xref: /openbmc/linux/mm/vmstat.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 static int calculate_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int mem;	/* memory in 128 MB units */
90 
91 	/*
92 	 * The threshold scales with the number of processors and the amount
93 	 * of memory per zone. More memory means that we can defer updates for
94 	 * longer, more processors could lead to more contention.
95  	 * fls() is used to have a cheap way of logarithmic scaling.
96 	 *
97 	 * Some sample thresholds:
98 	 *
99 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
100 	 * ------------------------------------------------------------------
101 	 * 8		1		1	0.9-1 GB	4
102 	 * 16		2		2	0.9-1 GB	4
103 	 * 20 		2		2	1-2 GB		5
104 	 * 24		2		2	2-4 GB		6
105 	 * 28		2		2	4-8 GB		7
106 	 * 32		2		2	8-16 GB		8
107 	 * 4		2		2	<128M		1
108 	 * 30		4		3	2-4 GB		5
109 	 * 48		4		3	8-16 GB		8
110 	 * 32		8		4	1-2 GB		4
111 	 * 32		8		4	0.9-1GB		4
112 	 * 10		16		5	<128M		1
113 	 * 40		16		5	900M		4
114 	 * 70		64		7	2-4 GB		5
115 	 * 84		64		7	4-8 GB		6
116 	 * 108		512		9	4-8 GB		6
117 	 * 125		1024		10	8-16 GB		8
118 	 * 125		1024		10	16-32 GB	9
119 	 */
120 
121 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
122 
123 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124 
125 	/*
126 	 * Maximum threshold is 125
127 	 */
128 	threshold = min(125, threshold);
129 
130 	return threshold;
131 }
132 
133 /*
134  * Refresh the thresholds for each zone.
135  */
136 static void refresh_zone_stat_thresholds(void)
137 {
138 	struct zone *zone;
139 	int cpu;
140 	int threshold;
141 
142 	for_each_populated_zone(zone) {
143 		unsigned long max_drift, tolerate_drift;
144 
145 		threshold = calculate_threshold(zone);
146 
147 		for_each_online_cpu(cpu)
148 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
149 							= threshold;
150 
151 		/*
152 		 * Only set percpu_drift_mark if there is a danger that
153 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
154 		 * the min watermark could be breached by an allocation
155 		 */
156 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
157 		max_drift = num_online_cpus() * threshold;
158 		if (max_drift > tolerate_drift)
159 			zone->percpu_drift_mark = high_wmark_pages(zone) +
160 					max_drift;
161 	}
162 }
163 
164 /*
165  * For use when we know that interrupts are disabled.
166  */
167 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
168 				int delta)
169 {
170 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
171 
172 	s8 *p = pcp->vm_stat_diff + item;
173 	long x;
174 
175 	x = delta + *p;
176 
177 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
178 		zone_page_state_add(x, zone, item);
179 		x = 0;
180 	}
181 	*p = x;
182 }
183 EXPORT_SYMBOL(__mod_zone_page_state);
184 
185 /*
186  * For an unknown interrupt state
187  */
188 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
189 					int delta)
190 {
191 	unsigned long flags;
192 
193 	local_irq_save(flags);
194 	__mod_zone_page_state(zone, item, delta);
195 	local_irq_restore(flags);
196 }
197 EXPORT_SYMBOL(mod_zone_page_state);
198 
199 /*
200  * Optimized increment and decrement functions.
201  *
202  * These are only for a single page and therefore can take a struct page *
203  * argument instead of struct zone *. This allows the inclusion of the code
204  * generated for page_zone(page) into the optimized functions.
205  *
206  * No overflow check is necessary and therefore the differential can be
207  * incremented or decremented in place which may allow the compilers to
208  * generate better code.
209  * The increment or decrement is known and therefore one boundary check can
210  * be omitted.
211  *
212  * NOTE: These functions are very performance sensitive. Change only
213  * with care.
214  *
215  * Some processors have inc/dec instructions that are atomic vs an interrupt.
216  * However, the code must first determine the differential location in a zone
217  * based on the processor number and then inc/dec the counter. There is no
218  * guarantee without disabling preemption that the processor will not change
219  * in between and therefore the atomicity vs. interrupt cannot be exploited
220  * in a useful way here.
