drift between the estimated 96 * and real values. For high thresholds and a high number of CPUs, it 97 * is possible for the min watermark to be breached while the estimated 98 * value looks fine. The pressure threshold is a reduced value such 99 * that even the maximum amount of drift will not accidentally breach 100 * the min watermark 101 */ 102 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 103 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 104 105 /* 106 * Maximum threshold is 125 107 */ 108 threshold = min(125, threshold); 109 110 return threshold; 111 } 112 113 int calculate_normal_threshold(struct zone *zone) 114 { 115 int threshold; 116 int mem; /* memory in 128 MB units */ 117 118 /* 119 * The threshold scales with the number of processors and the amount 120 * of memory per zone. More memory means that we can defer updates for 121 * longer, more processors could lead to more contention. 122 * fls() is used to have a cheap way of logarithmic scaling. 123 * 124 * Some sample thresholds: 125 * 126 * Threshold Processors (fls) Zonesize fls(mem+1) 127 * ------------------------------------------------------------------ 128 * 8 1 1 0.9-1 GB 4 129 * 16 2 2 0.9-1 GB 4 130 * 20 2 2 1-2 GB 5 131 * 24 2 2 2-4 GB 6 132 * 28 2 2 4-8 GB 7 133 * 32 2 2 8-16 GB 8 134 * 4 2 2 <128M 1 135 * 30 4 3 2-4 GB 5 136 * 48 4 3 8-16 GB 8 137 * 32 8 4 1-2 GB 4 138 * 32 8 4 0.9-1GB 4 139 * 10 16 5 <128M 1 140 * 40 16 5 900M 4 141 * 70 64 7 2-4 GB 5 142 * 84 64 7 4-8 GB 6 143 * 108 512 9 4-8 GB 6 144 * 125 1024 10 8-16 GB 8 145 * 125 1024 10 16-32 GB 9 146 */ 147 148 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 149 150 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 151 152 /* 153 * Maximum threshold is 125 154 */ 155 threshold = min(125, threshold); 156 157 return threshold; 158 } 159 160 /* 161 * Refresh the thresholds for each zone. 162 */ 163 void refresh_zone_stat_thresholds(void) 164 { 165 struct zone *zone; 166 int cpu; 167 int threshold; 168 169 for_each_populated_zone(zone) { 170 unsigned long max_drift, tolerate_drift; 171 172 threshold = calculate_normal_threshold(zone); 173 174 for_each_online_cpu(cpu) 175 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 176 = threshold; 177 178 /* 179 * Only set percpu_drift_mark if there is a danger that 180 * NR_FREE_PAGES reports the low watermark is ok when in fact 181 * the min watermark could be breached by an allocation 182 */ 183 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 184 max_drift = num_online_cpus() * threshold; 185 if (max_drift > tolerate_drift) 186 zone->percpu_drift_mark = high_wmark_pages(zone) + 187 max_drift; 188 } 189 } 190 191 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 192 int (*calculate_pressure)(struct zone *)) 193 { 194 struct zone *zone; 195 int cpu; 196 int threshold; 197 int i; 198 199 for (i = 0; i < pgdat->nr_zones; i++) { 200 zone = &pgdat->node_zones[i]; 201 if (!zone->percpu_drift_mark) 202 continue; 203 204 threshold = (*calculate_pressure)(zone); 205 for_each_online_cpu(cpu) 206 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 207 = threshold; 208 } 209 } 210 211 /* 212 * For use when we know that interrupts are disabled, 213 * or when we know that preemption is disabled and that 214 * particular counter cannot be updated from interrupt context. 215 */ 216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 217 int delta) 218 { 219 struct per_cpu_pageset __percpu *pcp = zone->pageset; 220 s8 __percpu *p = pcp->vm_stat_diff + item; 221 long x; 222 long t; 223 224 x = delta + __this_cpu_read(*p); 225 226 t = __this_cpu_read(pcp->stat_threshold); 227 228 if (unlikely(x > t || x < -t)) { 229 zone_page_state_add(x, zone, item); 230 x = 0; 231 } 232 __this_cpu_write(*p, x); 233 } 234 EXPORT_SYMBOL(__mod_zone_page_state); 235 236 /* 237 * Optimized increment and decrement functions. 238 * 239 * These are only for a single page and therefore can take a struct page * 240 * argument instead of struct zone *. This allows the inclusion of the code 241 * generated for page_zone(page) into the optimized functions. 242 * 243 * No overflow check is necessary and therefore the differential can be 244 * incremented or decremented in place which may allow the compilers to 245 * generate better code. 246 * The increment or decrement is known and therefore one boundary check can 247 * be omitted. 248 * 249 * NOTE: These functions are very performance sensitive. Change only 250 * with care. 251 * 252 * Some processors have inc/dec instructions that are atomic vs an interrupt. 