xref: /openbmc/linux/mm/vmstat.c (revision ca460cc2)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25 
26 #include "internal.h"
27 
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states);
31 
32 static void sum_vm_events(unsigned long *ret)
33 {
34 	int cpu;
35 	int i;
36 
37 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
38 
39 	for_each_online_cpu(cpu) {
40 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
41 
42 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
43 			ret[i] += this->event[i];
44 	}
45 }
46 
47 /*
48  * Accumulate the vm event counters across all CPUs.
49  * The result is unavoidably approximate - it can change
50  * during and after execution of this function.
51 */
52 void all_vm_events(unsigned long *ret)
53 {
54 	get_online_cpus();
55 	sum_vm_events(ret);
56 	put_online_cpus();
57 }
58 EXPORT_SYMBOL_GPL(all_vm_events);
59 
60 /*
61  * Fold the foreign cpu events into our own.
62  *
63  * This is adding to the events on one processor
64  * but keeps the global counts constant.
65  */
66 void vm_events_fold_cpu(int cpu)
67 {
68 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
69 	int i;
70 
71 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
72 		count_vm_events(i, fold_state->event[i]);
73 		fold_state->event[i] = 0;
74 	}
75 }
76 
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
78 
79 /*
80  * Manage combined zone based / global counters
81  *
82  * vm_stat contains the global counters
83  */
84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 EXPORT_SYMBOL(vm_stat);
86 
87 #ifdef CONFIG_SMP
88 
89 int calculate_pressure_threshold(struct zone *zone)
90 {
91 	int threshold;
92 	int watermark_distance;
93 
94 	/*
95 	 * As vmstats are not up to date, there is drift between the estimated
96 	 * and real values. For high thresholds and a high number of CPUs, it
97 	 * is possible for the min watermark to be breached while the estimated
98 	 * value looks fine. The pressure threshold is a reduced value such
99 	 * that even the maximum amount of drift will not accidentally breach
100 	 * the min watermark
101 	 */
102 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
103 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
104 
105 	/*
106 	 * Maximum threshold is 125
107 	 */
108 	threshold = min(125, threshold);
109 
110 	return threshold;
111 }
112 
113 int calculate_normal_threshold(struct zone *zone)
114 {
115 	int threshold;
116 	int mem;	/* memory in 128 MB units */
117 
118 	/*
119 	 * The threshold scales with the number of processors and the amount
120 	 * of memory per zone. More memory means that we can defer updates for
121 	 * longer, more processors could lead to more contention.
122  	 * fls() is used to have a cheap way of logarithmic scaling.
123 	 *
124 	 * Some sample thresholds:
125 	 *
126 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
127 	 * ------------------------------------------------------------------
128 	 * 8		1		1	0.9-1 GB	4
129 	 * 16		2		2	0.9-1 GB	4
130 	 * 20 		2		2	1-2 GB		5
131 	 * 24		2		2	2-4 GB		6
132 	 * 28		2		2	4-8 GB		7
133 	 * 32		2		2	8-16 GB		8
134 	 * 4		2		2	<128M		1
135 	 * 30		4		3	2-4 GB		5
136 	 * 48		4		3	8-16 GB		8
137 	 * 32		8		4	1-2 GB		4
138 	 * 32		8		4	0.9-1GB		4
139 	 * 10		16		5	<128M		1
140 	 * 40		16		5	900M		4
141 	 * 70		64		7	2-4 GB		5
142 	 * 84		64		7	4-8 GB		6
143 	 * 108		512		9	4-8 GB		6
144 	 * 125		1024		10	8-16 GB		8
145 	 * 125		1024		10	16-32 GB	9
146 	 */
147 
148 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
149 
150 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
151 
152 	/*
153 	 * Maximum threshold is 125
154 	 */
155 	threshold = min(125, threshold);
156 
157 	return threshold;
158 }
159 
160 /*
161  * Refresh the thresholds for each zone.
162  */
163 void refresh_zone_stat_thresholds(void)
164 {
165 	struct zone *zone;
166 	int cpu;
167 	int threshold;
168 
169 	for_each_populated_zone(zone) {
170 		unsigned long max_drift, tolerate_drift;
171 
172 		threshold = calculate_normal_threshold(zone);
173 
174 		for_each_online_cpu(cpu)
175 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
176 							= threshold;
177 
178 		/*
179 		 * Only set percpu_drift_mark if there is a danger that
180 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 		 * the min watermark could be breached by an allocation
182 		 */
183 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
184 		max_drift = num_online_cpus() * threshold;
185 		if (max_drift > tolerate_drift)
186 			zone->percpu_drift_mark = high_wmark_pages(zone) +
187 					max_drift;
188 	}
189 }
190 
191 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
192 				int (*calculate_pressure)(struct zone *))
193 {
194 	struct zone *zone;
195 	int cpu;
196 	int threshold;
197 	int i;
198 
199 	for (i = 0; i < pgdat->nr_zones; i++) {
200 		zone = &pgdat->node_zones[i];
201 		if (!zone->percpu_drift_mark)
202 			continue;
203 
204 		threshold = (*calculate_pressure)(zone);
205 		for_each_online_cpu(cpu)
206 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
207 							= threshold;
208 	}
209 }
210 
211 /*
212  * For use when we know that interrupts are disabled,
213  * or when we know that preemption is disabled and that
214  * particular counter cannot be updated from interrupt context.
215  */
216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
217 				int delta)
218 {
219 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
220 	s8 __percpu *p = pcp->vm_stat_diff + item;
221 	long x;
222 	long t;
223 
224 	x = delta + __this_cpu_read(*p);
225 
226 	t = __this_cpu_read(pcp->stat_threshold);
227 
228 	if (unlikely(x > t || x < -t)) {
229 		zone_page_state_add(x, zone, item);
230 		x = 0;
231 	}
232 	__this_cpu_write(*p, x);
233 }
234 EXPORT_SYMBOL(__mod_zone_page_state);
235 
236 /*
237  * Optimized increment and decrement functions.
