xref: /openbmc/linux/mm/vmstat.c (revision c0e297dc)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30 
31 #include "internal.h"
32 
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36 
37 static void sum_vm_events(unsigned long *ret)
38 {
39 	int cpu;
40 	int i;
41 
42 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43 
44 	for_each_online_cpu(cpu) {
45 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46 
47 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 			ret[i] += this->event[i];
49 	}
50 }
51 
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 	get_online_cpus();
60 	sum_vm_events(ret);
61 	put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64 
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 	int i;
75 
76 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 		count_vm_events(i, fold_state->event[i]);
78 		fold_state->event[i] = 0;
79 	}
80 }
81 
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83 
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91 
92 #ifdef CONFIG_SMP
93 
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 	int threshold;
97 	int watermark_distance;
98 
99 	/*
100 	 * As vmstats are not up to date, there is drift between the estimated
101 	 * and real values. For high thresholds and a high number of CPUs, it
102 	 * is possible for the min watermark to be breached while the estimated
103 	 * value looks fine. The pressure threshold is a reduced value such
104 	 * that even the maximum amount of drift will not accidentally breach
105 	 * the min watermark
106 	 */
107 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109 
110 	/*
111 	 * Maximum threshold is 125
112 	 */
113 	threshold = min(125, threshold);
114 
115 	return threshold;
116 }
117 
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 	int threshold;
121 	int mem;	/* memory in 128 MB units */
122 
123 	/*
124 	 * The threshold scales with the number of processors and the amount
125 	 * of memory per zone. More memory means that we can defer updates for
126 	 * longer, more processors could lead to more contention.
127  	 * fls() is used to have a cheap way of logarithmic scaling.
128 	 *
129 	 * Some sample thresholds:
130 	 *
131 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
132 	 * ------------------------------------------------------------------
133 	 * 8		1		1	0.9-1 GB	4
134 	 * 16		2		2	0.9-1 GB	4
135 	 * 20 		2		2	1-2 GB		5
136 	 * 24		2		2	2-4 GB		6
137 	 * 28		2		2	4-8 GB		7
138 	 * 32		2		2	8-16 GB		8
139 	 * 4		2		2	<128M		1
140 	 * 30		4		3	2-4 GB		5
141 	 * 48		4		3	8-16 GB		8
142 	 * 32		8		4	1-2 GB		4
143 	 * 32		8		4	0.9-1GB		4
144 	 * 10		16		5	<128M		1
145 	 * 40		16		5	900M		4
146 	 * 70		64		7	2-4 GB		5
147 	 * 84		64		7	4-8 GB		6
148 	 * 108		512		9	4-8 GB		6
149 	 * 125		1024		10	8-16 GB		8
150 	 * 125		1024		10	16-32 GB	9
151 	 */
152 
153 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154 
155 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156 
157 	/*
158 	 * Maximum threshold is 125
159 	 */
160 	threshold = min(125, threshold);
161 
162 	return threshold;
163 }
164 
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170 	struct zone *zone;
171 	int cpu;
172 	int threshold;
173 
174 	for_each_populated_zone(zone) {
175 		unsigned long max_drift, tolerate_drift;
176 
177 		threshold = calculate_normal_threshold(zone);
178 
179 		for_each_online_cpu(cpu)
180 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 							= threshold;
182 
183 		/*
184 		 * Only set percpu_drift_mark if there is a danger that
185 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 		 * the min watermark could be breached by an allocation
187 		 */
188 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 		max_drift = num_online_cpus() * threshold;
190 		if (max_drift > tolerate_drift)
191 			zone->percpu_drift_mark = high_wmark_pages(zone) +
192 					max_drift;
193 	}
194 }
195 
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 				int (*calculate_pressure)(struct zone *))
198 {
199 	struct zone *zone;
200 	int cpu;
201 	int threshold;
202 	int i;
203 
204 	for (i = 0; i < pgdat->nr_zones; i++) {
205 		zone = &pgdat->node_zones[i];
206 		if (!zone->percpu_drift_mark)
207 			continue;
208 
209 		threshold = (*calculate_pressure)(zone);
210 		for_each_online_cpu(cpu)
211 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 							= threshold;
213 	}
214 }
215 
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 				int delta)
223 {
224 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 	s8 __percpu *p = pcp->vm_stat_diff + item;
226 	long x;
227 	long t;
228 
229 	x = delta + __this_cpu_read(*p);
230 
231 	t = __this_cpu_read(pcp->stat_threshold);
232 
233 	if (unlikely(x > t || x < -t)) {
234 		zone_page_state_add(x, zone, item);
235 		x = 0;
236 	}
237 	__this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240 
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 	s8 __percpu *p = pcp->vm_stat_diff + item;
268 	s8 v, t;
269 
270 	v = __this_cpu_inc_return(*p);
271 	t = __this_cpu_read(pcp->stat_threshold);
272 	if (unlikely(v > t)) {
273 		s8 overstep = t >> 1;
274 
275 		zone_page_state_add(v + overstep, zone, item);
276 		__this_cpu_write(*p, -overstep);
277 	}
278 }
279 
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 	__inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285 
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 	s8 __percpu *p = pcp->vm_stat_diff + item;
290 	s8 v, t;
291 
292 	v = __this_cpu_dec_return(*p);
293 	t = __this_cpu_read(pcp->stat_threshold);
294 	if (unlikely(v < - t)) {
295 		s8 overstep = t >> 1;
296 
297 		zone_page_state_add(v - overstep, zone, item);
298 		__this_cpu_write(*p, overstep);
299 	}
300 }
301 
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 	__dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307 
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone,
322        enum zone_stat_item item, int delta, int overstep_mode)
323 {
324 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 	s8 __percpu *p = pcp->vm_stat_diff + item;
326 	long o, n, t, z;
327 
328 	do {
329 		z = 0;  /* overflow to zone counters */
330 
331 		/*
332 		 * The fetching of the stat_threshold is racy. We may apply
333 		 * a counter threshold to the wrong the cpu if we get
334 		 * rescheduled while executing here. However, the next
335 		 * counter update will apply the threshold again and
336 		 * therefore bring the counter under the threshold again.
