1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #ifdef CONFIG_VM_EVENT_COUNTERS 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 36 37 static void sum_vm_events(unsigned long *ret) 38 { 39 int cpu; 40 int i; 41 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 43 44 for_each_online_cpu(cpu) { 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 46 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 48 ret[i] += this->event[i]; 49 } 50 } 51 52 /* 53 * Accumulate the vm event counters across all CPUs. 54 * The result is unavoidably approximate - it can change 55 * during and after execution of this function. 56 */ 57 void all_vm_events(unsigned long *ret) 58 { 59 get_online_cpus(); 60 sum_vm_events(ret); 61 put_online_cpus(); 62 } 63 EXPORT_SYMBOL_GPL(all_vm_events); 64 65 /* 66 * Fold the foreign cpu events into our own. 67 * 68 * This is adding to the events on one processor 69 * but keeps the global counts constant. 70 */ 71 void vm_events_fold_cpu(int cpu) 72 { 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 74 int i; 75 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 77 count_vm_events(i, fold_state->event[i]); 78 fold_state->event[i] = 0; 79 } 80 } 81 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 83 84 /* 85 * Manage combined zone based / global counters 86 * 87 * vm_stat contains the global counters 88 */ 89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 91 EXPORT_SYMBOL(vm_zone_stat); 92 EXPORT_SYMBOL(vm_node_stat); 93 94 #ifdef CONFIG_SMP 95 96 int calculate_pressure_threshold(struct zone *zone) 97 { 98 int threshold; 99 int watermark_distance; 100 101 /* 102 * As vmstats are not up to date, there is drift between the estimated 103 * and real values. For high thresholds and a high number of CPUs, it 104 * is possible for the min watermark to be breached while the estimated 105 * value looks fine. The pressure threshold is a reduced value such 106 * that even the maximum amount of drift will not accidentally breach 107 * the min watermark 108 */ 109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 110 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 111 112 /* 113 * Maximum threshold is 125 114 */ 115 threshold = min(125, threshold); 116 117 return threshold; 118 } 119 120 int calculate_normal_threshold(struct zone *zone) 121 { 122 int threshold; 123 int mem; /* memory in 128 MB units */ 124 125 /* 126 * The threshold scales with the number of processors and the amount 127 * of memory per zone. More memory means that we can defer updates for 128 * longer, more processors could lead to more contention. 129 * fls() is used to have a cheap way of logarithmic scaling. 130 * 131 * Some sample thresholds: 132 * 133 * Threshold Processors (fls) Zonesize fls(mem+1) 134 * ------------------------------------------------------------------ 135 * 8 1 1 0.9-1 GB 4 136 * 16 2 2 0.9-1 GB 4 137 * 20 2 2 1-2 GB 5 138 * 24 2 2 2-4 GB 6 139 * 28 2 2 4-8 GB 7 140 * 32 2 2 8-16 GB 8 141 * 4 2 2 <128M 1 142 * 30 4 3 2-4 GB 5 143 * 48 4 3 8-16 GB 8 144 * 32 8 4 1-2 GB 4 145 * 32 8 4 0.9-1GB 4 146 * 10 16 5 <128M 1 147 * 40 16 5 900M 4 148 * 70 64 7 2-4 GB 5 149 * 84 64 7 4-8 GB 6 150 * 108 512 9 4-8 GB 6 151 * 125 1024 10 8-16 GB 8 152 * 125 1024 10 16-32 GB 9 153 */ 154 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 156 157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 158 159 /* 160 * Maximum threshold is 125 161 */ 162 threshold = min(125, threshold); 163 164 return threshold; 165 } 166 167 /* 168 * Refresh the thresholds for each zone. 169 */ 170 void refresh_zone_stat_thresholds(void) 171 { 172 struct pglist_data *pgdat; 173 struct zone *zone; 174 int cpu; 175 int threshold; 176 177 /* Zero current pgdat thresholds */ 178 for_each_online_pgdat(pgdat) { 179 for_each_online_cpu(cpu) { 180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 181 } 182 } 183 184 for_each_populated_zone(zone) { 185 struct pglist_data *pgdat = zone->zone_pgdat; 186 unsigned long max_drift, tolerate_drift; 187 188 threshold = calculate_normal_threshold(zone); 189 190 for_each_online_cpu(cpu) { 191 int pgdat_threshold; 192 193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 194 = threshold; 195 196 /* Base nodestat threshold on the largest populated zone. */ 197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 199 = max(threshold, pgdat_threshold); 200 } 201 202 /* 203 * Only set percpu_drift_mark if there is a danger that 204 * NR_FREE_PAGES reports the low watermark is ok when in fact 205 * the min watermark could be breached by an allocation 206 */ 207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 208 max_drift = num_online_cpus() * threshold; 209 if (max_drift > tolerate_drift) 210 zone->percpu_drift_mark = high_wmark_pages(zone) + 211 max_drift; 212 } 213 } 214 215 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 216 int (*calculate_pressure)(struct zone *)) 217 { 218 struct zone *zone; 219 int cpu; 220 int threshold; 221 int i; 222 223 for (i = 0; i < pgdat->nr_zones; i++) { 224 zone = &pgdat->node_zones[i]; 225 if (!zone->percpu_drift_mark) 226 continue; 227 228 threshold = (*calculate_pressure)(zone); 229 for_each_online_cpu(cpu) 230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 231 = threshold; 232 } 233 } 234 235 /* 236 * For use when we know that interrupts are disabled, 237 * or when we know that preemption is disabled and that 238 * particular counter cannot be updated from interrupt context. 239 */ 240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 241 long delta) 242 { 243 struct per_cpu_pageset __percpu *pcp = zone->pageset; 244 s8 __percpu *p = pcp->vm_stat_diff + item; 245 long x; 246 long t; 247 248 x = delta + __this_cpu_read(*p); 249 250 t = __this_cpu_read(pcp->stat_threshold); 251 252 if (unlikely(x > t || x < -t)) { 253 zone_page_state_add(x, zone, item); 254 x = 0; 255 } 256 __this_cpu_write(*p, x); 257 } 258 EXPORT_SYMBOL(__mod_zone_page_state); 259 260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 261 long delta) 262 { 263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 264 s8 __percpu *p = pcp->vm_node_stat_diff + item; 265 long x; 266 long t; 267 268 x = delta + __this_cpu_read(*p); 269 270 t = __this_cpu_read(pcp->stat_threshold); 271 272 if (unlikely(x > t || x < -t)) { 273 node_page_state_add(x, pgdat, item); 274 x = 0; 275 } 276 __this_cpu_write(*p, x); 277 } 278 EXPORT_SYMBOL(__mod_node_page_state); 279 280 /* 281 * Optimized increment and decrement functions. 