238  *
239  * These are only for a single page and therefore can take a struct page *
240  * argument instead of struct zone *. This allows the inclusion of the code
241  * generated for page_zone(page) into the optimized functions.
242  *
243  * No overflow check is necessary and therefore the differential can be
244  * incremented or decremented in place which may allow the compilers to
245  * generate better code.
246  * The increment or decrement is known and therefore one boundary check can
247  * be omitted.
248  *
249  * NOTE: These functions are very performance sensitive. Change only
250  * with care.
251  *
252  * Some processors have inc/dec instructions that are atomic vs an interrupt.
253  * However, the code must first determine the differential location in a zone
254  * based on the processor number and then inc/dec the counter. There is no
255  * guarantee without disabling preemption that the processor will not change
256  * in between and therefore the atomicity vs. interrupt cannot be exploited
257  * in a useful way here.
258  */
259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
260 {
261 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
262 	s8 __percpu *p = pcp->vm_stat_diff + item;
263 	s8 v, t;
264 
265 	v = __this_cpu_inc_return(*p);
266 	t = __this_cpu_read(pcp->stat_threshold);
267 	if (unlikely(v > t)) {
268 		s8 overstep = t >> 1;
269 
270 		zone_page_state_add(v + overstep, zone, item);
271 		__this_cpu_write(*p, -overstep);
272 	}
273 }
274 
275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
276 {
277 	__inc_zone_state(page_zone(page), item);
278 }
279 EXPORT_SYMBOL(__inc_zone_page_state);
280 
281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
282 {
283 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
284 	s8 __percpu *p = pcp->vm_stat_diff + item;
285 	s8 v, t;
286 
287 	v = __this_cpu_dec_return(*p);
288 	t = __this_cpu_read(pcp->stat_threshold);
289 	if (unlikely(v < - t)) {
290 		s8 overstep = t >> 1;
291 
292 		zone_page_state_add(v - overstep, zone, item);
293 		__this_cpu_write(*p, overstep);
294 	}
295 }
296 
297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
298 {
299 	__dec_zone_state(page_zone(page), item);
300 }
301 EXPORT_SYMBOL(__dec_zone_page_state);
302 
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
304 /*
305  * If we have cmpxchg_local support then we do not need to incur the overhead
306  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
307  *
308  * mod_state() modifies the zone counter state through atomic per cpu
309  * operations.
310  *
311  * Overstep mode specifies how overstep should handled:
312  *     0       No overstepping
313  *     1       Overstepping half of threshold
314  *     -1      Overstepping minus half of threshold
315 */
316 static inline void mod_state(struct zone *zone,
317        enum zone_stat_item item, int delta, int overstep_mode)
318 {
319 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 	s8 __percpu *p = pcp->vm_stat_diff + item;
321 	long o, n, t, z;
322 
323 	do {
324 		z = 0;  /* overflow to zone counters */
325 
326 		/*
327 		 * The fetching of the stat_threshold is racy. We may apply
328 		 * a counter threshold to the wrong the cpu if we get
329 		 * rescheduled while executing here. However, the next
330 		 * counter update will apply the threshold again and
331 		 * therefore bring the counter under the threshold again.
332 		 *
333 		 * Most of the time the thresholds are the same anyways
334 		 * for all cpus in a zone.
335 		 */
336 		t = this_cpu_read(pcp->stat_threshold);
337 
338 		o = this_cpu_read(*p);
339 		n = delta + o;
340 
341 		if (n > t || n < -t) {
342 			int os = overstep_mode * (t >> 1) ;
343 
344 			/* Overflow must be added to zone counters */
345 			z = n + os;
346 			n = -os;
347 		}
348 	} while (this_cpu_cmpxchg(*p, o, n) != o);
349 
350 	if (z)
351 		zone_page_state_add(z, zone, item);
352 }
353 
354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
355 					int delta)
356 {
357 	mod_state(zone, item, delta, 0);
358 }
359 EXPORT_SYMBOL(mod_zone_page_state);
360 
361 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
362 {
363 	mod_state(zone, item, 1, 1);
364 }
365 
366 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
367 {
368 	mod_state(page_zone(page), item, 1, 1);
369 }
370 EXPORT_SYMBOL(inc_zone_page_state);
371 
372 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
373 {
374 	mod_state(page_zone(page), item, -1, -1);
375 }
376 EXPORT_SYMBOL(dec_zone_page_state);
377 #else
378 /*
379  * Use interrupt disable to serialize counter updates
380  */
381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
382 					int delta)
383 {
384 	unsigned long flags;
385 
386 	local_irq_save(flags);
387 	__mod_zone_page_state(zone, item, delta);
388 	local_irq_restore(flags);
389 }
390 EXPORT_SYMBOL(mod_zone_page_state);
391 
392 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
393 {
394 	unsigned long flags;
395 
396 	local_irq_save(flags);
397 	__inc_zone_state(zone, item);
398 	local_irq_restore(flags);
399 }
400 
401 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
402 {
403 	unsigned long flags;
404 	struct zone *zone;
405 
406 	zone = page_zone(page);
407 	local_irq_save(flags);
408 	__inc_zone_state(zone, item);
409 	local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL(inc_zone_page_state);
412 
413 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
414 {
415 	unsigned long flags;
416 
417 	local_irq_save(flags);
418 	__dec_zone_page_state(page, item);
419 	local_irq_restore(flags);
420 }
421 EXPORT_SYMBOL(dec_zone_page_state);
422 #endif
423 
424 
425 /*
426  * Fold a differential into the global counters.
427  * Returns the number of counters updated.
428  */
429 static int fold_diff(int *diff)
430 {
431 	int i;
432 	int changes = 0;
433 
434 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
435 		if (diff[i]) {
436 			atomic_long_add(diff[i], &vm_stat[i]);
437 			changes++;
438 	}
439 	return changes;
440 }
441 
442 /*
443  * Update the zone counters for the current cpu.