337 		 *
338 		 * Most of the time the thresholds are the same anyways
339 		 * for all cpus in a zone.
340 		 */
341 		t = this_cpu_read(pcp->stat_threshold);
342 
343 		o = this_cpu_read(*p);
344 		n = delta + o;
345 
346 		if (n > t || n < -t) {
347 			int os = overstep_mode * (t >> 1) ;
348 
349 			/* Overflow must be added to zone counters */
350 			z = n + os;
351 			n = -os;
352 		}
353 	} while (this_cpu_cmpxchg(*p, o, n) != o);
354 
355 	if (z)
356 		zone_page_state_add(z, zone, item);
357 }
358 
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 					int delta)
361 {
362 	mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365 
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 	mod_state(zone, item, 1, 1);
369 }
370 
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 	mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376 
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 	mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 					int delta)
388 {
389 	unsigned long flags;
390 
391 	local_irq_save(flags);
392 	__mod_zone_page_state(zone, item, delta);
393 	local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396 
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 	unsigned long flags;
400 
401 	local_irq_save(flags);
402 	__inc_zone_state(zone, item);
403 	local_irq_restore(flags);
404 }
405 
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 	unsigned long flags;
409 	struct zone *zone;
410 
411 	zone = page_zone(page);
412 	local_irq_save(flags);
413 	__inc_zone_state(zone, item);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417 
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 	unsigned long flags;
421 
422 	local_irq_save(flags);
423 	__dec_zone_page_state(page, item);
424 	local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428 
429 
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436 	int i;
437 	int changes = 0;
438 
439 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 		if (diff[i]) {
441 			atomic_long_add(diff[i], &vm_stat[i]);
442 			changes++;
443 	}
444 	return changes;
445 }
446 
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(void)
464 {
465 	struct zone *zone;
466 	int i;
467 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 	int changes = 0;
469 
470 	for_each_populated_zone(zone) {
471 		struct per_cpu_pageset __percpu *p = zone->pageset;
472 
473 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 			int v;
475 
476 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 			if (v) {
478 
479 				atomic_long_add(v, &zone->vm_stat[i]);
480 				global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 				/* 3 seconds idle till flush */
483 				__this_cpu_write(p->expire, 3);
484 #endif
485 			}
486 		}
487 		cond_resched();
488 #ifdef CONFIG_NUMA
489 		/*
490 		 * Deal with draining the remote pageset of this
491 		 * processor
492 		 *
493 		 * Check if there are pages remaining in this pageset
494 		 * if not then there is nothing to expire.
495 		 */
496 		if (!__this_cpu_read(p->expire) ||
497 			       !__this_cpu_read(p->pcp.count))
498 			continue;
499 
500 		/*
501 		 * We never drain zones local to this processor.
502 		 */
503 		if (zone_to_nid(zone) == numa_node_id()) {
504 			__this_cpu_write(p->expire, 0);
505 			continue;
506 		}
507 
508 		if (__this_cpu_dec_return(p->expire))
509 			continue;
510 
511 		if (__this_cpu_read(p->pcp.count)) {
512 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
513 			changes++;
514 		}
515 #endif
516 	}
517 	changes += fold_diff(global_diff);
518 	return changes;
519 }
520 
521 /*
522  * Fold the data for an offline cpu into the global array.
523  * There cannot be any access by the offline cpu and therefore
524  * synchronization is simplified.
525  */
526 void cpu_vm_stats_fold(int cpu)
527 {
528 	struct zone *zone;
529 	int i;
530 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
531 
532 	for_each_populated_zone(zone) {
533 		struct per_cpu_pageset *p;
534 
535 		p = per_cpu_ptr(zone->pageset, cpu);
536 
537 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
538 			if (p->vm_stat_diff[i]) {
539 				int v;
540 
541 				v = p->vm_stat_diff[i];
542 				p->vm_stat_diff[i] = 0;
543 				atomic_long_add(v, &zone->vm_stat[i]);
544 				global_diff[i] += v;
545 			}
546 	}
547 
548 	fold_diff(global_diff);
549 }
550 
551 /*
552  * this is only called if !populated_zone(zone), which implies no other users of
553  * pset->vm_stat_diff[] exsist.
554  */
555 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
556 {
557 	int i;
558 
559 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
560 		if (pset->vm_stat_diff[i]) {
561 			int v = pset->vm_stat_diff[i];
562 			pset->vm_stat_diff[i] = 0;
563 			atomic_long_add(v, &zone->vm_stat[i]);
564 			atomic_long_add(v, &vm_stat[i]);
565 		}
566 }
567 #endif
568 
569 #ifdef CONFIG_NUMA
570 /*
571  * zonelist = the list of zones passed to the allocator
572  * z 	    = the zone from which the allocation occurred.
573  *
574  * Must be called with interrupts disabled.
575  *
576  * When __GFP_OTHER_NODE is set assume the node of the preferred
577  * zone is the local node. This is useful for daemons who allocate
578  * memory on behalf of other processes.
