xref: /openbmc/linux/mm/vmstat.c (revision a3cbcadf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 	int item, cpu;
41 
42 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 		atomic_long_set(&zone->vm_numa_event[item], 0);
44 		for_each_online_cpu(cpu) {
45 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 						= 0;
47 		}
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_event[item], 0);
67 }
68 
69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 	get_online_cpus();
133 	sum_vm_events(ret);
134 	put_online_cpus();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_SMP
169 
170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 	int threshold;
173 	int watermark_distance;
174 
175 	/*
176 	 * As vmstats are not up to date, there is drift between the estimated
177 	 * and real values. For high thresholds and a high number of CPUs, it
178 	 * is possible for the min watermark to be breached while the estimated
179 	 * value looks fine. The pressure threshold is a reduced value such
180 	 * that even the maximum amount of drift will not accidentally breach
181 	 * the min watermark
182 	 */
183 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185 
186 	/*
187 	 * Maximum threshold is 125
188 	 */
189 	threshold = min(125, threshold);
190 
191 	return threshold;
192 }
193 
194 int calculate_normal_threshold(struct zone *zone)
195 {
196 	int threshold;
197 	int mem;	/* memory in 128 MB units */
198 
199 	/*
200 	 * The threshold scales with the number of processors and the amount
201 	 * of memory per zone. More memory means that we can defer updates for
202 	 * longer, more processors could lead to more contention.
203  	 * fls() is used to have a cheap way of logarithmic scaling.
204 	 *
205 	 * Some sample thresholds:
206 	 *
207 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
208 	 * ------------------------------------------------------------------
209 	 * 8		1		1	0.9-1 GB	4
210 	 * 16		2		2	0.9-1 GB	4
211 	 * 20 		2		2	1-2 GB		5
212 	 * 24		2		2	2-4 GB		6
213 	 * 28		2		2	4-8 GB		7
214 	 * 32		2		2	8-16 GB		8
215 	 * 4		2		2	<128M		1
216 	 * 30		4		3	2-4 GB		5
217 	 * 48		4		3	8-16 GB		8
218 	 * 32		8		4	1-2 GB		4
219 	 * 32		8		4	0.9-1GB		4
220 	 * 10		16		5	<128M		1
221 	 * 40		16		5	900M		4
222 	 * 70		64		7	2-4 GB		5
223 	 * 84		64		7	4-8 GB		6
224 	 * 108		512		9	4-8 GB		6
225 	 * 125		1024		10	8-16 GB		8
226 	 * 125		1024		10	16-32 GB	9
227 	 */
228 
229 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230 
231 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232 
233 	/*
234 	 * Maximum threshold is 125
235 	 */
236 	threshold = min(125, threshold);
237 
238 	return threshold;
239 }
240 
241 /*
242  * Refresh the thresholds for each zone.
243  */
244 void refresh_zone_stat_thresholds(void)
245 {
246 	struct pglist_data *pgdat;
247 	struct zone *zone;
248 	int cpu;
249 	int threshold;
250 
251 	/* Zero current pgdat thresholds */
252 	for_each_online_pgdat(pgdat) {
253 		for_each_online_cpu(cpu) {
254 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 		}
256 	}
257 
258 	for_each_populated_zone(zone) {
259 		struct pglist_data *pgdat = zone->zone_pgdat;
260 		unsigned long max_drift, tolerate_drift;
261 
262 		threshold = calculate_normal_threshold(zone);
263 
264 		for_each_online_cpu(cpu) {
265 			int pgdat_threshold;
266 
267 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 							= threshold;
269 
270 			/* Base nodestat threshold on the largest populated zone. */
271 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 				= max(threshold, pgdat_threshold);
274 		}
275 
276 		/*
277 		 * Only set percpu_drift_mark if there is a danger that
278 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 		 * the min watermark could be breached by an allocation
280 		 */
281 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 		max_drift = num_online_cpus() * threshold;
283 		if (max_drift > tolerate_drift)
284 			zone->percpu_drift_mark = high_wmark_pages(zone) +
285 					max_drift;
286 	}
287 }
288 
289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 				int (*calculate_pressure)(struct zone *))
291 {
292 	struct zone *zone;
293 	int cpu;
294 	int threshold;
295 	int i;
296 
297 	for (i = 0; i < pgdat->nr_zones; i++) {
298 		zone = &pgdat->node_zones[i];
299 		if (!zone->percpu_drift_mark)
300 			continue;
301 
302 		threshold = (*calculate_pressure)(zone);
303 		for_each_online_cpu(cpu)
304 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 							= threshold;
306 	}
307 }
308 
309 /*
310  * For use when we know that interrupts are disabled,
311  * or when we know that preemption is disabled and that
312  * particular counter cannot be updated from interrupt context.
313  */
314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 			   long delta)
316 {
317 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long x;
320 	long t;
321 
322 	x = delta + __this_cpu_read(*p);
323 
324 	t = __this_cpu_read(pcp->stat_threshold);
325 
326 	if (unlikely(abs(x) > t)) {
327 		zone_page_state_add(x, zone, item);
328 		x = 0;
329 	}
330 	__this_cpu_write(*p, x);
331 }
332 EXPORT_SYMBOL(__mod_zone_page_state);
333 
334 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
335 				long delta)
336 {
337 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
338 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
339 	long x;
340 	long t;
341 
342 	if (vmstat_item_in_bytes(item)) {
343 		/*
344 		 * Only cgroups use subpage accounting right now; at
345 		 * the global level, these items still change in
346 		 * multiples of whole pages. Store them as pages
347 		 * internally to keep the per-cpu counters compact.