444  *
445  * Note that refresh_cpu_vm_stats strives to only access
446  * node local memory. The per cpu pagesets on remote zones are placed
447  * in the memory local to the processor using that pageset. So the
448  * loop over all zones will access a series of cachelines local to
449  * the processor.
450  *
451  * The call to zone_page_state_add updates the cachelines with the
452  * statistics in the remote zone struct as well as the global cachelines
453  * with the global counters. These could cause remote node cache line
454  * bouncing and will have to be only done when necessary.
455  *
456  * The function returns the number of global counters updated.
457  */
458 static int refresh_cpu_vm_stats(void)
459 {
460 	struct zone *zone;
461 	int i;
462 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
463 	int changes = 0;
464 
465 	for_each_populated_zone(zone) {
466 		struct per_cpu_pageset __percpu *p = zone->pageset;
467 
468 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
469 			int v;
470 
471 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
472 			if (v) {
473 
474 				atomic_long_add(v, &zone->vm_stat[i]);
475 				global_diff[i] += v;
476 #ifdef CONFIG_NUMA
477 				/* 3 seconds idle till flush */
478 				__this_cpu_write(p->expire, 3);
479 #endif
480 			}
481 		}
482 		cond_resched();
483 #ifdef CONFIG_NUMA
484 		/*
485 		 * Deal with draining the remote pageset of this
486 		 * processor
487 		 *
488 		 * Check if there are pages remaining in this pageset
489 		 * if not then there is nothing to expire.
490 		 */
491 		if (!__this_cpu_read(p->expire) ||
492 			       !__this_cpu_read(p->pcp.count))
493 			continue;
494 
495 		/*
496 		 * We never drain zones local to this processor.
497 		 */
498 		if (zone_to_nid(zone) == numa_node_id()) {
499 			__this_cpu_write(p->expire, 0);
500 			continue;
501 		}
502 
503 		if (__this_cpu_dec_return(p->expire))
504 			continue;
505 
506 		if (__this_cpu_read(p->pcp.count)) {
507 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
508 			changes++;
509 		}
510 #endif
511 	}
512 	changes += fold_diff(global_diff);
513 	return changes;
514 }
515 
516 /*
517  * Fold the data for an offline cpu into the global array.
518  * There cannot be any access by the offline cpu and therefore
519  * synchronization is simplified.
520  */
521 void cpu_vm_stats_fold(int cpu)
522 {
523 	struct zone *zone;
524 	int i;
525 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
526 
527 	for_each_populated_zone(zone) {
528 		struct per_cpu_pageset *p;
529 
530 		p = per_cpu_ptr(zone->pageset, cpu);
531 
532 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
533 			if (p->vm_stat_diff[i]) {
534 				int v;
535 
536 				v = p->vm_stat_diff[i];
537 				p->vm_stat_diff[i] = 0;
538 				atomic_long_add(v, &zone->vm_stat[i]);
539 				global_diff[i] += v;
540 			}
541 	}
542 
543 	fold_diff(global_diff);
544 }
545 
546 /*
547  * this is only called if !populated_zone(zone), which implies no other users of
548  * pset->vm_stat_diff[] exsist.
549  */
550 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
551 {
552 	int i;
553 
554 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
555 		if (pset->vm_stat_diff[i]) {
556 			int v = pset->vm_stat_diff[i];
557 			pset->vm_stat_diff[i] = 0;
558 			atomic_long_add(v, &zone->vm_stat[i]);
559 			atomic_long_add(v, &vm_stat[i]);
560 		}
561 }
562 #endif
563 
564 #ifdef CONFIG_NUMA
565 /*
566  * zonelist = the list of zones passed to the allocator
567  * z 	    = the zone from which the allocation occurred.
568  *
569  * Must be called with interrupts disabled.
570  *
571  * When __GFP_OTHER_NODE is set assume the node of the preferred
572  * zone is the local node. This is useful for daemons who allocate
573  * memory on behalf of other processes.
574  */
575 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
576 {
577 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
578 		__inc_zone_state(z, NUMA_HIT);
579 	} else {
580 		__inc_zone_state(z, NUMA_MISS);
581 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
582 	}
583 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
584 			preferred_zone->node : numa_node_id()))
585 		__inc_zone_state(z, NUMA_LOCAL);
586 	else
587 		__inc_zone_state(z, NUMA_OTHER);
588 }
589 #endif
590 
591 #ifdef CONFIG_COMPACTION
592 
593 struct contig_page_info {
594 	unsigned long free_pages;
595 	unsigned long free_blocks_total;
596 	unsigned long free_blocks_suitable;
597 };
598 
599 /*
600  * Calculate the number of free pages in a zone, how many contiguous
601  * pages are free and how many are large enough to satisfy an allocation of
602  * the target size. Note that this function makes no attempt to estimate
603  * how many suitable free blocks there *might* be if MOVABLE pages were
604  * migrated. Calculating that is possible, but expensive and can be
605  * figured out from userspace
606  */
607 static void fill_contig_page_info(struct zone *zone,
608 				unsigned int suitable_order,
609 				struct contig_page_info *info)
610 {
611 	unsigned int order;
612 
613 	info->free_pages = 0;
614 	info->free_blocks_total = 0;
615 	info->free_blocks_suitable = 0;
616 
617 	for (order = 0; order < MAX_ORDER; order++) {
618 		unsigned long blocks;
619 
620 		/* Count number of free blocks */
621 		blocks = zone->free_area[order].nr_free;
622 		info->free_blocks_total += blocks;
623 
624 		/* Count free base pages */
625 		info->free_pages += blocks << order;
626 
627 		/* Count the suitable free blocks */
628 		if (order >= suitable_order)
629 			info->free_blocks_suitable += blocks <<
630 						(order - suitable_order);
631 	}
632 }
633 
634 /*
635  * A fragmentation index only makes sense if an allocation of a requested
636  * size would fail. If that is true, the fragmentation index indicates
637  * whether external fragmentation or a lack of memory was the problem.