282 * 283 * These are only for a single page and therefore can take a struct page * 284 * argument instead of struct zone *. This allows the inclusion of the code 285 * generated for page_zone(page) into the optimized functions. 286 * 287 * No overflow check is necessary and therefore the differential can be 288 * incremented or decremented in place which may allow the compilers to 289 * generate better code. 290 * The increment or decrement is known and therefore one boundary check can 291 * be omitted. 292 * 293 * NOTE: These functions are very performance sensitive. Change only 294 * with care. 295 * 296 * Some processors have inc/dec instructions that are atomic vs an interrupt. 297 * However, the code must first determine the differential location in a zone 298 * based on the processor number and then inc/dec the counter. There is no 299 * guarantee without disabling preemption that the processor will not change 300 * in between and therefore the atomicity vs. interrupt cannot be exploited 301 * in a useful way here. 302 */ 303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 304 { 305 struct per_cpu_pageset __percpu *pcp = zone->pageset; 306 s8 __percpu *p = pcp->vm_stat_diff + item; 307 s8 v, t; 308 309 v = __this_cpu_inc_return(*p); 310 t = __this_cpu_read(pcp->stat_threshold); 311 if (unlikely(v > t)) { 312 s8 overstep = t >> 1; 313 314 zone_page_state_add(v + overstep, zone, item); 315 __this_cpu_write(*p, -overstep); 316 } 317 } 318 319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 320 { 321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 322 s8 __percpu *p = pcp->vm_node_stat_diff + item; 323 s8 v, t; 324 325 v = __this_cpu_inc_return(*p); 326 t = __this_cpu_read(pcp->stat_threshold); 327 if (unlikely(v > t)) { 328 s8 overstep = t >> 1; 329 330 node_page_state_add(v + overstep, pgdat, item); 331 __this_cpu_write(*p, -overstep); 332 } 333 } 334 335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 336 { 337 __inc_zone_state(page_zone(page), item); 338 } 339 EXPORT_SYMBOL(__inc_zone_page_state); 340 341 void __inc_node_page_state(struct page *page, enum node_stat_item item) 342 { 343 __inc_node_state(page_pgdat(page), item); 344 } 345 EXPORT_SYMBOL(__inc_node_page_state); 346 347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 348 { 349 struct per_cpu_pageset __percpu *pcp = zone->pageset; 350 s8 __percpu *p = pcp->vm_stat_diff + item; 351 s8 v, t; 352 353 v = __this_cpu_dec_return(*p); 354 t = __this_cpu_read(pcp->stat_threshold); 355 if (unlikely(v < - t)) { 356 s8 overstep = t >> 1; 357 358 zone_page_state_add(v - overstep, zone, item); 359 __this_cpu_write(*p, overstep); 360 } 361 } 362 363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 364 { 365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 366 s8 __percpu *p = pcp->vm_node_stat_diff + item; 367 s8 v, t; 368 369 v = __this_cpu_dec_return(*p); 370 t = __this_cpu_read(pcp->stat_threshold); 371 if (unlikely(v < - t)) { 372 s8 overstep = t >> 1; 373 374 node_page_state_add(v - overstep, pgdat, item); 375 __this_cpu_write(*p, overstep); 376 } 377 } 378 379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 380 { 381 __dec_zone_state(page_zone(page), item); 382 } 383 EXPORT_SYMBOL(__dec_zone_page_state); 384 385 void __dec_node_page_state(struct page *page, enum node_stat_item item) 386 { 387 __dec_node_state(page_pgdat(page), item); 388 } 389 EXPORT_SYMBOL(__dec_node_page_state); 390 391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 392 /* 393 * If we have cmpxchg_local support then we do not need to incur the overhead 394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 395 * 396 * mod_state() modifies the zone counter state through atomic per cpu 397 * operations. 398 * 399 * Overstep mode specifies how overstep should handled: 400 * 0 No overstepping 401 * 1 Overstepping half of threshold 402 * -1 Overstepping minus half of threshold 403 */ 404 static inline void mod_zone_state(struct zone *zone, 405 enum zone_stat_item item, long delta, int overstep_mode) 406 { 407 struct per_cpu_pageset __percpu *pcp = zone->pageset; 408 s8 __percpu *p = pcp->vm_stat_diff + item; 409 long o, n, t, z; 410 411 do { 412 z = 0; /* overflow to zone counters */ 413 414 /* 415 * The fetching of the stat_threshold is racy. We may apply 416 * a counter threshold to the wrong the cpu if we get 417 * rescheduled while executing here. However, the next 418 * counter update will apply the threshold again and 419 * therefore bring the counter under the threshold again. 420 * 421 * Most of the time the thresholds are the same anyways 422 * for all cpus in a zone. 423 */ 424 t = this_cpu_read(pcp->stat_threshold); 425 426 o = this_cpu_read(*p); 427 n = delta + o; 428 429 if (n > t || n < -t) { 430 int os = overstep_mode * (t >> 1) ; 431 432 /* Overflow must be added to zone counters */ 433 z = n + os; 434 n = -os; 435 } 436 } while (this_cpu_cmpxchg(*p, o, n) != o); 437 438 if (z) 439 zone_page_state_add(z, zone, item); 440 } 441 442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 443 long delta) 444 { 445 mod_zone_state(zone, item, delta, 0); 446 } 447 EXPORT_SYMBOL(mod_zone_page_state); 448 449 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 450 { 451 mod_zone_state(page_zone(page), item, 1, 1); 452 } 453 EXPORT_SYMBOL(inc_zone_page_state); 454 455 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 456 { 457 mod_zone_state(page_zone(page), item, -1, -1); 458 } 459 EXPORT_SYMBOL(dec_zone_page_state); 460 461 static inline void mod_node_state(struct pglist_data *pgdat, 462 enum node_stat_item item, int delta, int overstep_mode) 463 { 464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 465 s8 __percpu *p = pcp->vm_node_stat_diff + item; 466 long o, n, t, z; 467 468 do { 469 z = 0; /* overflow to node counters */ 470 471 /* 472 * The fetching of the stat_threshold is racy. We may apply 473 * a counter threshold to the wrong the cpu if we get 474 * rescheduled while executing here. However, the next 475 * counter update will apply the threshold again and 476 * therefore bring the counter under the threshold again. 