1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/vmstat.h> 17 #include <linux/sched.h> 18 19 #ifdef CONFIG_VM_EVENT_COUNTERS 20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 21 EXPORT_PER_CPU_SYMBOL(vm_event_states); 22 23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) 24 { 25 int cpu; 26 int i; 27 28 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 29 30 for_each_cpu(cpu, cpumask) { 31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 32 33 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 34 ret[i] += this->event[i]; 35 } 36 } 37 38 /* 39 * Accumulate the vm event counters across all CPUs. 40 * The result is unavoidably approximate - it can change 41 * during and after execution of this function. 42 */ 43 void all_vm_events(unsigned long *ret) 44 { 45 get_online_cpus(); 46 sum_vm_events(ret, cpu_online_mask); 47 put_online_cpus(); 48 } 49 EXPORT_SYMBOL_GPL(all_vm_events); 50 51 #ifdef CONFIG_HOTPLUG 52 /* 53 * Fold the foreign cpu events into our own. 54 * 55 * This is adding to the events on one processor 56 * but keeps the global counts constant. 57 */ 58 void vm_events_fold_cpu(int cpu) 59 { 60 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 61 int i; 62 63 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 64 count_vm_events(i, fold_state->event[i]); 65 fold_state->event[i] = 0; 66 } 67 } 68 #endif /* CONFIG_HOTPLUG */ 69 70 #endif /* CONFIG_VM_EVENT_COUNTERS */ 71 72 /* 73 * Manage combined zone based / global counters 74 * 75 * vm_stat contains the global counters 76 */ 77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 78 EXPORT_SYMBOL(vm_stat); 79 80 #ifdef CONFIG_SMP 81 82 static int calculate_threshold(struct zone *zone) 83 { 84 int threshold; 85 int mem; /* memory in 128 MB units */ 86 87 /* 88 * The threshold scales with the number of processors and the amount 89 * of memory per zone. More memory means that we can defer updates for 90 * longer, more processors could lead to more contention. 91 * fls() is used to have a cheap way of logarithmic scaling. 92 * 93 * Some sample thresholds: 94 * 95 * Threshold Processors (fls) Zonesize fls(mem+1) 96 * ------------------------------------------------------------------ 97 * 8 1 1 0.9-1 GB 4 98 * 16 2 2 0.9-1 GB 4 99 * 20 2 2 1-2 GB 5 100 * 24 2 2 2-4 GB 6 101 * 28 2 2 4-8 GB 7 102 * 32 2 2 8-16 GB 8 103 * 4 2 2 <128M 1 104 * 30 4 3 2-4 GB 5 105 * 48 4 3 8-16 GB 8 106 * 32 8 4 1-2 GB 4 107 * 32 8 4 0.9-1GB 4 108 * 10 16 5 <128M 1 109 * 40 16 5 900M 4 110 * 70 64 7 2-4 GB 5 111 * 84 64 7 4-8 GB 6 112 * 108 512 9 4-8 GB 6 113 * 125 1024 10 8-16 GB 8 114 * 125 1024 10 16-32 GB 9 115 */ 116 117 mem = zone->present_pages >> (27 - PAGE_SHIFT); 118 119 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 120 121 /* 122 * Maximum threshold is 125 123 */ 124 threshold = min(125, threshold); 125 126 return threshold; 127 } 128 129 /* 130 * Refresh the thresholds for each zone. 131 */ 132 static void refresh_zone_stat_thresholds(void) 133 { 134 struct zone *zone; 135 int cpu; 136 int threshold; 137 138 for_each_populated_zone(zone) { 139 threshold = calculate_threshold(zone); 140 141 for_each_online_cpu(cpu) 142 zone_pcp(zone, cpu)->stat_threshold = threshold; 143 } 144 } 145 146 /* 147 * For use when we know that interrupts are disabled. 