253 * However, the code must first determine the differential location in a zone 254 * based on the processor number and then inc/dec the counter. There is no 255 * guarantee without disabling preemption that the processor will not change 256 * in between and therefore the atomicity vs. interrupt cannot be exploited 257 * in a useful way here. 258 */ 259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 260 { 261 struct per_cpu_pageset __percpu *pcp = zone->pageset; 262 s8 __percpu *p = pcp->vm_stat_diff + item; 263 s8 v, t; 264 265 v = __this_cpu_inc_return(*p); 266 t = __this_cpu_read(pcp->stat_threshold); 267 if (unlikely(v > t)) { 268 s8 overstep = t >> 1; 269 270 zone_page_state_add(v + overstep, zone, item); 271 __this_cpu_write(*p, -overstep); 272 } 273 } 274 275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 276 { 277 __inc_zone_state(page_zone(page), item); 278 } 279 EXPORT_SYMBOL(__inc_zone_page_state); 280 281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 282 { 283 struct per_cpu_pageset __percpu *pcp = zone->pageset; 284 s8 __percpu *p = pcp->vm_stat_diff + item; 285 s8 v, t; 286 287 v = __this_cpu_dec_return(*p); 288 t = __this_cpu_read(pcp->stat_threshold); 289 if (unlikely(v < - t)) { 290 s8 overstep = t >> 1; 291 292 zone_page_state_add(v - overstep, zone, item); 293 __this_cpu_write(*p, overstep); 294 } 295 } 296 297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 298 { 299 __dec_zone_state(page_zone(page), item); 300 } 301 EXPORT_SYMBOL(__dec_zone_page_state); 302 303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 304 /* 305 * If we have cmpxchg_local support then we do not need to incur the overhead 306 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 307 * 308 * mod_state() modifies the zone counter state through atomic per cpu 309 * operations. 310 * 311 * Overstep mode specifies how overstep should handled: 312 * 0 No overstepping 313 * 1 Overstepping half of threshold 314 * -1 Overstepping minus half of threshold 315 */ 316 static inline void mod_state(struct zone *zone, 317 enum zone_stat_item item, int delta, int overstep_mode) 318 { 319 struct per_cpu_pageset __percpu *pcp = zone->pageset; 320 s8 __percpu *p = pcp->vm_stat_diff + item; 321 long o, n, t, z; 322 323 do { 324 z = 0; /* overflow to zone counters */ 325 326 /* 327 * The fetching of the stat_threshold is racy. We may apply 328 * a counter threshold to the wrong the cpu if we get 329 * rescheduled while executing here. However, the next 330 * counter update will apply the threshold again and 331 * therefore bring the counter under the threshold again. 332 * 333 * Most of the time the thresholds are the same anyways 334 * for all cpus in a zone. 335 */ 336 t = this_cpu_read(pcp->stat_threshold); 337 338 o = this_cpu_read(*p); 339 n = delta + o; 340 341 if (n > t || n < -t) { 342 int os = overstep_mode * (t >> 1) ; 343 344 /* Overflow must be added to zone counters */ 345 z = n + os; 346 n = -os; 347 } 348 } while (this_cpu_cmpxchg(*p, o, n) != o); 349 350 if (z) 351 zone_page_state_add(z, zone, item); 352 } 353 354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 355 int delta) 356 { 357 mod_state(zone, item, delta, 0); 358 } 359 EXPORT_SYMBOL(mod_zone_page_state); 360 361 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 362 { 363 mod_state(zone, item, 1, 1); 364 } 365 366 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 367 { 368 mod_state(page_zone(page), item, 1, 1); 369 } 370 EXPORT_SYMBOL(inc_zone_page_state); 371 372 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 373 { 374 mod_state(page_zone(page), item, -1, -1); 375 } 376 EXPORT_SYMBOL(dec_zone_page_state); 377 #else 378 /* 379 * Use interrupt disable to serialize counter updates 380 */ 381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 382 int delta) 383 { 384 unsigned long flags; 385 386 local_irq_save(flags); 387 __mod_zone_page_state(zone, item, delta); 388 local_irq_restore(flags); 389 } 390 EXPORT_SYMBOL(mod_zone_page_state); 391 392 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 393 { 394 unsigned long flags; 395 396 local_irq_save(flags); 397 __inc_zone_state(zone, item); 398 local_irq_restore(flags); 399 } 400 401 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 402 { 403 unsigned long flags; 404 struct zone *zone; 405 406 zone = page_zone(page); 407 local_irq_save(flags); 408 __inc_zone_state(zone, item); 409 local_irq_restore(flags); 410 } 411 EXPORT_SYMBOL(inc_zone_page_state); 412 413 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 __dec_zone_page_state(page, item); 419 local_irq_restore(flags); 420 } 421 EXPORT_SYMBOL(dec_zone_page_state); 422 #endif 423 424 425 /* 426 * Fold a differential into the global counters. 427 * Returns the number of counters updated. 428 */ 429 static int fold_diff(int *diff) 430 { 431 int i; 432 int changes = 0; 433 434 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 435 if (diff[i]) { 436 atomic_long_add(diff[i], &vm_stat[i]); 437 changes++; 438 } 439 return changes; 440 } 441 442 /* 443 * Update the zone counters for the current cpu. 444 * 445 * Note that refresh_cpu_vm_stats strives to only access 446 * node local memory. The per cpu pagesets on remote zones are placed 447 * in the memory local to the processor using that pageset. So the 448 * loop over all zones will access a series of cachelines local to 449 * the processor. 450 * 451 * The call to zone_page_state_add updates the cachelines with the 452 * statistics in the remote zone struct as well as the global cachelines 453 * with the global counters. These could cause remote node cache line 454 * bouncing and will have to be only done when necessary. 