638  * The value can be used to determine if page reclaim or compaction
639  * should be used
640  */
641 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
642 {
643 	unsigned long requested = 1UL << order;
644 
645 	if (!info->free_blocks_total)
646 		return 0;
647 
648 	/* Fragmentation index only makes sense when a request would fail */
649 	if (info->free_blocks_suitable)
650 		return -1000;
651 
652 	/*
653 	 * Index is between 0 and 1 so return within 3 decimal places
654 	 *
655 	 * 0 => allocation would fail due to lack of memory
656 	 * 1 => allocation would fail due to fragmentation
657 	 */
658 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
659 }
660 
661 /* Same as __fragmentation index but allocs contig_page_info on stack */
662 int fragmentation_index(struct zone *zone, unsigned int order)
663 {
664 	struct contig_page_info info;
665 
666 	fill_contig_page_info(zone, order, &info);
667 	return __fragmentation_index(order, &info);
668 }
669 #endif
670 
671 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
672 #include <linux/proc_fs.h>
673 #include <linux/seq_file.h>
674 
675 static char * const migratetype_names[MIGRATE_TYPES] = {
676 	"Unmovable",
677 	"Reclaimable",
678 	"Movable",
679 	"Reserve",
680 #ifdef CONFIG_CMA
681 	"CMA",
682 #endif
683 #ifdef CONFIG_MEMORY_ISOLATION
684 	"Isolate",
685 #endif
686 };
687 
688 static void *frag_start(struct seq_file *m, loff_t *pos)
689 {
690 	pg_data_t *pgdat;
691 	loff_t node = *pos;
692 	for (pgdat = first_online_pgdat();
693 	     pgdat && node;
694 	     pgdat = next_online_pgdat(pgdat))
695 		--node;
696 
697 	return pgdat;
698 }
699 
700 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
701 {
702 	pg_data_t *pgdat = (pg_data_t *)arg;
703 
704 	(*pos)++;
705 	return next_online_pgdat(pgdat);
706 }
707 
708 static void frag_stop(struct seq_file *m, void *arg)
709 {
710 }
711 
712 /* Walk all the zones in a node and print using a callback */
713 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
714 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
715 {
716 	struct zone *zone;
717 	struct zone *node_zones = pgdat->node_zones;
718 	unsigned long flags;
719 
720 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
721 		if (!populated_zone(zone))
722 			continue;
723 
724 		spin_lock_irqsave(&zone->lock, flags);
725 		print(m, pgdat, zone);
726 		spin_unlock_irqrestore(&zone->lock, flags);
727 	}
728 }
729 #endif
730 
731 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
732 #ifdef CONFIG_ZONE_DMA
733 #define TEXT_FOR_DMA(xx) xx "_dma",
734 #else
735 #define TEXT_FOR_DMA(xx)
736 #endif
737 
738 #ifdef CONFIG_ZONE_DMA32
739 #define TEXT_FOR_DMA32(xx) xx "_dma32",
740 #else
741 #define TEXT_FOR_DMA32(xx)
742 #endif
743 
744 #ifdef CONFIG_HIGHMEM
745 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
746 #else
747 #define TEXT_FOR_HIGHMEM(xx)
748 #endif
749 
750 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
751 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
752 
753 const char * const vmstat_text[] = {
754 	/* enum zone_stat_item countes */
755 	"nr_free_pages",
756 	"nr_alloc_batch",
757 	"nr_inactive_anon",
758 	"nr_active_anon",
759 	"nr_inactive_file",
760 	"nr_active_file",
761 	"nr_unevictable",
762 	"nr_mlock",
763 	"nr_anon_pages",
764 	"nr_mapped",
765 	"nr_file_pages",
766 	"nr_dirty",
767 	"nr_writeback",
768 	"nr_slab_reclaimable",
769 	"nr_slab_unreclaimable",
770 	"nr_page_table_pages",
771 	"nr_kernel_stack",
772 	"nr_unstable",
773 	"nr_bounce",
774 	"nr_vmscan_write",
775 	"nr_vmscan_immediate_reclaim",
776 	"nr_writeback_temp",
777 	"nr_isolated_anon",
778 	"nr_isolated_file",
779 	"nr_shmem",
780 	"nr_dirtied",
781 	"nr_written",
782 	"nr_pages_scanned",
783 
784 #ifdef CONFIG_NUMA
785 	"numa_hit",
786 	"numa_miss",
787 	"numa_foreign",
788 	"numa_interleave",
789 	"numa_local",
790 	"numa_other",
791 #endif
792 	"workingset_refault",
793 	"workingset_activate",
794 	"workingset_nodereclaim",
795 	"nr_anon_transparent_hugepages",
796 	"nr_free_cma",
797 
798 	/* enum writeback_stat_item counters */
799 	"nr_dirty_threshold",
800 	"nr_dirty_background_threshold",
801 
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803 	/* enum vm_event_item counters */
804 	"pgpgin",
805 	"pgpgout",
806 	"pswpin",
807 	"pswpout",
808 
809 	TEXTS_FOR_ZONES("pgalloc")
810 
811 	"pgfree",
812 	"pgactivate",
813 	"pgdeactivate",
814 
815 	"pgfault",
816 	"pgmajfault",
817 
818 	TEXTS_FOR_ZONES("pgrefill")
819 	TEXTS_FOR_ZONES("pgsteal_kswapd")
820 	TEXTS_FOR_ZONES("pgsteal_direct")
821 	TEXTS_FOR_ZONES("pgscan_kswapd")
822 	TEXTS_FOR_ZONES("pgscan_direct")
823 	"pgscan_direct_throttle",
824 
825 #ifdef CONFIG_NUMA
826 	"zone_reclaim_failed",
827 #endif
828 	"pginodesteal",
829 	"slabs_scanned",
830 	"kswapd_inodesteal",
831 	"kswapd_low_wmark_hit_quickly",
832 	"kswapd_high_wmark_hit_quickly",
833 	"pageoutrun",
834 	"allocstall",
835 
836 	"pgrotated",
837 
838 	"drop_pagecache",
839 	"drop_slab",
840 
841 #ifdef CONFIG_NUMA_BALANCING