348 		 */
349 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
350 		delta >>= PAGE_SHIFT;
351 	}
352 
353 	x = delta + __this_cpu_read(*p);
354 
355 	t = __this_cpu_read(pcp->stat_threshold);
356 
357 	if (unlikely(abs(x) > t)) {
358 		node_page_state_add(x, pgdat, item);
359 		x = 0;
360 	}
361 	__this_cpu_write(*p, x);
362 }
363 EXPORT_SYMBOL(__mod_node_page_state);
364 
365 /*
366  * Optimized increment and decrement functions.
367  *
368  * These are only for a single page and therefore can take a struct page *
369  * argument instead of struct zone *. This allows the inclusion of the code
370  * generated for page_zone(page) into the optimized functions.
371  *
372  * No overflow check is necessary and therefore the differential can be
373  * incremented or decremented in place which may allow the compilers to
374  * generate better code.
375  * The increment or decrement is known and therefore one boundary check can
376  * be omitted.
377  *
378  * NOTE: These functions are very performance sensitive. Change only
379  * with care.
380  *
381  * Some processors have inc/dec instructions that are atomic vs an interrupt.
382  * However, the code must first determine the differential location in a zone
383  * based on the processor number and then inc/dec the counter. There is no
384  * guarantee without disabling preemption that the processor will not change
385  * in between and therefore the atomicity vs. interrupt cannot be exploited
386  * in a useful way here.
387  */
388 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
391 	s8 __percpu *p = pcp->vm_stat_diff + item;
392 	s8 v, t;
393 
394 	v = __this_cpu_inc_return(*p);
395 	t = __this_cpu_read(pcp->stat_threshold);
396 	if (unlikely(v > t)) {
397 		s8 overstep = t >> 1;
398 
399 		zone_page_state_add(v + overstep, zone, item);
400 		__this_cpu_write(*p, -overstep);
401 	}
402 }
403 
404 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
405 {
406 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
407 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
408 	s8 v, t;
409 
410 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
411 
412 	v = __this_cpu_inc_return(*p);
413 	t = __this_cpu_read(pcp->stat_threshold);
414 	if (unlikely(v > t)) {
415 		s8 overstep = t >> 1;
416 
417 		node_page_state_add(v + overstep, pgdat, item);
418 		__this_cpu_write(*p, -overstep);
419 	}
420 }
421 
422 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
423 {
424 	__inc_zone_state(page_zone(page), item);
425 }
426 EXPORT_SYMBOL(__inc_zone_page_state);
427 
428 void __inc_node_page_state(struct page *page, enum node_stat_item item)
429 {
430 	__inc_node_state(page_pgdat(page), item);
431 }
432 EXPORT_SYMBOL(__inc_node_page_state);
433 
434 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
435 {
436 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
437 	s8 __percpu *p = pcp->vm_stat_diff + item;
438 	s8 v, t;
439 
440 	v = __this_cpu_dec_return(*p);
441 	t = __this_cpu_read(pcp->stat_threshold);
442 	if (unlikely(v < - t)) {
443 		s8 overstep = t >> 1;
444 
445 		zone_page_state_add(v - overstep, zone, item);
446 		__this_cpu_write(*p, overstep);
447 	}
448 }
449 
450 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
451 {
452 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
453 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
454 	s8 v, t;
455 
456 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
457 
458 	v = __this_cpu_dec_return(*p);
459 	t = __this_cpu_read(pcp->stat_threshold);
460 	if (unlikely(v < - t)) {
461 		s8 overstep = t >> 1;
462 
463 		node_page_state_add(v - overstep, pgdat, item);
464 		__this_cpu_write(*p, overstep);
465 	}
466 }
467 
468 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
469 {
470 	__dec_zone_state(page_zone(page), item);
471 }
472 EXPORT_SYMBOL(__dec_zone_page_state);
473 
474 void __dec_node_page_state(struct page *page, enum node_stat_item item)
475 {
476 	__dec_node_state(page_pgdat(page), item);
477 }
478 EXPORT_SYMBOL(__dec_node_page_state);
479 
480 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
481 /*
482  * If we have cmpxchg_local support then we do not need to incur the overhead
483  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
484  *
485  * mod_state() modifies the zone counter state through atomic per cpu
486  * operations.
487  *
488  * Overstep mode specifies how overstep should handled:
489  *     0       No overstepping
490  *     1       Overstepping half of threshold
491  *     -1      Overstepping minus half of threshold
492 */
493 static inline void mod_zone_state(struct zone *zone,
494        enum zone_stat_item item, long delta, int overstep_mode)
495 {
496 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
497 	s8 __percpu *p = pcp->vm_stat_diff + item;
498 	long o, n, t, z;
499 
500 	do {
501 		z = 0;  /* overflow to zone counters */
502 
503 		/*
504 		 * The fetching of the stat_threshold is racy. We may apply
505 		 * a counter threshold to the wrong the cpu if we get
506 		 * rescheduled while executing here. However, the next
507 		 * counter update will apply the threshold again and
508 		 * therefore bring the counter under the threshold again.
509 		 *
510 		 * Most of the time the thresholds are the same anyways
511 		 * for all cpus in a zone.