221  */
222 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
223 {
224 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
225 	s8 *p = pcp->vm_stat_diff + item;
226 
227 	(*p)++;
228 
229 	if (unlikely(*p > pcp->stat_threshold)) {
230 		int overstep = pcp->stat_threshold / 2;
231 
232 		zone_page_state_add(*p + overstep, zone, item);
233 		*p = -overstep;
234 	}
235 }
236 
237 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
238 {
239 	__inc_zone_state(page_zone(page), item);
240 }
241 EXPORT_SYMBOL(__inc_zone_page_state);
242 
243 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
244 {
245 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
246 	s8 *p = pcp->vm_stat_diff + item;
247 
248 	(*p)--;
249 
250 	if (unlikely(*p < - pcp->stat_threshold)) {
251 		int overstep = pcp->stat_threshold / 2;
252 
253 		zone_page_state_add(*p - overstep, zone, item);
254 		*p = overstep;
255 	}
256 }
257 
258 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 	__dec_zone_state(page_zone(page), item);
261 }
262 EXPORT_SYMBOL(__dec_zone_page_state);
263 
264 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 	unsigned long flags;
267 
268 	local_irq_save(flags);
269 	__inc_zone_state(zone, item);
270 	local_irq_restore(flags);
271 }
272 
273 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 	unsigned long flags;
276 	struct zone *zone;
277 
278 	zone = page_zone(page);
279 	local_irq_save(flags);
280 	__inc_zone_state(zone, item);
281 	local_irq_restore(flags);
282 }
283 EXPORT_SYMBOL(inc_zone_page_state);
284 
285 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
286 {
287 	unsigned long flags;
288 
289 	local_irq_save(flags);
290 	__dec_zone_page_state(page, item);
291 	local_irq_restore(flags);
292 }
293 EXPORT_SYMBOL(dec_zone_page_state);
294 
295 /*
296  * Update the zone counters for one cpu.
297  *
298  * The cpu specified must be either the current cpu or a processor that
299  * is not online. If it is the current cpu then the execution thread must
300  * be pinned to the current cpu.
301  *
302  * Note that refresh_cpu_vm_stats strives to only access
303  * node local memory. The per cpu pagesets on remote zones are placed
304  * in the memory local to the processor using that pageset. So the
305  * loop over all zones will access a series of cachelines local to
306  * the processor.
307  *
308  * The call to zone_page_state_add updates the cachelines with the
309  * statistics in the remote zone struct as well as the global cachelines
310  * with the global counters. These could cause remote node cache line
311  * bouncing and will have to be only done when necessary.
312  */
313 void refresh_cpu_vm_stats(int cpu)
314 {
315 	struct zone *zone;
316 	int i;
317 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
318 
319 	for_each_populated_zone(zone) {
320 		struct per_cpu_pageset *p;
321 
322 		p = per_cpu_ptr(zone->pageset, cpu);
323 
324 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
325 			if (p->vm_stat_diff[i]) {
326 				unsigned long flags;
327 				int v;
328 
329 				local_irq_save(flags);
330 				v = p->vm_stat_diff[i];
331 				p->vm_stat_diff[i] = 0;
332 				local_irq_restore(flags);
333 				atomic_long_add(v, &zone->vm_stat[i]);
334 				global_diff[i] += v;
335 #ifdef CONFIG_NUMA
336 				/* 3 seconds idle till flush */
337 				p->expire = 3;
338 #endif
339 			}
340 		cond_resched();
341 #ifdef CONFIG_NUMA
342 		/*
343 		 * Deal with draining the remote pageset of this
344 		 * processor
345 		 *
346 		 * Check if there are pages remaining in this pageset
347 		 * if not then there is nothing to expire.
348 		 */
349 		if (!p->expire || !p->pcp.count)
350 			continue;
351 
352 		/*
353 		 * We never drain zones local to this processor.
354 		 */
355 		if (zone_to_nid(zone) == numa_node_id()) {
356 			p->expire = 0;
357 			continue;
358 		}
359 
360 		p->expire--;
361 		if (p->expire)
362 			continue;
363 
364 		if (p->pcp.count)
365 			drain_zone_pages(zone, &p->pcp);
366 #endif
367 	}
368 
369 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
370 		if (global_diff[i])
371 			atomic_long_add(global_diff[i], &vm_stat[i]);
372 }
373 
374 #endif
375 
376 #ifdef CONFIG_NUMA
377 /*
378  * zonelist = the list of zones passed to the allocator
379  * z 	    = the zone from which the allocation occurred.
380  *
381  * Must be called with interrupts disabled.