455 * 456 * The function returns the number of global counters updated. 457 */ 458 static int refresh_cpu_vm_stats(void) 459 { 460 struct zone *zone; 461 int i; 462 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 463 int changes = 0; 464 465 for_each_populated_zone(zone) { 466 struct per_cpu_pageset __percpu *p = zone->pageset; 467 468 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 469 int v; 470 471 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 472 if (v) { 473 474 atomic_long_add(v, &zone->vm_stat[i]); 475 global_diff[i] += v; 476 #ifdef CONFIG_NUMA 477 /* 3 seconds idle till flush */ 478 __this_cpu_write(p->expire, 3); 479 #endif 480 } 481 } 482 cond_resched(); 483 #ifdef CONFIG_NUMA 484 /* 485 * Deal with draining the remote pageset of this 486 * processor 487 * 488 * Check if there are pages remaining in this pageset 489 * if not then there is nothing to expire. 490 */ 491 if (!__this_cpu_read(p->expire) || 492 !__this_cpu_read(p->pcp.count)) 493 continue; 494 495 /* 496 * We never drain zones local to this processor. 497 */ 498 if (zone_to_nid(zone) == numa_node_id()) { 499 __this_cpu_write(p->expire, 0); 500 continue; 501 } 502 503 if (__this_cpu_dec_return(p->expire)) 504 continue; 505 506 if (__this_cpu_read(p->pcp.count)) { 507 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 508 changes++; 509 } 510 #endif 511 } 512 changes += fold_diff(global_diff); 513 return changes; 514 } 515 516 /* 517 * Fold the data for an offline cpu into the global array. 518 * There cannot be any access by the offline cpu and therefore 519 * synchronization is simplified. 520 */ 521 void cpu_vm_stats_fold(int cpu) 522 { 523 struct zone *zone; 524 int i; 525 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 526 527 for_each_populated_zone(zone) { 528 struct per_cpu_pageset *p; 529 530 p = per_cpu_ptr(zone->pageset, cpu); 531 532 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 533 if (p->vm_stat_diff[i]) { 534 int v; 535 536 v = p->vm_stat_diff[i]; 537 p->vm_stat_diff[i] = 0; 538 atomic_long_add(v, &zone->vm_stat[i]); 539 global_diff[i] += v; 540 } 541 } 542 543 fold_diff(global_diff); 544 } 545 546 /* 547 * this is only called if !populated_zone(zone), which implies no other users of 548 * pset->vm_stat_diff[] exsist. 549 */ 550 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 551 { 552 int i; 553 554 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 555 if (pset->vm_stat_diff[i]) { 556 int v = pset->vm_stat_diff[i]; 557 pset->vm_stat_diff[i] = 0; 558 atomic_long_add(v, &zone->vm_stat[i]); 559 atomic_long_add(v, &vm_stat[i]); 560 } 561 } 562 #endif 563 564 #ifdef CONFIG_NUMA 565 /* 566 * zonelist = the list of zones passed to the allocator 567 * z = the zone from which the allocation occurred. 568 * 569 * Must be called with interrupts disabled. 570 * 571 * When __GFP_OTHER_NODE is set assume the node of the preferred 572 * zone is the local node. This is useful for daemons who allocate 573 * memory on behalf of other processes. 574 */ 575 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 576 { 577 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 578 __inc_zone_state(z, NUMA_HIT); 579 } else { 580 __inc_zone_state(z, NUMA_MISS); 581 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 582 } 583 if (z->node == ((flags & __GFP_OTHER_NODE) ? 584 preferred_zone->node : numa_node_id())) 585 __inc_zone_state(z, NUMA_LOCAL); 586 else 587 __inc_zone_state(z, NUMA_OTHER); 588 } 589 #endif 590 591 #ifdef CONFIG_COMPACTION 592 593 struct contig_page_info { 594 unsigned long free_pages; 595 unsigned long free_blocks_total; 596 unsigned long free_blocks_suitable; 597 }; 598 599 /* 600 * Calculate the number of free pages in a zone, how many contiguous 601 * pages are free and how many are large enough to satisfy an allocation of 602 * the target size. Note that this function makes no attempt to estimate 603 * how many suitable free blocks there *might* be if MOVABLE pages were 604 * migrated. Calculating that is possible, but expensive and can be 605 * figured out from userspace 606 */ 607 static void fill_contig_page_info(struct zone *zone, 608 unsigned int suitable_order, 609 struct contig_page_info *info) 610 { 611 unsigned int order; 612 613 info->free_pages = 0; 614 info->free_blocks_total = 0; 615 info->free_blocks_suitable = 0; 616 617 for (order = 0; order < MAX_ORDER; order++) { 618 unsigned long blocks; 619 620 /* Count number of free blocks */ 621 blocks = zone->free_area[order].nr_free; 622 info->free_blocks_total += blocks; 623 624 /* Count free base pages */ 625 info->free_pages += blocks << order; 626 627 /* Count the suitable free blocks */ 628 if (order >= suitable_order) 629 info->free_blocks_suitable += blocks << 630 (order - suitable_order); 631 } 632 } 633 634 /* 635 * A fragmentation index only makes sense if an allocation of a requested 636 * size would fail. If that is true, the fragmentation index indicates 637 * whether external fragmentation or a lack of memory was the problem. 