148 */ 149 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 150 int delta) 151 { 152 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 153 s8 *p = pcp->vm_stat_diff + item; 154 long x; 155 156 x = delta + *p; 157 158 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) { 159 zone_page_state_add(x, zone, item); 160 x = 0; 161 } 162 *p = x; 163 } 164 EXPORT_SYMBOL(__mod_zone_page_state); 165 166 /* 167 * For an unknown interrupt state 168 */ 169 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 170 int delta) 171 { 172 unsigned long flags; 173 174 local_irq_save(flags); 175 __mod_zone_page_state(zone, item, delta); 176 local_irq_restore(flags); 177 } 178 EXPORT_SYMBOL(mod_zone_page_state); 179 180 /* 181 * Optimized increment and decrement functions. 182 * 183 * These are only for a single page and therefore can take a struct page * 184 * argument instead of struct zone *. This allows the inclusion of the code 185 * generated for page_zone(page) into the optimized functions. 186 * 187 * No overflow check is necessary and therefore the differential can be 188 * incremented or decremented in place which may allow the compilers to 189 * generate better code. 190 * The increment or decrement is known and therefore one boundary check can 191 * be omitted. 192 * 193 * NOTE: These functions are very performance sensitive. Change only 194 * with care. 195 * 196 * Some processors have inc/dec instructions that are atomic vs an interrupt. 197 * However, the code must first determine the differential location in a zone 198 * based on the processor number and then inc/dec the counter. There is no 199 * guarantee without disabling preemption that the processor will not change 200 * in between and therefore the atomicity vs. interrupt cannot be exploited 201 * in a useful way here. 202 */ 203 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 204 { 205 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 206 s8 *p = pcp->vm_stat_diff + item; 207 208 (*p)++; 209 210 if (unlikely(*p > pcp->stat_threshold)) { 211 int overstep = pcp->stat_threshold / 2; 212 213 zone_page_state_add(*p + overstep, zone, item); 214 *p = -overstep; 215 } 216 } 217 218 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 219 { 220 __inc_zone_state(page_zone(page), item); 221 } 222 EXPORT_SYMBOL(__inc_zone_page_state); 223 224 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 225 { 226 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 227 s8 *p = pcp->vm_stat_diff + item; 228 229 (*p)--; 230 231 if (unlikely(*p < - pcp->stat_threshold)) { 232 int overstep = pcp->stat_threshold / 2; 233 234 zone_page_state_add(*p - overstep, zone, item); 235 *p = overstep; 236 } 237 } 238 239 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 240 { 241 __dec_zone_state(page_zone(page), item); 242 } 243 EXPORT_SYMBOL(__dec_zone_page_state); 244 245 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 246 { 247 unsigned long flags; 248 249 local_irq_save(flags); 250 __inc_zone_state(zone, item); 251 local_irq_restore(flags); 252 } 253 254 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 255 { 256 unsigned long flags; 257 struct zone *zone; 258 259 zone = page_zone(page); 260 local_irq_save(flags); 261 __inc_zone_state(zone, item); 262 local_irq_restore(flags); 263 } 264 EXPORT_SYMBOL(inc_zone_page_state); 265 266 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 267 { 268 unsigned long flags; 269 270 local_irq_save(flags); 271 __dec_zone_page_state(page, item); 272 local_irq_restore(flags); 273 } 274 EXPORT_SYMBOL(dec_zone_page_state); 275 276 /* 277 * Update the zone counters for one cpu. 278 * 279 * The cpu specified must be either the current cpu or a processor that 280 * is not online. If it is the current cpu then the execution thread must 281 * be pinned to the current cpu. 282 * 283 * Note that refresh_cpu_vm_stats strives to only access 284 * node local memory. The per cpu pagesets on remote zones are placed 285 * in the memory local to the processor using that pageset. So the 286 * loop over all zones will access a series of cachelines local to 287 * the processor. 