1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #define NUMA_STATS_THRESHOLD (U16_MAX - 2) 34 35 #ifdef CONFIG_VM_EVENT_COUNTERS 36 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 37 EXPORT_PER_CPU_SYMBOL(vm_event_states); 38 39 static void sum_vm_events(unsigned long *ret) 40 { 41 int cpu; 42 int i; 43 44 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 45 46 for_each_online_cpu(cpu) { 47 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 48 49 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 50 ret[i] += this->event[i]; 51 } 52 } 53 54 /* 55 * Accumulate the vm event counters across all CPUs. 56 * The result is unavoidably approximate - it can change 57 * during and after execution of this function. 58 */ 59 void all_vm_events(unsigned long *ret) 60 { 61 get_online_cpus(); 62 sum_vm_events(ret); 63 put_online_cpus(); 64 } 65 EXPORT_SYMBOL_GPL(all_vm_events); 66 67 /* 68 * Fold the foreign cpu events into our own. 69 * 70 * This is adding to the events on one processor 71 * but keeps the global counts constant. 72 */ 73 void vm_events_fold_cpu(int cpu) 74 { 75 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 76 int i; 77 78 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 79 count_vm_events(i, fold_state->event[i]); 80 fold_state->event[i] = 0; 81 } 82 } 83 84 #endif /* CONFIG_VM_EVENT_COUNTERS */ 85 86 /* 87 * Manage combined zone based / global counters 88 * 89 * vm_stat contains the global counters 90 */ 91 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 92 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 93 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 94 EXPORT_SYMBOL(vm_zone_stat); 95 EXPORT_SYMBOL(vm_numa_stat); 96 EXPORT_SYMBOL(vm_node_stat); 97 98 #ifdef CONFIG_SMP 99 100 int calculate_pressure_threshold(struct zone *zone) 101 { 102 int threshold; 103 int watermark_distance; 104 105 /* 106 * As vmstats are not up to date, there is drift between the estimated 107 * and real values. For high thresholds and a high number of CPUs, it 108 * is possible for the min watermark to be breached while the estimated 109 * value looks fine. The pressure threshold is a reduced value such 110 * that even the maximum amount of drift will not accidentally breach 111 * the min watermark 112 */ 113 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 114 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 115 116 /* 117 * Maximum threshold is 125 118 */ 119 threshold = min(125, threshold); 120 121 return threshold; 122 } 123 124 int calculate_normal_threshold(struct zone *zone) 125 { 126 int threshold; 127 int mem; /* memory in 128 MB units */ 128 129 /* 130 * The threshold scales with the number of processors and the amount 131 * of memory per zone. More memory means that we can defer updates for 132 * longer, more processors could lead to more contention. 133 * fls() is used to have a cheap way of logarithmic scaling. 134 * 135 * Some sample thresholds: 136 * 137 * Threshold Processors (fls) Zonesize fls(mem+1) 138 * ------------------------------------------------------------------ 139 * 8 1 1 0.9-1 GB 4 140 * 16 2 2 0.9-1 GB 4 141 * 20 2 2 1-2 GB 5 142 * 24 2 2 2-4 GB 6 143 * 28 2 2 4-8 GB 7 144 * 32 2 2 8-16 GB 8 145 * 4 2 2 <128M 1 146 * 30 4 3 2-4 GB 5 147 * 48 4 3 8-16 GB 8 148 * 32 8 4 1-2 GB 4 149 * 32 8 4 0.9-1GB 4 150 * 10 16 5 <128M 1 151 * 40 16 5 900M 4 152 * 70 64 7 2-4 GB 5 153 * 84 64 7 4-8 GB 6 154 * 108 512 9 4-8 GB 6 155 * 125 1024 10 8-16 GB 8 156 * 125 1024 10 16-32 GB 9 157 */ 158 159 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 160 161 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 162 163 /* 164 * Maximum threshold is 125 165 */ 166 threshold = min(125, threshold); 167 168 return threshold; 169 } 170 171 /* 172 * Refresh the thresholds for each zone. 173 */ 174 void refresh_zone_stat_thresholds(void) 175 { 176 struct pglist_data *pgdat; 177 struct zone *zone; 178 int cpu; 179 int threshold; 180 181 /* Zero current pgdat thresholds */ 182 for_each_online_pgdat(pgdat) { 183 for_each_online_cpu(cpu) { 184 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 185 } 186 } 187 188 for_each_populated_zone(zone) { 189 struct pglist_data *pgdat = zone->zone_pgdat; 190 unsigned long max_drift, tolerate_drift; 191 192 threshold = calculate_normal_threshold(zone); 193 194 for_each_online_cpu(cpu) { 195 int pgdat_threshold; 196 197 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 198 = threshold; 199 200 /* Base nodestat threshold on the largest populated zone. */ 201 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 202 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 203 = max(threshold, pgdat_threshold); 204 } 205 206 /* 207 * Only set percpu_drift_mark if there is a danger that 208 * NR_FREE_PAGES reports the low watermark is ok when in fact 209 * the min watermark could be breached by an allocation 210 */ 211 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 212 max_drift = num_online_cpus() * threshold; 213 if (max_drift > tolerate_drift) 214 zone->percpu_drift_mark = high_wmark_pages(zone) + 215 max_drift; 216 } 217 } 218 219 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 220 int (*calculate_pressure)(struct zone *)) 221 { 222 struct zone *zone; 223 int cpu; 224 int threshold; 225 int i; 226 227 for (i = 0; i < pgdat->nr_zones; i++) { 228 zone = &pgdat->node_zones[i]; 229 if (!zone->percpu_drift_mark) 230 continue; 231 232 threshold = (*calculate_pressure)(zone); 233 for_each_online_cpu(cpu) 234 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 235 = threshold; 236 } 237 } 238 239 /* 240 * For use when we know that interrupts are disabled, 241 * or when we know that preemption is disabled and that 242 * particular counter cannot be updated from interrupt context. 243 */ 244 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 245 long delta) 246 { 247 struct per_cpu_pageset __percpu *pcp = zone->pageset; 248 s8 __percpu *p = pcp->vm_stat_diff + item; 249 long x; 250 long t; 251 252 x = delta + __this_cpu_read(*p); 253 254 t = __this_cpu_read(pcp->stat_threshold); 255 256 if (unlikely(x > t || x < -t)) { 257 zone_page_state_add(x, zone, item); 258 x = 0; 259 } 260 __this_cpu_write(*p, x); 261 } 262 EXPORT_SYMBOL(__mod_zone_page_state); 263 264 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 265 long delta) 266 { 267 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 268 s8 __percpu *p = pcp->vm_node_stat_diff + item; 269 long x; 270 long t; 271 272 x = delta + __this_cpu_read(*p); 273 274 t = __this_cpu_read(pcp->stat_threshold); 275 276 if (unlikely(x > t || x < -t)) { 277 node_page_state_add(x, pgdat, item); 278 x = 0; 279 } 280 __this_cpu_write(*p, x); 281 } 282 EXPORT_SYMBOL(__mod_node_page_state); 283 284 /* 285 * Optimized increment and decrement functions. 286 * 287 * These are only for a single page and therefore can take a struct page * 288 * argument instead of struct zone *. This allows the inclusion of the code 289 * generated for page_zone(page) into the optimized functions. 