382  */
383 void zone_statistics(struct zone *preferred_zone, struct zone *z)
384 {
385 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
386 		__inc_zone_state(z, NUMA_HIT);
387 	} else {
388 		__inc_zone_state(z, NUMA_MISS);
389 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
390 	}
391 	if (z->node == numa_node_id())
392 		__inc_zone_state(z, NUMA_LOCAL);
393 	else
394 		__inc_zone_state(z, NUMA_OTHER);
395 }
396 #endif
397 
398 #ifdef CONFIG_COMPACTION
399 
400 struct contig_page_info {
401 	unsigned long free_pages;
402 	unsigned long free_blocks_total;
403 	unsigned long free_blocks_suitable;
404 };
405 
406 /*
407  * Calculate the number of free pages in a zone, how many contiguous
408  * pages are free and how many are large enough to satisfy an allocation of
409  * the target size. Note that this function makes no attempt to estimate
410  * how many suitable free blocks there *might* be if MOVABLE pages were
411  * migrated. Calculating that is possible, but expensive and can be
412  * figured out from userspace
413  */
414 static void fill_contig_page_info(struct zone *zone,
415 				unsigned int suitable_order,
416 				struct contig_page_info *info)
417 {
418 	unsigned int order;
419 
420 	info->free_pages = 0;
421 	info->free_blocks_total = 0;
422 	info->free_blocks_suitable = 0;
423 
424 	for (order = 0; order < MAX_ORDER; order++) {
425 		unsigned long blocks;
426 
427 		/* Count number of free blocks */
428 		blocks = zone->free_area[order].nr_free;
429 		info->free_blocks_total += blocks;
430 
431 		/* Count free base pages */
432 		info->free_pages += blocks << order;
433 
434 		/* Count the suitable free blocks */
435 		if (order >= suitable_order)
436 			info->free_blocks_suitable += blocks <<
437 						(order - suitable_order);
438 	}
439 }
440 
441 /*
442  * A fragmentation index only makes sense if an allocation of a requested
443  * size would fail. If that is true, the fragmentation index indicates
444  * whether external fragmentation or a lack of memory was the problem.
445  * The value can be used to determine if page reclaim or compaction
446  * should be used
447  */
448 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
449 {
450 	unsigned long requested = 1UL << order;
451 
452 	if (!info->free_blocks_total)
453 		return 0;
454 
455 	/* Fragmentation index only makes sense when a request would fail */
456 	if (info->free_blocks_suitable)
457 		return -1000;
458 
459 	/*
460 	 * Index is between 0 and 1 so return within 3 decimal places
461 	 *
462 	 * 0 => allocation would fail due to lack of memory
463 	 * 1 => allocation would fail due to fragmentation
464 	 */
465 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
466 }
467 
468 /* Same as __fragmentation index but allocs contig_page_info on stack */
469 int fragmentation_index(struct zone *zone, unsigned int order)
470 {
471 	struct contig_page_info info;
472 
473 	fill_contig_page_info(zone, order, &info);
474 	return __fragmentation_index(order, &info);
475 }
476 #endif
477 
478 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
479 #include <linux/proc_fs.h>
480 #include <linux/seq_file.h>
481 
482 static char * const migratetype_names[MIGRATE_TYPES] = {
483 	"Unmovable",
484 	"Reclaimable",
485 	"Movable",
486 	"Reserve",
487 	"Isolate",
488 };
489 
490 static void *frag_start(struct seq_file *m, loff_t *pos)
491 {
492 	pg_data_t *pgdat;
493 	loff_t node = *pos;
494 	for (pgdat = first_online_pgdat();
495 	     pgdat && node;
496 	     pgdat = next_online_pgdat(pgdat))
497 		--node;
498 
499 	return pgdat;
500 }
501 
502 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
503 {
504 	pg_data_t *pgdat = (pg_data_t *)arg;
505 
506 	(*pos)++;
507 	return next_online_pgdat(pgdat);
508 }
509 
510 static void frag_stop(struct seq_file *m, void *arg)
511 {
512 }
513 
514 /* Walk all the zones in a node and print using a callback */
515 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
516 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
517 {
518 	struct zone *zone;
519 	struct zone *node_zones = pgdat->node_zones;
520 	unsigned long flags;
521 
522 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
523 		if (!populated_zone(zone))
524 			continue;
525 
526 		spin_lock_irqsave(&zone->lock, flags);
527 		print(m, pgdat, zone);
528 		spin_unlock_irqrestore(&zone->lock, flags);
529 	}
530 }
531 #endif
532 
533 #ifdef CONFIG_PROC_FS
534 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
535 						struct zone *zone)
536 {
537 	int order;
538 
539 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
540 	for (order = 0; order < MAX_ORDER; ++order)
541 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
542 	seq_putc(m, '\n');
543 }
544 
545 /*
546  * This walks the free areas for each zone.