842 	"numa_pte_updates",
843 	"numa_huge_pte_updates",
844 	"numa_hint_faults",
845 	"numa_hint_faults_local",
846 	"numa_pages_migrated",
847 #endif
848 #ifdef CONFIG_MIGRATION
849 	"pgmigrate_success",
850 	"pgmigrate_fail",
851 #endif
852 #ifdef CONFIG_COMPACTION
853 	"compact_migrate_scanned",
854 	"compact_free_scanned",
855 	"compact_isolated",
856 	"compact_stall",
857 	"compact_fail",
858 	"compact_success",
859 #endif
860 
861 #ifdef CONFIG_HUGETLB_PAGE
862 	"htlb_buddy_alloc_success",
863 	"htlb_buddy_alloc_fail",
864 #endif
865 	"unevictable_pgs_culled",
866 	"unevictable_pgs_scanned",
867 	"unevictable_pgs_rescued",
868 	"unevictable_pgs_mlocked",
869 	"unevictable_pgs_munlocked",
870 	"unevictable_pgs_cleared",
871 	"unevictable_pgs_stranded",
872 
873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
874 	"thp_fault_alloc",
875 	"thp_fault_fallback",
876 	"thp_collapse_alloc",
877 	"thp_collapse_alloc_failed",
878 	"thp_split",
879 	"thp_zero_page_alloc",
880 	"thp_zero_page_alloc_failed",
881 #endif
882 #ifdef CONFIG_MEMORY_BALLOON
883 	"balloon_inflate",
884 	"balloon_deflate",
885 #ifdef CONFIG_BALLOON_COMPACTION
886 	"balloon_migrate",
887 #endif
888 #endif /* CONFIG_MEMORY_BALLOON */
889 #ifdef CONFIG_DEBUG_TLBFLUSH
890 #ifdef CONFIG_SMP
891 	"nr_tlb_remote_flush",
892 	"nr_tlb_remote_flush_received",
893 #endif /* CONFIG_SMP */
894 	"nr_tlb_local_flush_all",
895 	"nr_tlb_local_flush_one",
896 #endif /* CONFIG_DEBUG_TLBFLUSH */
897 
898 #ifdef CONFIG_DEBUG_VM_VMACACHE
899 	"vmacache_find_calls",
900 	"vmacache_find_hits",
901 #endif
902 #endif /* CONFIG_VM_EVENTS_COUNTERS */
903 };
904 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
905 
906 
907 #ifdef CONFIG_PROC_FS
908 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
909 						struct zone *zone)
910 {
911 	int order;
912 
913 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
914 	for (order = 0; order < MAX_ORDER; ++order)
915 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
916 	seq_putc(m, '\n');
917 }
918 
919 /*
920  * This walks the free areas for each zone.
921  */
922 static int frag_show(struct seq_file *m, void *arg)
923 {
924 	pg_data_t *pgdat = (pg_data_t *)arg;
925 	walk_zones_in_node(m, pgdat, frag_show_print);
926 	return 0;
927 }
928 
929 static void pagetypeinfo_showfree_print(struct seq_file *m,
930 					pg_data_t *pgdat, struct zone *zone)
931 {
932 	int order, mtype;
933 
934 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
935 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
936 					pgdat->node_id,
937 					zone->name,
938 					migratetype_names[mtype]);
939 		for (order = 0; order < MAX_ORDER; ++order) {
940 			unsigned long freecount = 0;
941 			struct free_area *area;
942 			struct list_head *curr;
943 
944 			area = &(zone->free_area[order]);
945 
946 			list_for_each(curr, &area->free_list[mtype])
947 				freecount++;
948 			seq_printf(m, "%6lu ", freecount);
949 		}
950 		seq_putc(m, '\n');
951 	}
952 }
953 
954 /* Print out the free pages at each order for each migatetype */
955 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
956 {
957 	int order;
958 	pg_data_t *pgdat = (pg_data_t *)arg;
959 
960 	/* Print header */
961 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
962 	for (order = 0; order < MAX_ORDER; ++order)
963 		seq_printf(m, "%6d ", order);
964 	seq_putc(m, '\n');
965 
966 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
967 
968 	return 0;
969 }
970 
971 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
972 					pg_data_t *pgdat, struct zone *zone)
973 {
974 	int mtype;
975 	unsigned long pfn;
976 	unsigned long start_pfn = zone->zone_start_pfn;
977 	unsigned long end_pfn = zone_end_pfn(zone);
978 	unsigned long count[MIGRATE_TYPES] = { 0, };
979 
980 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
981 		struct page *page;
982 
983 		if (!pfn_valid(pfn))
984 			continue;
985 
986 		page = pfn_to_page(pfn);
987 
988 		/* Watch for unexpected holes punched in the memmap */
989 		if (!memmap_valid_within(pfn, page, zone))
990 			continue;
991 
992 		mtype = get_pageblock_migratetype(page);
993 
994 		if (mtype < MIGRATE_TYPES)
995 			count[mtype]++;
996 	}
997 
998 	/* Print counts */
999 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1000 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1001 		seq_printf(m, "%12lu ", count[mtype]);
1002 	seq_putc(m, '\n');
1003 }
1004 
1005 /* Print out the free pages at each order for each migratetype */
1006 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1007 {
1008 	int mtype;
1009 	pg_data_t *pgdat = (pg_data_t *)arg;
1010 
1011 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1012 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1013 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1014 	seq_putc(m, '\n');
1015 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * This prints out statistics in relation to grouping pages by mobility.
1022  * It is expensive to collect so do not constantly read the file.