290 * 291 * No overflow check is necessary and therefore the differential can be 292 * incremented or decremented in place which may allow the compilers to 293 * generate better code. 294 * The increment or decrement is known and therefore one boundary check can 295 * be omitted. 296 * 297 * NOTE: These functions are very performance sensitive. Change only 298 * with care. 299 * 300 * Some processors have inc/dec instructions that are atomic vs an interrupt. 301 * However, the code must first determine the differential location in a zone 302 * based on the processor number and then inc/dec the counter. There is no 303 * guarantee without disabling preemption that the processor will not change 304 * in between and therefore the atomicity vs. interrupt cannot be exploited 305 * in a useful way here. 306 */ 307 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 308 { 309 struct per_cpu_pageset __percpu *pcp = zone->pageset; 310 s8 __percpu *p = pcp->vm_stat_diff + item; 311 s8 v, t; 312 313 v = __this_cpu_inc_return(*p); 314 t = __this_cpu_read(pcp->stat_threshold); 315 if (unlikely(v > t)) { 316 s8 overstep = t >> 1; 317 318 zone_page_state_add(v + overstep, zone, item); 319 __this_cpu_write(*p, -overstep); 320 } 321 } 322 323 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 324 { 325 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 326 s8 __percpu *p = pcp->vm_node_stat_diff + item; 327 s8 v, t; 328 329 v = __this_cpu_inc_return(*p); 330 t = __this_cpu_read(pcp->stat_threshold); 331 if (unlikely(v > t)) { 332 s8 overstep = t >> 1; 333 334 node_page_state_add(v + overstep, pgdat, item); 335 __this_cpu_write(*p, -overstep); 336 } 337 } 338 339 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 340 { 341 __inc_zone_state(page_zone(page), item); 342 } 343 EXPORT_SYMBOL(__inc_zone_page_state); 344 345 void __inc_node_page_state(struct page *page, enum node_stat_item item) 346 { 347 __inc_node_state(page_pgdat(page), item); 348 } 349 EXPORT_SYMBOL(__inc_node_page_state); 350 351 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 352 { 353 struct per_cpu_pageset __percpu *pcp = zone->pageset; 354 s8 __percpu *p = pcp->vm_stat_diff + item; 355 s8 v, t; 356 357 v = __this_cpu_dec_return(*p); 358 t = __this_cpu_read(pcp->stat_threshold); 359 if (unlikely(v < - t)) { 360 s8 overstep = t >> 1; 361 362 zone_page_state_add(v - overstep, zone, item); 363 __this_cpu_write(*p, overstep); 364 } 365 } 366 367 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 368 { 369 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 370 s8 __percpu *p = pcp->vm_node_stat_diff + item; 371 s8 v, t; 372 373 v = __this_cpu_dec_return(*p); 374 t = __this_cpu_read(pcp->stat_threshold); 375 if (unlikely(v < - t)) { 376 s8 overstep = t >> 1; 377 378 node_page_state_add(v - overstep, pgdat, item); 379 __this_cpu_write(*p, overstep); 380 } 381 } 382 383 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 384 { 385 __dec_zone_state(page_zone(page), item); 386 } 387 EXPORT_SYMBOL(__dec_zone_page_state); 388 389 void __dec_node_page_state(struct page *page, enum node_stat_item item) 390 { 391 __dec_node_state(page_pgdat(page), item); 392 } 393 EXPORT_SYMBOL(__dec_node_page_state); 394 395 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 396 /* 397 * If we have cmpxchg_local support then we do not need to incur the overhead 398 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 399 * 400 * mod_state() modifies the zone counter state through atomic per cpu 401 * operations. 402 * 403 * Overstep mode specifies how overstep should handled: 404 * 0 No overstepping 405 * 1 Overstepping half of threshold 406 * -1 Overstepping minus half of threshold 407 */ 408 static inline void mod_zone_state(struct zone *zone, 409 enum zone_stat_item item, long delta, int overstep_mode) 410 { 411 struct per_cpu_pageset __percpu *pcp = zone->pageset; 412 s8 __percpu *p = pcp->vm_stat_diff + item; 413 long o, n, t, z; 414 415 do { 416 z = 0; /* overflow to zone counters */ 417 418 /* 419 * The fetching of the stat_threshold is racy. We may apply 420 * a counter threshold to the wrong the cpu if we get 421 * rescheduled while executing here. However, the next 422 * counter update will apply the threshold again and 423 * therefore bring the counter under the threshold again. 424 * 425 * Most of the time the thresholds are the same anyways 426 * for all cpus in a zone. 427 */ 428 t = this_cpu_read(pcp->stat_threshold); 429 430 o = this_cpu_read(*p); 431 n = delta + o; 432 433 if (n > t || n < -t) { 434 int os = overstep_mode * (t >> 1) ; 435 436 /* Overflow must be added to zone counters */ 437 z = n + os; 438 n = -os; 439 } 440 } while (this_cpu_cmpxchg(*p, o, n) != o); 441 442 if (z) 443 zone_page_state_add(z, zone, item); 444 } 445 446 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 447 long delta) 448 { 449 mod_zone_state(zone, item, delta, 0); 450 } 451 EXPORT_SYMBOL(mod_zone_page_state); 452 453 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 454 { 455 mod_zone_state(page_zone(page), item, 1, 1); 456 } 457 EXPORT_SYMBOL(inc_zone_page_state); 458 459 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 460 { 461 mod_zone_state(page_zone(page), item, -1, -1); 462 } 463 EXPORT_SYMBOL(dec_zone_page_state); 464 465 static inline void mod_node_state(struct pglist_data *pgdat, 466 enum node_stat_item item, int delta, int overstep_mode) 467 { 468 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 469 s8 __percpu *p = pcp->vm_node_stat_diff + item; 470 long o, n, t, z; 471 472 do { 473 z = 0; /* overflow to node counters */ 474 475 /* 476 * The fetching of the stat_threshold is racy. We may apply 477 * a counter threshold to the wrong the cpu if we get 478 * rescheduled while executing here. However, the next 479 * counter update will apply the threshold again and 480 * therefore bring the counter under the threshold again. 481 * 482 * Most of the time the thresholds are the same anyways 483 * for all cpus in a node. 484 */ 485 t = this_cpu_read(pcp->stat_threshold); 486 487 o = this_cpu_read(*p); 488 n = delta + o; 489 490 if (n > t || n < -t) { 491 int os = overstep_mode * (t >> 1) ; 492 493 /* Overflow must be added to node counters */ 494 z = n + os; 495 n = -os; 496 } 497 } while (this_cpu_cmpxchg(*p, o, n) != o); 498 499 if (z) 500 node_page_state_add(z, pgdat, item); 501 } 502 503 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 504 long delta) 505 { 506 mod_node_state(pgdat, item, delta, 0); 507 } 508 EXPORT_SYMBOL(mod_node_page_state); 509 510 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 511 { 512 mod_node_state(pgdat, item, 1, 1); 513 } 514 515 void inc_node_page_state(struct page *page, enum node_stat_item item) 516 { 517 mod_node_state(page_pgdat(page), item, 1, 1); 518 } 519 EXPORT_SYMBOL(inc_node_page_state); 520 521 void dec_node_page_state(struct page *page, enum node_stat_item item) 522 { 523 mod_node_state(page_pgdat(page), item, -1, -1); 524 } 525 EXPORT_SYMBOL(dec_node_page_state); 526 #else 527 /* 528 * Use interrupt disable to serialize counter updates 529 */ 530 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 531 long delta) 532 { 533 unsigned long flags; 534 535 local_irq_save(flags); 536 __mod_zone_page_state(zone, item, delta); 