547  */
548 static int frag_show(struct seq_file *m, void *arg)
549 {
550 	pg_data_t *pgdat = (pg_data_t *)arg;
551 	walk_zones_in_node(m, pgdat, frag_show_print);
552 	return 0;
553 }
554 
555 static void pagetypeinfo_showfree_print(struct seq_file *m,
556 					pg_data_t *pgdat, struct zone *zone)
557 {
558 	int order, mtype;
559 
560 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
561 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
562 					pgdat->node_id,
563 					zone->name,
564 					migratetype_names[mtype]);
565 		for (order = 0; order < MAX_ORDER; ++order) {
566 			unsigned long freecount = 0;
567 			struct free_area *area;
568 			struct list_head *curr;
569 
570 			area = &(zone->free_area[order]);
571 
572 			list_for_each(curr, &area->free_list[mtype])
573 				freecount++;
574 			seq_printf(m, "%6lu ", freecount);
575 		}
576 		seq_putc(m, '\n');
577 	}
578 }
579 
580 /* Print out the free pages at each order for each migatetype */
581 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
582 {
583 	int order;
584 	pg_data_t *pgdat = (pg_data_t *)arg;
585 
586 	/* Print header */
587 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
588 	for (order = 0; order < MAX_ORDER; ++order)
589 		seq_printf(m, "%6d ", order);
590 	seq_putc(m, '\n');
591 
592 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
593 
594 	return 0;
595 }
596 
597 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
598 					pg_data_t *pgdat, struct zone *zone)
599 {
600 	int mtype;
601 	unsigned long pfn;
602 	unsigned long start_pfn = zone->zone_start_pfn;
603 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
604 	unsigned long count[MIGRATE_TYPES] = { 0, };
605 
606 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
607 		struct page *page;
608 
609 		if (!pfn_valid(pfn))
610 			continue;
611 
612 		page = pfn_to_page(pfn);
613 
614 		/* Watch for unexpected holes punched in the memmap */
615 		if (!memmap_valid_within(pfn, page, zone))
616 			continue;
617 
618 		mtype = get_pageblock_migratetype(page);
619 
620 		if (mtype < MIGRATE_TYPES)
621 			count[mtype]++;
622 	}
623 
624 	/* Print counts */
625 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
626 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
627 		seq_printf(m, "%12lu ", count[mtype]);
628 	seq_putc(m, '\n');
629 }
630 
631 /* Print out the free pages at each order for each migratetype */
632 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
633 {
634 	int mtype;
635 	pg_data_t *pgdat = (pg_data_t *)arg;
636 
637 	seq_printf(m, "\n%-23s", "Number of blocks type ");
638 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
639 		seq_printf(m, "%12s ", migratetype_names[mtype]);
640 	seq_putc(m, '\n');
641 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
642 
643 	return 0;
644 }
645 
646 /*
647  * This prints out statistics in relation to grouping pages by mobility.
648  * It is expensive to collect so do not constantly read the file.