477 * 478 * Most of the time the thresholds are the same anyways 479 * for all cpus in a node. 480 */ 481 t = this_cpu_read(pcp->stat_threshold); 482 483 o = this_cpu_read(*p); 484 n = delta + o; 485 486 if (n > t || n < -t) { 487 int os = overstep_mode * (t >> 1) ; 488 489 /* Overflow must be added to node counters */ 490 z = n + os; 491 n = -os; 492 } 493 } while (this_cpu_cmpxchg(*p, o, n) != o); 494 495 if (z) 496 node_page_state_add(z, pgdat, item); 497 } 498 499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 500 long delta) 501 { 502 mod_node_state(pgdat, item, delta, 0); 503 } 504 EXPORT_SYMBOL(mod_node_page_state); 505 506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 507 { 508 mod_node_state(pgdat, item, 1, 1); 509 } 510 511 void inc_node_page_state(struct page *page, enum node_stat_item item) 512 { 513 mod_node_state(page_pgdat(page), item, 1, 1); 514 } 515 EXPORT_SYMBOL(inc_node_page_state); 516 517 void dec_node_page_state(struct page *page, enum node_stat_item item) 518 { 519 mod_node_state(page_pgdat(page), item, -1, -1); 520 } 521 EXPORT_SYMBOL(dec_node_page_state); 522 #else 523 /* 524 * Use interrupt disable to serialize counter updates 525 */ 526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 527 long delta) 528 { 529 unsigned long flags; 530 531 local_irq_save(flags); 532 __mod_zone_page_state(zone, item, delta); 533 local_irq_restore(flags); 534 } 535 EXPORT_SYMBOL(mod_zone_page_state); 536 537 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 538 { 539 unsigned long flags; 540 struct zone *zone; 541 542 zone = page_zone(page); 543 local_irq_save(flags); 544 __inc_zone_state(zone, item); 545 local_irq_restore(flags); 546 } 547 EXPORT_SYMBOL(inc_zone_page_state); 548 549 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 550 { 551 unsigned long flags; 552 553 local_irq_save(flags); 554 __dec_zone_page_state(page, item); 555 local_irq_restore(flags); 556 } 557 EXPORT_SYMBOL(dec_zone_page_state); 558 559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 560 { 561 unsigned long flags; 562 563 local_irq_save(flags); 564 __inc_node_state(pgdat, item); 565 local_irq_restore(flags); 566 } 567 EXPORT_SYMBOL(inc_node_state); 568 569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 570 long delta) 571 { 572 unsigned long flags; 573 574 local_irq_save(flags); 575 __mod_node_page_state(pgdat, item, delta); 576 local_irq_restore(flags); 577 } 578 EXPORT_SYMBOL(mod_node_page_state); 579 580 void inc_node_page_state(struct page *page, enum node_stat_item item) 581 { 582 unsigned long flags; 583 struct pglist_data *pgdat; 584 585 pgdat = page_pgdat(page); 586 local_irq_save(flags); 587 __inc_node_state(pgdat, item); 588 local_irq_restore(flags); 589 } 590 EXPORT_SYMBOL(inc_node_page_state); 591 592 void dec_node_page_state(struct page *page, enum node_stat_item item) 593 { 594 unsigned long flags; 595 596 local_irq_save(flags); 597 __dec_node_page_state(page, item); 598 local_irq_restore(flags); 599 } 600 EXPORT_SYMBOL(dec_node_page_state); 601 #endif 602 603 /* 604 * Fold a differential into the global counters. 605 * Returns the number of counters updated. 606 */ 607 static int fold_diff(int *zone_diff, int *node_diff) 608 { 609 int i; 610 int changes = 0; 611 612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 613 if (zone_diff[i]) { 614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 615 changes++; 616 } 617 618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 619 if (node_diff[i]) { 620 atomic_long_add(node_diff[i], &vm_node_stat[i]); 621 changes++; 622 } 623 return changes; 624 } 625 626 /* 627 * Update the zone counters for the current cpu. 628 * 629 * Note that refresh_cpu_vm_stats strives to only access 630 * node local memory. The per cpu pagesets on remote zones are placed 631 * in the memory local to the processor using that pageset. So the 632 * loop over all zones will access a series of cachelines local to 633 * the processor. 634 * 635 * The call to zone_page_state_add updates the cachelines with the 636 * statistics in the remote zone struct as well as the global cachelines 637 * with the global counters. These could cause remote node cache line 638 * bouncing and will have to be only done when necessary. 639 * 640 * The function returns the number of global counters updated. 641 */ 642 static int refresh_cpu_vm_stats(bool do_pagesets) 643 { 644 struct pglist_data *pgdat; 645 struct zone *zone; 646 int i; 647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 649 int changes = 0; 650 651 for_each_populated_zone(zone) { 652 struct per_cpu_pageset __percpu *p = zone->pageset; 653 654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 655 int v; 656 657 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 658 if (v) { 659 660 atomic_long_add(v, &zone->vm_stat[i]); 661 global_zone_diff[i] += v; 662 #ifdef CONFIG_NUMA 663 /* 3 seconds idle till flush */ 664 __this_cpu_write(p->expire, 3); 665 #endif 666 } 667 } 668 #ifdef CONFIG_NUMA 669 if (do_pagesets) { 670 cond_resched(); 671 /* 672 * Deal with draining the remote pageset of this 673 * processor 674 * 675 * Check if there are pages remaining in this pageset 676 * if not then there is nothing to expire. 677 */ 678 if (!__this_cpu_read(p->expire) || 679 !__this_cpu_read(p->pcp.count)) 680 continue; 681 682 /* 683 * We never drain zones local to this processor. 684 */ 685 if (zone_to_nid(zone) == numa_node_id()) { 686 __this_cpu_write(p->expire, 0); 687 continue; 688 } 689 690 if (__this_cpu_dec_return(p->expire)) 691 continue; 692 693 if (__this_cpu_read(p->pcp.count)) { 694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 695 changes++; 696 } 697 } 698 #endif 699 } 700 701 for_each_online_pgdat(pgdat) { 702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 703 704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 705 int v; 706 707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 708 if (v) { 709 atomic_long_add(v, &pgdat->vm_stat[i]); 710 global_node_diff[i] += v; 711 } 712 } 713 } 714 715 changes += fold_diff(global_zone_diff, global_node_diff); 716 return changes; 717 } 718 719 /* 720 * Fold the data for an offline cpu into the global array. 721 * There cannot be any access by the offline cpu and therefore 722 * synchronization is simplified. 723 */ 724 void cpu_vm_stats_fold(int cpu) 725 { 726 struct pglist_data *pgdat; 727 struct zone *zone; 728 int i; 729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 731 732 for_each_populated_zone(zone) { 733 struct per_cpu_pageset *p; 734 735 p = per_cpu_ptr(zone->pageset, cpu); 736 737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 738 if (p->vm_stat_diff[i]) { 739 int v; 740 741 v = p->vm_stat_diff[i]; 742 p->vm_stat_diff[i] = 0; 743 atomic_long_add(v, &zone->vm_stat[i]); 744 global_zone_diff[i] += v; 745 } 746 } 747 748 for_each_online_pgdat(pgdat) { 749 struct per_cpu_nodestat *p; 750 751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 752 753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 754 if (p->vm_node_stat_diff[i]) { 755 int v; 756 757 v = p->vm_node_stat_diff[i]; 758 p->vm_node_stat_diff[i] = 0; 759 atomic_long_add(v, &pgdat->vm_stat[i]); 760 global_node_diff[i] += v; 761 } 762 } 763 764 fold_diff(global_zone_diff, global_node_diff); 765 } 766 767 /* 768 * this is only called if !populated_zone(zone), which implies no other users of 769 * pset->vm_stat_diff[] exsist. 