537 local_irq_restore(flags); 538 } 539 EXPORT_SYMBOL(mod_zone_page_state); 540 541 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 542 { 543 unsigned long flags; 544 struct zone *zone; 545 546 zone = page_zone(page); 547 local_irq_save(flags); 548 __inc_zone_state(zone, item); 549 local_irq_restore(flags); 550 } 551 EXPORT_SYMBOL(inc_zone_page_state); 552 553 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 554 { 555 unsigned long flags; 556 557 local_irq_save(flags); 558 __dec_zone_page_state(page, item); 559 local_irq_restore(flags); 560 } 561 EXPORT_SYMBOL(dec_zone_page_state); 562 563 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 564 { 565 unsigned long flags; 566 567 local_irq_save(flags); 568 __inc_node_state(pgdat, item); 569 local_irq_restore(flags); 570 } 571 EXPORT_SYMBOL(inc_node_state); 572 573 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 574 long delta) 575 { 576 unsigned long flags; 577 578 local_irq_save(flags); 579 __mod_node_page_state(pgdat, item, delta); 580 local_irq_restore(flags); 581 } 582 EXPORT_SYMBOL(mod_node_page_state); 583 584 void inc_node_page_state(struct page *page, enum node_stat_item item) 585 { 586 unsigned long flags; 587 struct pglist_data *pgdat; 588 589 pgdat = page_pgdat(page); 590 local_irq_save(flags); 591 __inc_node_state(pgdat, item); 592 local_irq_restore(flags); 593 } 594 EXPORT_SYMBOL(inc_node_page_state); 595 596 void dec_node_page_state(struct page *page, enum node_stat_item item) 597 { 598 unsigned long flags; 599 600 local_irq_save(flags); 601 __dec_node_page_state(page, item); 602 local_irq_restore(flags); 603 } 604 EXPORT_SYMBOL(dec_node_page_state); 605 #endif 606 607 /* 608 * Fold a differential into the global counters. 609 * Returns the number of counters updated. 610 */ 611 #ifdef CONFIG_NUMA 612 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 613 { 614 int i; 615 int changes = 0; 616 617 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 618 if (zone_diff[i]) { 619 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 620 changes++; 621 } 622 623 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 624 if (numa_diff[i]) { 625 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 626 changes++; 627 } 628 629 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 630 if (node_diff[i]) { 631 atomic_long_add(node_diff[i], &vm_node_stat[i]); 632 changes++; 633 } 634 return changes; 635 } 636 #else 637 static int fold_diff(int *zone_diff, int *node_diff) 638 { 639 int i; 640 int changes = 0; 641 642 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 643 if (zone_diff[i]) { 644 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 645 changes++; 646 } 647 648 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 649 if (node_diff[i]) { 650 atomic_long_add(node_diff[i], &vm_node_stat[i]); 651 changes++; 652 } 653 return changes; 654 } 655 #endif /* CONFIG_NUMA */ 656 657 /* 658 * Update the zone counters for the current cpu. 659 * 660 * Note that refresh_cpu_vm_stats strives to only access 661 * node local memory. The per cpu pagesets on remote zones are placed 662 * in the memory local to the processor using that pageset. So the 663 * loop over all zones will access a series of cachelines local to 664 * the processor. 665 * 666 * The call to zone_page_state_add updates the cachelines with the 667 * statistics in the remote zone struct as well as the global cachelines 668 * with the global counters. These could cause remote node cache line 669 * bouncing and will have to be only done when necessary. 670 * 671 * The function returns the number of global counters updated. 672 */ 673 static int refresh_cpu_vm_stats(bool do_pagesets) 674 { 675 struct pglist_data *pgdat; 676 struct zone *zone; 677 int i; 678 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 679 #ifdef CONFIG_NUMA 680 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 681 #endif 682 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 683 int changes = 0; 684 685 for_each_populated_zone(zone) { 686 struct per_cpu_pageset __percpu *p = zone->pageset; 687 688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 689 int v; 690 691 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 692 if (v) { 693 694 atomic_long_add(v, &zone->vm_stat[i]); 695 global_zone_diff[i] += v; 696 #ifdef CONFIG_NUMA 697 /* 3 seconds idle till flush */ 698 __this_cpu_write(p->expire, 3); 699 #endif 700 } 701 } 702 #ifdef CONFIG_NUMA 703 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 704 int v; 705 706 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 707 if (v) { 708 709 atomic_long_add(v, &zone->vm_numa_stat[i]); 710 global_numa_diff[i] += v; 711 __this_cpu_write(p->expire, 3); 712 } 713 } 714 715 if (do_pagesets) { 716 cond_resched(); 717 /* 718 * Deal with draining the remote pageset of this 719 * processor 720 * 721 * Check if there are pages remaining in this pageset 722 * if not then there is nothing to expire. 723 */ 724 if (!__this_cpu_read(p->expire) || 725 !__this_cpu_read(p->pcp.count)) 726 continue; 727 728 /* 729 * We never drain zones local to this processor. 730 */ 731 if (zone_to_nid(zone) == numa_node_id()) { 732 __this_cpu_write(p->expire, 0); 733 continue; 734 } 735 736 if (__this_cpu_dec_return(p->expire)) 737 continue; 738 739 if (__this_cpu_read(p->pcp.count)) { 740 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 741 changes++; 742 } 743 } 744 #endif 745 } 746 747 for_each_online_pgdat(pgdat) { 748 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 749 750 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 751 int v; 752 753 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 754 if (v) { 755 atomic_long_add(v, &pgdat->vm_stat[i]); 756 global_node_diff[i] += v; 757 } 758 } 759 } 760 761 #ifdef CONFIG_NUMA 762 changes += fold_diff(global_zone_diff, global_numa_diff, 763 global_node_diff); 764 #else 765 changes += fold_diff(global_zone_diff, global_node_diff); 766 #endif 767 return changes; 768 } 769 770 /* 771 * Fold the data for an offline cpu into the global array. 772 * There cannot be any access by the offline cpu and therefore 773 * synchronization is simplified. 774 */ 775 void cpu_vm_stats_fold(int cpu) 776 { 777 struct pglist_data *pgdat; 778 struct zone *zone; 779 int i; 780 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 781 #ifdef CONFIG_NUMA 782 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 783 #endif 784 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 785 786 for_each_populated_zone(zone) { 787 struct per_cpu_pageset *p; 788 789 p = per_cpu_ptr(zone->pageset, cpu); 790 791 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 792 if (p->vm_stat_diff[i]) { 793 int v; 794 795 v = p->vm_stat_diff[i]; 796 p->vm_stat_diff[i] = 0; 797 atomic_long_add(v, &zone->vm_stat[i]); 798 global_zone_diff[i] += v; 799 } 800 801 #ifdef CONFIG_NUMA 802 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 803 if (p->vm_numa_stat_diff[i]) { 804 int v; 805 806 v = p->vm_numa_stat_diff[i]; 807 p->vm_numa_stat_diff[i] = 0; 808 atomic_long_add(v, &zone->vm_numa_stat[i]); 809 global_numa_diff[i] += v; 810 } 811 #endif 812 } 813 814 for_each_online_pgdat(pgdat) { 815 struct per_cpu_nodestat *p; 816 817 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 818 819 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 820 if (p->vm_node_stat_diff[i]) { 821 int v; 822 823 v = p->vm_node_stat_diff[i]; 824 p->vm_node_stat_diff[i] = 0; 825 atomic_long_add(v, &pgdat->vm_stat[i]); 826 global_node_diff[i] += v; 827 } 828 } 829 830 #ifdef CONFIG_NUMA 831 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 832 #else 833 fold_diff(global_zone_diff, global_node_diff); 834 #endif 835 } 836 837 /* 838 * this is only called if !populated_zone(zone), which implies no other users of 839 * pset->vm_stat_diff[] exsist. 