649  */
650 static int pagetypeinfo_show(struct seq_file *m, void *arg)
651 {
652 	pg_data_t *pgdat = (pg_data_t *)arg;
653 
654 	/* check memoryless node */
655 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
656 		return 0;
657 
658 	seq_printf(m, "Page block order: %d\n", pageblock_order);
659 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
660 	seq_putc(m, '\n');
661 	pagetypeinfo_showfree(m, pgdat);
662 	pagetypeinfo_showblockcount(m, pgdat);
663 
664 	return 0;
665 }
666 
667 static const struct seq_operations fragmentation_op = {
668 	.start	= frag_start,
669 	.next	= frag_next,
670 	.stop	= frag_stop,
671 	.show	= frag_show,
672 };
673 
674 static int fragmentation_open(struct inode *inode, struct file *file)
675 {
676 	return seq_open(file, &fragmentation_op);
677 }
678 
679 static const struct file_operations fragmentation_file_operations = {
680 	.open		= fragmentation_open,
681 	.read		= seq_read,
682 	.llseek		= seq_lseek,
683 	.release	= seq_release,
684 };
685 
686 static const struct seq_operations pagetypeinfo_op = {
687 	.start	= frag_start,
688 	.next	= frag_next,
689 	.stop	= frag_stop,
690 	.show	= pagetypeinfo_show,
691 };
692 
693 static int pagetypeinfo_open(struct inode *inode, struct file *file)
694 {
695 	return seq_open(file, &pagetypeinfo_op);
696 }
697 
698 static const struct file_operations pagetypeinfo_file_ops = {
699 	.open		= pagetypeinfo_open,
700 	.read		= seq_read,
701 	.llseek		= seq_lseek,
702 	.release	= seq_release,
703 };
704 
705 #ifdef CONFIG_ZONE_DMA
706 #define TEXT_FOR_DMA(xx) xx "_dma",
707 #else
708 #define TEXT_FOR_DMA(xx)
709 #endif
710 
711 #ifdef CONFIG_ZONE_DMA32
712 #define TEXT_FOR_DMA32(xx) xx "_dma32",
713 #else
714 #define TEXT_FOR_DMA32(xx)
715 #endif
716 
717 #ifdef CONFIG_HIGHMEM
718 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
719 #else
720 #define TEXT_FOR_HIGHMEM(xx)
721 #endif
722 
723 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
724 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
725 
726 static const char * const vmstat_text[] = {
727 	/* Zoned VM counters */
728 	"nr_free_pages",
729 	"nr_inactive_anon",
730 	"nr_active_anon",
731 	"nr_inactive_file",
732 	"nr_active_file",
733 	"nr_unevictable",
734 	"nr_mlock",
735 	"nr_anon_pages",
736 	"nr_mapped",
737 	"nr_file_pages",
738 	"nr_dirty",
739 	"nr_writeback",
740 	"nr_slab_reclaimable",
741 	"nr_slab_unreclaimable",
742 	"nr_page_table_pages",
743 	"nr_kernel_stack",
744 	"nr_unstable",
745 	"nr_bounce",
746 	"nr_vmscan_write",
747 	"nr_writeback_temp",
748 	"nr_isolated_anon",
749 	"nr_isolated_file",
750 	"nr_shmem",
751 	"nr_dirtied",
752 	"nr_written",
753 
754 #ifdef CONFIG_NUMA
755 	"numa_hit",
756 	"numa_miss",
757 	"numa_foreign",
758 	"numa_interleave",
759 	"numa_local",
760 	"numa_other",
761 #endif
762 	"nr_dirty_threshold",
763 	"nr_dirty_background_threshold",
764 
765 #ifdef CONFIG_VM_EVENT_COUNTERS
766 	"pgpgin",
767 	"pgpgout",
768 	"pswpin",
769 	"pswpout",
770 
771 	TEXTS_FOR_ZONES("pgalloc")
772 
773 	"pgfree",
774 	"pgactivate",
775 	"pgdeactivate",
776 
777 	"pgfault",
778 	"pgmajfault",
779 
780 	TEXTS_FOR_ZONES("pgrefill")
781 	TEXTS_FOR_ZONES("pgsteal")
782 	TEXTS_FOR_ZONES("pgscan_kswapd")
783 	TEXTS_FOR_ZONES("pgscan_direct")
784 
785 #ifdef CONFIG_NUMA
786 	"zone_reclaim_failed",
787 #endif
788 	"pginodesteal",
789 	"slabs_scanned",
790 	"kswapd_steal",
791 	"kswapd_inodesteal",
792 	"kswapd_low_wmark_hit_quickly",
793 	"kswapd_high_wmark_hit_quickly",
794 	"kswapd_skip_congestion_wait",
795 	"pageoutrun",
796 	"allocstall",
797 
798 	"pgrotated",
799 
800 #ifdef CONFIG_COMPACTION
801 	"compact_blocks_moved",
802 	"compact_pages_moved",
803 	"compact_pagemigrate_failed",
804 	"compact_stall",
805 	"compact_fail",
806 	"compact_success",
807 #endif
808 
809 #ifdef CONFIG_HUGETLB_PAGE
810 	"htlb_buddy_alloc_success",
811 	"htlb_buddy_alloc_fail",
812 #endif
813 	"unevictable_pgs_culled",
814 	"unevictable_pgs_scanned",
815 	"unevictable_pgs_rescued",