579  */
580 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
581 {
582 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
583 		__inc_zone_state(z, NUMA_HIT);
584 	} else {
585 		__inc_zone_state(z, NUMA_MISS);
586 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
587 	}
588 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
589 			preferred_zone->node : numa_node_id()))
590 		__inc_zone_state(z, NUMA_LOCAL);
591 	else
592 		__inc_zone_state(z, NUMA_OTHER);
593 }
594 #endif
595 
596 #ifdef CONFIG_COMPACTION
597 
598 struct contig_page_info {
599 	unsigned long free_pages;
600 	unsigned long free_blocks_total;
601 	unsigned long free_blocks_suitable;
602 };
603 
604 /*
605  * Calculate the number of free pages in a zone, how many contiguous
606  * pages are free and how many are large enough to satisfy an allocation of
607  * the target size. Note that this function makes no attempt to estimate
608  * how many suitable free blocks there *might* be if MOVABLE pages were
609  * migrated. Calculating that is possible, but expensive and can be
610  * figured out from userspace
611  */
612 static void fill_contig_page_info(struct zone *zone,
613 				unsigned int suitable_order,
614 				struct contig_page_info *info)
615 {
616 	unsigned int order;
617 
618 	info->free_pages = 0;
619 	info->free_blocks_total = 0;
620 	info->free_blocks_suitable = 0;
621 
622 	for (order = 0; order < MAX_ORDER; order++) {
623 		unsigned long blocks;
624 
625 		/* Count number of free blocks */
626 		blocks = zone->free_area[order].nr_free;
627 		info->free_blocks_total += blocks;
628 
629 		/* Count free base pages */
630 		info->free_pages += blocks << order;
631 
632 		/* Count the suitable free blocks */
633 		if (order >= suitable_order)
634 			info->free_blocks_suitable += blocks <<
635 						(order - suitable_order);
636 	}
637 }
638 
639 /*
640  * A fragmentation index only makes sense if an allocation of a requested
641  * size would fail. If that is true, the fragmentation index indicates
642  * whether external fragmentation or a lack of memory was the problem.
643  * The value can be used to determine if page reclaim or compaction
644  * should be used
645  */
646 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
647 {
648 	unsigned long requested = 1UL << order;
649 
650 	if (!info->free_blocks_total)
651 		return 0;
652 
653 	/* Fragmentation index only makes sense when a request would fail */
654 	if (info->free_blocks_suitable)
655 		return -1000;
656 
657 	/*
658 	 * Index is between 0 and 1 so return within 3 decimal places
659 	 *
660 	 * 0 => allocation would fail due to lack of memory
661 	 * 1 => allocation would fail due to fragmentation
662 	 */
663 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
664 }
665 
666 /* Same as __fragmentation index but allocs contig_page_info on stack */
667 int fragmentation_index(struct zone *zone, unsigned int order)
668 {
669 	struct contig_page_info info;
670 
671 	fill_contig_page_info(zone, order, &info);
672 	return __fragmentation_index(order, &info);
673 }
674 #endif
675 
676 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
677 #ifdef CONFIG_ZONE_DMA
678 #define TEXT_FOR_DMA(xx) xx "_dma",
679 #else
680 #define TEXT_FOR_DMA(xx)
681 #endif
682 
683 #ifdef CONFIG_ZONE_DMA32
684 #define TEXT_FOR_DMA32(xx) xx "_dma32",
685 #else
686 #define TEXT_FOR_DMA32(xx)
687 #endif
688 
689 #ifdef CONFIG_HIGHMEM
690 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
691 #else
692 #define TEXT_FOR_HIGHMEM(xx)
693 #endif
694 
695 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
696 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
697 
698 const char * const vmstat_text[] = {
699 	/* enum zone_stat_item countes */
700 	"nr_free_pages",
701 	"nr_alloc_batch",
702 	"nr_inactive_anon",
703 	"nr_active_anon",
704 	"nr_inactive_file",
705 	"nr_active_file",
706 	"nr_unevictable",
707 	"nr_mlock",
708 	"nr_anon_pages",
709 	"nr_mapped",
710 	"nr_file_pages",
711 	"nr_dirty",
712 	"nr_writeback",
713 	"nr_slab_reclaimable",
714 	"nr_slab_unreclaimable",
715 	"nr_page_table_pages",
716 	"nr_kernel_stack",
717 	"nr_unstable",
718 	"nr_bounce",
719 	"nr_vmscan_write",
720 	"nr_vmscan_immediate_reclaim",
721 	"nr_writeback_temp",
722 	"nr_isolated_anon",
723 	"nr_isolated_file",
724 	"nr_shmem",
725 	"nr_dirtied",
726 	"nr_written",
727 	"nr_pages_scanned",
728 
729 #ifdef CONFIG_NUMA
730 	"numa_hit",
731 	"numa_miss",
732 	"numa_foreign",
733 	"numa_interleave",
734 	"numa_local",
735 	"numa_other",
736 #endif
737 	"workingset_refault",
738 	"workingset_activate",