770 */ 771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 772 { 773 int i; 774 775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 776 if (pset->vm_stat_diff[i]) { 777 int v = pset->vm_stat_diff[i]; 778 pset->vm_stat_diff[i] = 0; 779 atomic_long_add(v, &zone->vm_stat[i]); 780 atomic_long_add(v, &vm_zone_stat[i]); 781 } 782 } 783 #endif 784 785 #ifdef CONFIG_NUMA 786 /* 787 * Determine the per node value of a stat item. This function 788 * is called frequently in a NUMA machine, so try to be as 789 * frugal as possible. 790 */ 791 unsigned long sum_zone_node_page_state(int node, 792 enum zone_stat_item item) 793 { 794 struct zone *zones = NODE_DATA(node)->node_zones; 795 int i; 796 unsigned long count = 0; 797 798 for (i = 0; i < MAX_NR_ZONES; i++) 799 count += zone_page_state(zones + i, item); 800 801 return count; 802 } 803 804 /* 805 * Determine the per node value of a stat item. 806 */ 807 unsigned long node_page_state(struct pglist_data *pgdat, 808 enum node_stat_item item) 809 { 810 long x = atomic_long_read(&pgdat->vm_stat[item]); 811 #ifdef CONFIG_SMP 812 if (x < 0) 813 x = 0; 814 #endif 815 return x; 816 } 817 #endif 818 819 #ifdef CONFIG_COMPACTION 820 821 struct contig_page_info { 822 unsigned long free_pages; 823 unsigned long free_blocks_total; 824 unsigned long free_blocks_suitable; 825 }; 826 827 /* 828 * Calculate the number of free pages in a zone, how many contiguous 829 * pages are free and how many are large enough to satisfy an allocation of 830 * the target size. Note that this function makes no attempt to estimate 831 * how many suitable free blocks there *might* be if MOVABLE pages were 832 * migrated. Calculating that is possible, but expensive and can be 833 * figured out from userspace 834 */ 835 static void fill_contig_page_info(struct zone *zone, 836 unsigned int suitable_order, 837 struct contig_page_info *info) 838 { 839 unsigned int order; 840 841 info->free_pages = 0; 842 info->free_blocks_total = 0; 843 info->free_blocks_suitable = 0; 844 845 for (order = 0; order < MAX_ORDER; order++) { 846 unsigned long blocks; 847 848 /* Count number of free blocks */ 849 blocks = zone->free_area[order].nr_free; 850 info->free_blocks_total += blocks; 851 852 /* Count free base pages */ 853 info->free_pages += blocks << order; 854 855 /* Count the suitable free blocks */ 856 if (order >= suitable_order) 857 info->free_blocks_suitable += blocks << 858 (order - suitable_order); 859 } 860 } 861 862 /* 863 * A fragmentation index only makes sense if an allocation of a requested 864 * size would fail. If that is true, the fragmentation index indicates 865 * whether external fragmentation or a lack of memory was the problem. 866 * The value can be used to determine if page reclaim or compaction 867 * should be used 868 */ 869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 870 { 871 unsigned long requested = 1UL << order; 872 873 if (!info->free_blocks_total) 874 return 0; 875 876 /* Fragmentation index only makes sense when a request would fail */ 877 if (info->free_blocks_suitable) 878 return -1000; 879 880 /* 881 * Index is between 0 and 1 so return within 3 decimal places 882 * 883 * 0 => allocation would fail due to lack of memory 884 * 1 => allocation would fail due to fragmentation 885 */ 886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 887 } 888 889 /* Same as __fragmentation index but allocs contig_page_info on stack */ 890 int fragmentation_index(struct zone *zone, unsigned int order) 891 { 892 struct contig_page_info info; 893 894 fill_contig_page_info(zone, order, &info); 895 return __fragmentation_index(order, &info); 896 } 897 #endif 898 899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 900 #ifdef CONFIG_ZONE_DMA 901 #define TEXT_FOR_DMA(xx) xx "_dma", 902 #else 903 #define TEXT_FOR_DMA(xx) 904 #endif 905 906 #ifdef CONFIG_ZONE_DMA32 907 #define TEXT_FOR_DMA32(xx) xx "_dma32", 908 #else 909 #define TEXT_FOR_DMA32(xx) 910 #endif 911 912 #ifdef CONFIG_HIGHMEM 913 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 914 #else 915 #define TEXT_FOR_HIGHMEM(xx) 916 #endif 917 918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 919 TEXT_FOR_HIGHMEM(xx) xx "_movable", 920 921 const char * const vmstat_text[] = { 922 /* enum zone_stat_item countes */ 923 "nr_free_pages", 924 "nr_zone_inactive_anon", 925 "nr_zone_active_anon", 926 "nr_zone_inactive_file", 927 "nr_zone_active_file", 928 "nr_zone_unevictable", 929 "nr_zone_write_pending", 930 "nr_mlock", 931 "nr_slab_reclaimable", 932 "nr_slab_unreclaimable", 933 "nr_page_table_pages", 934 "nr_kernel_stack", 935 "nr_bounce", 936 #if IS_ENABLED(CONFIG_ZSMALLOC) 937 "nr_zspages", 938 #endif 939 #ifdef CONFIG_NUMA 940 "numa_hit", 941 "numa_miss", 942 "numa_foreign", 943 "numa_interleave", 944 "numa_local", 945 "numa_other", 946 #endif 947 "nr_free_cma", 948 949 /* Node-based counters */ 950 "nr_inactive_anon", 951 "nr_active_anon", 952 "nr_inactive_file", 953 "nr_active_file", 954 "nr_unevictable", 955 "nr_isolated_anon", 956 "nr_isolated_file", 957 "nr_pages_scanned", 958 "workingset_refault", 959 "workingset_activate", 960 "workingset_nodereclaim", 961 "nr_anon_pages", 962 "nr_mapped", 963 "nr_file_pages", 964 "nr_dirty", 965 "nr_writeback", 966 "nr_writeback_temp", 967 "nr_shmem", 968 "nr_shmem_hugepages", 969 "nr_shmem_pmdmapped", 970 "nr_anon_transparent_hugepages", 971 "nr_unstable", 972 "nr_vmscan_write", 973 "nr_vmscan_immediate_reclaim", 974 "nr_dirtied", 975 "nr_written", 976 977 /* enum writeback_stat_item counters */ 978 "nr_dirty_threshold", 979 "nr_dirty_background_threshold", 980 981 #ifdef CONFIG_VM_EVENT_COUNTERS 982 /* enum vm_event_item counters */ 983 "pgpgin", 984 "pgpgout", 985 "pswpin", 986 "pswpout", 987 988 TEXTS_FOR_ZONES("pgalloc") 989 TEXTS_FOR_ZONES("allocstall") 990 TEXTS_FOR_ZONES("pgskip") 991 992 "pgfree", 993 "pgactivate", 994 "pgdeactivate", 995 996 "pgfault", 997 "pgmajfault", 998 "pglazyfreed", 999 1000 "pgrefill", 1001 "pgsteal_kswapd", 1002 "pgsteal_direct", 1003 "pgscan_kswapd", 1004 "pgscan_direct", 1005 "pgscan_direct_throttle", 1006 1007 #ifdef CONFIG_NUMA 1008 "zone_reclaim_failed", 1009 #endif 