288 * 289 * The call to zone_page_state_add updates the cachelines with the 290 * statistics in the remote zone struct as well as the global cachelines 291 * with the global counters. These could cause remote node cache line 292 * bouncing and will have to be only done when necessary. 293 */ 294 void refresh_cpu_vm_stats(int cpu) 295 { 296 struct zone *zone; 297 int i; 298 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 299 300 for_each_populated_zone(zone) { 301 struct per_cpu_pageset *p; 302 303 p = zone_pcp(zone, cpu); 304 305 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 306 if (p->vm_stat_diff[i]) { 307 unsigned long flags; 308 int v; 309 310 local_irq_save(flags); 311 v = p->vm_stat_diff[i]; 312 p->vm_stat_diff[i] = 0; 313 local_irq_restore(flags); 314 atomic_long_add(v, &zone->vm_stat[i]); 315 global_diff[i] += v; 316 #ifdef CONFIG_NUMA 317 /* 3 seconds idle till flush */ 318 p->expire = 3; 319 #endif 320 } 321 cond_resched(); 322 #ifdef CONFIG_NUMA 323 /* 324 * Deal with draining the remote pageset of this 325 * processor 326 * 327 * Check if there are pages remaining in this pageset 328 * if not then there is nothing to expire. 329 */ 330 if (!p->expire || !p->pcp.count) 331 continue; 332 333 /* 334 * We never drain zones local to this processor. 335 */ 336 if (zone_to_nid(zone) == numa_node_id()) { 337 p->expire = 0; 338 continue; 339 } 340 341 p->expire--; 342 if (p->expire) 343 continue; 344 345 if (p->pcp.count) 346 drain_zone_pages(zone, &p->pcp); 347 #endif 348 } 349 350 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 351 if (global_diff[i]) 352 atomic_long_add(global_diff[i], &vm_stat[i]); 353 } 354 355 #endif 356 357 #ifdef CONFIG_NUMA 358 /* 359 * zonelist = the list of zones passed to the allocator 360 * z = the zone from which the allocation occurred. 361 * 362 * Must be called with interrupts disabled. 363 */ 364 void zone_statistics(struct zone *preferred_zone, struct zone *z) 365 { 366 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 367 __inc_zone_state(z, NUMA_HIT); 368 } else { 369 __inc_zone_state(z, NUMA_MISS); 370 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 371 } 372 if (z->node == numa_node_id()) 373 __inc_zone_state(z, NUMA_LOCAL); 374 else 375 __inc_zone_state(z, NUMA_OTHER); 376 } 377 #endif 378 379 #ifdef CONFIG_PROC_FS 380 #include <linux/proc_fs.h> 381 #include <linux/seq_file.h> 382 383 static char * const migratetype_names[MIGRATE_TYPES] = { 384 "Unmovable", 385 "Reclaimable", 386 "Movable", 387 "Reserve", 388 "Isolate", 389 }; 390 391 static void *frag_start(struct seq_file *m, loff_t *pos) 392 { 393 pg_data_t *pgdat; 394 loff_t node = *pos; 395 for (pgdat = first_online_pgdat(); 396 pgdat && node; 397 pgdat = next_online_pgdat(pgdat)) 398 --node; 399 400 return pgdat; 401 } 402 403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 404 { 405 pg_data_t *pgdat = (pg_data_t *)arg; 406 407 (*pos)++; 408 return next_online_pgdat(pgdat); 409 } 410 411 static void frag_stop(struct seq_file *m, void *arg) 412 { 413 } 414 415 /* Walk all the zones in a node and print using a callback */ 416 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 417 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 418 { 419 struct