512 		 */
513 		t = this_cpu_read(pcp->stat_threshold);
514 
515 		o = this_cpu_read(*p);
516 		n = delta + o;
517 
518 		if (abs(n) > t) {
519 			int os = overstep_mode * (t >> 1) ;
520 
521 			/* Overflow must be added to zone counters */
522 			z = n + os;
523 			n = -os;
524 		}
525 	} while (this_cpu_cmpxchg(*p, o, n) != o);
526 
527 	if (z)
528 		zone_page_state_add(z, zone, item);
529 }
530 
531 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
532 			 long delta)
533 {
534 	mod_zone_state(zone, item, delta, 0);
535 }
536 EXPORT_SYMBOL(mod_zone_page_state);
537 
538 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
539 {
540 	mod_zone_state(page_zone(page), item, 1, 1);
541 }
542 EXPORT_SYMBOL(inc_zone_page_state);
543 
544 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
545 {
546 	mod_zone_state(page_zone(page), item, -1, -1);
547 }
548 EXPORT_SYMBOL(dec_zone_page_state);
549 
550 static inline void mod_node_state(struct pglist_data *pgdat,
551        enum node_stat_item item, int delta, int overstep_mode)
552 {
553 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
554 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
555 	long o, n, t, z;
556 
557 	if (vmstat_item_in_bytes(item)) {
558 		/*
559 		 * Only cgroups use subpage accounting right now; at
560 		 * the global level, these items still change in
561 		 * multiples of whole pages. Store them as pages
562 		 * internally to keep the per-cpu counters compact.
563 		 */
564 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
565 		delta >>= PAGE_SHIFT;
566 	}
567 
568 	do {
569 		z = 0;  /* overflow to node counters */
570 
571 		/*
572 		 * The fetching of the stat_threshold is racy. We may apply
573 		 * a counter threshold to the wrong the cpu if we get
574 		 * rescheduled while executing here. However, the next
575 		 * counter update will apply the threshold again and
576 		 * therefore bring the counter under the threshold again.
577 		 *
578 		 * Most of the time the thresholds are the same anyways
579 		 * for all cpus in a node.
580 		 */
581 		t = this_cpu_read(pcp->stat_threshold);
582 
583 		o = this_cpu_read(*p);
584 		n = delta + o;
585 
586 		if (abs(n) > t) {
587 			int os = overstep_mode * (t >> 1) ;
588 
589 			/* Overflow must be added to node counters */
590 			z = n + os;
591 			n = -os;
592 		}
593 	} while (this_cpu_cmpxchg(*p, o, n) != o);
594 
595 	if (z)
596 		node_page_state_add(z, pgdat, item);
597 }
598 
599 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
600 					long delta)
601 {
602 	mod_node_state(pgdat, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_node_page_state);
605 
606 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
607 {
608 	mod_node_state(pgdat, item, 1, 1);
609 }
610 
611 void inc_node_page_state(struct page *page, enum node_stat_item item)
612 {
613 	mod_node_state(page_pgdat(page), item, 1, 1);
614 }
615 EXPORT_SYMBOL(inc_node_page_state);
616 
617 void dec_node_page_state(struct page *page, enum node_stat_item item)
618 {
619 	mod_node_state(page_pgdat(page), item, -1, -1);
620 }
621 EXPORT_SYMBOL(dec_node_page_state);
622 #else
623 /*
624  * Use interrupt disable to serialize counter updates
625  */
626 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
627 			 long delta)
628 {
629 	unsigned long flags;
630 
631 	local_irq_save(flags);
632 	__mod_zone_page_state(zone, item, delta);
633 	local_irq_restore(flags);
634 }
635 EXPORT_SYMBOL(mod_zone_page_state);
636 
637 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
638 {
639 	unsigned long flags;
640 	struct zone *zone;
641 
642 	zone = page_zone(page);
643 	local_irq_save(flags);
644 	__inc_zone_state(zone, item);
645 	local_irq_restore(flags);
646 }
647 EXPORT_SYMBOL(inc_zone_page_state);
648 
649 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
650 {
651 	unsigned long flags;
652 
653 	local_irq_save(flags);
654 	__dec_zone_page_state(page, item);
655 	local_irq_restore(flags);
656 }
657 EXPORT_SYMBOL(dec_zone_page_state);
658 
659 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
660 {
661 	unsigned long flags;
662 
663 	local_irq_save(flags);
664 	__inc_node_state(pgdat, item);
665 	local_irq_restore(flags);
666 }
667 EXPORT_SYMBOL(inc_node_state);
668 
669 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
670 					long delta)
671 {
672 	unsigned long flags;
673 
674 	local_irq_save(flags);
675 	__mod_node_page_state(pgdat, item, delta);
676 	local_irq_restore(flags);
677 }
678 EXPORT_SYMBOL(mod_node_page_state);
679 
680 void inc_node_page_state(struct page *page, enum node_stat_item item)
681 {
682 	unsigned long flags;
683 	struct pglist_data *pgdat;
684 
685 	pgdat = page_pgdat(page);
686 	local_irq_save(flags);
687 	__inc_node_state(pgdat, item);
688 	local_irq_restore(flags);
689 }
690 EXPORT_SYMBOL(inc_node_page_state);
691 
692 void dec_node_page_state(struct page *page, enum node_stat_item item)
693 {
694 	unsigned long flags;
695 
696 	local_irq_save(flags);
697 	__dec_node_page_state(page, item);
698 	local_irq_restore(flags);
699 }
700 EXPORT_SYMBOL(dec_node_page_state);
701 #endif
702 
703 /*
704  * Fold a differential into the global counters.
705  * Returns the number of counters updated.
706  */
707 static int fold_diff(int *zone_diff, int *node_diff)
708 {
709 	int i;
710 	int changes = 0;
711 
712 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
713 		if (zone_diff[i]) {
714 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
715 			changes++;
716 	}
717 
718 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
719 		if (node_diff[i]) {
720 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
721 			changes++;
722 	}
723 	return changes;
724 }
725 
726 #ifdef CONFIG_NUMA
727 static void fold_vm_zone_numa_events(struct zone *zone)
728 {
729 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
730 	int cpu;
731 	enum numa_stat_item item;
732 
733 	for_each_online_cpu(cpu) {
734 		struct per_cpu_zonestat *pzstats;
735 
736 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
737 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
738 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
739 	}
740 
741 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
742 		zone_numa_event_add(zone_numa_events[item], zone, item);
743 }
744 
745 void fold_vm_numa_events(void)
746 {
747 	struct zone *zone;
748 
749 	for_each_populated_zone(zone)
750 		fold_vm_zone_numa_events(zone);
751 }
752 #endif
753 
754 /*
755  * Update the zone counters for the current cpu.