638 * The value can be used to determine if page reclaim or compaction 639 * should be used 640 */ 641 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 642 { 643 unsigned long requested = 1UL << order; 644 645 if (!info->free_blocks_total) 646 return 0; 647 648 /* Fragmentation index only makes sense when a request would fail */ 649 if (info->free_blocks_suitable) 650 return -1000; 651 652 /* 653 * Index is between 0 and 1 so return within 3 decimal places 654 * 655 * 0 => allocation would fail due to lack of memory 656 * 1 => allocation would fail due to fragmentation 657 */ 658 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 659 } 660 661 /* Same as __fragmentation index but allocs contig_page_info on stack */ 662 int fragmentation_index(struct zone *zone, unsigned int order) 663 { 664 struct contig_page_info info; 665 666 fill_contig_page_info(zone, order, &info); 667 return __fragmentation_index(order, &info); 668 } 669 #endif 670 671 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 672 #include <linux/proc_fs.h> 673 #include <linux/seq_file.h> 674 675 static char * const migratetype_names[MIGRATE_TYPES] = { 676 "Unmovable", 677 "Reclaimable", 678 "Movable", 679 "Reserve", 680 #ifdef CONFIG_CMA 681 "CMA", 682 #endif 683 #ifdef CONFIG_MEMORY_ISOLATION 684 "Isolate", 685 #endif 686 }; 687 688 static void *frag_start(struct seq_file *m, loff_t *pos) 689 { 690 pg_data_t *pgdat; 691 loff_t node = *pos; 692 for (pgdat = first_online_pgdat(); 693 pgdat && node; 694 pgdat = next_online_pgdat(pgdat)) 695 --node; 696 697 return pgdat; 698 } 699 700 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 701 { 702 pg_data_t *pgdat = (pg_data_t *)arg; 703 704 (*pos)++; 705 return next_online_pgdat(pgdat); 706 } 707 708 static void frag_stop(struct seq_file *m, void *arg) 709 { 710 } 711 712 /* Walk all the zones in a node and print using a callback */ 713 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 714 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 715 { 716 struct zone *zone; 717 struct zone *node_zones = pgdat->node_zones; 718 unsigned long flags; 719 720 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 721 if (!populated_zone(zone)) 722 continue; 723 724 spin_lock_irqsave(&zone->lock, flags); 725 print(m, pgdat, zone); 726 spin_unlock_irqrestore(&zone->lock, flags); 727 } 728 } 729 #endif 730 731 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 732 #ifdef CONFIG_ZONE_DMA 733 #define TEXT_FOR_DMA(xx) xx "_dma", 734 #else 735 #define TEXT_FOR_DMA(xx) 736 #endif 737 738 #ifdef CONFIG_ZONE_DMA32 739 #define TEXT_FOR_DMA32(xx) xx "_dma32", 740 #else 741 #define TEXT_FOR_DMA32(xx) 742 #endif 743 744 #ifdef CONFIG_HIGHMEM 745 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 746 #else 747 #define TEXT_FOR_HIGHMEM(xx) 748 #endif 749 750 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 751 TEXT_FOR_HIGHMEM(xx) xx "_movable", 752 753 const char * const vmstat_text[] = { 754 /* enum zone_stat_item countes */ 755 "nr_free_pages", 756 "nr_alloc_batch", 757 "nr_inactive_anon", 758 "nr_active_anon", 759 "nr_inactive_file", 760 "nr_active_file", 761 "nr_unevictable", 762 "nr_mlock", 763 "nr_anon_pages", 764 "nr_mapped", 765 "nr_file_pages", 766 "nr_dirty", 767 "nr_writeback", 768 "nr_slab_reclaimable", 769 "nr_slab_unreclaimable", 770 "nr_page_table_pages", 771 "nr_kernel_stack", 772 "nr_unstable", 773 "nr_bounce", 774 "nr_vmscan_write", 775 "nr_vmscan_immediate_reclaim", 776 "nr_writeback_temp", 777 "nr_isolated_anon", 778 "nr_isolated_file", 779 "nr_shmem", 780 "nr_dirtied", 781 "nr_written", 782 "nr_pages_scanned", 783 784 #ifdef CONFIG_NUMA 785 "numa_hit", 786 "numa_miss", 787 "numa_foreign", 788 "numa_interleave", 789 "numa_local", 790 "numa_other", 791 #endif 792 "workingset_refault", 793 "workingset_activate", 794 "workingset_nodereclaim", 795 "nr_anon_transparent_hugepages", 796 "nr_free_cma", 797 798 /* enum writeback_stat_item counters */ 799 "nr_dirty_threshold", 800 "nr_dirty_background_threshold", 801 802 #ifdef CONFIG_VM_EVENT_COUNTERS 803 /* enum vm_event_item counters */ 804 "pgpgin", 805 "pgpgout", 806 "pswpin", 807 "pswpout", 808 809 TEXTS_FOR_ZONES("pgalloc") 810 811 "pgfree", 812 "pgactivate", 813 "pgdeactivate", 814 815 "pgfault", 816 "pgmajfault", 817 818 TEXTS_FOR_ZONES("pgrefill") 819 TEXTS_FOR_ZONES("pgsteal_kswapd") 820 TEXTS_FOR_ZONES("pgsteal_direct") 821 TEXTS_FOR_ZONES("pgscan_kswapd") 822 TEXTS_FOR_ZONES("pgscan_direct") 823 "pgscan_direct_throttle", 824 825 #ifdef CONFIG_NUMA 826 "zone_reclaim_failed", 827 #endif 828 "pginodesteal", 829 "slabs_scanned", 830 "kswapd_inodesteal", 831 "kswapd_low_wmark_hit_quickly", 832 "kswapd_high_wmark_hit_quickly", 833 "pageoutrun", 834 "allocstall", 835 836 "pgrotated", 837 838 "drop_pagecache", 839 "drop_slab", 840 841 #ifdef CONFIG_NUMA_BALANCING 842 "numa_pte_updates", 843 "numa_huge_pte_updates", 844 "numa_hint_faults", 845 "numa_hint_faults_local", 846 "numa_pages_migrated", 847 #endif 848 #ifdef CONFIG_MIGRATION 849 "pgmigrate_success", 