zone *zone; 420 struct zone *node_zones = pgdat->node_zones; 421 unsigned long flags; 422 423 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 424 if (!populated_zone(zone)) 425 continue; 426 427 spin_lock_irqsave(&zone->lock, flags); 428 print(m, pgdat, zone); 429 spin_unlock_irqrestore(&zone->lock, flags); 430 } 431 } 432 433 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 434 struct zone *zone) 435 { 436 int order; 437 438 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 439 for (order = 0; order < MAX_ORDER; ++order) 440 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 441 seq_putc(m, '\n'); 442 } 443 444 /* 445 * This walks the free areas for each zone. 446 */ 447 static int frag_show(struct seq_file *m, void *arg) 448 { 449 pg_data_t *pgdat = (pg_data_t *)arg; 450 walk_zones_in_node(m, pgdat, frag_show_print); 451 return 0; 452 } 453 454 static void pagetypeinfo_showfree_print(struct seq_file *m, 455 pg_data_t *pgdat, struct zone *zone) 456 { 457 int order, mtype; 458 459 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 460 seq_printf(m, "Node %4d, zone %8s, type %12s ", 461 pgdat->node_id, 462 zone->name, 463 migratetype_names[mtype]); 464 for (order = 0; order < MAX_ORDER; ++order) { 465 unsigned long freecount = 0; 466 struct free_area *area; 467 struct list_head *curr; 468 469 area = &(zone->free_area[order]); 470 471 list_for_each(curr, &area->free_list[mtype]) 472 freecount++; 473 seq_printf(m, "%6lu ", freecount); 474 } 475 seq_putc(m, '\n'); 476 } 477 } 478 479 /* Print out the free pages at each order for each migatetype */ 480 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 481 { 482 int order; 483 pg_data_t *pgdat = (pg_data_t *)arg; 484 485 /* Print header */ 486 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 487 for (order = 0; order < MAX_ORDER; ++order) 488 seq_printf(m, "%6d ", order); 489 seq_putc(m, '\n'); 490 491 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 492 493 return 0; 494 } 495 496 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 497 pg_data_t *pgdat, struct zone *zone) 498 { 499 int mtype; 500 unsigned long pfn; 501 unsigned long start_pfn = zone->zone_start_pfn; 502 unsigned long end_pfn = start_pfn + zone->spanned_pages; 503 unsigned long count[MIGRATE_TYPES] = { 0, }; 504 505 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 506 struct page *page; 507 508 if (!pfn_valid(pfn)) 509 continue; 510 511 page = pfn_to_page(pfn); 512 #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES 513 /* 514 * Ordinarily, memory holes in flatmem still have a valid 515 * memmap for the PFN range. However, an architecture for 516 * embedded systems (e.g. ARM) can free up the memmap backing 517 * holes to save memory on the assumption the memmap is 518 * never used. The page_zone linkages are then broken even 519 * though pfn_valid() returns true. Skip the page if the 520 * linkages are broken. Even if this test passed, the impact 521 * is that the counters for the movable type are off but 522 * fragmentation monitoring is likely meaningless on small 523 * systems. 