1023  */
1024 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1025 {
1026 	pg_data_t *pgdat = (pg_data_t *)arg;
1027 
1028 	/* check memoryless node */
1029 	if (!node_state(pgdat->node_id, N_MEMORY))
1030 		return 0;
1031 
1032 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1033 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1034 	seq_putc(m, '\n');
1035 	pagetypeinfo_showfree(m, pgdat);
1036 	pagetypeinfo_showblockcount(m, pgdat);
1037 
1038 	return 0;
1039 }
1040 
1041 static const struct seq_operations fragmentation_op = {
1042 	.start	= frag_start,
1043 	.next	= frag_next,
1044 	.stop	= frag_stop,
1045 	.show	= frag_show,
1046 };
1047 
1048 static int fragmentation_open(struct inode *inode, struct file *file)
1049 {
1050 	return seq_open(file, &fragmentation_op);
1051 }
1052 
1053 static const struct file_operations fragmentation_file_operations = {
1054 	.open		= fragmentation_open,
1055 	.read		= seq_read,
1056 	.llseek		= seq_lseek,
1057 	.release	= seq_release,
1058 };
1059 
1060 static const struct seq_operations pagetypeinfo_op = {
1061 	.start	= frag_start,
1062 	.next	= frag_next,
1063 	.stop	= frag_stop,
1064 	.show	= pagetypeinfo_show,
1065 };
1066 
1067 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1068 {
1069 	return seq_open(file, &pagetypeinfo_op);
1070 }
1071 
1072 static const struct file_operations pagetypeinfo_file_ops = {
1073 	.open		= pagetypeinfo_open,
1074 	.read		= seq_read,
1075 	.llseek		= seq_lseek,
1076 	.release	= seq_release,
1077 };
1078 
1079 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1080 							struct zone *zone)
1081 {
1082 	int i;
1083 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1084 	seq_printf(m,
1085 		   "\n  pages free     %lu"
1086 		   "\n        min      %lu"
1087 		   "\n        low      %lu"
1088 		   "\n        high     %lu"
1089 		   "\n        scanned  %lu"
1090 		   "\n        spanned  %lu"
1091 		   "\n        present  %lu"
1092 		   "\n        managed  %lu",
1093 		   zone_page_state(zone, NR_FREE_PAGES),
1094 		   min_wmark_pages(zone),
1095 		   low_wmark_pages(zone),
1096 		   high_wmark_pages(zone),
1097 		   zone_page_state(zone, NR_PAGES_SCANNED),
1098 		   zone->spanned_pages,
1099 		   zone->present_pages,
1100 		   zone->managed_pages);
1101 
1102 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1103 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1104 				zone_page_state(zone, i));
1105 
1106 	seq_printf(m,
1107 		   "\n        protection: (%ld",
1108 		   zone->lowmem_reserve[0]);
1109 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1110 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1111 	seq_printf(m,
1112 		   ")"
1113 		   "\n  pagesets");
1114 	for_each_online_cpu(i) {
1115 		struct per_cpu_pageset *pageset;
1116 
1117 		pageset = per_cpu_ptr(zone->pageset, i);
1118 		seq_printf(m,
1119 			   "\n    cpu: %i"
1120 			   "\n              count: %i"
1121 			   "\n              high:  %i"
1122 			   "\n              batch: %i",
1123 			   i,
1124 			   pageset->pcp.count,
1125 			   pageset->pcp.high,
1126 			   pageset->pcp.batch);
1127 #ifdef CONFIG_SMP
1128 		seq_printf(m, "\n  vm stats threshold: %d",
1129 				pageset->stat_threshold);
1130 #endif
1131 	}
1132 	seq_printf(m,
1133 		   "\n  all_unreclaimable: %u"
1134 		   "\n  start_pfn:         %lu"
1135 		   "\n  inactive_ratio:    %u",
1136 		   !zone_reclaimable(zone),
1137 		   zone->zone_start_pfn,
1138 		   zone->inactive_ratio);
1139 	seq_putc(m, '\n');
1140 }
1141 
1142 /*
1143  * Output information about zones in @pgdat.
1144  */
1145 static int zoneinfo_show(struct seq_file *m, void *arg)
1146 {
1147 	pg_data_t *pgdat = (pg_data_t *)arg;
1148 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1149 	return 0;
1150 }
1151 
1152 static const struct seq_operations zoneinfo_op = {
1153 	.start	= frag_start, /* iterate over all zones. The same as in
1154 			       * fragmentation. */
1155 	.next	= frag_next,
1156 	.stop	= frag_stop,
1157 	.show	= zoneinfo_show,
1158 };
1159 
1160 static int zoneinfo_open(struct inode *inode, struct file *file)
1161 {
1162 	return seq_open(file, &zoneinfo_op);
1163 }
1164 
1165 static const struct file_operations proc_zoneinfo_file_operations = {
1166 	.open		= zoneinfo_open,
1167 	.read		= seq_read,
1168 	.llseek		= seq_lseek,
1169 	.release	= seq_release,
1170 };
1171 
1172 enum writeback_stat_item {
1173 	NR_DIRTY_THRESHOLD,
1174 	NR_DIRTY_BG_THRESHOLD,
1175 	NR_VM_WRITEBACK_STAT_ITEMS,
1176 };
1177 
1178 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1179 {
1180 	unsigned long *v;
1181 	int i, stat_items_size;
1182 
1183 	if (*pos >= ARRAY_SIZE(vmstat_text))
1184 		return NULL;
1185 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1186 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1187 
1188 #ifdef CONFIG_VM_EVENT_COUNTERS
1189 	stat_items_size += sizeof(struct vm_event_state);
1190 #endif
1191 
1192 	v = kmalloc(stat_items_size, GFP_KERNEL);
1193 	m->private = v;
1194 	if (!v)
1195 		return ERR_PTR(-ENOMEM);
1196 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1197 		v[i] = global_page_state(i);
1198 	v += NR_VM_ZONE_STAT_ITEMS;
1199 
1200 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1201 			    v + NR_DIRTY_THRESHOLD);
1202 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1203 
1204 #ifdef CONFIG_VM_EVENT_COUNTERS
1205 	all_vm_events(v);
1206 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1207 	v[PGPGOUT] /= 2;
1208 #endif
1209 	return (unsigned long *)m->private + *pos;
1210 }
1211 
1212 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1213 {
1214 	(*pos)++;
1215 	if (*pos >= ARRAY_SIZE(vmstat_text))
1216 		return NULL;
1217 	return (unsigned long *)m->private + *pos;
1218 }
1219 
1220 static int vmstat_show(struct seq_file *m, void *arg)
1221 {
1222 	unsigned long *l = arg;
1223 	unsigned long off = l - (unsigned long *)m->private;
1224 
1225 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1226 	return 0;
1227 }
1228 
1229 static void vmstat_stop(struct seq_file *m, void *arg)
1230 {
1231 	kfree(m->private);
1232 	m->private = NULL;
1233 }
1234 
1235 static const struct seq_operations vmstat_op = {
1236 	.start	= vmstat_start,
1237 	.next	= vmstat_next,
1238 	.stop	= vmstat_stop,
1239 	.show	= vmstat_show,
1240 };
1241 
1242 static int vmstat_open(struct inode *inode, struct file *file)
1243 {
1244 	return seq_open(file, &vmstat_op);
1245 }
1246 
1247 static const struct file_operations proc_vmstat_file_operations = {
1248 	.open		= vmstat_open,
1249 	.read		= seq_read,
1250 	.llseek		= seq_lseek,
1251 	.release	= seq_release,
1252 };
1253 #endif /* CONFIG_PROC_FS */
1254 
1255 #ifdef CONFIG_SMP
1256 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1257 int sysctl_stat_interval __read_mostly = HZ;
1258 static cpumask_var_t cpu_stat_off;
1259 
1260 static void vmstat_update(struct work_struct *w)
1261 {
1262 	if (refresh_cpu_vm_stats())
1263 		/*
1264 		 * Counters were updated so we expect more updates
1265 		 * to occur in the future. Keep on running the
1266 		 * update worker thread.