1010 "pginodesteal", 1011 "slabs_scanned", 1012 "kswapd_inodesteal", 1013 "kswapd_low_wmark_hit_quickly", 1014 "kswapd_high_wmark_hit_quickly", 1015 "pageoutrun", 1016 1017 "pgrotated", 1018 1019 "drop_pagecache", 1020 "drop_slab", 1021 1022 #ifdef CONFIG_NUMA_BALANCING 1023 "numa_pte_updates", 1024 "numa_huge_pte_updates", 1025 "numa_hint_faults", 1026 "numa_hint_faults_local", 1027 "numa_pages_migrated", 1028 #endif 1029 #ifdef CONFIG_MIGRATION 1030 "pgmigrate_success", 1031 "pgmigrate_fail", 1032 #endif 1033 #ifdef CONFIG_COMPACTION 1034 "compact_migrate_scanned", 1035 "compact_free_scanned", 1036 "compact_isolated", 1037 "compact_stall", 1038 "compact_fail", 1039 "compact_success", 1040 "compact_daemon_wake", 1041 "compact_daemon_migrate_scanned", 1042 "compact_daemon_free_scanned", 1043 #endif 1044 1045 #ifdef CONFIG_HUGETLB_PAGE 1046 "htlb_buddy_alloc_success", 1047 "htlb_buddy_alloc_fail", 1048 #endif 1049 "unevictable_pgs_culled", 1050 "unevictable_pgs_scanned", 1051 "unevictable_pgs_rescued", 1052 "unevictable_pgs_mlocked", 1053 "unevictable_pgs_munlocked", 1054 "unevictable_pgs_cleared", 1055 "unevictable_pgs_stranded", 1056 1057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1058 "thp_fault_alloc", 1059 "thp_fault_fallback", 1060 "thp_collapse_alloc", 1061 "thp_collapse_alloc_failed", 1062 "thp_file_alloc", 1063 "thp_file_mapped", 1064 "thp_split_page", 1065 "thp_split_page_failed", 1066 "thp_deferred_split_page", 1067 "thp_split_pmd", 1068 "thp_zero_page_alloc", 1069 "thp_zero_page_alloc_failed", 1070 #endif 1071 #ifdef CONFIG_MEMORY_BALLOON 1072 "balloon_inflate", 1073 "balloon_deflate", 1074 #ifdef CONFIG_BALLOON_COMPACTION 1075 "balloon_migrate", 1076 #endif 1077 #endif /* CONFIG_MEMORY_BALLOON */ 1078 #ifdef CONFIG_DEBUG_TLBFLUSH 1079 #ifdef CONFIG_SMP 1080 "nr_tlb_remote_flush", 1081 "nr_tlb_remote_flush_received", 1082 #endif /* CONFIG_SMP */ 1083 "nr_tlb_local_flush_all", 1084 "nr_tlb_local_flush_one", 1085 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1086 1087 #ifdef CONFIG_DEBUG_VM_VMACACHE 1088 "vmacache_find_calls", 1089 "vmacache_find_hits", 1090 "vmacache_full_flushes", 1091 #endif 1092 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 1093 }; 1094 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 1095 1096 1097 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1098 defined(CONFIG_PROC_FS) 1099 static void *frag_start(struct seq_file *m, loff_t *pos) 1100 { 1101 pg_data_t *pgdat; 1102 loff_t node = *pos; 1103 1104 for (pgdat = first_online_pgdat(); 1105 pgdat && node; 1106 pgdat = next_online_pgdat(pgdat)) 1107 --node; 1108 1109 return pgdat; 1110 } 1111 1112 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1113 { 1114 pg_data_t *pgdat = (pg_data_t *)arg; 1115 1116 (*pos)++; 1117 return next_online_pgdat(pgdat); 1118 } 1119 1120 static void frag_stop(struct seq_file *m, void *arg) 1121 { 1122 } 1123 1124 /* Walk all the zones in a node and print using a callback */ 1125 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1126 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1127 { 1128 struct zone *zone; 1129 struct zone *node_zones = pgdat->node_zones; 1130 unsigned long flags; 1131 1132 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1133 if (!populated_zone(zone)) 1134 continue; 1135 1136 spin_lock_irqsave(&zone->lock, flags); 1137 print(m, pgdat, zone); 1138 spin_unlock_irqrestore(&zone->lock, flags); 1139 } 1140 } 1141 #endif 1142 1143 #ifdef CONFIG_PROC_FS 1144 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1145 struct zone *zone) 1146 { 1147 int order; 1148 1149 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1150 for (order = 0; order < MAX_ORDER; ++order) 1151 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1152 seq_putc(m, '\n'); 1153 } 1154 1155 /* 1156 * This walks the free areas for each zone. 1157 */ 1158 static int frag_show(struct seq_file *m, void *arg) 1159 { 1160 pg_data_t *pgdat = (pg_data_t *)arg; 1161 walk_zones_in_node(m, pgdat, frag_show_print); 1162 return 0; 1163 } 1164 1165 static void pagetypeinfo_showfree_print(struct seq_file *m, 1166 pg_data_t *pgdat, struct zone *zone) 1167 { 1168 int order, mtype; 1169 1170 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1171 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1172 pgdat->node_id, 1173 zone->name, 1174 migratetype_names[mtype]); 1175 for (order = 0; order < MAX_ORDER; ++order) { 1176 unsigned long freecount = 0; 1177 struct free_area *area; 1178 struct list_head *curr; 1179 1180 area = &(zone->free_area[order]); 1181 1182 list_for_each(curr, &area->free_list[mtype]) 1183 freecount++; 1184 seq_printf(m, "%6lu ", freecount); 1185 } 1186 seq_putc(m, '\n'); 1187 } 1188 } 1189 1190 /* Print out the free pages at each order for each migatetype */ 1191 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1192 { 1193 int order; 1194 pg_data_t *pgdat = (pg_data_t *)arg; 1195 1196 /* Print header */ 1197 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1198 for (order = 0; order < MAX_ORDER; ++order) 1199 seq_printf(m, "%6d ", order); 1200 seq_putc(m, '\n'); 1201 1202 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 1203 1204 return 0; 1205 } 1206 1207 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1208 pg_data_t *pgdat, struct zone *zone) 1209 { 1210 int mtype; 1211 unsigned long pfn; 1212 unsigned long start_pfn = zone->zone_start_pfn; 1213 unsigned long end_pfn = zone_end_pfn(zone); 1214 unsigned long count[MIGRATE_TYPES] = { 0, }; 1215 1216 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1217 struct page *page; 1218 1219 if (!pfn_valid(pfn)) 1220 continue; 1221 1222 page = pfn_to_page(pfn); 1223 1224 /* Watch for unexpected holes punched in the memmap */ 1225 if (!memmap_valid_within(pfn, page, zone)) 1226 continue; 1227 1228 if (page_zone(page) != zone) 1229 continue; 1230 1231 mtype = get_pageblock_migratetype(page); 1232 1233 if (mtype < MIGRATE_TYPES) 1234 count[mtype]++; 1235 } 1236 1237 /* Print counts */ 1238 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1239 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1240 seq_printf(m, "%12lu ", count[mtype]); 1241 seq_putc(m, '\n'); 1242 } 1243 1244 /* Print out the free pages at each order for each migratetype */ 1245 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1246 { 1247 int mtype; 1248 pg_data_t *pgdat = (pg_data_t *)arg; 1249 1250 seq_printf(m, "\n%-23s", "Number of blocks type "); 1251 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1252 seq_printf(m, "%12s ", migratetype_names[mtype]); 1253 seq_putc(m, '\n'); 1254 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1255 1256 return 0; 1257 } 1258 1259 /* 1260 * Print out the number of pageblocks for each migratetype that contain pages 1261 * of other types. This gives an indication of how well fallbacks are being 1262 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1263 * to determine what is going on 1264 */ 1265 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1266 { 1267 #ifdef CONFIG_PAGE_OWNER 1268 int mtype; 1269 1270 if (!static_branch_unlikely(&page_owner_inited)) 1271 return; 1272 1273 drain_all_pages(NULL); 1274 1275 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1276 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1277 seq_printf(m, "%12s ", migratetype_names[mtype]); 1278 seq_putc(m, '\n'); 1279 1280 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1281 #endif /* CONFIG_PAGE_OWNER */ 1282 } 1283 1284 /* 1285 * This prints out statistics in relation to grouping pages by mobility. 1286 * It is expensive to collect so do not constantly read the file. 1287 */ 1288 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1289 { 1290 pg_data_t *pgdat = (pg_data_t *)arg; 1291 1292 /* check memoryless node */ 1293 if (!node_state(pgdat->node_id, N_MEMORY)) 1294 return 0; 1295 1296 seq_printf(m, "Page block order: %d\n", pageblock_order); 1297 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1298 seq_putc(m, '\n'); 1299 pagetypeinfo_showfree(m, pgdat); 1300 pagetypeinfo_showblockcount(m, pgdat); 1301 pagetypeinfo_showmixedcount(m, pgdat); 1302 1303 return 0; 1304 } 1305 1306 static const struct seq_operations fragmentation_op = { 1307 .start = frag_start, 1308 .next = frag_next, 1309 .stop = frag_stop, 1310 .show = frag_show, 1311 }; 1312 1313 static int fragmentation_open(struct inode *inode, struct file *file) 1314 { 1315 return seq_open(file, &fragmentation_op); 1316 } 1317 1318 static const struct file_operations fragmentation_file_operations = { 1319 .open = fragmentation_open, 1320 .read = seq_read, 1321 .llseek = seq_lseek, 1322 .release = seq_release, 1323 }; 1324 1325 static const struct seq_operations pagetypeinfo_op = { 1326 .start = frag_start, 1327 .next = frag_next, 1328 .stop = frag_stop, 1329 .show = pagetypeinfo_show, 1330 }; 1331 1332 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1333 { 1334 return seq_open(file, &pagetypeinfo_op); 1335 } 1336 1337 static const struct file_operations pagetypeinfo_file_ops = { 1338 .open = pagetypeinfo_open, 1339 .read = seq_read, 1340 .llseek = seq_lseek, 1341 .release = seq_release, 1342 }; 1343 1344 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1345 { 1346 int zid; 1347 1348 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1349 struct zone *compare = &pgdat->node_zones[zid]; 1350 1351 if (populated_zone(compare)) 1352 return zone == compare; 1353 } 1354 1355 /* The zone must be somewhere! */ 1356 WARN_ON_ONCE(1); 1357 return false; 1358 } 1359 1360 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1361 struct zone *zone) 1362 { 1363 int i; 1364 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1365 if (is_zone_first_populated(pgdat, zone)) { 1366 seq_printf(m, "\n per-node stats"); 1367 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1368 seq_printf(m, "\n %-12s %lu", 1369 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1370 node_page_state(pgdat, i)); 1371 } 1372 } 1373 seq_printf(m, 1374 "\n pages free %lu" 1375 "\n min %lu" 1376 "\n low %lu" 1377 "\n high %lu" 1378 "\n node_scanned %lu" 1379 "\n spanned %lu" 1380 "\n present %lu" 1381 "\n managed %lu", 1382 zone_page_state(zone, NR_FREE_PAGES), 1383 min_wmark_pages(zone), 1384 low_wmark_pages(zone), 1385 high_wmark_pages(zone), 1386 node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED), 1387 zone->spanned_pages, 1388 zone->present_pages, 1389 zone->managed_pages); 1390 1391 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1392 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1393 zone_page_state(zone, i)); 1394 1395 seq_printf(m, 1396 "\n protection: (%ld", 1397 zone->lowmem_reserve[0]); 1398 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1399 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1400 seq_printf(m, 1401 ")" 1402 "\n pagesets"); 1403 for_each_online_cpu(i) { 1404 struct per_cpu_pageset *pageset; 1405 1406 pageset = per_cpu_ptr(zone->pageset, i); 1407 seq_printf(m, 1408 "\n cpu: %i" 1409 "\n count: %i" 1410 "\n high: %i" 1411 "\n batch: %i", 1412 i, 1413 pageset->pcp.count, 1414 pageset->pcp.high, 1415 pageset->pcp.batch); 1416 #ifdef CONFIG_SMP 1417 seq_printf(m, "\n vm stats threshold: %d", 1418 pageset->stat_threshold); 1419 #endif 1420 } 1421 seq_printf(m, 1422 "\n node_unreclaimable: %u" 1423 "\n start_pfn: %lu" 1424 "\n node_inactive_ratio: %u", 1425 !pgdat_reclaimable(zone->zone_pgdat), 1426 zone->zone_start_pfn, 1427 zone->zone_pgdat->inactive_ratio); 1428 seq_putc(m, '\n'); 1429 } 1430 1431 /* 1432 * Output information about zones in @pgdat. 1433 */ 1434 static int zoneinfo_show(struct seq_file *m, void *arg) 1435 { 1436 pg_data_t *pgdat = (pg_data_t *)arg; 1437 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1438 return 0; 1439 } 1440 1441 static const struct seq_operations zoneinfo_op = { 1442 .start = frag_start, /* iterate over all zones. The same as in 1443 * fragmentation. */ 1444 .next = frag_next, 1445 .stop = frag_stop, 1446 .show = zoneinfo_show, 1447 }; 1448 1449 static int zoneinfo_open(struct inode *inode, struct file *file) 1450 { 1451 return seq_open(file, &zoneinfo_op); 1452 } 1453 1454 static const struct file_operations proc_zoneinfo_file_operations = { 1455 .open = zoneinfo_open, 1456 .read = seq_read, 1457 .llseek = seq_lseek, 1458 .release = seq_release, 1459 }; 1460 1461 enum writeback_stat_item { 1462 NR_DIRTY_THRESHOLD, 1463 NR_DIRTY_BG_THRESHOLD, 1464 NR_VM_WRITEBACK_STAT_ITEMS, 1465 }; 1466 1467 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1468 { 1469 unsigned long *v; 1470 int i, stat_items_size; 1471 1472 if (*pos >= ARRAY_SIZE(vmstat_text)) 1473 return NULL; 1474 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1475 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + 1476 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1477 1478 #ifdef CONFIG_VM_EVENT_COUNTERS 1479 stat_items_size += sizeof(struct vm_event_state); 1480 #endif 1481 1482 v = kmalloc(stat_items_size, GFP_KERNEL); 1483 m->private = v; 1484 if (!v) 1485 return ERR_PTR(-ENOMEM); 1486 