756  *
757  * Note that refresh_cpu_vm_stats strives to only access
758  * node local memory. The per cpu pagesets on remote zones are placed
759  * in the memory local to the processor using that pageset. So the
760  * loop over all zones will access a series of cachelines local to
761  * the processor.
762  *
763  * The call to zone_page_state_add updates the cachelines with the
764  * statistics in the remote zone struct as well as the global cachelines
765  * with the global counters. These could cause remote node cache line
766  * bouncing and will have to be only done when necessary.
767  *
768  * The function returns the number of global counters updated.
769  */
770 static int refresh_cpu_vm_stats(bool do_pagesets)
771 {
772 	struct pglist_data *pgdat;
773 	struct zone *zone;
774 	int i;
775 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
776 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
777 	int changes = 0;
778 
779 	for_each_populated_zone(zone) {
780 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
781 #ifdef CONFIG_NUMA
782 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
783 #endif
784 
785 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
786 			int v;
787 
788 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
789 			if (v) {
790 
791 				atomic_long_add(v, &zone->vm_stat[i]);
792 				global_zone_diff[i] += v;
793 #ifdef CONFIG_NUMA
794 				/* 3 seconds idle till flush */
795 				__this_cpu_write(pcp->expire, 3);
796 #endif
797 			}
798 		}
799 #ifdef CONFIG_NUMA
800 
801 		if (do_pagesets) {
802 			cond_resched();
803 			/*
804 			 * Deal with draining the remote pageset of this
805 			 * processor
806 			 *
807 			 * Check if there are pages remaining in this pageset
808 			 * if not then there is nothing to expire.
809 			 */
810 			if (!__this_cpu_read(pcp->expire) ||
811 			       !__this_cpu_read(pcp->count))
812 				continue;
813 
814 			/*
815 			 * We never drain zones local to this processor.
816 			 */
817 			if (zone_to_nid(zone) == numa_node_id()) {
818 				__this_cpu_write(pcp->expire, 0);
819 				continue;
820 			}
821 
822 			if (__this_cpu_dec_return(pcp->expire))
823 				continue;
824 
825 			if (__this_cpu_read(pcp->count)) {
826 				drain_zone_pages(zone, this_cpu_ptr(pcp));
827 				changes++;
828 			}
829 		}
830 #endif
831 	}
832 
833 	for_each_online_pgdat(pgdat) {
834 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
835 
836 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
837 			int v;
838 
839 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
840 			if (v) {
841 				atomic_long_add(v, &pgdat->vm_stat[i]);
842 				global_node_diff[i] += v;
843 			}
844 		}
845 	}
846 
847 	changes += fold_diff(global_zone_diff, global_node_diff);
848 	return changes;
849 }
850 
851 /*
852  * Fold the data for an offline cpu into the global array.
853  * There cannot be any access by the offline cpu and therefore
854  * synchronization is simplified.
855  */
856 void cpu_vm_stats_fold(int cpu)
857 {
858 	struct pglist_data *pgdat;
859 	struct zone *zone;
860 	int i;
861 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
862 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
863 
864 	for_each_populated_zone(zone) {
865 		struct per_cpu_zonestat *pzstats;
866 
867 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
868 
869 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
870 			if (pzstats->vm_stat_diff[i]) {
871 				int v;
872 
873 				v = pzstats->vm_stat_diff[i];
874 				pzstats->vm_stat_diff[i] = 0;
875 				atomic_long_add(v, &zone->vm_stat[i]);
876 				global_zone_diff[i] += v;
877 			}
878 		}
879 #ifdef CONFIG_NUMA
880 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
881 			if (pzstats->vm_numa_event[i]) {
882 				unsigned long v;
883 
884 				v = pzstats->vm_numa_event[i];
885 				pzstats->vm_numa_event[i] = 0;
886 				zone_numa_event_add(v, zone, i);
887 			}
888 		}
889 #endif
890 	}
891 
892 	for_each_online_pgdat(pgdat) {
893 		struct per_cpu_nodestat *p;
894 
895 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
896 
897 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
898 			if (p->vm_node_stat_diff[i]) {
899 				int v;
900 
901 				v = p->vm_node_stat_diff[i];
902 				p->vm_node_stat_diff[i] = 0;
903 				atomic_long_add(v, &pgdat->vm_stat[i]);
904 				global_node_diff[i] += v;
905 			}
906 	}
907 
908 	fold_diff(global_zone_diff, global_node_diff);
909 }
910 
911 /*
912  * this is only called if !populated_zone(zone), which implies no other users of
913  * pset->vm_stat_diff[] exist.
914  */
915 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
916 {
917 	unsigned long v;
918 	int i;
919 
920 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
921 		if (pzstats->vm_stat_diff[i]) {
922 			v = pzstats->vm_stat_diff[i];
923 			pzstats->vm_stat_diff[i] = 0;
924 			zone_page_state_add(v, zone, i);
925 		}
926 	}
927 
928 #ifdef CONFIG_NUMA
929 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
930 		if (pzstats->vm_numa_event[i]) {
931 			v = pzstats->vm_numa_event[i];
932 			pzstats->vm_numa_event[i] = 0;
933 			zone_numa_event_add(v, zone, i);
934 		}
935 	}
936 #endif
937 }
938 #endif
939 
940 #ifdef CONFIG_NUMA
941 /*
942  * Determine the per node value of a stat item. This function
943  * is called frequently in a NUMA machine, so try to be as
944  * frugal as possible.