739 	"workingset_nodereclaim",
740 	"nr_anon_transparent_hugepages",
741 	"nr_free_cma",
742 
743 	/* enum writeback_stat_item counters */
744 	"nr_dirty_threshold",
745 	"nr_dirty_background_threshold",
746 
747 #ifdef CONFIG_VM_EVENT_COUNTERS
748 	/* enum vm_event_item counters */
749 	"pgpgin",
750 	"pgpgout",
751 	"pswpin",
752 	"pswpout",
753 
754 	TEXTS_FOR_ZONES("pgalloc")
755 
756 	"pgfree",
757 	"pgactivate",
758 	"pgdeactivate",
759 
760 	"pgfault",
761 	"pgmajfault",
762 
763 	TEXTS_FOR_ZONES("pgrefill")
764 	TEXTS_FOR_ZONES("pgsteal_kswapd")
765 	TEXTS_FOR_ZONES("pgsteal_direct")
766 	TEXTS_FOR_ZONES("pgscan_kswapd")
767 	TEXTS_FOR_ZONES("pgscan_direct")
768 	"pgscan_direct_throttle",
769 
770 #ifdef CONFIG_NUMA
771 	"zone_reclaim_failed",
772 #endif
773 	"pginodesteal",
774 	"slabs_scanned",
775 	"kswapd_inodesteal",
776 	"kswapd_low_wmark_hit_quickly",
777 	"kswapd_high_wmark_hit_quickly",
778 	"pageoutrun",
779 	"allocstall",
780 
781 	"pgrotated",
782 
783 	"drop_pagecache",
784 	"drop_slab",
785 
786 #ifdef CONFIG_NUMA_BALANCING
787 	"numa_pte_updates",
788 	"numa_huge_pte_updates",
789 	"numa_hint_faults",
790 	"numa_hint_faults_local",
791 	"numa_pages_migrated",
792 #endif
793 #ifdef CONFIG_MIGRATION
794 	"pgmigrate_success",
795 	"pgmigrate_fail",
796 #endif
797 #ifdef CONFIG_COMPACTION
798 	"compact_migrate_scanned",
799 	"compact_free_scanned",
800 	"compact_isolated",
801 	"compact_stall",
802 	"compact_fail",
803 	"compact_success",
804 #endif
805 
806 #ifdef CONFIG_HUGETLB_PAGE
807 	"htlb_buddy_alloc_success",
808 	"htlb_buddy_alloc_fail",
809 #endif
810 	"unevictable_pgs_culled",
811 	"unevictable_pgs_scanned",
812 	"unevictable_pgs_rescued",
813 	"unevictable_pgs_mlocked",
814 	"unevictable_pgs_munlocked",
815 	"unevictable_pgs_cleared",
816 	"unevictable_pgs_stranded",
817 
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
819 	"thp_fault_alloc",
820 	"thp_fault_fallback",
821 	"thp_collapse_alloc",
822 	"thp_collapse_alloc_failed",
823 	"thp_split",
824 	"thp_zero_page_alloc",
825 	"thp_zero_page_alloc_failed",
826 #endif
827 #ifdef CONFIG_MEMORY_BALLOON
828 	"balloon_inflate",
829 	"balloon_deflate",
830 #ifdef CONFIG_BALLOON_COMPACTION
831 	"balloon_migrate",
832 #endif
833 #endif /* CONFIG_MEMORY_BALLOON */
834 #ifdef CONFIG_DEBUG_TLBFLUSH
835 #ifdef CONFIG_SMP
836 	"nr_tlb_remote_flush",
837 	"nr_tlb_remote_flush_received",
838 #endif /* CONFIG_SMP */
839 	"nr_tlb_local_flush_all",
840 	"nr_tlb_local_flush_one",
841 #endif /* CONFIG_DEBUG_TLBFLUSH */
842 
843 #ifdef CONFIG_DEBUG_VM_VMACACHE
844 	"vmacache_find_calls",
845 	"vmacache_find_hits",
846 	"vmacache_full_flushes",
847 #endif
848 #endif /* CONFIG_VM_EVENTS_COUNTERS */
849 };
850 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
851 
852 
853 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
854      defined(CONFIG_PROC_FS)
855 static void *frag_start(struct seq_file *m, loff_t *pos)
856 {
857 	pg_data_t *pgdat;
858 	loff_t node = *pos;
859 
860 	for (pgdat = first_online_pgdat();
861 	     pgdat && node;
862 	     pgdat = next_online_pgdat(pgdat))
863 		--node;
864 
865 	return pgdat;
866 }
867 
868 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
869 {
870 	pg_data_t *pgdat = (pg_data_t *)arg;
871 
872 	(*pos)++;
873 	return next_online_pgdat(pgdat);
874 }
875 
876 static void frag_stop(struct seq_file *m, void *arg)
877 {
878 }
879 
880 /* Walk all the zones in a node and print using a callback */
881 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
882 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
883 {
884 	struct zone *zone;
885 	struct zone *node_zones = pgdat->node_zones;
886 	unsigned long flags;
887 
888 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
889 		if (!populated_zone(zone))
890 			continue;
891 
892 		spin_lock_irqsave(&zone->lock, flags);
893 		print(m, pgdat, zone);
894 		spin_unlock_irqrestore(&zone->lock, flags);
895 	}
896 }
897 #endif
898 
899 #ifdef CONFIG_PROC_FS
900 static char * const migratetype_names[MIGRATE_TYPES] = {
901 	"Unmovable",
902 	"Reclaimable",
903 	"Movable",
904 	"Reserve",
905 #ifdef CONFIG_CMA
906 	"CMA",
907 #endif
908 #ifdef CONFIG_MEMORY_ISOLATION
909 	"Isolate",
910 #endif
911 };
912 
913 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
914 						struct zone *zone)
915 {
916 	int order;
917 
918 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
919 	for (order = 0; order < MAX_ORDER; ++order)
920 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
921 	seq_putc(m, '\n');
922 }
923 
924 /*
925  * This walks the free areas for each zone.