840 */ 841 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 842 { 843 int i; 844 845 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 846 if (pset->vm_stat_diff[i]) { 847 int v = pset->vm_stat_diff[i]; 848 pset->vm_stat_diff[i] = 0; 849 atomic_long_add(v, &zone->vm_stat[i]); 850 atomic_long_add(v, &vm_zone_stat[i]); 851 } 852 853 #ifdef CONFIG_NUMA 854 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 855 if (pset->vm_numa_stat_diff[i]) { 856 int v = pset->vm_numa_stat_diff[i]; 857 858 pset->vm_numa_stat_diff[i] = 0; 859 atomic_long_add(v, &zone->vm_numa_stat[i]); 860 atomic_long_add(v, &vm_numa_stat[i]); 861 } 862 #endif 863 } 864 #endif 865 866 #ifdef CONFIG_NUMA 867 void __inc_numa_state(struct zone *zone, 868 enum numa_stat_item item) 869 { 870 struct per_cpu_pageset __percpu *pcp = zone->pageset; 871 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 872 u16 v; 873 874 v = __this_cpu_inc_return(*p); 875 876 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 877 zone_numa_state_add(v, zone, item); 878 __this_cpu_write(*p, 0); 879 } 880 } 881 882 /* 883 * Determine the per node value of a stat item. This function 884 * is called frequently in a NUMA machine, so try to be as 885 * frugal as possible. 886 */ 887 unsigned long sum_zone_node_page_state(int node, 888 enum zone_stat_item item) 889 { 890 struct zone *zones = NODE_DATA(node)->node_zones; 891 int i; 892 unsigned long count = 0; 893 894 for (i = 0; i < MAX_NR_ZONES; i++) 895 count += zone_page_state(zones + i, item); 896 897 return count; 898 } 899 900 /* 901 * Determine the per node value of a numa stat item. To avoid deviation, 902 * the per cpu stat number in vm_numa_stat_diff[] is also included. 903 */ 904 unsigned long sum_zone_numa_state(int node, 905 enum numa_stat_item item) 906 { 907 struct zone *zones = NODE_DATA(node)->node_zones; 908 int i; 909 unsigned long count = 0; 910 911 for (i = 0; i < MAX_NR_ZONES; i++) 912 count += zone_numa_state_snapshot(zones + i, item); 913 914 return count; 915 } 916 917 /* 918 * Determine the per node value of a stat item. 919 */ 920 unsigned long node_page_state(struct pglist_data *pgdat, 921 enum node_stat_item item) 922 { 923 long x = atomic_long_read(&pgdat->vm_stat[item]); 924 #ifdef CONFIG_SMP 925 if (x < 0) 926 x = 0; 927 #endif 928 return x; 929 } 930 #endif 931 932 #ifdef CONFIG_COMPACTION 933 934 struct contig_page_info { 935 unsigned long free_pages; 936 unsigned long free_blocks_total; 937 unsigned long free_blocks_suitable; 938 }; 939 940 /* 941 * Calculate the number of free pages in a zone, how many contiguous 942 * pages are free and how many are large enough to satisfy an allocation of 943 * the target size. Note that this function makes no attempt to estimate 944 * how many suitable free blocks there *might* be if MOVABLE pages were 945 * migrated. Calculating that is possible, but expensive and can be 946 * figured out from userspace 947 */ 948 static void fill_contig_page_info(struct zone *zone, 949 unsigned int suitable_order, 950 struct contig_page_info *info) 951 { 952 unsigned int order; 953 954 info->free_pages = 0; 955 info->free_blocks_total = 0; 956 info->free_blocks_suitable = 0; 957 958 for (order = 0; order < MAX_ORDER; order++) { 959 unsigned long blocks; 960 961 /* Count number of free blocks */ 962 blocks = zone->free_area[order].nr_free; 963 info->free_blocks_total += blocks; 964 965 /* Count free base pages */ 966 info->free_pages += blocks << order; 967 968 /* Count the suitable free blocks */ 969 if (order >= suitable_order) 970 info->free_blocks_suitable += blocks << 971 (order - suitable_order); 972 } 973 } 974 975 /* 976 * A fragmentation index only makes sense if an allocation of a requested 977 * size would fail. If that is true, the fragmentation index indicates 978 * whether external fragmentation or a lack of memory was the problem. 979 * The value can be used to determine if page reclaim or compaction 980 * should be used 981 */ 982 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 983 { 984 unsigned long requested = 1UL << order; 985 986 if (WARN_ON_ONCE(order >= MAX_ORDER)) 987 return 0; 988 989 if (!info->free_blocks_total) 990 return 0; 991 992 /* Fragmentation index only makes sense when a request would fail */ 993 if (info->free_blocks_suitable) 994 return -1000; 995 996 /* 997 * Index is between 0 and 1 so return within 3 decimal places 998 * 999 * 0 => allocation would fail due to lack of memory 1000 * 1 => allocation would fail due to fragmentation 1001 */ 1002 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1003 } 1004 1005 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1006 int fragmentation_index(struct zone *zone, unsigned int order) 1007 { 1008 struct contig_page_info info; 1009 1010 fill_contig_page_info(zone, order, &info); 1011 return __fragmentation_index(order, &info); 1012 } 1013 #endif 1014 1015 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 1016 #ifdef CONFIG_ZONE_DMA 1017 #define TEXT_FOR_DMA(xx) xx "_dma", 1018 #else 1019 #define TEXT_FOR_DMA(xx) 1020 #endif 1021 1022 #ifdef CONFIG_ZONE_DMA32 1023 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1024 #else 1025 #define TEXT_FOR_DMA32(xx) 1026 #endif 1027 1028 #ifdef CONFIG_HIGHMEM 1029 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1030 #else 1031 #define TEXT_FOR_HIGHMEM(xx) 1032 #endif 1033 1034 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1035 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1036 1037 const char * const vmstat_text[] = { 1038 /* enum zone_stat_item countes */ 1039 "nr_free_pages", 1040 "nr_zone_inactive_anon", 1041 "nr_zone_active_anon", 1042 "nr_zone_inactive_file", 1043 "nr_zone_active_file", 1044 "nr_zone_unevictable", 1045 "nr_zone_write_pending", 1046 "nr_mlock", 1047 "nr_page_table_pages", 1048 "nr_kernel_stack", 1049 "nr_bounce", 1050 #if IS_ENABLED(CONFIG_ZSMALLOC) 1051 "nr_zspages", 1052 #endif 1053 "nr_free_cma", 1054 1055 /* enum numa_stat_item counters */ 1056 #ifdef CONFIG_NUMA 1057 "numa_hit", 1058 "numa_miss", 1059 "numa_foreign", 1060 "numa_interleave", 1061 "numa_local", 1062 "numa_other", 1063 #endif 1064 1065 /* Node-based counters */ 1066 "nr_inactive_anon", 1067 "nr_active_anon", 1068 "nr_inactive_file", 1069 "nr_active_file", 1070 "nr_unevictable", 1071 "nr_slab_reclaimable", 1072 "nr_slab_unreclaimable", 1073 "nr_isolated_anon", 1074 "nr_isolated_file", 1075 "workingset_refault", 1076 "workingset_activate", 1077 "workingset_nodereclaim", 