850 "pgmigrate_fail", 851 #endif 852 #ifdef CONFIG_COMPACTION 853 "compact_migrate_scanned", 854 "compact_free_scanned", 855 "compact_isolated", 856 "compact_stall", 857 "compact_fail", 858 "compact_success", 859 #endif 860 861 #ifdef CONFIG_HUGETLB_PAGE 862 "htlb_buddy_alloc_success", 863 "htlb_buddy_alloc_fail", 864 #endif 865 "unevictable_pgs_culled", 866 "unevictable_pgs_scanned", 867 "unevictable_pgs_rescued", 868 "unevictable_pgs_mlocked", 869 "unevictable_pgs_munlocked", 870 "unevictable_pgs_cleared", 871 "unevictable_pgs_stranded", 872 873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 874 "thp_fault_alloc", 875 "thp_fault_fallback", 876 "thp_collapse_alloc", 877 "thp_collapse_alloc_failed", 878 "thp_split", 879 "thp_zero_page_alloc", 880 "thp_zero_page_alloc_failed", 881 #endif 882 #ifdef CONFIG_MEMORY_BALLOON 883 "balloon_inflate", 884 "balloon_deflate", 885 #ifdef CONFIG_BALLOON_COMPACTION 886 "balloon_migrate", 887 #endif 888 #endif /* CONFIG_MEMORY_BALLOON */ 889 #ifdef CONFIG_DEBUG_TLBFLUSH 890 #ifdef CONFIG_SMP 891 "nr_tlb_remote_flush", 892 "nr_tlb_remote_flush_received", 893 #endif /* CONFIG_SMP */ 894 "nr_tlb_local_flush_all", 895 "nr_tlb_local_flush_one", 896 #endif /* CONFIG_DEBUG_TLBFLUSH */ 897 898 #ifdef CONFIG_DEBUG_VM_VMACACHE 899 "vmacache_find_calls", 900 "vmacache_find_hits", 901 #endif 902 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 903 }; 904 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 905 906 907 #ifdef CONFIG_PROC_FS 908 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 909 struct zone *zone) 910 { 911 int order; 912 913 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 914 for (order = 0; order < MAX_ORDER; ++order) 915 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 916 seq_putc(m, '\n'); 917 } 918 919 /* 920 * This walks the free areas for each zone. 921 */ 922 static int frag_show(struct seq_file *m, void *arg) 923 { 924 pg_data_t *pgdat = (pg_data_t *)arg; 925 walk_zones_in_node(m, pgdat, frag_show_print); 926 return 0; 927 } 928 929 static void pagetypeinfo_showfree_print(struct seq_file *m, 930 pg_data_t *pgdat, struct zone *zone) 931 { 932 int order, mtype; 933 934 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 935 seq_printf(m, "Node %4d, zone %8s, type %12s ", 936 pgdat->node_id, 937 zone->name, 938 migratetype_names[mtype]); 939 for (order = 0; order < MAX_ORDER; ++order) { 940 unsigned long freecount = 0; 941 struct free_area *area; 942 struct list_head *curr; 943 944 area = &(zone->free_area[order]); 945 946 list_for_each(curr, &area->free_list[mtype]) 947 freecount++; 948 seq_printf(m, "%6lu ", freecount); 949 } 950 seq_putc(m, '\n'); 951 } 952 } 953 954 /* Print out the free pages at each order for each migatetype */ 955 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 956 { 957 int order; 958 pg_data_t *pgdat = (pg_data_t *)arg; 959 960 /* Print header */ 961 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 962 for (order = 0; order < MAX_ORDER; ++order) 963 seq_printf(m, "%6d ", order); 964 seq_putc(m, '\n'); 965 966 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 967 968 return 0; 969 } 970 971 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 972 pg_data_t *pgdat, struct zone *zone) 973 { 974 int mtype; 975 unsigned long pfn; 976 unsigned long start_pfn = zone->zone_start_pfn; 977 unsigned long end_pfn = zone_end_pfn(zone); 978 unsigned long count[MIGRATE_TYPES] = { 0, }; 979 980 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 981 struct page *page; 982 983 if (!pfn_valid(pfn)) 984 continue; 985 986 page = pfn_to_page(pfn); 987 988 /* Watch for unexpected holes punched in the memmap */ 989 if (!memmap_valid_within(pfn, page, zone)) 990 continue; 991 992 mtype = get_pageblock_migratetype(page); 993 994 if (mtype < MIGRATE_TYPES) 995 count[mtype]++; 996 } 997 998 /* Print counts */ 999 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1000 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1001 seq_printf(m, "%12lu ", count[mtype]); 1002 seq_putc(m, '\n'); 1003 } 1004 1005 /* Print out the free pages at each order for each migratetype */ 1006 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1007 { 1008 int mtype; 1009 pg_data_t *pgdat = (pg_data_t *)arg; 1010 1011 seq_printf(m, "\n%-23s", "Number of blocks type "); 1012 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1013 seq_printf(m, "%12s ", migratetype_names[mtype]); 1014 seq_putc(m, '\n'); 1015 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * This prints out statistics in relation to grouping pages by mobility. 