926  */
927 static int frag_show(struct seq_file *m, void *arg)
928 {
929 	pg_data_t *pgdat = (pg_data_t *)arg;
930 	walk_zones_in_node(m, pgdat, frag_show_print);
931 	return 0;
932 }
933 
934 static void pagetypeinfo_showfree_print(struct seq_file *m,
935 					pg_data_t *pgdat, struct zone *zone)
936 {
937 	int order, mtype;
938 
939 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
940 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
941 					pgdat->node_id,
942 					zone->name,
943 					migratetype_names[mtype]);
944 		for (order = 0; order < MAX_ORDER; ++order) {
945 			unsigned long freecount = 0;
946 			struct free_area *area;
947 			struct list_head *curr;
948 
949 			area = &(zone->free_area[order]);
950 
951 			list_for_each(curr, &area->free_list[mtype])
952 				freecount++;
953 			seq_printf(m, "%6lu ", freecount);
954 		}
955 		seq_putc(m, '\n');
956 	}
957 }
958 
959 /* Print out the free pages at each order for each migatetype */
960 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
961 {
962 	int order;
963 	pg_data_t *pgdat = (pg_data_t *)arg;
964 
965 	/* Print header */
966 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
967 	for (order = 0; order < MAX_ORDER; ++order)
968 		seq_printf(m, "%6d ", order);
969 	seq_putc(m, '\n');
970 
971 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
972 
973 	return 0;
974 }
975 
976 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
977 					pg_data_t *pgdat, struct zone *zone)
978 {
979 	int mtype;
980 	unsigned long pfn;
981 	unsigned long start_pfn = zone->zone_start_pfn;
982 	unsigned long end_pfn = zone_end_pfn(zone);
983 	unsigned long count[MIGRATE_TYPES] = { 0, };
984 
985 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
986 		struct page *page;
987 
988 		if (!pfn_valid(pfn))
989 			continue;
990 
991 		page = pfn_to_page(pfn);
992 
993 		/* Watch for unexpected holes punched in the memmap */
994 		if (!memmap_valid_within(pfn, page, zone))
995 			continue;
996 
997 		mtype = get_pageblock_migratetype(page);
998 
999 		if (mtype < MIGRATE_TYPES)
1000 			count[mtype]++;
1001 	}
1002 
1003 	/* Print counts */
1004 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1005 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1006 		seq_printf(m, "%12lu ", count[mtype]);
1007 	seq_putc(m, '\n');
1008 }
1009 
1010 /* Print out the free pages at each order for each migratetype */
1011 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1012 {
1013 	int mtype;
1014 	pg_data_t *pgdat = (pg_data_t *)arg;
1015 
1016 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1017 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1018 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1019 	seq_putc(m, '\n');
1020 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1021 
1022 	return 0;
1023 }
1024 
1025 #ifdef CONFIG_PAGE_OWNER
1026 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1027 							pg_data_t *pgdat,
1028 							struct zone *zone)
1029 {
1030 	struct page *page;
1031 	struct page_ext *page_ext;
1032 	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1033 	unsigned long end_pfn = pfn + zone->spanned_pages;
1034 	unsigned long count[MIGRATE_TYPES] = { 0, };
1035 	int pageblock_mt, page_mt;
1036 	int i;
1037 
1038 	/* Scan block by block. First and last block may be incomplete */
1039 	pfn = zone->zone_start_pfn;
1040 
1041 	/*
1042 	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1043 	 * a zone boundary, it will be double counted between zones. This does
1044 	 * not matter as the mixed block count will still be correct
1045 	 */
1046 	for (; pfn < end_pfn; ) {
1047 		if (!pfn_valid(pfn)) {
1048 			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1049 			continue;
1050 		}
1051 
1052 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1053 		block_end_pfn = min(block_end_pfn, end_pfn);
1054 
1055 		page = pfn_to_page(pfn);
1056 		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1057 
1058 		for (; pfn < block_end_pfn; pfn++) {
1059 			if (!pfn_valid_within(pfn))
1060 				continue;
1061 
1062 			page = pfn_to_page(pfn);
1063 			if (PageBuddy(page)) {
1064 				pfn += (1UL << page_order(page)) - 1;
1065 				continue;
1066 			}
1067 
1068 			if (PageReserved(page))
1069 				continue;
1070 
1071 			page_ext = lookup_page_ext(page);
1072 
1073 			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1074 				continue;
1075 
1076 			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1077 			if (pageblock_mt != page_mt) {
1078 				if (is_migrate_cma(pageblock_mt))
1079 					count[MIGRATE_MOVABLE]++;
1080 				else
1081 					count[pageblock_mt]++;
1082 
1083 				pfn = block_end_pfn;
1084 				break;
1085 			}
1086 			pfn += (1UL << page_ext->order) - 1;
1087 		}
1088 	}
1089 
1090 	/* Print counts */
1091 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1092 	for (i = 0; i < MIGRATE_TYPES; i++)
1093 		seq_printf(m, "%12lu ", count[i]);
1094 	seq_putc(m, '\n');
1095 }
1096 #endif /* CONFIG_PAGE_OWNER */
1097 
1098 /*
1099  * Print out the number of pageblocks for each migratetype that contain pages
1100  * of other types. This gives an indication of how well fallbacks are being
1101  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1102  * to determine what is going on
1103  */
1104 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1105 {
1106 #ifdef CONFIG_PAGE_OWNER
1107 	int mtype;
1108 
1109 	if (!page_owner_inited)
1110 		return;
1111 
1112 	drain_all_pages(NULL);
1113 
1114 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1115 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1116 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1117 	seq_putc(m, '\n');
1118 
1119 	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1120 #endif /* CONFIG_PAGE_OWNER */
1121 }
1122 
1123 /*
1124  * This prints out statistics in relation to grouping pages by mobility.
1125  * It is expensive to collect so do not constantly read the file.