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1487 v[i] = global_page_state(i); 1488 v += NR_VM_ZONE_STAT_ITEMS; 1489 1490 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1491 v[i] = global_node_page_state(i); 1492 v += NR_VM_NODE_STAT_ITEMS; 1493 1494 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1495 v + NR_DIRTY_THRESHOLD); 1496 v += NR_VM_WRITEBACK_STAT_ITEMS; 1497 1498 #ifdef CONFIG_VM_EVENT_COUNTERS 1499 all_vm_events(v); 1500 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1501 v[PGPGOUT] /= 2; 1502 #endif 1503 return (unsigned long *)m->private + *pos; 1504 } 1505 1506 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1507 { 1508 (*pos)++; 1509 if (*pos >= ARRAY_SIZE(vmstat_text)) 1510 return NULL; 1511 return (unsigned long *)m->private + *pos; 1512 } 1513 1514 static int vmstat_show(struct seq_file *m, void *arg) 1515 { 1516 unsigned long *l = arg; 1517 unsigned long off = l - (unsigned long *)m->private; 1518 1519 seq_puts(m, vmstat_text[off]); 1520 seq_put_decimal_ull(m, " ", *l); 1521 seq_putc(m, '\n'); 1522 return 0; 1523 } 1524 1525 static void vmstat_stop(struct seq_file *m, void *arg) 1526 { 1527 kfree(m->private); 1528 m->private = NULL; 1529 } 1530 1531 static const struct seq_operations vmstat_op = { 1532 .start = vmstat_start, 1533 .next = vmstat_next, 1534 .stop = vmstat_stop, 1535 .show = vmstat_show, 1536 }; 1537 1538 static int vmstat_open(struct inode *inode, struct file *file) 1539 { 1540 return seq_open(file, &vmstat_op); 1541 } 1542 1543 static const struct file_operations proc_vmstat_file_operations = { 1544 .open = vmstat_open, 1545 .read = seq_read, 1546 .llseek = seq_lseek, 1547 .release = seq_release, 1548 }; 1549 #endif /* CONFIG_PROC_FS */ 1550 1551 #ifdef CONFIG_SMP 1552 static struct workqueue_struct *vmstat_wq; 1553 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1554 int sysctl_stat_interval __read_mostly = HZ; 1555 1556 #ifdef CONFIG_PROC_FS 1557 static void refresh_vm_stats(struct work_struct *work) 1558 { 1559 refresh_cpu_vm_stats(true); 1560 } 1561 1562 int vmstat_refresh(struct ctl_table *table, int write, 1563 void __user *buffer, size_t *lenp, loff_t *ppos) 1564 { 1565 long val; 1566 int err; 1567 int i; 1568 1569 /* 1570 * The regular update, every sysctl_stat_interval, may come later 1571 * than expected: leaving a significant amount in per_cpu buckets. 1572 * This is particularly misleading when checking a quantity of HUGE 1573 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1574 * which can equally be echo'ed to or cat'ted from (by root), 1575 * can be used to update the stats just before reading them. 1576 * 1577 * Oh, and since global_page_state() etc. are so careful to hide 1578 * transiently negative values, report an error here if any of 1579 * the stats is negative, so we know to go looking for imbalance. 1580 */ 1581 err = schedule_on_each_cpu(refresh_vm_stats); 1582 if (err) 1583 return err; 1584 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1585 val = atomic_long_read(&vm_zone_stat[i]); 1586 if (val < 0) { 1587 switch (i) { 1588 case NR_PAGES_SCANNED: 1589 /* 1590 * This is often seen to go negative in 1591 * recent kernels, but not to go permanently 1592 * negative. Whilst it would be nicer not to 1593 * have exceptions, rooting them out would be 1594 * another task, of rather low priority. 1595 */ 1596 break; 1597 default: 1598 pr_warn("%s: %s %ld\n", 1599 __func__, vmstat_text[i], val); 1600 err = -EINVAL; 1601 break; 1602 } 1603 } 1604 } 1605 if (err) 1606 return err; 1607 if (write) 1608 *ppos += *lenp; 1609 else 1610 *lenp = 0; 1611 return 0; 1612 } 1613 #endif /* CONFIG_PROC_FS */ 1614 1615 static void vmstat_update(struct work_struct *w) 1616 { 1617 if (refresh_cpu_vm_stats(true)) { 1618 /* 1619 * Counters were updated so we expect more updates 1620 * to occur in the future. Keep on running the 1621 * update worker thread. 1622 */ 1623 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 1624 this_cpu_ptr(&vmstat_work), 1625 round_jiffies_relative(sysctl_stat_interval)); 1626 } 1627 } 1628 1629 /* 1630 * Switch off vmstat processing and then fold all the remaining differentials 1631 * until the diffs stay at zero. The function is used by NOHZ and can only be 1632 * invoked when tick processing is not active. 1633 */ 1634 /* 1635 * Check if the diffs for a certain cpu indicate that 1636 * an update is needed. 1637 */ 1638 static bool need_update(int cpu) 1639 { 1640 struct zone *zone; 1641 1642 for_each_populated_zone(zone) { 1643 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1644 1645 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1646 /* 1647 * The fast way of checking if there are any vmstat diffs. 1648 * This works because the diffs are byte sized items. 1649 */ 1650 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1651 return true; 1652 1653 } 1654 return false; 1655 } 1656 1657 /* 1658 * Switch off vmstat processing and then fold all the remaining differentials 1659 * until the diffs stay at zero. The function is used by NOHZ and can only be 1660 * invoked when tick processing is not active. 1661 */ 1662 void quiet_vmstat(void) 1663 { 1664 if (system_state != SYSTEM_RUNNING) 1665 return; 1666 1667 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1668 return; 1669 1670 if (!need_update(smp_processor_id())) 1671 return; 1672 1673 /* 1674 * Just refresh counters and do not care about the pending delayed 1675 * vmstat_update. It doesn't fire that often to matter and canceling 1676 * it would be too expensive from this path. 1677 * vmstat_shepherd will take care about that for us. 1678 */ 1679 refresh_cpu_vm_stats(false); 1680 } 1681 1682 /* 1683 * Shepherd worker thread that checks the 1684 * differentials of processors that have their worker 1685 * threads for vm statistics updates disabled because of 1686 * inactivity. 