1022 * It is expensive to collect so do not constantly read the file. 1023 */ 1024 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1025 { 1026 pg_data_t *pgdat = (pg_data_t *)arg; 1027 1028 /* check memoryless node */ 1029 if (!node_state(pgdat->node_id, N_MEMORY)) 1030 return 0; 1031 1032 seq_printf(m, "Page block order: %d\n", pageblock_order); 1033 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1034 seq_putc(m, '\n'); 1035 pagetypeinfo_showfree(m, pgdat); 1036 pagetypeinfo_showblockcount(m, pgdat); 1037 1038 return 0; 1039 } 1040 1041 static const struct seq_operations fragmentation_op = { 1042 .start = frag_start, 1043 .next = frag_next, 1044 .stop = frag_stop, 1045 .show = frag_show, 1046 }; 1047 1048 static int fragmentation_open(struct inode *inode, struct file *file) 1049 { 1050 return seq_open(file, &fragmentation_op); 1051 } 1052 1053 static const struct file_operations fragmentation_file_operations = { 1054 .open = fragmentation_open, 1055 .read = seq_read, 1056 .llseek = seq_lseek, 1057 .release = seq_release, 1058 }; 1059 1060 static const struct seq_operations pagetypeinfo_op = { 1061 .start = frag_start, 1062 .next = frag_next, 1063 .stop = frag_stop, 1064 .show = pagetypeinfo_show, 1065 }; 1066 1067 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1068 { 1069 return seq_open(file, &pagetypeinfo_op); 1070 } 1071 1072 static const struct file_operations pagetypeinfo_file_ops = { 1073 .open = pagetypeinfo_open, 1074 .read = seq_read, 1075 .llseek = seq_lseek, 1076 .release = seq_release, 1077 }; 1078 1079 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1080 struct zone *zone) 1081 { 1082 int i; 1083 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1084 seq_printf(m, 1085 "\n pages free %lu" 1086 "\n min %lu" 1087 "\n low %lu" 1088 "\n high %lu" 1089 "\n scanned %lu" 1090 "\n spanned %lu" 1091 "\n present %lu" 1092 "\n managed %lu", 1093 zone_page_state(zone, NR_FREE_PAGES), 1094 min_wmark_pages(zone), 1095 low_wmark_pages(zone), 1096 high_wmark_pages(zone), 1097 zone_page_state(zone, NR_PAGES_SCANNED), 1098 zone->spanned_pages, 1099 zone->present_pages, 1100 zone->managed_pages); 1101 1102 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1103 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1104 zone_page_state(zone, i)); 1105 1106 seq_printf(m, 1107 "\n protection: (%ld", 1108 zone->lowmem_reserve[0]); 1109 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1110 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1111 seq_printf(m, 1112 ")" 1113 "\n pagesets"); 1114 for_each_online_cpu(i) { 1115 struct per_cpu_pageset *pageset; 1116 1117 pageset = per_cpu_ptr(zone->pageset, i); 1118 seq_printf(m, 1119 "\n cpu: %i" 1120 "\n count: %i" 1121 "\n high: %i" 1122 "\n batch: %i", 1123 i, 1124 pageset->pcp.count, 1125 pageset->pcp.high, 1126 pageset->pcp.batch); 1127 #ifdef CONFIG_SMP 1128 seq_printf(m, "\n vm stats threshold: %d", 1129 pageset->stat_threshold); 1130 #endif 1131 } 1132 seq_printf(m, 1133 "\n all_unreclaimable: %u" 1134 "\n start_pfn: %lu" 1135 "\n inactive_ratio: %u", 1136 !zone_reclaimable(zone), 1137 zone->zone_start_pfn, 1138 zone->inactive_ratio); 1139 seq_putc(m, '\n'); 1140 } 1141 1142 /* 1143 * Output information about zones in @pgdat. 1144 */ 1145 static int zoneinfo_show(struct seq_file *m, void *arg) 1146 { 1147 pg_data_t *pgdat = (pg_data_t *)arg; 1148 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1149 return 0; 1150 } 1151 1152 static const struct seq_operations zoneinfo_op = { 1153 .start = frag_start, /* iterate over all zones. The same as in 1154 * fragmentation. */ 1155 .next = frag_next, 1156 .stop = frag_stop, 1157 .show = zoneinfo_show, 1158 }; 1159 1160 static int zoneinfo_open(struct inode *inode, struct file *file) 1161 { 1162 return seq_open(file, &zoneinfo_op); 1163 } 1164 1165 static const struct file_operations proc_zoneinfo_file_operations = { 1166 .open = zoneinfo_open, 1167 .read = seq_read, 1168 .llseek = seq_lseek, 1169 .release = seq_release, 1170 }; 1171 1172 enum writeback_stat_item { 1173 NR_DIRTY_THRESHOLD, 1174 NR_DIRTY_BG_THRESHOLD, 1175 NR_VM_WRITEBACK_STAT_ITEMS, 1176 }; 1177 1178 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1179 { 1180 unsigned long *v; 1181 int i, stat_items_size; 1182 1183 if (*pos >= ARRAY_SIZE(vmstat_text)) 1184 return NULL; 1185 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1186 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1187 1188 #ifdef CONFIG_VM_EVENT_COUNTERS 1189 stat_items_size += sizeof(struct vm_event_state); 1190 #endif 1191 1192 v = kmalloc(stat_items_size, GFP_KERNEL); 1193 m->private = v; 1194 if (!v) 1195 return ERR_PTR(-ENOMEM); 1196 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1197 v[i] = global_page_state(i); 1198 v += NR_VM_ZONE_STAT_ITEMS; 1199 1200 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1201 v + NR_DIRTY_THRESHOLD); 1202 v += NR_VM_WRITEBACK_STAT_ITEMS; 1203 1204 #ifdef CONFIG_VM_EVENT_COUNTERS 1205 all_vm_events(v); 1206 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1207 v[PGPGOUT] /= 2; 1208 #endif 1209 return (unsigned long *)m->private + *pos; 1210 } 1211 1212 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1213 { 1214 (*pos)++; 1215 if (*pos >= ARRAY_SIZE(vmstat_text)) 1216 return NULL; 1217 return (unsigned long *)m->private + *pos; 1218 } 1219 1220 static int vmstat_show(struct seq_file *m, void *arg) 1221 { 1222 unsigned long *l = arg; 1223 unsigned long off = l - (unsigned long *)m->private; 1224 1225 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1226 