945  */
946 unsigned long sum_zone_node_page_state(int node,
947 				 enum zone_stat_item item)
948 {
949 	struct zone *zones = NODE_DATA(node)->node_zones;
950 	int i;
951 	unsigned long count = 0;
952 
953 	for (i = 0; i < MAX_NR_ZONES; i++)
954 		count += zone_page_state(zones + i, item);
955 
956 	return count;
957 }
958 
959 /* Determine the per node value of a numa stat item. */
960 unsigned long sum_zone_numa_event_state(int node,
961 				 enum numa_stat_item item)
962 {
963 	struct zone *zones = NODE_DATA(node)->node_zones;
964 	unsigned long count = 0;
965 	int i;
966 
967 	for (i = 0; i < MAX_NR_ZONES; i++)
968 		count += zone_numa_event_state(zones + i, item);
969 
970 	return count;
971 }
972 
973 /*
974  * Determine the per node value of a stat item.
975  */
976 unsigned long node_page_state_pages(struct pglist_data *pgdat,
977 				    enum node_stat_item item)
978 {
979 	long x = atomic_long_read(&pgdat->vm_stat[item]);
980 #ifdef CONFIG_SMP
981 	if (x < 0)
982 		x = 0;
983 #endif
984 	return x;
985 }
986 
987 unsigned long node_page_state(struct pglist_data *pgdat,
988 			      enum node_stat_item item)
989 {
990 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
991 
992 	return node_page_state_pages(pgdat, item);
993 }
994 #endif
995 
996 #ifdef CONFIG_COMPACTION
997 
998 struct contig_page_info {
999 	unsigned long free_pages;
1000 	unsigned long free_blocks_total;
1001 	unsigned long free_blocks_suitable;
1002 };
1003 
1004 /*
1005  * Calculate the number of free pages in a zone, how many contiguous
1006  * pages are free and how many are large enough to satisfy an allocation of
1007  * the target size. Note that this function makes no attempt to estimate
1008  * how many suitable free blocks there *might* be if MOVABLE pages were
1009  * migrated. Calculating that is possible, but expensive and can be
1010  * figured out from userspace
1011  */
1012 static void fill_contig_page_info(struct zone *zone,
1013 				unsigned int suitable_order,
1014 				struct contig_page_info *info)
1015 {
1016 	unsigned int order;
1017 
1018 	info->free_pages = 0;
1019 	info->free_blocks_total = 0;
1020 	info->free_blocks_suitable = 0;
1021 
1022 	for (order = 0; order < MAX_ORDER; order++) {
1023 		unsigned long blocks;
1024 
1025 		/* Count number of free blocks */
1026 		blocks = zone->free_area[order].nr_free;
1027 		info->free_blocks_total += blocks;
1028 
1029 		/* Count free base pages */
1030 		info->free_pages += blocks << order;
1031 
1032 		/* Count the suitable free blocks */
1033 		if (order >= suitable_order)
1034 			info->free_blocks_suitable += blocks <<
1035 						(order - suitable_order);
1036 	}
1037 }
1038 
1039 /*
1040  * A fragmentation index only makes sense if an allocation of a requested
1041  * size would fail. If that is true, the fragmentation index indicates
1042  * whether external fragmentation or a lack of memory was the problem.
1043  * The value can be used to determine if page reclaim or compaction
1044  * should be used
1045  */
1046 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1047 {
1048 	unsigned long requested = 1UL << order;
1049 
1050 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1051 		return 0;
1052 
1053 	if (!info->free_blocks_total)
1054 		return 0;
1055 
1056 	/* Fragmentation index only makes sense when a request would fail */
1057 	if (info->free_blocks_suitable)
1058 		return -1000;
1059 
1060 	/*
1061 	 * Index is between 0 and 1 so return within 3 decimal places
1062 	 *
1063 	 * 0 => allocation would fail due to lack of memory
1064 	 * 1 => allocation would fail due to fragmentation
1065 	 */
1066 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1067 }
1068 
1069 /*
1070  * Calculates external fragmentation within a zone wrt the given order.
1071  * It is defined as the percentage of pages found in blocks of size
1072  * less than 1 << order. It returns values in range [0, 100].