1687 */ 1688 static void vmstat_shepherd(struct work_struct *w); 1689 1690 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1691 1692 static void vmstat_shepherd(struct work_struct *w) 1693 { 1694 int cpu; 1695 1696 get_online_cpus(); 1697 /* Check processors whose vmstat worker threads have been disabled */ 1698 for_each_online_cpu(cpu) { 1699 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1700 1701 if (!delayed_work_pending(dw) && need_update(cpu)) 1702 queue_delayed_work_on(cpu, vmstat_wq, dw, 0); 1703 } 1704 put_online_cpus(); 1705 1706 schedule_delayed_work(&shepherd, 1707 round_jiffies_relative(sysctl_stat_interval)); 1708 } 1709 1710 static void __init start_shepherd_timer(void) 1711 { 1712 int cpu; 1713 1714 for_each_possible_cpu(cpu) 1715 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1716 vmstat_update); 1717 1718 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 1719 schedule_delayed_work(&shepherd, 1720 round_jiffies_relative(sysctl_stat_interval)); 1721 } 1722 1723 static void __init init_cpu_node_state(void) 1724 { 1725 int node; 1726 1727 for_each_online_node(node) { 1728 if (cpumask_weight(cpumask_of_node(node)) > 0) 1729 node_set_state(node, N_CPU); 1730 } 1731 } 1732 1733 static int vmstat_cpu_online(unsigned int cpu) 1734 { 1735 refresh_zone_stat_thresholds(); 1736 node_set_state(cpu_to_node(cpu), N_CPU); 1737 return 0; 1738 } 1739 1740 static int vmstat_cpu_down_prep(unsigned int cpu) 1741 { 1742 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1743 return 0; 1744 } 1745 1746 static int vmstat_cpu_dead(unsigned int cpu) 1747 { 1748 const struct cpumask *node_cpus; 1749 int node; 1750 1751 node = cpu_to_node(cpu); 1752 1753 refresh_zone_stat_thresholds(); 1754 node_cpus = cpumask_of_node(node); 1755 if (cpumask_weight(node_cpus) > 0) 1756 return 0; 1757 1758 node_clear_state(node, N_CPU); 1759 return 0; 1760 } 1761 1762 #endif 1763 1764 static int __init setup_vmstat(void) 1765 { 1766 #ifdef CONFIG_SMP 1767 int ret; 1768 1769 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 1770 NULL, vmstat_cpu_dead); 1771 if (ret < 0) 1772 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 1773 1774 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 1775 vmstat_cpu_online, 1776 vmstat_cpu_down_prep); 1777 if (ret < 0) 1778 pr_err("vmstat: failed to register 'online' hotplug state\n"); 1779 1780 get_online_cpus(); 1781 init_cpu_node_state(); 1782 put_online_cpus(); 1783 1784 start_shepherd_timer(); 1785 #endif 1786 #ifdef CONFIG_PROC_FS 1787 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1788 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1789 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1790 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1791 #endif 1792 return 0; 1793 } 1794 module_init(setup_vmstat) 1795 1796 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1797 1798 /* 1799 * Return an index indicating how much of the available free memory is 1800 * unusable for an allocation of the requested size. 1801 */ 1802 static int unusable_free_index(unsigned int order, 1803 struct contig_page_info *info) 1804 { 1805 /* No free memory is interpreted as all free memory is unusable */ 1806 if (info->free_pages == 0) 1807 return 1000; 1808 1809 /* 1810 * Index should be a value between 0 and 1. Return a value to 3 1811 * decimal places. 1812 * 1813 * 0 => no fragmentation 1814 * 1 => high fragmentation 1815 */ 1816 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1817 1818 } 1819 1820 static void unusable_show_print(struct seq_file *m, 1821 pg_data_t *pgdat, struct zone *zone) 1822 { 1823 unsigned int order; 1824 int index; 1825 struct contig_page_info info; 1826 1827 seq_printf(m, "Node %d, zone %8s ", 1828 pgdat->node_id, 1829 zone->name); 1830 for (order = 0; order < MAX_ORDER; ++order) { 1831 fill_contig_page_info(zone, order, &info); 1832 index = unusable_free_index(order, &info); 1833 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1834 } 1835 1836 seq_putc(m, '\n'); 1837 } 1838 1839 /* 1840 * Display unusable free space index 1841 * 1842 * The unusable free space index measures how much of the available free 1843 * memory cannot be used to satisfy an allocation of a given size and is a 1844 * value between 0 and 1. The higher the value, the more of free memory is 1845 * unusable and by implication, the worse the external fragmentation is. This 1846 * can be expressed as a percentage by multiplying by 100. 1847 */ 1848 static int unusable_show(struct seq_file *m, void *arg) 1849 { 1850 pg_data_t *pgdat = (pg_data_t *)arg; 1851 1852 /* check memoryless node */ 1853 if (!node_state(pgdat->node_id, N_MEMORY)) 1854 return 0; 1855 1856 walk_zones_in_node(m, pgdat, unusable_show_print); 1857 1858 return 0; 1859 } 1860 1861 static const struct seq_operations unusable_op = { 1862 .start = frag_start, 1863 .next = frag_next, 1864 .stop = frag_stop, 1865 .show = unusable_show, 1866 }; 1867 1868 static int unusable_open(struct inode *inode, struct file *file) 1869 { 1870 return seq_open(file, &unusable_op); 1871 } 1872 1873 static const struct file_operations unusable_file_ops = { 1874 .open = unusable_open, 1875 .read = seq_read, 1876 .llseek = seq_lseek, 1877 .release = seq_release, 1878 }; 1879 1880 static void extfrag_show_print(struct seq_file *m, 1881 pg_data_t *pgdat, struct zone *zone) 1882 { 1883 unsigned int order; 1884 int index; 1885 1886 /* Alloc on stack as interrupts are disabled for zone walk */ 1887 struct contig_page_info info; 1888 1889 seq_printf(m, "Node %d, zone %8s ", 1890 pgdat->node_id, 1891 zone->name); 1892 for (order = 0; order < MAX_ORDER; ++order) { 1893 fill_contig_page_info(zone, order, &info); 1894 index = __fragmentation_index(order, &info); 1895 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1896 } 1897 1898 seq_putc(m, '\n'); 1899 } 1900 1901 /* 1902 * Display fragmentation index for orders that allocations would fail for 1903 */ 1904 static int extfrag_show(struct seq_file *m, void *arg) 1905 { 1906 pg_data_t *pgdat = (pg_data_t *)arg; 1907 1908 walk_zones_in_node(m, pgdat, extfrag_show_print); 1909 1910 return 0; 1911 } 1912 1913 static const struct seq_operations extfrag_op = { 1914 .start = frag_start, 1915 .next = frag_next, 1916 .stop = frag_stop, 1917 .show = extfrag_show, 1918 }; 1919 1920 static int extfrag_open(struct inode *inode, struct file *file) 1921 { 1922 return seq_open(file, &extfrag_op); 1923 } 1924 1925 static const struct file_operations extfrag_file_ops = { 1926 .open = extfrag_open, 1927 .read = seq_read, 1928 .llseek = seq_lseek, 1929 .release = seq_release, 1930 }; 1931 1932 static int __init extfrag_debug_init(void) 1933 { 1934 struct dentry *extfrag_debug_root; 1935 1936 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1937 if (!extfrag_debug_root) 1938 return -ENOMEM; 1939 1940 if (!debugfs_create_file("unusable_index", 0444, 1941 extfrag_debug_root, NULL, &unusable_file_ops)) 1942 goto fail; 1943 1944 if (!debugfs_create_file("extfrag_index", 0444, 1945 extfrag_debug_root, NULL, &extfrag_file_ops)) 1946 goto fail; 1947 1948 return 0; 1949 fail: 1950 debugfs_remove_recursive(extfrag_debug_root); 1951 return -ENOMEM; 1952 } 1953 1954 module_init(extfrag_debug_init); 1955 #endif 1956