816 	"unevictable_pgs_mlocked",
817 	"unevictable_pgs_munlocked",
818 	"unevictable_pgs_cleared",
819 	"unevictable_pgs_stranded",
820 	"unevictable_pgs_mlockfreed",
821 #endif
822 };
823 
824 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
825 							struct zone *zone)
826 {
827 	int i;
828 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
829 	seq_printf(m,
830 		   "\n  pages free     %lu"
831 		   "\n        min      %lu"
832 		   "\n        low      %lu"
833 		   "\n        high     %lu"
834 		   "\n        scanned  %lu"
835 		   "\n        spanned  %lu"
836 		   "\n        present  %lu",
837 		   zone_nr_free_pages(zone),
838 		   min_wmark_pages(zone),
839 		   low_wmark_pages(zone),
840 		   high_wmark_pages(zone),
841 		   zone->pages_scanned,
842 		   zone->spanned_pages,
843 		   zone->present_pages);
844 
845 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
846 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
847 				zone_page_state(zone, i));
848 
849 	seq_printf(m,
850 		   "\n        protection: (%lu",
851 		   zone->lowmem_reserve[0]);
852 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
853 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
854 	seq_printf(m,
855 		   ")"
856 		   "\n  pagesets");
857 	for_each_online_cpu(i) {
858 		struct per_cpu_pageset *pageset;
859 
860 		pageset = per_cpu_ptr(zone->pageset, i);
861 		seq_printf(m,
862 			   "\n    cpu: %i"
863 			   "\n              count: %i"
864 			   "\n              high:  %i"
865 			   "\n              batch: %i",
866 			   i,
867 			   pageset->pcp.count,
868 			   pageset->pcp.high,
869 			   pageset->pcp.batch);
870 #ifdef CONFIG_SMP
871 		seq_printf(m, "\n  vm stats threshold: %d",
872 				pageset->stat_threshold);
873 #endif
874 	}
875 	seq_printf(m,
876 		   "\n  all_unreclaimable: %u"
877 		   "\n  start_pfn:         %lu"
878 		   "\n  inactive_ratio:    %u",
879 		   zone->all_unreclaimable,
880 		   zone->zone_start_pfn,
881 		   zone->inactive_ratio);
882 	seq_putc(m, '\n');
883 }
884 
885 /*
886  * Output information about zones in @pgdat.
887  */
888 static int zoneinfo_show(struct seq_file *m, void *arg)
889 {
890 	pg_data_t *pgdat = (pg_data_t *)arg;
891 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
892 	return 0;
893 }
894 
895 static const struct seq_operations zoneinfo_op = {
896 	.start	= frag_start, /* iterate over all zones. The same as in
897 			       * fragmentation. */
898 	.next	= frag_next,
899 	.stop	= frag_stop,
900 	.show	= zoneinfo_show,
901 };
902 
903 static int zoneinfo_open(struct inode *inode, struct file *file)
904 {
905 	return seq_open(file, &zoneinfo_op);
906 }
907 
908 static const struct file_operations proc_zoneinfo_file_operations = {
909 	.open		= zoneinfo_open,
910 	.read		= seq_read,
911 	.llseek		= seq_lseek,
912 	.release	= seq_release,
913 };
914 
915 enum writeback_stat_item {
916 	NR_DIRTY_THRESHOLD,
917 	NR_DIRTY_BG_THRESHOLD,
918 	NR_VM_WRITEBACK_STAT_ITEMS,
919 };
920 
921 static void *vmstat_start(struct seq_file *m, loff_t *pos)
922 {
923 	unsigned long *v;
924 	int i, stat_items_size;
925 
926 	if (*pos >= ARRAY_SIZE(vmstat_text))
927 		return NULL;
928 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
929 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
930 
931 #ifdef CONFIG_VM_EVENT_COUNTERS
932 	stat_items_size += sizeof(struct vm_event_state);
933 #endif
934 
935 	v = kmalloc(stat_items_size, GFP_KERNEL);
936 	m->private = v;
937 	if (!v)
938 		return ERR_PTR(-ENOMEM);
939 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
940 		v[i] = global_page_state(i);
941 	v += NR_VM_ZONE_STAT_ITEMS;
942 
943 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
944 			    v + NR_DIRTY_THRESHOLD);
945 	v += NR_VM_WRITEBACK_STAT_ITEMS;
946 
947 #ifdef CONFIG_VM_EVENT_COUNTERS
948 	all_vm_events(v);
949 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
950 	v[PGPGOUT] /= 2;
951 #endif
952 	return (unsigned long *)m->private + *pos;
953 }
954 