1073  */
1074 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1075 {
1076 	struct contig_page_info info;
1077 
1078 	fill_contig_page_info(zone, order, &info);
1079 	if (info.free_pages == 0)
1080 		return 0;
1081 
1082 	return div_u64((info.free_pages -
1083 			(info.free_blocks_suitable << order)) * 100,
1084 			info.free_pages);
1085 }
1086 
1087 /* Same as __fragmentation index but allocs contig_page_info on stack */
1088 int fragmentation_index(struct zone *zone, unsigned int order)
1089 {
1090 	struct contig_page_info info;
1091 
1092 	fill_contig_page_info(zone, order, &info);
1093 	return __fragmentation_index(order, &info);
1094 }
1095 #endif
1096 
1097 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1098     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1099 #ifdef CONFIG_ZONE_DMA
1100 #define TEXT_FOR_DMA(xx) xx "_dma",
1101 #else
1102 #define TEXT_FOR_DMA(xx)
1103 #endif
1104 
1105 #ifdef CONFIG_ZONE_DMA32
1106 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1107 #else
1108 #define TEXT_FOR_DMA32(xx)
1109 #endif
1110 
1111 #ifdef CONFIG_HIGHMEM
1112 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1113 #else
1114 #define TEXT_FOR_HIGHMEM(xx)
1115 #endif
1116 
1117 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1118 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1119 
1120 const char * const vmstat_text[] = {
1121 	/* enum zone_stat_item counters */
1122 	"nr_free_pages",
1123 	"nr_zone_inactive_anon",
1124 	"nr_zone_active_anon",
1125 	"nr_zone_inactive_file",
1126 	"nr_zone_active_file",
1127 	"nr_zone_unevictable",
1128 	"nr_zone_write_pending",
1129 	"nr_mlock",
1130 	"nr_bounce",
1131 #if IS_ENABLED(CONFIG_ZSMALLOC)
1132 	"nr_zspages",
1133 #endif
1134 	"nr_free_cma",
1135 
1136 	/* enum numa_stat_item counters */
1137 #ifdef CONFIG_NUMA
1138 	"numa_hit",
1139 	"numa_miss",
1140 	"numa_foreign",
1141 	"numa_interleave",
1142 	"numa_local",
1143 	"numa_other",
1144 #endif
1145 
1146 	/* enum node_stat_item counters */
1147 	"nr_inactive_anon",
1148 	"nr_active_anon",
1149 	"nr_inactive_file",
1150 	"nr_active_file",
1151 	"nr_unevictable",
1152 	"nr_slab_reclaimable",
1153 	"nr_slab_unreclaimable",
1154 	"nr_isolated_anon",
1155 	"nr_isolated_file",
1156 	"workingset_nodes",
1157 	"workingset_refault_anon",
1158 	"workingset_refault_file",
1159 	"workingset_activate_anon",
1160 	"workingset_activate_file",
1161 	"workingset_restore_anon",
1162 	"workingset_restore_file",
1163 	"workingset_nodereclaim",
1164 	"nr_anon_pages",
1165 	"nr_mapped",
1166 	"nr_file_pages",
1167 	"nr_dirty",
1168 	"nr_writeback",
1169 	"nr_writeback_temp",
1170 	"nr_shmem",
1171 	"nr_shmem_hugepages",
1172 	"nr_shmem_pmdmapped",
1173 	"nr_file_hugepages",
1174 	"nr_file_pmdmapped",
1175 	"nr_anon_transparent_hugepages",
1176 	"nr_vmscan_write",
1177 	"nr_vmscan_immediate_reclaim",
1178 	"nr_dirtied",
1179 	"nr_written",
1180 	"nr_kernel_misc_reclaimable",
1181 	"nr_foll_pin_acquired",
1182 	"nr_foll_pin_released",
1183 	"nr_kernel_stack",
1184 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1185 	"nr_shadow_call_stack",
1186 #endif
1187 	"nr_page_table_pages",
1188 #ifdef CONFIG_SWAP
1189 	"nr_swapcached",
1190 #endif
1191 
1192 	/* enum writeback_stat_item counters */
1193 	"nr_dirty_threshold",
1194 	"nr_dirty_background_threshold",
1195 
1196 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1197 	/* enum vm_event_item counters */
1198 	"pgpgin",
1199 	"pgpgout",
1200 	"pswpin",
1201 	"pswpout",
1202 
1203 	TEXTS_FOR_ZONES("pgalloc")
1204 	TEXTS_FOR_ZONES("allocstall")
1205 	TEXTS_FOR_ZONES("pgskip")
1206 
1207 	"pgfree",
1208 	"pgactivate",
1209 	"pgdeactivate",
1210 	"pglazyfree",
1211 
1212 	"pgfault",
1213 	"pgmajfault",
1214 	"pglazyfreed",
1215 
1216 	"pgrefill",
1217 	"pgreuse",
1218 	"pgsteal_kswapd",
1219 	"pgsteal_direct",
1220 	"pgscan_kswapd",
1221 	"pgscan_direct",
1222 	"pgscan_direct_throttle",
1223 	"pgscan_anon",
1224 	"pgscan_file",
1225 	"pgsteal_anon",
1226 	"pgsteal_file",
1227 
1228 #ifdef CONFIG_NUMA
1229 	"zone_reclaim_failed",
1230 #endif
1231 	"pginodesteal",
1232 	"slabs_scanned",
1233 	"kswapd_inodesteal",
1234 	"kswapd_low_wmark_hit_quickly",
1235 	"kswapd_high_wmark_hit_quickly",
1236 	"pageoutrun",
1237 
1238 	"pgrotated",
1239 
1240 	"drop_pagecache",
1241 	"drop_slab",
1242 	"oom_kill",
1243 
1244 #ifdef CONFIG_NUMA_BALANCING
1245 	"numa_pte_updates",
1246 	"numa_huge_pte_updates",
1247 	"numa_hint_faults",
1248 	"numa_hint_faults_local",
1249 	"numa_pages_migrated",
1250 #endif
1251 #ifdef CONFIG_MIGRATION
1252 	"pgmigrate_success",
1253 	"pgmigrate_fail",
1254 	"thp_migration_success",
1255 	"thp_migration_fail",
1256 	"thp_migration_split",
1257 #endif
1258 #ifdef CONFIG_COMPACTION
1259 	"compact_migrate_scanned",
1260 	"compact_free_scanned",
1261 	"compact_isolated",
1262 	"compact_stall",
1263 	"compact_fail",
1264 	"compact_success",
1265 	"compact_daemon_wake",
1266 	"compact_daemon_migrate_scanned",
1267 	"compact_daemon_free_scanned",