1267 		 */
1268 		schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1269 			round_jiffies_relative(sysctl_stat_interval));
1270 	else {
1271 		/*
1272 		 * We did not update any counters so the app may be in
1273 		 * a mode where it does not cause counter updates.
1274 		 * We may be uselessly running vmstat_update.
1275 		 * Defer the checking for differentials to the
1276 		 * shepherd thread on a different processor.
1277 		 */
1278 		int r;
1279 		/*
1280 		 * Shepherd work thread does not race since it never
1281 		 * changes the bit if its zero but the cpu
1282 		 * online / off line code may race if
1283 		 * worker threads are still allowed during
1284 		 * shutdown / startup.
1285 		 */
1286 		r = cpumask_test_and_set_cpu(smp_processor_id(),
1287 			cpu_stat_off);
1288 		VM_BUG_ON(r);
1289 	}
1290 }
1291 
1292 /*
1293  * Check if the diffs for a certain cpu indicate that
1294  * an update is needed.
1295  */
1296 static bool need_update(int cpu)
1297 {
1298 	struct zone *zone;
1299 
1300 	for_each_populated_zone(zone) {
1301 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1302 
1303 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1304 		/*
1305 		 * The fast way of checking if there are any vmstat diffs.
1306 		 * This works because the diffs are byte sized items.
1307 		 */
1308 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1309 			return true;
1310 
1311 	}
1312 	return false;
1313 }
1314 
1315 
1316 /*
1317  * Shepherd worker thread that checks the
1318  * differentials of processors that have their worker
1319  * threads for vm statistics updates disabled because of
1320  * inactivity.
1321  */
1322 static void vmstat_shepherd(struct work_struct *w);
1323 
1324 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1325 
1326 static void vmstat_shepherd(struct work_struct *w)
1327 {
1328 	int cpu;
1329 
1330 	get_online_cpus();
1331 	/* Check processors whose vmstat worker threads have been disabled */
1332 	for_each_cpu(cpu, cpu_stat_off)
1333 		if (need_update(cpu) &&
1334 			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1335 
1336 			schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1337 				__round_jiffies_relative(sysctl_stat_interval, cpu));
1338 
1339 	put_online_cpus();
1340 
1341 	schedule_delayed_work(&shepherd,
1342 		round_jiffies_relative(sysctl_stat_interval));
1343 
1344 }
1345 
1346 static void __init start_shepherd_timer(void)
1347 {
1348 	int cpu;
1349 
1350 	for_each_possible_cpu(cpu)
1351 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1352 			vmstat_update);
1353 
1354 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1355 		BUG();
1356 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1357 
1358 	schedule_delayed_work(&shepherd,
1359 		round_jiffies_relative(sysctl_stat_interval));
1360 }
1361 
1362 static void vmstat_cpu_dead(int node)
1363 {
1364 	int cpu;
1365 
1366 	get_online_cpus();
1367 	for_each_online_cpu(cpu)
1368 		if (cpu_to_node(cpu) == node)
1369 			goto end;
1370 
1371 	node_clear_state(node, N_CPU);
1372 end:
1373 	put_online_cpus();
1374 }
1375 
1376 /*
1377  * Use the cpu notifier to insure that the thresholds are recalculated
1378  * when necessary.
1379  */
1380 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1381 		unsigned long action,
1382 		void *hcpu)
1383 {
1384 	long cpu = (long)hcpu;
1385 
1386 	switch (action) {
1387 	case CPU_ONLINE:
1388 	case CPU_ONLINE_FROZEN:
1389 		refresh_zone_stat_thresholds();
1390 		node_set_state(cpu_to_node(cpu), N_CPU);
1391 		cpumask_set_cpu(cpu, cpu_stat_off);
1392 		break;
1393 	case CPU_DOWN_PREPARE:
1394 	case CPU_DOWN_PREPARE_FROZEN:
1395 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1396 		cpumask_clear_cpu(cpu, cpu_stat_off);
1397 		break;
1398 	case CPU_DOWN_FAILED:
1399 	case CPU_DOWN_FAILED_FROZEN:
1400 		cpumask_set_cpu(cpu, cpu_stat_off);
1401 		break;
1402 	case CPU_DEAD:
1403 	case CPU_DEAD_FROZEN:
1404 		refresh_zone_stat_thresholds();
1405 		vmstat_cpu_dead(cpu_to_node(cpu));
1406 		break;
1407 	default:
1408 		break;
1409 	}
1410 	return NOTIFY_OK;
1411 }
1412 
1413 static struct notifier_block vmstat_notifier =
1414 	{ &vmstat_cpuup_callback, NULL, 0 };
1415 #endif
1416 
1417 static int __init setup_vmstat(void)
1418 {
1419 #ifdef CONFIG_SMP
1420 	cpu_notifier_register_begin();
1421 	__register_cpu_notifier(&vmstat_notifier);
1422 
1423 	start_shepherd_timer();
1424 	cpu_notifier_register_done();
1425 #endif
1426 #ifdef CONFIG_PROC_FS
1427 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1428 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1429 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1430 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1431 #endif
1432 	return 0;
1433 }
1434 module_init(setup_vmstat)
1435 
1436 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1437 #include <linux/debugfs.h>
1438 
1439 
1440 /*
1441  * Return an index indicating how much of the available free memory is
1442  * unusable for an allocation of the requested size.