955 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
956 {
957 	(*pos)++;
958 	if (*pos >= ARRAY_SIZE(vmstat_text))
959 		return NULL;
960 	return (unsigned long *)m->private + *pos;
961 }
962 
963 static int vmstat_show(struct seq_file *m, void *arg)
964 {
965 	unsigned long *l = arg;
966 	unsigned long off = l - (unsigned long *)m->private;
967 
968 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
969 	return 0;
970 }
971 
972 static void vmstat_stop(struct seq_file *m, void *arg)
973 {
974 	kfree(m->private);
975 	m->private = NULL;
976 }
977 
978 static const struct seq_operations vmstat_op = {
979 	.start	= vmstat_start,
980 	.next	= vmstat_next,
981 	.stop	= vmstat_stop,
982 	.show	= vmstat_show,
983 };
984 
985 static int vmstat_open(struct inode *inode, struct file *file)
986 {
987 	return seq_open(file, &vmstat_op);
988 }
989 
990 static const struct file_operations proc_vmstat_file_operations = {
991 	.open		= vmstat_open,
992 	.read		= seq_read,
993 	.llseek		= seq_lseek,
994 	.release	= seq_release,
995 };
996 #endif /* CONFIG_PROC_FS */
997 
998 #ifdef CONFIG_SMP
999 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1000 int sysctl_stat_interval __read_mostly = HZ;
1001 
1002 static void vmstat_update(struct work_struct *w)
1003 {
1004 	refresh_cpu_vm_stats(smp_processor_id());
1005 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1006 		round_jiffies_relative(sysctl_stat_interval));
1007 }
1008 
1009 static void __cpuinit start_cpu_timer(int cpu)
1010 {
1011 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1012 
1013 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1014 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1015 }
1016 
1017 /*
1018  * Use the cpu notifier to insure that the thresholds are recalculated
1019  * when necessary.
1020  */
1021 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1022 		unsigned long action,
1023 		void *hcpu)
1024 {
1025 	long cpu = (long)hcpu;
1026 
1027 	switch (action) {
1028 	case CPU_ONLINE:
1029 	case CPU_ONLINE_FROZEN:
1030 		refresh_zone_stat_thresholds();
1031 		start_cpu_timer(cpu);
1032 		node_set_state(cpu_to_node(cpu), N_CPU);
1033 		break;
1034 	case CPU_DOWN_PREPARE:
1035 	case CPU_DOWN_PREPARE_FROZEN:
1036 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1037 		per_cpu(vmstat_work, cpu).work.func = NULL;
1038 		break;
1039 	case CPU_DOWN_FAILED:
1040 	case CPU_DOWN_FAILED_FROZEN:
1041 		start_cpu_timer(cpu);
1042 		break;
1043 	case CPU_DEAD:
1044 	case CPU_DEAD_FROZEN:
1045 		refresh_zone_stat_thresholds();
1046 		break;
1047 	default:
1048 		break;
1049 	}
1050 	return NOTIFY_OK;
1051 }
1052 
1053 static struct notifier_block __cpuinitdata vmstat_notifier =
1054 	{ &vmstat_cpuup_callback, NULL, 0 };
1055 #endif
1056 
1057 static int __init setup_vmstat(void)
1058 {
1059 #ifdef CONFIG_SMP
1060 	int cpu;
1061 
1062 	refresh_zone_stat_thresholds();
1063 	register_cpu_notifier(&vmstat_notifier);
1064 
1065 	for_each_online_cpu(cpu)
1066 		start_cpu_timer(cpu);
1067 #endif
1068 #ifdef CONFIG_PROC_FS
1069 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1070 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1071 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1072 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1073 #endif
1074 	return 0;
1075 }
1076 module_init(setup_vmstat)
1077 
1078 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1079 #include <linux/debugfs.h>
1080 
1081 static struct dentry *extfrag_debug_root;
1082 
1083 /*
1084  * Return an index indicating how much of the available free memory is
1085  * unusable for an allocation of the requested size.
1086  */
1087 static int unusable_free_index(unsigned int order,
1088 				struct contig_page_info *info)
1089 {
1090 	/* No free memory is interpreted as all free memory is unusable */
1091 	if (info->free_pages == 0)
1092 		return 1000;
1093 
1094 	/*
1095 	 * Index should be a value between 0 and 1. Return a value to 3
1096 	 * decimal places.