524 */ 525 if (page_zone(page) != zone) 526 continue; 527 #endif 528 mtype = get_pageblock_migratetype(page); 529 530 if (mtype < MIGRATE_TYPES) 531 count[mtype]++; 532 } 533 534 /* Print counts */ 535 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 536 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 537 seq_printf(m, "%12lu ", count[mtype]); 538 seq_putc(m, '\n'); 539 } 540 541 /* Print out the free pages at each order for each migratetype */ 542 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 543 { 544 int mtype; 545 pg_data_t *pgdat = (pg_data_t *)arg; 546 547 seq_printf(m, "\n%-23s", "Number of blocks type "); 548 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 549 seq_printf(m, "%12s ", migratetype_names[mtype]); 550 seq_putc(m, '\n'); 551 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 552 553 return 0; 554 } 555 556 /* 557 * This prints out statistics in relation to grouping pages by mobility. 558 * It is expensive to collect so do not constantly read the file. 559 */ 560 static int pagetypeinfo_show(struct seq_file *m, void *arg) 561 { 562 pg_data_t *pgdat = (pg_data_t *)arg; 563 564 /* check memoryless node */ 565 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 566 return 0; 567 568 seq_printf(m, "Page block order: %d\n", pageblock_order); 569 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 570 seq_putc(m, '\n'); 571 pagetypeinfo_showfree(m, pgdat); 572 pagetypeinfo_showblockcount(m, pgdat); 573 574 return 0; 575 } 576 577 static const struct seq_operations fragmentation_op = { 578 .start = frag_start, 579 .next = frag_next, 580 .stop = frag_stop, 581 .show = frag_show, 582 }; 583 584 static int fragmentation_open(struct inode *inode, struct file *file) 585 { 586 return seq_open(file, &fragmentation_op); 587 } 588 589 static const struct file_operations fragmentation_file_operations = { 590 .open = fragmentation_open, 591 .read = seq_read, 592 .llseek = seq_lseek, 593 .release = seq_release, 594 }; 595 596 static const struct seq_operations pagetypeinfo_op = { 597 .start = frag_start, 598 .next = frag_next, 599 .stop = frag_stop, 600 .show = pagetypeinfo_show, 601 }; 602 603 static int pagetypeinfo_open(struct inode *inode, struct file *file) 604 { 605 return seq_open(file, &pagetypeinfo_op); 606 } 607 608 static const struct file_operations pagetypeinfo_file_ops = { 609 .open = pagetypeinfo_open, 610 .read = seq_read, 611 .llseek = seq_lseek, 612 .release = seq_release, 613 }; 614 615 #ifdef CONFIG_ZONE_DMA 616 #define TEXT_FOR_DMA(xx) xx "_dma", 617 #else 618 #define TEXT_FOR_DMA(xx) 619 #endif 620 621 #ifdef CONFIG_ZONE_DMA32 622 #define TEXT_FOR_DMA32(xx) xx "_dma32", 623 #else 624 #define TEXT_FOR_DMA32(xx) 625 #endif 626 627 #ifdef CONFIG_HIGHMEM 628 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 629 #else 630 #define TEXT_FOR_HIGHMEM(xx) 631 #endif 632 633 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 634 TEXT_FOR_HIGHMEM(xx) xx "_movable", 635 636 static const char * const vmstat_text[] = { 637 /* Zoned VM counters */ 638 "nr_free_pages", 639 "nr_inactive_anon", 640 "nr_active_anon", 641 "nr_inactive_file", 642 "nr_active_file", 643 #ifdef CONFIG_UNEVICTABLE_LRU 644 "nr_unevictable", 645 "nr_mlock", 646 #endif 647 "nr_anon_pages", 648 "nr_mapped", 649 "nr_file_pages", 650 "nr_dirty", 651 "nr_writeback", 652 "nr_slab_reclaimable", 653 "nr_slab_unreclaimable", 654 "nr_page_table_pages", 655 "nr_unstable", 656 "nr_bounce", 657 "nr_vmscan_write", 658 "nr_writeback_temp", 659 660 #ifdef CONFIG_NUMA 661 "numa_hit", 662 "numa_miss", 663 "numa_foreign", 664 "numa_interleave", 665 "numa_local", 666 "numa_other", 667 #endif 668 669 #ifdef CONFIG_VM_EVENT_COUNTERS 670 "pgpgin", 671 "pgpgout", 672 "pswpin", 673 "pswpout", 674 675 TEXTS_FOR_ZONES("pgalloc") 676 677 "pgfree", 678 "pgactivate", 679 "pgdeactivate", 680 681 "pgfault", 682 "pgmajfault", 683 684 TEXTS_FOR_ZONES("pgrefill") 685 TEXTS_FOR_ZONES("pgsteal") 686 TEXTS_FOR_ZONES("pgscan_kswapd") 687 TEXTS_FOR_ZONES("pgscan_direct") 