1078 "nr_anon_pages", 1079 "nr_mapped", 1080 "nr_file_pages", 1081 "nr_dirty", 1082 "nr_writeback", 1083 "nr_writeback_temp", 1084 "nr_shmem", 1085 "nr_shmem_hugepages", 1086 "nr_shmem_pmdmapped", 1087 "nr_anon_transparent_hugepages", 1088 "nr_unstable", 1089 "nr_vmscan_write", 1090 "nr_vmscan_immediate_reclaim", 1091 "nr_dirtied", 1092 "nr_written", 1093 1094 /* enum writeback_stat_item counters */ 1095 "nr_dirty_threshold", 1096 "nr_dirty_background_threshold", 1097 1098 #ifdef CONFIG_VM_EVENT_COUNTERS 1099 /* enum vm_event_item counters */ 1100 "pgpgin", 1101 "pgpgout", 1102 "pswpin", 1103 "pswpout", 1104 1105 TEXTS_FOR_ZONES("pgalloc") 1106 TEXTS_FOR_ZONES("allocstall") 1107 TEXTS_FOR_ZONES("pgskip") 1108 1109 "pgfree", 1110 "pgactivate", 1111 "pgdeactivate", 1112 "pglazyfree", 1113 1114 "pgfault", 1115 "pgmajfault", 1116 "pglazyfreed", 1117 1118 "pgrefill", 1119 "pgsteal_kswapd", 1120 "pgsteal_direct", 1121 "pgscan_kswapd", 1122 "pgscan_direct", 1123 "pgscan_direct_throttle", 1124 1125 #ifdef CONFIG_NUMA 1126 "zone_reclaim_failed", 1127 #endif 1128 "pginodesteal", 1129 "slabs_scanned", 1130 "kswapd_inodesteal", 1131 "kswapd_low_wmark_hit_quickly", 1132 "kswapd_high_wmark_hit_quickly", 1133 "pageoutrun", 1134 1135 "pgrotated", 1136 1137 "drop_pagecache", 1138 "drop_slab", 1139 "oom_kill", 1140 1141 #ifdef CONFIG_NUMA_BALANCING 1142 "numa_pte_updates", 1143 "numa_huge_pte_updates", 1144 "numa_hint_faults", 1145 "numa_hint_faults_local", 1146 "numa_pages_migrated", 1147 #endif 1148 #ifdef CONFIG_MIGRATION 1149 "pgmigrate_success", 1150 "pgmigrate_fail", 1151 #endif 1152 #ifdef CONFIG_COMPACTION 1153 "compact_migrate_scanned", 1154 "compact_free_scanned", 1155 "compact_isolated", 1156 "compact_stall", 1157 "compact_fail", 1158 "compact_success", 1159 "compact_daemon_wake", 1160 "compact_daemon_migrate_scanned", 1161 "compact_daemon_free_scanned", 1162 #endif 1163 1164 #ifdef CONFIG_HUGETLB_PAGE 1165 "htlb_buddy_alloc_success", 1166 "htlb_buddy_alloc_fail", 1167 #endif 1168 "unevictable_pgs_culled", 1169 "unevictable_pgs_scanned", 1170 "unevictable_pgs_rescued", 1171 "unevictable_pgs_mlocked", 1172 "unevictable_pgs_munlocked", 1173 "unevictable_pgs_cleared", 1174 "unevictable_pgs_stranded", 1175 1176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1177 "thp_fault_alloc", 1178 "thp_fault_fallback", 1179 "thp_collapse_alloc", 1180 "thp_collapse_alloc_failed", 1181 "thp_file_alloc", 1182 "thp_file_mapped", 1183 "thp_split_page", 1184 "thp_split_page_failed", 1185 "thp_deferred_split_page", 1186 "thp_split_pmd", 1187 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1188 "thp_split_pud", 1189 #endif 1190 "thp_zero_page_alloc", 1191 "thp_zero_page_alloc_failed", 1192 "thp_swpout", 1193 "thp_swpout_fallback", 1194 #endif 1195 #ifdef CONFIG_MEMORY_BALLOON 1196 "balloon_inflate", 1197 "balloon_deflate", 1198 #ifdef CONFIG_BALLOON_COMPACTION 1199 "balloon_migrate", 1200 #endif 1201 #endif /* CONFIG_MEMORY_BALLOON */ 1202 #ifdef CONFIG_DEBUG_TLBFLUSH 1203 #ifdef CONFIG_SMP 1204 "nr_tlb_remote_flush", 1205 "nr_tlb_remote_flush_received", 1206 #endif /* CONFIG_SMP */ 1207 "nr_tlb_local_flush_all", 1208 "nr_tlb_local_flush_one", 1209 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1210 1211 #ifdef CONFIG_DEBUG_VM_VMACACHE 1212 "vmacache_find_calls", 1213 "vmacache_find_hits", 1214 "vmacache_full_flushes", 1215 #endif 1216 #ifdef CONFIG_SWAP 1217 "swap_ra", 1218 "swap_ra_hit", 1219 #endif 1220 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 1221 }; 1222 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 1223 1224 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1225 defined(CONFIG_PROC_FS) 1226 static void *frag_start(struct seq_file *m, loff_t *pos) 1227 { 1228 pg_data_t *pgdat; 1229 loff_t node = *pos; 1230 1231 for (pgdat = first_online_pgdat(); 1232 pgdat && node; 1233 pgdat = next_online_pgdat(pgdat)) 1234 --node; 1235 1236 return pgdat; 1237 } 1238 1239 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1240 { 1241 pg_data_t *pgdat = (pg_data_t *)arg; 1242 1243 (*pos)++; 1244 return next_online_pgdat(pgdat); 1245 } 1246 1247 static void frag_stop(struct seq_file *m, void *arg) 1248 { 1249 } 1250 1251 /* 1252 * Walk zones in a node and print using a callback. 1253 * If @assert_populated is true, only use callback for zones that are populated. 1254 */ 1255 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1256 bool assert_populated, bool nolock, 1257 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1258 { 1259 struct zone *zone; 1260 struct zone *node_zones = pgdat->node_zones; 1261 unsigned long flags; 1262 1263 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1264 if (assert_populated && !populated_zone(zone)) 1265 continue; 1266 1267 if (!nolock) 1268 spin_lock_irqsave(&zone->lock, flags); 1269 print(m, pgdat, zone); 1270 if (!nolock) 1271 spin_unlock_irqrestore(&zone->lock, flags); 1272 } 1273 } 1274 #endif 1275 1276 #ifdef CONFIG_PROC_FS 1277 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1278 struct zone *zone) 1279 { 1280 int order; 1281 1282 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1283 for (order = 0; order < MAX_ORDER; ++order) 1284 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1285 seq_putc(m, '\n'); 1286 } 1287 1288 /* 1289 * This walks the free areas for each zone. 1290 */ 1291 static int frag_show(struct seq_file *m, void *arg) 1292 { 1293 pg_data_t *pgdat = (pg_data_t *)arg; 1294 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1295 return 0; 1296 } 1297 1298 static void pagetypeinfo_showfree_print(struct seq_file *m, 1299 pg_data_t *pgdat, struct zone *zone) 1300 { 1301 int order, mtype; 1302 1303 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1304 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1305 pgdat->node_id, 1306 zone->name, 1307 migratetype_names[mtype]); 1308 for (order = 0; order < MAX_ORDER; ++order) { 1309 unsigned long freecount = 0; 1310 struct free_area *area; 1311 struct list_head *curr; 1312 1313 area = &(zone->free_area[order]); 1314 1315 list_for_each(curr, &area->free_list[mtype]) 1316 freecount++; 1317 seq_printf(m, "%6lu ", freecount); 1318 } 1319 seq_putc(m, '\n'); 1320 } 1321 } 1322 1323 /* Print out the free pages at each order for each migatetype */ 1324 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1325 { 1326 int order; 1327 pg_data_t *pgdat = (pg_data_t *)arg; 1328 1329 /* Print header */ 1330 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1331 for (order = 0; order < MAX_ORDER; ++order) 1332 seq_printf(m, "%6d ", order); 1333 seq_putc(m, '\n'); 1334 1335 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1336 1337 return 0; 1338 } 1339 1340 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1341 pg_data_t *pgdat, struct zone *zone) 1342 { 1343 int mtype; 1344 unsigned long pfn; 1345 unsigned long start_pfn = zone->zone_start_pfn; 1346 unsigned long end_pfn = zone_end_pfn(zone); 1347 unsigned long count[MIGRATE_TYPES] = { 0, }; 1348 1349 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1350 struct page *page; 1351 1352 page = pfn_to_online_page(pfn); 1353 if (!page) 1354 continue; 1355 