1126  */
1127 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1128 {
1129 	pg_data_t *pgdat = (pg_data_t *)arg;
1130 
1131 	/* check memoryless node */
1132 	if (!node_state(pgdat->node_id, N_MEMORY))
1133 		return 0;
1134 
1135 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1136 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1137 	seq_putc(m, '\n');
1138 	pagetypeinfo_showfree(m, pgdat);
1139 	pagetypeinfo_showblockcount(m, pgdat);
1140 	pagetypeinfo_showmixedcount(m, pgdat);
1141 
1142 	return 0;
1143 }
1144 
1145 static const struct seq_operations fragmentation_op = {
1146 	.start	= frag_start,
1147 	.next	= frag_next,
1148 	.stop	= frag_stop,
1149 	.show	= frag_show,
1150 };
1151 
1152 static int fragmentation_open(struct inode *inode, struct file *file)
1153 {
1154 	return seq_open(file, &fragmentation_op);
1155 }
1156 
1157 static const struct file_operations fragmentation_file_operations = {
1158 	.open		= fragmentation_open,
1159 	.read		= seq_read,
1160 	.llseek		= seq_lseek,
1161 	.release	= seq_release,
1162 };
1163 
1164 static const struct seq_operations pagetypeinfo_op = {
1165 	.start	= frag_start,
1166 	.next	= frag_next,
1167 	.stop	= frag_stop,
1168 	.show	= pagetypeinfo_show,
1169 };
1170 
1171 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1172 {
1173 	return seq_open(file, &pagetypeinfo_op);
1174 }
1175 
1176 static const struct file_operations pagetypeinfo_file_ops = {
1177 	.open		= pagetypeinfo_open,
1178 	.read		= seq_read,
1179 	.llseek		= seq_lseek,
1180 	.release	= seq_release,
1181 };
1182 
1183 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1184 							struct zone *zone)
1185 {
1186 	int i;
1187 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1188 	seq_printf(m,
1189 		   "\n  pages free     %lu"
1190 		   "\n        min      %lu"
1191 		   "\n        low      %lu"
1192 		   "\n        high     %lu"
1193 		   "\n        scanned  %lu"
1194 		   "\n        spanned  %lu"
1195 		   "\n        present  %lu"
1196 		   "\n        managed  %lu",
1197 		   zone_page_state(zone, NR_FREE_PAGES),
1198 		   min_wmark_pages(zone),
1199 		   low_wmark_pages(zone),
1200 		   high_wmark_pages(zone),
1201 		   zone_page_state(zone, NR_PAGES_SCANNED),
1202 		   zone->spanned_pages,
1203 		   zone->present_pages,
1204 		   zone->managed_pages);
1205 
1206 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1207 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1208 				zone_page_state(zone, i));
1209 
1210 	seq_printf(m,
1211 		   "\n        protection: (%ld",
1212 		   zone->lowmem_reserve[0]);
1213 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1214 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1215 	seq_printf(m,
1216 		   ")"
1217 		   "\n  pagesets");
1218 	for_each_online_cpu(i) {
1219 		struct per_cpu_pageset *pageset;
1220 
1221 		pageset = per_cpu_ptr(zone->pageset, i);
1222 		seq_printf(m,
1223 			   "\n    cpu: %i"
1224 			   "\n              count: %i"
1225 			   "\n              high:  %i"
1226 			   "\n              batch: %i",
1227 			   i,
1228 			   pageset->pcp.count,
1229 			   pageset->pcp.high,
1230 			   pageset->pcp.batch);
1231 #ifdef CONFIG_SMP
1232 		seq_printf(m, "\n  vm stats threshold: %d",
1233 				pageset->stat_threshold);
1234 #endif
1235 	}
1236 	seq_printf(m,
1237 		   "\n  all_unreclaimable: %u"
1238 		   "\n  start_pfn:         %lu"
1239 		   "\n  inactive_ratio:    %u",
1240 		   !zone_reclaimable(zone),
1241 		   zone->zone_start_pfn,
1242 		   zone->inactive_ratio);
1243 	seq_putc(m, '\n');
1244 }
1245 
1246 /*
1247  * Output information about zones in @pgdat.
1248  */
1249 static int zoneinfo_show(struct seq_file *m, void *arg)
1250 {
1251 	pg_data_t *pgdat = (pg_data_t *)arg;
1252 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1253 	return 0;
1254 }
1255 
1256 static const struct seq_operations zoneinfo_op = {
1257 	.start	= frag_start, /* iterate over all zones. The same as in
1258 			       * fragmentation. */
1259 	.next	= frag_next,
1260 	.stop	= frag_stop,
1261 	.show	= zoneinfo_show,
1262 };
1263 
1264 static int zoneinfo_open(struct inode *inode, struct file *file)
1265 {
1266 	return seq_open(file, &zoneinfo_op);
1267 }
1268 
1269 static const struct file_operations proc_zoneinfo_file_operations = {
1270 	.open		= zoneinfo_open,
1271 	.read		= seq_read,
1272 	.llseek		= seq_lseek,
1273 	.release	= seq_release,
1274 };
1275 
1276 enum writeback_stat_item {
1277 	NR_DIRTY_THRESHOLD,
1278 	NR_DIRTY_BG_THRESHOLD,
1279 	NR_VM_WRITEBACK_STAT_ITEMS,
1280 };
1281 
1282 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1283 {
1284 	unsigned long *v;
1285 	int i, stat_items_size;
1286 
1287 	if (*pos >= ARRAY_SIZE(vmstat_text))
1288 		return NULL;
1289 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1290 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1291 
1292 #ifdef CONFIG_VM_EVENT_COUNTERS
1293 	stat_items_size += sizeof(struct vm_event_state);
1294 #endif
1295 
1296 	v = kmalloc(stat_items_size, GFP_KERNEL);
1297 	m->private = v;
1298 	if (!v)
1299 		return ERR_PTR(-ENOMEM);
1300 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1301 		v[i] = global_page_state(i);
1302 	v += NR_VM_ZONE_STAT_ITEMS;
1303 
1304 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1305 			    v + NR_DIRTY_THRESHOLD);
1306 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1307 
1308 #ifdef CONFIG_VM_EVENT_COUNTERS
1309 	all_vm_events(v);
1310 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1311 	v[PGPGOUT] /= 2;
1312 #endif
1313 	return (unsigned long *)m->private + *pos;
1314 }
1315 
1316 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1317 {
1318 	(*pos)++;
1319 	if (*pos >= ARRAY_SIZE(vmstat_text))
1320 		return NULL;
1321 	return (unsigned long *)m->private + *pos;
1322 }
1323 
1324 static int vmstat_show(struct seq_file *m, void *arg)
1325 {
1326 	unsigned long *l = arg;
1327 	unsigned long off = l - (unsigned long *)m->private;
1328 
1329 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1330 	return 0;
1331 }
1332 
1333 static void vmstat_stop(struct seq_file *m, void *arg)
1334 {
1335 	kfree(m->private);
1336 	m->private = NULL;
1337 }
1338 
1339 static const struct seq_operations vmstat_op = {
1340 	.start	= vmstat_start,
1341 	.next	= vmstat_next,
1342 	.stop	= vmstat_stop,
1343 	.show	= vmstat_show,
1344 };
1345 
1346 static int vmstat_open(struct inode *inode, struct file *file)
1347 {
1348 	return seq_open(file, &vmstat_op);
1349 }
1350 
1351 static const struct file_operations proc_vmstat_file_operations = {
1352 	.open		= vmstat_open,
1353 	.read		= seq_read,
1354 	.llseek		= seq_lseek,
1355 	.release	= seq_release,
1356 };
1357 #endif /* CONFIG_PROC_FS */
1358 
1359 #ifdef CONFIG_SMP
1360 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1361 int sysctl_stat_interval __read_mostly = HZ;
1362 static cpumask_var_t cpu_stat_off;
1363 
1364 static void vmstat_update(struct work_struct *w)
1365 {
1366 	if (refresh_cpu_vm_stats())
1367 		/*
1368 		 * Counters were updated so we expect more updates
1369 		 * to occur in the future. Keep on running the
1370 		 * update worker thread.