688 689 "pginodesteal", 690 "slabs_scanned", 691 "kswapd_steal", 692 "kswapd_inodesteal", 693 "pageoutrun", 694 "allocstall", 695 696 "pgrotated", 697 #ifdef CONFIG_HUGETLB_PAGE 698 "htlb_buddy_alloc_success", 699 "htlb_buddy_alloc_fail", 700 #endif 701 #ifdef CONFIG_UNEVICTABLE_LRU 702 "unevictable_pgs_culled", 703 "unevictable_pgs_scanned", 704 "unevictable_pgs_rescued", 705 "unevictable_pgs_mlocked", 706 "unevictable_pgs_munlocked", 707 "unevictable_pgs_cleared", 708 "unevictable_pgs_stranded", 709 "unevictable_pgs_mlockfreed", 710 #endif 711 #endif 712 }; 713 714 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 715 struct zone *zone) 716 { 717 int i; 718 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 719 seq_printf(m, 720 "\n pages free %lu" 721 "\n min %lu" 722 "\n low %lu" 723 "\n high %lu" 724 "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)" 725 "\n spanned %lu" 726 "\n present %lu", 727 zone_page_state(zone, NR_FREE_PAGES), 728 zone->pages_min, 729 zone->pages_low, 730 zone->pages_high, 731 zone->pages_scanned, 732 zone->lru[LRU_ACTIVE_ANON].nr_scan, 733 zone->lru[LRU_INACTIVE_ANON].nr_scan, 734 zone->lru[LRU_ACTIVE_FILE].nr_scan, 735 zone->lru[LRU_INACTIVE_FILE].nr_scan, 736 zone->spanned_pages, 737 zone->present_pages); 738 739 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 740 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 741 zone_page_state(zone, i)); 742 743 seq_printf(m, 744 "\n protection: (%lu", 745 zone->lowmem_reserve[0]); 746 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 747 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 748 seq_printf(m, 749 ")" 750 "\n pagesets"); 751 for_each_online_cpu(i) { 752 struct per_cpu_pageset *pageset; 753 754 pageset = zone_pcp(zone, i); 755 seq_printf(m, 756 "\n cpu: %i" 757 "\n count: %i" 758 "\n high: %i" 759 "\n batch: %i", 760 i, 761 pageset->pcp.count, 762 pageset->pcp.high, 763 pageset->pcp.batch); 764 #ifdef CONFIG_SMP 765 seq_printf(m, "\n vm stats threshold: %d", 766 pageset->stat_threshold); 767 #endif 768 } 769 seq_printf(m, 770 "\n all_unreclaimable: %u" 771 "\n prev_priority: %i" 772 "\n start_pfn: %lu" 773 "\n inactive_ratio: %u", 774 zone_is_all_unreclaimable(zone), 775 zone->prev_priority, 776 zone->zone_start_pfn, 777 zone->inactive_ratio); 778 seq_putc(m, '\n'); 779 } 780 781 /* 782 * Output information about zones in @pgdat. 783 */ 784 static int zoneinfo_show(struct seq_file *m, void *arg) 785 { 786 pg_data_t *pgdat = (pg_data_t *)arg; 787 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 788 return 0; 789 } 790 791 static const struct seq_operations zoneinfo_op = { 792 .start = frag_start, /* iterate over all zones. The same as in 793 * fragmentation. */ 794 .next = frag_next, 795 .stop = frag_stop, 796 .show = zoneinfo_show, 797 }; 798 799 static int zoneinfo_open(struct inode *inode, struct file *file) 800 { 801 return seq_open(file, &zoneinfo_op); 802 } 803 804 static const struct file_operations proc_zoneinfo_file_operations = { 805 .open = zoneinfo_open, 806 .read = seq_read, 807 .llseek = seq_lseek, 808 .release = seq_release, 809 }; 810 811 static void *vmstat_start(struct seq_file *m, loff_t *pos) 812 { 813 unsigned long *v; 814 #ifdef CONFIG_VM_EVENT_COUNTERS 815 unsigned long *e; 816 #endif 817 int i; 818 819 if (*pos >= ARRAY_SIZE(vmstat_text)) 820 return NULL; 821 822 #ifdef CONFIG_VM_EVENT_COUNTERS 823 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) 824 + sizeof(struct vm_event_state), GFP_KERNEL); 825 #else 826 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), 