1356 /* Watch for unexpected holes punched in the memmap */ 1357 if (!memmap_valid_within(pfn, page, zone)) 1358 continue; 1359 1360 if (page_zone(page) != zone) 1361 continue; 1362 1363 mtype = get_pageblock_migratetype(page); 1364 1365 if (mtype < MIGRATE_TYPES) 1366 count[mtype]++; 1367 } 1368 1369 /* Print counts */ 1370 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1371 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1372 seq_printf(m, "%12lu ", count[mtype]); 1373 seq_putc(m, '\n'); 1374 } 1375 1376 /* Print out the number of pageblocks for each migratetype */ 1377 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1378 { 1379 int mtype; 1380 pg_data_t *pgdat = (pg_data_t *)arg; 1381 1382 seq_printf(m, "\n%-23s", "Number of blocks type "); 1383 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1384 seq_printf(m, "%12s ", migratetype_names[mtype]); 1385 seq_putc(m, '\n'); 1386 walk_zones_in_node(m, pgdat, true, false, 1387 pagetypeinfo_showblockcount_print); 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * Print out the number of pageblocks for each migratetype that contain pages 1394 * of other types. This gives an indication of how well fallbacks are being 1395 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1396 * to determine what is going on 1397 */ 1398 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1399 { 1400 #ifdef CONFIG_PAGE_OWNER 1401 int mtype; 1402 1403 if (!static_branch_unlikely(&page_owner_inited)) 1404 return; 1405 1406 drain_all_pages(NULL); 1407 1408 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1409 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1410 seq_printf(m, "%12s ", migratetype_names[mtype]); 1411 seq_putc(m, '\n'); 1412 1413 walk_zones_in_node(m, pgdat, true, true, 1414 pagetypeinfo_showmixedcount_print); 1415 #endif /* CONFIG_PAGE_OWNER */ 1416 } 1417 1418 /* 1419 * This prints out statistics in relation to grouping pages by mobility. 1420 * It is expensive to collect so do not constantly read the file. 1421 */ 1422 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1423 { 1424 pg_data_t *pgdat = (pg_data_t *)arg; 1425 1426 /* check memoryless node */ 1427 if (!node_state(pgdat->node_id, N_MEMORY)) 1428 return 0; 1429 1430 seq_printf(m, "Page block order: %d\n", pageblock_order); 1431 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1432 seq_putc(m, '\n'); 1433 pagetypeinfo_showfree(m, pgdat); 1434 pagetypeinfo_showblockcount(m, pgdat); 1435 pagetypeinfo_showmixedcount(m, pgdat); 1436 1437 return 0; 1438 } 1439 1440 static const struct seq_operations fragmentation_op = { 1441 .start = frag_start, 1442 .next = frag_next, 1443 .stop = frag_stop, 1444 .show = frag_show, 1445 }; 1446 1447 static int fragmentation_open(struct inode *inode, struct file *file) 1448 { 1449 return seq_open(file, &fragmentation_op); 1450 } 1451 1452 static const struct file_operations buddyinfo_file_operations = { 1453 .open = fragmentation_open, 1454 .read = seq_read, 1455 .llseek = seq_lseek, 1456 .release = seq_release, 1457 }; 1458 1459 static const struct seq_operations pagetypeinfo_op = { 1460 .start = frag_start, 1461 .next = frag_next, 1462 .stop = frag_stop, 1463 .show = pagetypeinfo_show, 1464 }; 1465 1466 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1467 { 1468 return seq_open(file, &pagetypeinfo_op); 1469 } 1470 1471 static const struct file_operations pagetypeinfo_file_operations = { 1472 .open = pagetypeinfo_open, 1473 .read = seq_read, 1474 .llseek = seq_lseek, 1475 .release = seq_release, 1476 }; 1477 1478 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1479 { 1480 int zid; 1481 1482 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1483 struct zone *compare = &pgdat->node_zones[zid]; 1484 1485 if (populated_zone(compare)) 1486 return zone == compare; 1487 } 1488 1489 return false; 1490 } 1491 1492 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1493 struct zone *zone) 1494 { 1495 int i; 1496 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1497 if (is_zone_first_populated(pgdat, zone)) { 1498 seq_printf(m, "\n per-node stats"); 1499 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1500 seq_printf(m, "\n %-12s %lu", 1501 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + 1502 NR_VM_NUMA_STAT_ITEMS], 1503 node_page_state(pgdat, i)); 1504 } 1505 } 1506 seq_printf(m, 1507 "\n pages free %lu" 1508 "\n min %lu" 1509 "\n low %lu" 1510 "\n high %lu" 1511 "\n spanned %lu" 1512 "\n present %lu" 1513 "\n managed %lu", 1514 zone_page_state(zone, NR_FREE_PAGES), 1515 min_wmark_pages(zone), 1516 low_wmark_pages(zone), 1517 high_wmark_pages(zone), 1518 zone->spanned_pages, 1519 zone->present_pages, 1520 zone->managed_pages); 1521 1522 seq_printf(m, 1523 "\n protection: (%ld", 1524 zone->lowmem_reserve[0]); 1525 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1526 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1527 seq_putc(m, ')'); 1528 1529 /* If unpopulated, no other information is useful */ 1530 if (!populated_zone(zone)) { 1531 seq_putc(m, '\n'); 1532 return; 1533 } 1534 1535 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1536 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1537 zone_page_state(zone, i)); 1538 1539 #ifdef CONFIG_NUMA 1540 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1541 seq_printf(m, "\n %-12s %lu", 1542 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1543 zone_numa_state_snapshot(zone, i)); 1544 #endif 1545 1546 seq_printf(m, "\n pagesets"); 1547 for_each_online_cpu(i) { 1548 struct per_cpu_pageset *pageset; 1549 1550 pageset = per_cpu_ptr(zone->pageset, i); 1551 seq_printf(m, 1552 "\n cpu: %i" 1553 "\n count: %i" 1554 "\n high: %i" 1555 "\n batch: %i", 1556 i, 1557 pageset->pcp.count, 1558 pageset->pcp.high, 1559 pageset->pcp.batch); 1560 #ifdef CONFIG_SMP 1561 seq_printf(m, "\n vm stats threshold: %d", 1562 pageset->stat_threshold); 1563 #endif 1564 } 1565 seq_printf(m, 1566 "\n node_unreclaimable: %u" 1567 "\n start_pfn: %lu" 1568 "\n node_inactive_ratio: %u", 1569 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1570 zone->zone_start_pfn, 1571 zone->zone_pgdat->inactive_ratio); 1572 seq_putc(m, '\n'); 1573 } 1574 1575 /* 1576 * Output information about zones in @pgdat. All zones are printed regardless 1577 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1578 * set of all zones and userspace would not be aware of such zones if they are 1579 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1580 */ 1581 static int zoneinfo_show(struct seq_file *m, void *arg) 1582 { 1583 pg_data_t *pgdat = (pg_data_t *)arg; 1584 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1585 return 0; 1586 } 1587 1588 static const struct seq_operations zoneinfo_op = { 1589 .start = frag_start, /* iterate over all zones. The same as in 1590 * fragmentation. */ 1591 .next = frag_next, 1592 .stop = frag_stop, 1593 .show = zoneinfo_show, 1594 }; 1595 1596 static int zoneinfo_open(struct inode *inode, struct file *file) 1597 { 1598 return seq_open(file, &zoneinfo_op); 1599 } 1600 1601 static const struct file_operations zoneinfo_file_operations = { 1602 .open = zoneinfo_open, 1603 .read = seq_read, 1604 .llseek = seq_lseek, 1605 .release = seq_release, 1606 }; 1607 1608 enum writeback_stat_item { 1609 NR_DIRTY_THRESHOLD, 1610 NR_DIRTY_BG_THRESHOLD, 1611 NR_VM_WRITEBACK_STAT_ITEMS, 1612 }; 1613 1614 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1615 { 1616 unsigned long *v; 1617 int i, stat_items_size; 1618 1619 if (*pos >= ARRAY_SIZE(vmstat_text)) 1620 return NULL; 1621 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1622 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + 1623 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + 1624 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1625 1626 #ifdef CONFIG_VM_EVENT_COUNTERS 1627 stat_items_size += sizeof(struct vm_event_state); 1628 #endif 1629 1630 v = kmalloc(stat_items_size, GFP_KERNEL); 1631 m->private = v; 1632 if (!v) 1633 return ERR_PTR(-ENOMEM); 1634 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1635 v[i] = global_zone_page_state(i); 1636 v += NR_VM_ZONE_STAT_ITEMS; 1637 1638 #ifdef CONFIG_NUMA 1639 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1640 v[i] = global_numa_state(i); 1641 v += NR_VM_NUMA_STAT_ITEMS; 1642 #endif 1643 1644 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1645 v[i] = global_node_page_state(i); 1646 v += NR_VM_NODE_STAT_ITEMS; 1647 1648 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1649 v + NR_DIRTY_THRESHOLD); 1650 v += NR_VM_WRITEBACK_STAT_ITEMS; 1651 1652 #ifdef CONFIG_VM_EVENT_COUNTERS 1653 all_vm_events(v); 1654 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1655 v[PGPGOUT] /= 2; 1656 #endif 1657 return (unsigned long *)m->private + *pos; 1658 } 1659 1660 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1661 { 1662 (*pos)++; 1663 if (*pos >= ARRAY_SIZE(vmstat_text)) 1664 return NULL; 1665 return (unsigned long *)m->private + *pos; 1666 } 1667 1668 static int vmstat_show(struct seq_file *m, void *arg) 1669 { 1670 unsigned long *l = arg; 1671 unsigned long off = l - (unsigned long *)m->private; 1672 1673 seq_puts(m, vmstat_text[off]); 1674 seq_put_decimal_ull(m, " ", *l); 1675 seq_putc(m, '\n'); 1676 return 0; 1677 } 1678 1679 static void vmstat_stop(struct seq_file *m, void *arg) 1680 { 1681 kfree(m->private); 1682 m->private = NULL; 1683 } 1684 1685 static const struct seq_operations vmstat_op = { 1686 .start = vmstat_start, 1687 .next = vmstat_next, 1688 .stop = vmstat_stop, 1689 .show = vmstat_show, 1690 }; 1691 1692 static int vmstat_open(struct inode *inode, struct file *file) 1693 { 1694 return seq_open(file, &vmstat_op); 1695 } 1696 1697 static const struct file_operations vmstat_file_operations = { 1698 .open = vmstat_open, 1699 .read = seq_read, 1700 .llseek = seq_lseek, 1701 .release = seq_release, 1702 }; 1703 #endif /* CONFIG_PROC_FS */ 1704 1705 #ifdef CONFIG_SMP 1706 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1707 int sysctl_stat_interval __read_mostly = HZ; 1708 1709 #ifdef CONFIG_PROC_FS 1710 static void refresh_vm_stats(struct work_struct *work) 1711 { 1712 refresh_cpu_vm_stats(true); 1713 } 1714 1715 int vmstat_refresh(struct ctl_table *table, int write, 1716 void __user *buffer, size_t *lenp, loff_t *ppos) 1717 { 1718 long val; 1719 int err; 1720 int i; 1721 1722 /* 1723 * The regular update, every sysctl_stat_interval, may come later 1724 * than expected: leaving a significant amount in per_cpu buckets. 1725 * This is particularly misleading when checking a quantity of HUGE 1726 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1727 * which can equally be echo'ed to or cat'ted from (by root), 1728 * can be used to update the stats just before reading them. 1729 * 1730 * Oh, and since global_zone_page_state() etc. are so careful to hide 1731 * transiently negative values, report an error here if any of 1732 * the stats is negative, so we know to go looking for imbalance. 1733 */ 1734 err = schedule_on_each_cpu(refresh_vm_stats); 1735 if (err) 1736 return err; 1737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1738 val = atomic_long_read(&vm_zone_stat[i]); 1739 if (val < 0) { 1740 pr_warn("%s: %s %ld\n", 1741 __func__, vmstat_text[i], val); 1742 err = -EINVAL; 1743 } 1744 } 1745 #ifdef CONFIG_NUMA 1746 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1747 val = atomic_long_read(&vm_numa_stat[i]); 1748 if (val < 0) { 1749 pr_warn("%s: %s %ld\n", 1750 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); 1751 err = -EINVAL; 1752 } 1753 } 1754 #endif 1755 if (err) 1756 return err; 1757 if (write) 1758 *ppos += *lenp; 1759 else 1760 *lenp = 0; 1761 return 0; 1762 } 1763 #endif /* CONFIG_PROC_FS */ 1764 1765 static void vmstat_update(struct work_struct *w) 1766 { 1767 if (refresh_cpu_vm_stats(true)) { 1768 /* 1769 * Counters were updated so we expect more updates 1770 * to occur in the future. Keep on running the 1771 * update worker thread. 1772 */ 1773 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1774 this_cpu_ptr(&vmstat_work), 1775 round_jiffies_relative(sysctl_stat_interval)); 1776 } 1777 } 1778 1779 /* 1780 * Switch off vmstat processing and then fold all the remaining differentials 1781 * until the diffs stay at zero. The function is used by NOHZ and can only be 1782 * invoked when tick processing is not active. 1783 */ 1784 /* 1785 * Check if the diffs for a certain cpu indicate that 1786 * an update is needed. 1787 */ 1788 static bool need_update(int cpu) 1789 { 1790 struct zone *zone; 1791 1792 for_each_populated_zone(zone) { 1793 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1794 1795 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1796 #ifdef CONFIG_NUMA 1797 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1798 #endif 1799 1800 /* 1801 * The fast way of checking if there are any vmstat diffs. 1802 * This works because the diffs are byte sized items. 1803 */ 1804 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1805 return true; 1806 #ifdef CONFIG_NUMA 1807 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS)) 1808 return true; 1809 #endif 1810 } 1811 return false; 1812 } 1813 1814 /* 1815 * Switch off vmstat processing and then fold all the remaining differentials 1816 * until the diffs stay at zero. The function is used by NOHZ and can only be 1817 * invoked when tick processing is not active. 1818 */ 1819 void quiet_vmstat(void) 1820 { 1821 if (system_state != SYSTEM_RUNNING) 1822 return; 1823 1824 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1825 return; 1826 1827 if (!need_update(smp_processor_id())) 1828 return; 1829 1830 /* 1831 * Just refresh counters and do not care about the pending delayed 1832 * vmstat_update. It doesn't fire that often to matter and canceling 1833 * it would be too expensive from this path. 1834 * vmstat_shepherd will take care about that for us. 1835 */ 1836 refresh_cpu_vm_stats(false); 1837 } 1838 1839 /* 1840 * Shepherd worker thread that checks the 1841 * differentials of processors that have their worker 1842 * threads for vm statistics updates disabled because of 1843 * inactivity. 