1268 #endif
1269 
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 	"htlb_buddy_alloc_success",
1272 	"htlb_buddy_alloc_fail",
1273 #endif
1274 #ifdef CONFIG_CMA
1275 	"cma_alloc_success",
1276 	"cma_alloc_fail",
1277 #endif
1278 	"unevictable_pgs_culled",
1279 	"unevictable_pgs_scanned",
1280 	"unevictable_pgs_rescued",
1281 	"unevictable_pgs_mlocked",
1282 	"unevictable_pgs_munlocked",
1283 	"unevictable_pgs_cleared",
1284 	"unevictable_pgs_stranded",
1285 
1286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1287 	"thp_fault_alloc",
1288 	"thp_fault_fallback",
1289 	"thp_fault_fallback_charge",
1290 	"thp_collapse_alloc",
1291 	"thp_collapse_alloc_failed",
1292 	"thp_file_alloc",
1293 	"thp_file_fallback",
1294 	"thp_file_fallback_charge",
1295 	"thp_file_mapped",
1296 	"thp_split_page",
1297 	"thp_split_page_failed",
1298 	"thp_deferred_split_page",
1299 	"thp_split_pmd",
1300 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1301 	"thp_split_pud",
1302 #endif
1303 	"thp_zero_page_alloc",
1304 	"thp_zero_page_alloc_failed",
1305 	"thp_swpout",
1306 	"thp_swpout_fallback",
1307 #endif
1308 #ifdef CONFIG_MEMORY_BALLOON
1309 	"balloon_inflate",
1310 	"balloon_deflate",
1311 #ifdef CONFIG_BALLOON_COMPACTION
1312 	"balloon_migrate",
1313 #endif
1314 #endif /* CONFIG_MEMORY_BALLOON */
1315 #ifdef CONFIG_DEBUG_TLBFLUSH
1316 	"nr_tlb_remote_flush",
1317 	"nr_tlb_remote_flush_received",
1318 	"nr_tlb_local_flush_all",
1319 	"nr_tlb_local_flush_one",
1320 #endif /* CONFIG_DEBUG_TLBFLUSH */
1321 
1322 #ifdef CONFIG_DEBUG_VM_VMACACHE
1323 	"vmacache_find_calls",
1324 	"vmacache_find_hits",
1325 #endif
1326 #ifdef CONFIG_SWAP
1327 	"swap_ra",
1328 	"swap_ra_hit",
1329 #endif
1330 #ifdef CONFIG_X86
1331 	"direct_map_level2_splits",
1332 	"direct_map_level3_splits",
1333 #endif
1334 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1335 };
1336 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1337 
1338 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1339      defined(CONFIG_PROC_FS)
1340 static void *frag_start(struct seq_file *m, loff_t *pos)
1341 {
1342 	pg_data_t *pgdat;
1343 	loff_t node = *pos;
1344 
1345 	for (pgdat = first_online_pgdat();
1346 	     pgdat && node;
1347 	     pgdat = next_online_pgdat(pgdat))
1348 		--node;
1349 
1350 	return pgdat;
1351 }
1352 
1353 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1354 {
1355 	pg_data_t *pgdat = (pg_data_t *)arg;
1356 
1357 	(*pos)++;
1358 	return next_online_pgdat(pgdat);
1359 }
1360 
1361 static void frag_stop(struct seq_file *m, void *arg)
1362 {
1363 }
1364 
1365 /*
1366  * Walk zones in a node and print using a callback.
1367  * If @assert_populated is true, only use callback for zones that are populated.
1368  */
1369 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1370 		bool assert_populated, bool nolock,
1371 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1372 {
1373 	struct zone *zone;
1374 	struct zone *node_zones = pgdat->node_zones;
1375 	unsigned long flags;
1376 
1377 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1378 		if (assert_populated && !populated_zone(zone))
1379 			continue;
1380 
1381 		if (!nolock)
1382 			spin_lock_irqsave(&zone->lock, flags);
1383 		print(m, pgdat, zone);
1384 		if (!nolock)
1385 			spin_unlock_irqrestore(&zone->lock, flags);
1386 	}
1387 }
1388 #endif
1389 
1390 #ifdef CONFIG_PROC_FS
1391 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1392 						struct zone *zone)
1393 {
1394 	int order;
1395 
1396 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1397 	for (order = 0; order < MAX_ORDER; ++order)
1398 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1399 	seq_putc(m, '\n');
1400 }
1401 
1402 /*
1403  * This walks the free areas for each zone.
1404  */
1405 static int frag_show(struct seq_file *m, void *arg)
1406 {
1407 	pg_data_t *pgdat = (pg_data_t *)arg;
1408 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1409 	return 0;
1410 }
1411 
1412 static void pagetypeinfo_showfree_print(struct seq_file *m,
1413 					pg_data_t *pgdat, struct zone *zone)
1414 {
1415 	int order, mtype;
1416 
1417 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1418 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1419 					pgdat->node_id,
1420 					zone->name,
1421 					migratetype_names[mtype]);
1422 		for (order = 0; order < MAX_ORDER; ++order) {
1423 			unsigned long freecount = 0;
1424 			struct free_area *area;
1425 			struct list_head *curr;
1426 			bool overflow = false;
1427 
1428 			area = &(zone->free_area[order]);
1429 
1430 			list_for_each(curr, &area->free_list[mtype]) {
1431 				/*
1432 				 * Cap the free_list iteration because it might
1433 				 * be really large and we are under a spinlock
1434 				 * so a long time spent here could trigger a
1435 				 * hard lockup detector. Anyway this is a
1436 				 * debugging tool so knowing there is a handful
1437 				 * of pages of this order should be more than
1438 				 * sufficient.