1097 	 *
1098 	 * 0 => no fragmentation
1099 	 * 1 => high fragmentation
1100 	 */
1101 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1102 
1103 }
1104 
1105 static void unusable_show_print(struct seq_file *m,
1106 					pg_data_t *pgdat, struct zone *zone)
1107 {
1108 	unsigned int order;
1109 	int index;
1110 	struct contig_page_info info;
1111 
1112 	seq_printf(m, "Node %d, zone %8s ",
1113 				pgdat->node_id,
1114 				zone->name);
1115 	for (order = 0; order < MAX_ORDER; ++order) {
1116 		fill_contig_page_info(zone, order, &info);
1117 		index = unusable_free_index(order, &info);
1118 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1119 	}
1120 
1121 	seq_putc(m, '\n');
1122 }
1123 
1124 /*
1125  * Display unusable free space index
1126  *
1127  * The unusable free space index measures how much of the available free
1128  * memory cannot be used to satisfy an allocation of a given size and is a
1129  * value between 0 and 1. The higher the value, the more of free memory is
1130  * unusable and by implication, the worse the external fragmentation is. This
1131  * can be expressed as a percentage by multiplying by 100.
1132  */
1133 static int unusable_show(struct seq_file *m, void *arg)
1134 {
1135 	pg_data_t *pgdat = (pg_data_t *)arg;
1136 
1137 	/* check memoryless node */
1138 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1139 		return 0;
1140 
1141 	walk_zones_in_node(m, pgdat, unusable_show_print);
1142 
1143 	return 0;
1144 }
1145 
1146 static const struct seq_operations unusable_op = {
1147 	.start	= frag_start,
1148 	.next	= frag_next,
1149 	.stop	= frag_stop,
1150 	.show	= unusable_show,
1151 };
1152 
1153 static int unusable_open(struct inode *inode, struct file *file)
1154 {
1155 	return seq_open(file, &unusable_op);
1156 }
1157 
1158 static const struct file_operations unusable_file_ops = {
1159 	.open		= unusable_open,
1160 	.read		= seq_read,
1161 	.llseek		= seq_lseek,
1162 	.release	= seq_release,
1163 };
1164 
1165 static void extfrag_show_print(struct seq_file *m,
1166 					pg_data_t *pgdat, struct zone *zone)
1167 {
1168 	unsigned int order;
1169 	int index;
1170 
1171 	/* Alloc on stack as interrupts are disabled for zone walk */
1172 	struct contig_page_info info;
1173 
1174 	seq_printf(m, "Node %d, zone %8s ",
1175 				pgdat->node_id,
1176 				zone->name);
1177 	for (order = 0; order < MAX_ORDER; ++order) {
1178 		fill_contig_page_info(zone, order, &info);
1179 		index = __fragmentation_index(order, &info);
1180 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1181 	}
1182 
1183 	seq_putc(m, '\n');
1184 }
1185 
1186 /*
1187  * Display fragmentation index for orders that allocations would fail for
1188  */
1189 static int extfrag_show(struct seq_file *m, void *arg)
1190 {
1191 	pg_data_t *pgdat = (pg_data_t *)arg;
1192 
1193 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1194 
1195 	return 0;
1196 }
1197 
1198 static const struct seq_operations extfrag_op = {
1199 	.start	= frag_start,
1200 	.next	= frag_next,
1201 	.stop	= frag_stop,
1202 	.show	= extfrag_show,
1203 };
1204 
1205 static int extfrag_open(struct inode *inode, struct file *file)
1206 {
1207 	return seq_open(file, &extfrag_op);
1208 }
1209 
1210 static const struct file_operations extfrag_file_ops = {
1211 	.open		= extfrag_open,
1212 	.read		= seq_read,
1213 	.llseek		= seq_lseek,
1214 	.release	= seq_release,
1215 };
1216 
1217 static int __init extfrag_debug_init(void)
1218 {
1219 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1220 	if (!extfrag_debug_root)
1221 		return -ENOMEM;
1222 
1223 	if (!debugfs_create_file("unusable_index", 0444,
1224 			extfrag_debug_root, NULL, &unusable_file_ops))
1225 		return -ENOMEM;
1226 
1227 	if (!debugfs_create_file("extfrag_index", 0444,
1228 			extfrag_debug_root, NULL, &extfrag_file_ops))
1229 		return -ENOMEM;
1230 
1231 	return 0;
1232 }
1233 
1234 module_init(extfrag_debug_init);
1235 #endif
1236