1844 */ 1845 static void vmstat_shepherd(struct work_struct *w); 1846 1847 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1848 1849 static void vmstat_shepherd(struct work_struct *w) 1850 { 1851 int cpu; 1852 1853 get_online_cpus(); 1854 /* Check processors whose vmstat worker threads have been disabled */ 1855 for_each_online_cpu(cpu) { 1856 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1857 1858 if (!delayed_work_pending(dw) && need_update(cpu)) 1859 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1860 } 1861 put_online_cpus(); 1862 1863 schedule_delayed_work(&shepherd, 1864 round_jiffies_relative(sysctl_stat_interval)); 1865 } 1866 1867 static void __init start_shepherd_timer(void) 1868 { 1869 int cpu; 1870 1871 for_each_possible_cpu(cpu) 1872 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1873 vmstat_update); 1874 1875 schedule_delayed_work(&shepherd, 1876 round_jiffies_relative(sysctl_stat_interval)); 1877 } 1878 1879 static void __init init_cpu_node_state(void) 1880 { 1881 int node; 1882 1883 for_each_online_node(node) { 1884 if (cpumask_weight(cpumask_of_node(node)) > 0) 1885 node_set_state(node, N_CPU); 1886 } 1887 } 1888 1889 static int vmstat_cpu_online(unsigned int cpu) 1890 { 1891 refresh_zone_stat_thresholds(); 1892 node_set_state(cpu_to_node(cpu), N_CPU); 1893 return 0; 1894 } 1895 1896 static int vmstat_cpu_down_prep(unsigned int cpu) 1897 { 1898 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1899 return 0; 1900 } 1901 1902 static int vmstat_cpu_dead(unsigned int cpu) 1903 { 1904 const struct cpumask *node_cpus; 1905 int node; 1906 1907 node = cpu_to_node(cpu); 1908 1909 refresh_zone_stat_thresholds(); 1910 node_cpus = cpumask_of_node(node); 1911 if (cpumask_weight(node_cpus) > 0) 1912 return 0; 1913 1914 node_clear_state(node, N_CPU); 1915 return 0; 1916 } 1917 1918 #endif 1919 1920 struct workqueue_struct *mm_percpu_wq; 1921 1922 void __init init_mm_internals(void) 1923 { 1924 int ret __maybe_unused; 1925 1926 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 1927 1928 #ifdef CONFIG_SMP 1929 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 1930 NULL, vmstat_cpu_dead); 1931 if (ret < 0) 1932 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 1933 1934 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 1935 vmstat_cpu_online, 1936 vmstat_cpu_down_prep); 1937 if (ret < 0) 1938 pr_err("vmstat: failed to register 'online' hotplug state\n"); 1939 1940 get_online_cpus(); 1941 init_cpu_node_state(); 1942 put_online_cpus(); 1943 1944 start_shepherd_timer(); 1945 #endif 1946 #ifdef CONFIG_PROC_FS 1947 proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations); 1948 proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations); 1949 proc_create("vmstat", 0444, NULL, &vmstat_file_operations); 1950 proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations); 1951 #endif 1952 } 1953 1954 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1955 1956 /* 1957 * Return an index indicating how much of the available free memory is 1958 * unusable for an allocation of the requested size. 1959 */ 1960 static int unusable_free_index(unsigned int order, 1961 struct contig_page_info *info) 1962 { 1963 /* No free memory is interpreted as all free memory is unusable */ 1964 if (info->free_pages == 0) 1965 return 1000; 1966 1967 /* 1968 * Index should be a value between 0 and 1. Return a value to 3 1969 * decimal places. 1970 * 1971 * 0 => no fragmentation 1972 * 1 => high fragmentation 1973 */ 1974 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1975 1976 } 1977 1978 static void unusable_show_print(struct seq_file *m, 1979 pg_data_t *pgdat, struct zone *zone) 1980 { 1981 unsigned int order; 1982 int index; 1983 struct contig_page_info info; 1984 1985 seq_printf(m, "Node %d, zone %8s ", 1986 pgdat->node_id, 1987 zone->name); 1988 for (order = 0; order < MAX_ORDER; ++order) { 1989 fill_contig_page_info(zone, order, &info); 1990 index = unusable_free_index(order, &info); 1991 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1992 } 1993 1994 seq_putc(m, '\n'); 1995 } 1996 1997 /* 1998 * Display unusable free space index 1999 * 2000 * The unusable free space index measures how much of the available free 2001 * memory cannot be used to satisfy an allocation of a given size and is a 2002 * value between 0 and 1. The higher the value, the more of free memory is 2003 * unusable and by implication, the worse the external fragmentation is. This 2004 * can be expressed as a percentage by multiplying by 100. 2005 */ 2006 static int unusable_show(struct seq_file *m, void *arg) 2007 { 2008 pg_data_t *pgdat = (pg_data_t *)arg; 2009 2010 /* check memoryless node */ 2011 if (!node_state(pgdat->node_id, N_MEMORY)) 2012 return 0; 2013 2014 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2015 2016 return 0; 2017 } 2018 2019 static const struct seq_operations unusable_op = { 2020 .start = frag_start, 2021 .next = frag_next, 2022 .stop = frag_stop, 2023 .show = unusable_show, 2024 }; 2025 2026 static int unusable_open(struct inode *inode, struct file *file) 2027 { 2028 return seq_open(file, &unusable_op); 2029 } 2030 2031 static const struct file_operations unusable_file_ops = { 2032 .open = unusable_open, 2033 .read = seq_read, 2034 .llseek = seq_lseek, 2035 .release = seq_release, 2036 }; 2037 2038 static void extfrag_show_print(struct seq_file *m, 2039 pg_data_t *pgdat, struct zone *zone) 2040 { 2041 unsigned int order; 2042 int index; 2043 2044 /* Alloc on stack as interrupts are disabled for zone walk */ 2045 struct contig_page_info info; 2046 2047 seq_printf(m, "Node %d, zone %8s ", 2048 pgdat->node_id, 2049 zone->name); 2050 for (order = 0; order < MAX_ORDER; ++order) { 2051 fill_contig_page_info(zone, order, &info); 2052 index = __fragmentation_index(order, &info); 2053 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2054 } 2055 2056 seq_putc(m, '\n'); 2057 } 2058 2059 /* 2060 * Display fragmentation index for orders that allocations would fail for 2061 */ 2062 static int extfrag_show(struct seq_file *m, void *arg) 2063 { 2064 pg_data_t *pgdat = (pg_data_t *)arg; 2065 2066 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2067 2068 return 0; 2069 } 2070 2071 static const struct seq_operations extfrag_op = { 2072 .start = frag_start, 2073 .next = frag_next, 2074 .stop = frag_stop, 2075 .show = extfrag_show, 2076 }; 2077 2078 static int extfrag_open(struct inode *inode, struct file *file) 2079 { 2080 return seq_open(file, &extfrag_op); 2081 } 2082 2083 static const struct file_operations extfrag_file_ops = { 2084 .open = extfrag_open, 2085 .read = seq_read, 2086 .llseek = seq_lseek, 2087 .release = seq_release, 2088 }; 2089 2090 static int __init extfrag_debug_init(void) 2091 { 2092 struct dentry *extfrag_debug_root; 2093 2094 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2095 if (!extfrag_debug_root) 2096 return -ENOMEM; 2097 2098 if (!debugfs_create_file("unusable_index", 0444, 2099 extfrag_debug_root, NULL, &unusable_file_ops)) 2100 goto fail; 2101 2102 if (!debugfs_create_file("extfrag_index", 0444, 2103 extfrag_debug_root, NULL, &extfrag_file_ops)) 2104 goto fail; 2105 2106 return 0; 2107 fail: 2108 debugfs_remove_recursive(extfrag_debug_root); 2109 return -ENOMEM; 2110 } 2111 2112 module_init(extfrag_debug_init); 2113 #endif 2114