1371 		 */
1372 		schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1373 			round_jiffies_relative(sysctl_stat_interval));
1374 	else {
1375 		/*
1376 		 * We did not update any counters so the app may be in
1377 		 * a mode where it does not cause counter updates.
1378 		 * We may be uselessly running vmstat_update.
1379 		 * Defer the checking for differentials to the
1380 		 * shepherd thread on a different processor.
1381 		 */
1382 		int r;
1383 		/*
1384 		 * Shepherd work thread does not race since it never
1385 		 * changes the bit if its zero but the cpu
1386 		 * online / off line code may race if
1387 		 * worker threads are still allowed during
1388 		 * shutdown / startup.
1389 		 */
1390 		r = cpumask_test_and_set_cpu(smp_processor_id(),
1391 			cpu_stat_off);
1392 		VM_BUG_ON(r);
1393 	}
1394 }
1395 
1396 /*
1397  * Check if the diffs for a certain cpu indicate that
1398  * an update is needed.
1399  */
1400 static bool need_update(int cpu)
1401 {
1402 	struct zone *zone;
1403 
1404 	for_each_populated_zone(zone) {
1405 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1406 
1407 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1408 		/*
1409 		 * The fast way of checking if there are any vmstat diffs.
1410 		 * This works because the diffs are byte sized items.
1411 		 */
1412 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1413 			return true;
1414 
1415 	}
1416 	return false;
1417 }
1418 
1419 
1420 /*
1421  * Shepherd worker thread that checks the
1422  * differentials of processors that have their worker
1423  * threads for vm statistics updates disabled because of
1424  * inactivity.
1425  */
1426 static void vmstat_shepherd(struct work_struct *w);
1427 
1428 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1429 
1430 static void vmstat_shepherd(struct work_struct *w)
1431 {
1432 	int cpu;
1433 
1434 	get_online_cpus();
1435 	/* Check processors whose vmstat worker threads have been disabled */
1436 	for_each_cpu(cpu, cpu_stat_off)
1437 		if (need_update(cpu) &&
1438 			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1439 
1440 			schedule_delayed_work_on(cpu,
1441 				&per_cpu(vmstat_work, cpu), 0);
1442 
1443 	put_online_cpus();
1444 
1445 	schedule_delayed_work(&shepherd,
1446 		round_jiffies_relative(sysctl_stat_interval));
1447 
1448 }
1449 
1450 static void __init start_shepherd_timer(void)
1451 {
1452 	int cpu;
1453 
1454 	for_each_possible_cpu(cpu)
1455 		INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1456 			vmstat_update);
1457 
1458 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1459 		BUG();
1460 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1461 
1462 	schedule_delayed_work(&shepherd,
1463 		round_jiffies_relative(sysctl_stat_interval));
1464 }
1465 
1466 static void vmstat_cpu_dead(int node)
1467 {
1468 	int cpu;
1469 
1470 	get_online_cpus();
1471 	for_each_online_cpu(cpu)
1472 		if (cpu_to_node(cpu) == node)
1473 			goto end;
1474 
1475 	node_clear_state(node, N_CPU);
1476 end:
1477 	put_online_cpus();
1478 }
1479 
1480 /*
1481  * Use the cpu notifier to insure that the thresholds are recalculated
1482  * when necessary.
1483  */
1484 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1485 		unsigned long action,
1486 		void *hcpu)
1487 {
1488 	long cpu = (long)hcpu;
1489 
1490 	switch (action) {
1491 	case CPU_ONLINE:
1492 	case CPU_ONLINE_FROZEN:
1493 		refresh_zone_stat_thresholds();
1494 		node_set_state(cpu_to_node(cpu), N_CPU);
1495 		cpumask_set_cpu(cpu, cpu_stat_off);
1496 		break;
1497 	case CPU_DOWN_PREPARE:
1498 	case CPU_DOWN_PREPARE_FROZEN:
1499 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1500 		cpumask_clear_cpu(cpu, cpu_stat_off);
1501 		break;
1502 	case CPU_DOWN_FAILED:
1503 	case CPU_DOWN_FAILED_FROZEN:
1504 		cpumask_set_cpu(cpu, cpu_stat_off);
1505 		break;
1506 	case CPU_DEAD:
1507 	case CPU_DEAD_FROZEN:
1508 		refresh_zone_stat_thresholds();
1509 		vmstat_cpu_dead(cpu_to_node(cpu));
1510 		break;
1511 	default:
1512 		break;
1513 	}
1514 	return NOTIFY_OK;
1515 }
1516 
1517 static struct notifier_block vmstat_notifier =
1518 	{ &vmstat_cpuup_callback, NULL, 0 };
1519 #endif
1520 
1521 static int __init setup_vmstat(void)
1522 {
1523 #ifdef CONFIG_SMP
1524 	cpu_notifier_register_begin();
1525 	__register_cpu_notifier(&vmstat_notifier);
1526 
1527 	start_shepherd_timer();
1528 	cpu_notifier_register_done();
1529 #endif
1530 #ifdef CONFIG_PROC_FS
1531 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1532 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1533 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1534 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1535 #endif
1536 	return 0;
1537 }
1538 module_init(setup_vmstat)
1539 
1540 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1541 
1542 /*
1543  * Return an index indicating how much of the available free memory is
1544  * unusable for an allocation of the requested size.