827 GFP_KERNEL); 828 #endif 829 m->private = v; 830 if (!v) 831 return ERR_PTR(-ENOMEM); 832 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 833 v[i] = global_page_state(i); 834 #ifdef CONFIG_VM_EVENT_COUNTERS 835 e = v + NR_VM_ZONE_STAT_ITEMS; 836 all_vm_events(e); 837 e[PGPGIN] /= 2; /* sectors -> kbytes */ 838 e[PGPGOUT] /= 2; 839 #endif 840 return v + *pos; 841 } 842 843 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 844 { 845 (*pos)++; 846 if (*pos >= ARRAY_SIZE(vmstat_text)) 847 return NULL; 848 return (unsigned long *)m->private + *pos; 849 } 850 851 static int vmstat_show(struct seq_file *m, void *arg) 852 { 853 unsigned long *l = arg; 854 unsigned long off = l - (unsigned long *)m->private; 855 856 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 857 return 0; 858 } 859 860 static void vmstat_stop(struct seq_file *m, void *arg) 861 { 862 kfree(m->private); 863 m->private = NULL; 864 } 865 866 static const struct seq_operations vmstat_op = { 867 .start = vmstat_start, 868 .next = vmstat_next, 869 .stop = vmstat_stop, 870 .show = vmstat_show, 871 }; 872 873 static int vmstat_open(struct inode *inode, struct file *file) 874 { 875 return seq_open(file, &vmstat_op); 876 } 877 878 static const struct file_operations proc_vmstat_file_operations = { 879 .open = vmstat_open, 880 .read = seq_read, 881 .llseek = seq_lseek, 882 .release = seq_release, 883 }; 884 #endif /* CONFIG_PROC_FS */ 885 886 #ifdef CONFIG_SMP 887 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 888 int sysctl_stat_interval __read_mostly = HZ; 889 890 static void vmstat_update(struct work_struct *w) 891 { 892 refresh_cpu_vm_stats(smp_processor_id()); 893 schedule_delayed_work(&__get_cpu_var(vmstat_work), 894 round_jiffies_relative(sysctl_stat_interval)); 895 } 896 897 static void __cpuinit start_cpu_timer(int cpu) 898 { 899 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); 900 901 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); 902 schedule_delayed_work_on(cpu, vmstat_work, 903 __round_jiffies_relative(HZ, cpu)); 904 } 905 906 /* 907 * Use the cpu notifier to insure that the thresholds are recalculated 908 * when necessary. 909 */ 910 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 911 unsigned long action, 912 void *hcpu) 913 { 914 long cpu = (long)hcpu; 915 916 switch (action) { 917 case CPU_ONLINE: 918 case CPU_ONLINE_FROZEN: 919 start_cpu_timer(cpu); 920 break; 921 case CPU_DOWN_PREPARE: 922 case CPU_DOWN_PREPARE_FROZEN: 923 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu)); 924 per_cpu(vmstat_work, cpu).work.func = NULL; 925 break; 926 case CPU_DOWN_FAILED: 927 case CPU_DOWN_FAILED_FROZEN: 928 start_cpu_timer(cpu); 929 break; 930 case CPU_DEAD: 931 case CPU_DEAD_FROZEN: 932 refresh_zone_stat_thresholds(); 933 break; 934 default: 935 break; 936 } 937 return NOTIFY_OK; 938 } 939 940 static struct notifier_block __cpuinitdata vmstat_notifier = 941 { &vmstat_cpuup_callback, NULL, 0 }; 942 #endif 943 944 static int __init setup_vmstat(void) 945 { 946 #ifdef CONFIG_SMP 947 int cpu; 948 949 refresh_zone_stat_thresholds(); 950 register_cpu_notifier(&vmstat_notifier); 951 952 for_each_online_cpu(cpu) 953 start_cpu_timer(cpu); 954 #endif 955 #ifdef CONFIG_PROC_FS 956 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 957 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 958 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 959 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 960 #endif 961 return 0; 962 } 963 module_init(setup_vmstat) 964