return 0; 1227 } 1228 1229 static void vmstat_stop(struct seq_file *m, void *arg) 1230 { 1231 kfree(m->private); 1232 m->private = NULL; 1233 } 1234 1235 static const struct seq_operations vmstat_op = { 1236 .start = vmstat_start, 1237 .next = vmstat_next, 1238 .stop = vmstat_stop, 1239 .show = vmstat_show, 1240 }; 1241 1242 static int vmstat_open(struct inode *inode, struct file *file) 1243 { 1244 return seq_open(file, &vmstat_op); 1245 } 1246 1247 static const struct file_operations proc_vmstat_file_operations = { 1248 .open = vmstat_open, 1249 .read = seq_read, 1250 .llseek = seq_lseek, 1251 .release = seq_release, 1252 }; 1253 #endif /* CONFIG_PROC_FS */ 1254 1255 #ifdef CONFIG_SMP 1256 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1257 int sysctl_stat_interval __read_mostly = HZ; 1258 static cpumask_var_t cpu_stat_off; 1259 1260 static void vmstat_update(struct work_struct *w) 1261 { 1262 if (refresh_cpu_vm_stats()) 1263 /* 1264 * Counters were updated so we expect more updates 1265 * to occur in the future. Keep on running the 1266 * update worker thread. 1267 */ 1268 schedule_delayed_work(this_cpu_ptr(&vmstat_work), 1269 round_jiffies_relative(sysctl_stat_interval)); 1270 else { 1271 /* 1272 * We did not update any counters so the app may be in 1273 * a mode where it does not cause counter updates. 1274 * We may be uselessly running vmstat_update. 1275 * Defer the checking for differentials to the 1276 * shepherd thread on a different processor. 1277 */ 1278 int r; 1279 /* 1280 * Shepherd work thread does not race since it never 1281 * changes the bit if its zero but the cpu 1282 * online / off line code may race if 1283 * worker threads are still allowed during 1284 * shutdown / startup. 1285 */ 1286 r = cpumask_test_and_set_cpu(smp_processor_id(), 1287 cpu_stat_off); 1288 VM_BUG_ON(r); 1289 } 1290 } 1291 1292 /* 1293 * Check if the diffs for a certain cpu indicate that 1294 * an update is needed. 1295 */ 1296 static bool need_update(int cpu) 1297 { 1298 struct zone *zone; 1299 1300 for_each_populated_zone(zone) { 1301 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1302 1303 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1304 /* 1305 * The fast way of checking if there are any vmstat diffs. 1306 * This works because the diffs are byte sized items. 1307 */ 1308 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1309 return true; 1310 1311 } 1312 return false; 1313 } 1314 1315 1316 /* 1317 * Shepherd worker thread that checks the 1318 * differentials of processors that have their worker 1319 * threads for vm statistics updates disabled because of 1320 * inactivity. 1321 */ 1322 static void vmstat_shepherd(struct work_struct *w); 1323 1324 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd); 1325 1326 static void vmstat_shepherd(struct work_struct *w) 1327 { 1328 int cpu; 1329 1330 get_online_cpus(); 1331 /* Check processors whose vmstat worker threads have been disabled */ 1332 for_each_cpu(cpu, cpu_stat_off) 1333 if (need_update(cpu) && 1334 cpumask_test_and_clear_cpu(cpu, cpu_stat_off)) 1335 1336 schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu), 1337 __round_jiffies_relative(sysctl_stat_interval, cpu)); 1338 1339 put_online_cpus(); 1340 1341 schedule_delayed_work(&shepherd, 1342 round_jiffies_relative(sysctl_stat_interval)); 1343 1344 } 1345 1346 static void __init start_shepherd_timer(void) 1347 { 1348 int cpu; 1349 1350 for_each_possible_cpu(cpu) 1351 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1352 vmstat_update); 1353 1354 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL)) 1355 BUG(); 1356 cpumask_copy(cpu_stat_off, cpu_online_mask); 1357 1358 schedule_delayed_work(&shepherd, 1359 round_jiffies_relative(sysctl_stat_interval)); 1360 } 1361 1362 static void vmstat_cpu_dead(int node) 1363 { 1364 int cpu; 1365 1366 get_online_cpus(); 1367 for_each_online_cpu(cpu) 1368 if (cpu_to_node(cpu) == node) 1369 goto end; 1370 1371 node_clear_state(node, N_CPU); 1372 end: 1373 put_online_cpus(); 1374 } 1375 1376 /* 1377 * Use the cpu notifier to insure that the thresholds are recalculated 1378 * when necessary. 1379 */ 1380 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1381 unsigned long action, 1382 void *hcpu) 1383 { 1384 long cpu = (long)hcpu; 1385 1386 switch (action) { 1387 case CPU_ONLINE: 1388 case CPU_ONLINE_FROZEN: 1389 refresh_zone_stat_thresholds(); 1390 node_set_state(cpu_to_node(cpu), N_CPU); 1391 cpumask_set_cpu(cpu, cpu_stat_off); 1392 break; 1393 case CPU_DOWN_PREPARE: 1394 case CPU_DOWN_PREPARE_FROZEN: 1395 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1396 cpumask_clear_cpu(cpu, cpu_stat_off); 1397 break; 1398 case CPU_DOWN_FAILED: 1399 case CPU_DOWN_FAILED_FROZEN: 1400 cpumask_set_cpu(cpu, cpu_stat_off); 1401 break; 1402 case CPU_DEAD: 1403 case CPU_DEAD_FROZEN: 1404 refresh_zone_stat_thresholds(); 1405 vmstat_cpu_dead(cpu_to_node(cpu)); 1406 break; 1407 default: 1408 break; 1409 } 1410 return NOTIFY_OK; 1411 } 1412 1413 static struct notifier_block vmstat_notifier = 1414 { &vmstat_cpuup_callback, NULL, 0 }; 1415 #endif 1416 1417 static int __init setup_vmstat(void) 1418 { 1419 #ifdef CONFIG_SMP 1420 cpu_notifier_register_begin(); 1421 __register_cpu_notifier(&vmstat_notifier); 1422 1423 start_shepherd_timer(); 1424 cpu_notifier_register_done(); 1425 #endif 1426 #ifdef CONFIG_PROC_FS 1427 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1428 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1429 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1430 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1431 #endif 1432 return 0; 1433 } 1434 module_init(setup_vmstat) 1435 1436 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1437 #include <linux/debugfs.h> 1438 1439 1440 /* 1441 * Return an index indicating how much of the available free memory is 1442 * unusable for an allocation of the requested size. 1443 */ 1444 static int unusable_free_index(unsigned int order, 1445 struct contig_page_info *info) 1446 { 1447 /* No free memory is interpreted as all free memory is unusable */ 1448 if (info->free_pages == 0) 1449 return 1000; 1450 1451 /* 1452 * Index should be a value between 0 and 1. Return a value to 3 1453 * decimal places. 1454 * 1455 * 0 => no fragmentation 1456 * 1 => high fragmentation 1457 */ 1458 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1459 1460 } 1461 1462 static void unusable_show_print(struct seq_file *m, 1463 pg_data_t *pgdat, struct zone *zone) 1464 { 1465 unsigned int order; 1466 int index; 1467 struct contig_page_info info; 1468 1469 seq_printf(m, "Node %d, zone %8s ", 1470 pgdat->node_id, 1471 zone->name); 1472 for (order = 0; order < MAX_ORDER; ++order) { 1473 fill_contig_page_info(zone, order, &info); 1474 index = unusable_free_index(order, &info); 1475 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1476 } 1477 1478 seq_putc(m, '\n'); 1479 } 1480 1481 /* 1482 * Display unusable free space index 1483 * 1484 * The unusable free space index measures how much of the available free 1485 * memory cannot be used to satisfy an allocation of a given size and is a 1486 * value between 0 and 1. The higher the value, the more of free memory is 1487 * unusable and by implication, the worse the external fragmentation is. This 1488 * can be expressed as a percentage by multiplying by 100. 1489 */ 1490 static int unusable_show(struct seq_file *m, void *arg) 1491 { 1492 pg_data_t *pgdat = (pg_data_t *)arg; 1493 1494 /* check memoryless node */ 1495 if (!node_state(pgdat->node_id, N_MEMORY)) 1496 return 0; 1497 1498 walk_zones_in_node(m, pgdat, unusable_show_print); 1499 1500 return 0; 1501 } 1502 1503 static const struct seq_operations unusable_op = { 1504 .start = frag_start, 1505 .next = frag_next, 1506 .stop = frag_stop, 1507 .show = unusable_show, 1508 }; 1509 1510 static int unusable_open(struct inode *inode, struct file *file) 1511 { 1512 return seq_open(file, &unusable_op); 1513 } 1514 1515 static const struct file_operations unusable_file_ops = { 1516 .open = unusable_open, 1517 .read = seq_read, 1518 .llseek = seq_lseek, 1519 .release = seq_release, 1520 }; 1521 1522 static void extfrag_show_print(struct seq_file *m, 1523 pg_data_t *pgdat, struct zone *zone) 1524 { 1525 unsigned int order; 1526 int index; 1527 1528 /* Alloc on stack as interrupts are disabled for zone walk */ 1529 struct contig_page_info info; 1530 1531 seq_printf(m, "Node %d, zone %8s ", 1532 pgdat->node_id, 1533 zone->name); 1534 for (order = 0; order < MAX_ORDER; ++order) { 1535 fill_contig_page_info(zone, order, &info); 1536 index = __fragmentation_index(order, &info); 1537 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1538 } 1539 1540 seq_putc(m, '\n'); 1541 } 1542 1543 /* 1544 * Display fragmentation index for orders that allocations would fail for 1545 */ 1546 static int extfrag_show(struct seq_file *m, void *arg) 1547 { 1548 pg_data_t *pgdat = (pg_data_t *)arg; 1549 1550 walk_zones_in_node(m, pgdat, extfrag_show_print); 1551 1552 return 0; 1553 } 1554 1555 static const struct seq_operations extfrag_op = { 1556 .start = frag_start, 1557 .next = frag_next, 1558 .stop = frag_stop, 1559 .show = extfrag_show, 1560 }; 1561 1562 static int extfrag_open(struct inode *inode, struct file *file) 1563 { 1564 return seq_open(file, &extfrag_op); 1565 } 1566 1567 static const struct file_operations extfrag_file_ops = { 1568 .open = extfrag_open, 1569 .read = seq_read, 1570 .llseek = seq_lseek, 1571 .release = seq_release, 1572 }; 1573 1574 static int __init extfrag_debug_init(void) 1575 { 1576 struct dentry *extfrag_debug_root; 1577 1578 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1579 if (!extfrag_debug_root) 1580 return -ENOMEM; 1581 1582 if (!debugfs_create_file("unusable_index", 0444, 1583 extfrag_debug_root, NULL, &unusable_file_ops)) 1584 goto fail; 1585 1586 if (!debugfs_create_file("extfrag_index", 0444, 1587 extfrag_debug_root, NULL, &extfrag_file_ops)) 1588 goto fail; 1589 1590 return 0; 1591 fail: 1592 debugfs_remove_recursive(extfrag_debug_root); 1593 return -ENOMEM; 1594 } 1595 1596 module_init(extfrag_debug_init); 1597 #endif 1598