1443  */
1444 static int unusable_free_index(unsigned int order,
1445 				struct contig_page_info *info)
1446 {
1447 	/* No free memory is interpreted as all free memory is unusable */
1448 	if (info->free_pages == 0)
1449 		return 1000;
1450 
1451 	/*
1452 	 * Index should be a value between 0 and 1. Return a value to 3
1453 	 * decimal places.
1454 	 *
1455 	 * 0 => no fragmentation
1456 	 * 1 => high fragmentation
1457 	 */
1458 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1459 
1460 }
1461 
1462 static void unusable_show_print(struct seq_file *m,
1463 					pg_data_t *pgdat, struct zone *zone)
1464 {
1465 	unsigned int order;
1466 	int index;
1467 	struct contig_page_info info;
1468 
1469 	seq_printf(m, "Node %d, zone %8s ",
1470 				pgdat->node_id,
1471 				zone->name);
1472 	for (order = 0; order < MAX_ORDER; ++order) {
1473 		fill_contig_page_info(zone, order, &info);
1474 		index = unusable_free_index(order, &info);
1475 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1476 	}
1477 
1478 	seq_putc(m, '\n');
1479 }
1480 
1481 /*
1482  * Display unusable free space index
1483  *
1484  * The unusable free space index measures how much of the available free
1485  * memory cannot be used to satisfy an allocation of a given size and is a
1486  * value between 0 and 1. The higher the value, the more of free memory is
1487  * unusable and by implication, the worse the external fragmentation is. This
1488  * can be expressed as a percentage by multiplying by 100.
1489  */
1490 static int unusable_show(struct seq_file *m, void *arg)
1491 {
1492 	pg_data_t *pgdat = (pg_data_t *)arg;
1493 
1494 	/* check memoryless node */
1495 	if (!node_state(pgdat->node_id, N_MEMORY))
1496 		return 0;
1497 
1498 	walk_zones_in_node(m, pgdat, unusable_show_print);
1499 
1500 	return 0;
1501 }
1502 
1503 static const struct seq_operations unusable_op = {
1504 	.start	= frag_start,
1505 	.next	= frag_next,
1506 	.stop	= frag_stop,
1507 	.show	= unusable_show,
1508 };
1509 
1510 static int unusable_open(struct inode *inode, struct file *file)
1511 {
1512 	return seq_open(file, &unusable_op);
1513 }
1514 
1515 static const struct file_operations unusable_file_ops = {
1516 	.open		= unusable_open,
1517 	.read		= seq_read,
1518 	.llseek		= seq_lseek,
1519 	.release	= seq_release,
1520 };
1521 
1522 static void extfrag_show_print(struct seq_file *m,
1523 					pg_data_t *pgdat, struct zone *zone)
1524 {
1525 	unsigned int order;
1526 	int index;
1527 
1528 	/* Alloc on stack as interrupts are disabled for zone walk */
1529 	struct contig_page_info info;
1530 
1531 	seq_printf(m, "Node %d, zone %8s ",
1532 				pgdat->node_id,
1533 				zone->name);
1534 	for (order = 0; order < MAX_ORDER; ++order) {
1535 		fill_contig_page_info(zone, order, &info);
1536 		index = __fragmentation_index(order, &info);
1537 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1538 	}
1539 
1540 	seq_putc(m, '\n');
1541 }
1542 
1543 /*
1544  * Display fragmentation index for orders that allocations would fail for
1545  */
1546 static int extfrag_show(struct seq_file *m, void *arg)
1547 {
1548 	pg_data_t *pgdat = (pg_data_t *)arg;
1549 
1550 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1551 
1552 	return 0;
1553 }
1554 
1555 static const struct seq_operations extfrag_op = {
1556 	.start	= frag_start,
1557 	.next	= frag_next,
1558 	.stop	= frag_stop,
1559 	.show	= extfrag_show,
1560 };
1561 
1562 static int extfrag_open(struct inode *inode, struct file *file)
1563 {
1564 	return seq_open(file, &extfrag_op);
1565 }
1566 
1567 static const struct file_operations extfrag_file_ops = {
1568 	.open		= extfrag_open,
1569 	.read		= seq_read,
1570 	.llseek		= seq_lseek,
1571 	.release	= seq_release,
1572 };
1573 
1574 static int __init extfrag_debug_init(void)
1575 {
1576 	struct dentry *extfrag_debug_root;
1577 
1578 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1579 	if (!extfrag_debug_root)
1580 		return -ENOMEM;
1581 
1582 	if (!debugfs_create_file("unusable_index", 0444,
1583 			extfrag_debug_root, NULL, &unusable_file_ops))
1584 		goto fail;
1585 
1586 	if (!debugfs_create_file("extfrag_index", 0444,
1587 			extfrag_debug_root, NULL, &extfrag_file_ops))
1588 		goto fail;
1589 
1590 	return 0;
1591 fail:
1592 	debugfs_remove_recursive(extfrag_debug_root);
1593 	return -ENOMEM;
1594 }
1595 
1596 module_init(extfrag_debug_init);
1597 #endif
1598