1545  */
1546 static int unusable_free_index(unsigned int order,
1547 				struct contig_page_info *info)
1548 {
1549 	/* No free memory is interpreted as all free memory is unusable */
1550 	if (info->free_pages == 0)
1551 		return 1000;
1552 
1553 	/*
1554 	 * Index should be a value between 0 and 1. Return a value to 3
1555 	 * decimal places.
1556 	 *
1557 	 * 0 => no fragmentation
1558 	 * 1 => high fragmentation
1559 	 */
1560 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1561 
1562 }
1563 
1564 static void unusable_show_print(struct seq_file *m,
1565 					pg_data_t *pgdat, struct zone *zone)
1566 {
1567 	unsigned int order;
1568 	int index;
1569 	struct contig_page_info info;
1570 
1571 	seq_printf(m, "Node %d, zone %8s ",
1572 				pgdat->node_id,
1573 				zone->name);
1574 	for (order = 0; order < MAX_ORDER; ++order) {
1575 		fill_contig_page_info(zone, order, &info);
1576 		index = unusable_free_index(order, &info);
1577 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1578 	}
1579 
1580 	seq_putc(m, '\n');
1581 }
1582 
1583 /*
1584  * Display unusable free space index
1585  *
1586  * The unusable free space index measures how much of the available free
1587  * memory cannot be used to satisfy an allocation of a given size and is a
1588  * value between 0 and 1. The higher the value, the more of free memory is
1589  * unusable and by implication, the worse the external fragmentation is. This
1590  * can be expressed as a percentage by multiplying by 100.
1591  */
1592 static int unusable_show(struct seq_file *m, void *arg)
1593 {
1594 	pg_data_t *pgdat = (pg_data_t *)arg;
1595 
1596 	/* check memoryless node */
1597 	if (!node_state(pgdat->node_id, N_MEMORY))
1598 		return 0;
1599 
1600 	walk_zones_in_node(m, pgdat, unusable_show_print);
1601 
1602 	return 0;
1603 }
1604 
1605 static const struct seq_operations unusable_op = {
1606 	.start	= frag_start,
1607 	.next	= frag_next,
1608 	.stop	= frag_stop,
1609 	.show	= unusable_show,
1610 };
1611 
1612 static int unusable_open(struct inode *inode, struct file *file)
1613 {
1614 	return seq_open(file, &unusable_op);
1615 }
1616 
1617 static const struct file_operations unusable_file_ops = {
1618 	.open		= unusable_open,
1619 	.read		= seq_read,
1620 	.llseek		= seq_lseek,
1621 	.release	= seq_release,
1622 };
1623 
1624 static void extfrag_show_print(struct seq_file *m,
1625 					pg_data_t *pgdat, struct zone *zone)
1626 {
1627 	unsigned int order;
1628 	int index;
1629 
1630 	/* Alloc on stack as interrupts are disabled for zone walk */
1631 	struct contig_page_info info;
1632 
1633 	seq_printf(m, "Node %d, zone %8s ",
1634 				pgdat->node_id,
1635 				zone->name);
1636 	for (order = 0; order < MAX_ORDER; ++order) {
1637 		fill_contig_page_info(zone, order, &info);
1638 		index = __fragmentation_index(order, &info);
1639 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1640 	}
1641 
1642 	seq_putc(m, '\n');
1643 }
1644 
1645 /*
1646  * Display fragmentation index for orders that allocations would fail for
1647  */
1648 static int extfrag_show(struct seq_file *m, void *arg)
1649 {
1650 	pg_data_t *pgdat = (pg_data_t *)arg;
1651 
1652 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1653 
1654 	return 0;
1655 }
1656 
1657 static const struct seq_operations extfrag_op = {
1658 	.start	= frag_start,
1659 	.next	= frag_next,
1660 	.stop	= frag_stop,
1661 	.show	= extfrag_show,
1662 };
1663 
1664 static int extfrag_open(struct inode *inode, struct file *file)
1665 {
1666 	return seq_open(file, &extfrag_op);
1667 }
1668 
1669 static const struct file_operations extfrag_file_ops = {
1670 	.open		= extfrag_open,
1671 	.read		= seq_read,
1672 	.llseek		= seq_lseek,
1673 	.release	= seq_release,
1674 };
1675 
1676 static int __init extfrag_debug_init(void)
1677 {
1678 	struct dentry *extfrag_debug_root;
1679 
1680 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1681 	if (!extfrag_debug_root)
1682 		return -ENOMEM;
1683 
1684 	if (!debugfs_create_file("unusable_index", 0444,
1685 			extfrag_debug_root, NULL, &unusable_file_ops))
1686 		goto fail;
1687 
1688 	if (!debugfs_create_file("extfrag_index", 0444,
1689 			extfrag_debug_root, NULL, &extfrag_file_ops))
1690 		goto fail;
1691 
1692 	return 0;
1693 fail:
1694 	debugfs_remove_recursive(extfrag_debug_root);
1695 	return -ENOMEM;
1696 }
1697 
1698 module_init(extfrag_debug_init);
1699 #endif
1700