1439 				 */
1440 				if (++freecount >= 100000) {
1441 					overflow = true;
1442 					break;
1443 				}
1444 			}
1445 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1446 			spin_unlock_irq(&zone->lock);
1447 			cond_resched();
1448 			spin_lock_irq(&zone->lock);
1449 		}
1450 		seq_putc(m, '\n');
1451 	}
1452 }
1453 
1454 /* Print out the free pages at each order for each migatetype */
1455 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1456 {
1457 	int order;
1458 	pg_data_t *pgdat = (pg_data_t *)arg;
1459 
1460 	/* Print header */
1461 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1462 	for (order = 0; order < MAX_ORDER; ++order)
1463 		seq_printf(m, "%6d ", order);
1464 	seq_putc(m, '\n');
1465 
1466 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1467 
1468 	return 0;
1469 }
1470 
1471 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1472 					pg_data_t *pgdat, struct zone *zone)
1473 {
1474 	int mtype;
1475 	unsigned long pfn;
1476 	unsigned long start_pfn = zone->zone_start_pfn;
1477 	unsigned long end_pfn = zone_end_pfn(zone);
1478 	unsigned long count[MIGRATE_TYPES] = { 0, };
1479 
1480 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1481 		struct page *page;
1482 
1483 		page = pfn_to_online_page(pfn);
1484 		if (!page)
1485 			continue;
1486 
1487 		if (page_zone(page) != zone)
1488 			continue;
1489 
1490 		mtype = get_pageblock_migratetype(page);
1491 
1492 		if (mtype < MIGRATE_TYPES)
1493 			count[mtype]++;
1494 	}
1495 
1496 	/* Print counts */
1497 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1498 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1499 		seq_printf(m, "%12lu ", count[mtype]);
1500 	seq_putc(m, '\n');
1501 }
1502 
1503 /* Print out the number of pageblocks for each migratetype */
1504 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1505 {
1506 	int mtype;
1507 	pg_data_t *pgdat = (pg_data_t *)arg;
1508 
1509 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1510 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1511 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1512 	seq_putc(m, '\n');
1513 	walk_zones_in_node(m, pgdat, true, false,
1514 		pagetypeinfo_showblockcount_print);
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * Print out the number of pageblocks for each migratetype that contain pages
1521  * of other types. This gives an indication of how well fallbacks are being
1522  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1523  * to determine what is going on
1524  */
1525 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1526 {
1527 #ifdef CONFIG_PAGE_OWNER
1528 	int mtype;
1529 
1530 	if (!static_branch_unlikely(&page_owner_inited))
1531 		return;
1532 
1533 	drain_all_pages(NULL);
1534 
1535 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1536 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1537 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1538 	seq_putc(m, '\n');
1539 
1540 	walk_zones_in_node(m, pgdat, true, true,
1541 		pagetypeinfo_showmixedcount_print);
1542 #endif /* CONFIG_PAGE_OWNER */
1543 }
1544 
1545 /*
1546  * This prints out statistics in relation to grouping pages by mobility.
1547  * It is expensive to collect so do not constantly read the file.
1548  */
1549 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1550 {
1551 	pg_data_t *pgdat = (pg_data_t *)arg;
1552 
1553 	/* check memoryless node */
1554 	if (!node_state(pgdat->node_id, N_MEMORY))
1555 		return 0;
1556 
1557 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1558 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1559 	seq_putc(m, '\n');
1560 	pagetypeinfo_showfree(m, pgdat);
1561 	pagetypeinfo_showblockcount(m, pgdat);
1562 	pagetypeinfo_showmixedcount(m, pgdat);
1563 
1564 	return 0;
1565 }
1566 
1567 static const struct seq_operations fragmentation_op = {
1568 	.start	= frag_start,
1569 	.next	= frag_next,
1570 	.stop	= frag_stop,
1571 	.show	= frag_show,
1572 };
1573 
1574 static const struct seq_operations pagetypeinfo_op = {
1575 	.start	= frag_start,
1576 	.next	= frag_next,
1577 	.stop	= frag_stop,
1578 	.show	= pagetypeinfo_show,
1579 };
1580 
1581 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1582 {
1583 	int zid;
1584 
1585 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1586 		struct zone *compare = &pgdat->node_zones[zid];
1587 
1588 		if (populated_zone(compare))
1589 			return zone == compare;
1590 	}
1591 
1592 	return false;
1593 }
1594 
1595 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1596 							struct zone *zone)
1597 {
1598 	int i;
1599 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1600 	if (is_zone_first_populated(pgdat, zone)) {
1601 		seq_printf(m, "\n  per-node stats");
1602 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1603 			unsigned long pages = node_page_state_pages(pgdat, i);
1604 
1605 			if (vmstat_item_print_in_thp(i))
1606 				pages /= HPAGE_PMD_NR;
1607 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1608 				   pages);
1609 		}
1610 	}
1611 	seq_printf(m,
1612 		   "\n  pages free     %lu"
1613 		   "\n        min      %lu"
1614 		   "\n        low      %lu"
1615 		   "\n        high     %lu"
1616 		   "\n        spanned  %lu"
1617 		   "\n        present  %lu"
1618 		   "\n        managed  %lu"
1619 		   "\n        cma      %lu",
1620 		   zone_page_state(zone, NR_FREE_PAGES),
1621 		   min_wmark_pages(zone),
1622 		   low_wmark_pages(zone),
1623 		   high_wmark_pages(zone),
1624 		   zone->spanned_pages,
1625 		   zone->present_pages,
1626 		   zone_managed_pages(zone),
1627 		   zone_cma_pages(zone));
1628 
1629 	seq_printf(m,
1630 		   "\n        protection: (%ld",
1631 		   zone->lowmem_reserve[0]);
1632 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1633 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1634 	seq_putc(m, ')');
1635 
1636 	/* If unpopulated, no other information is useful */
1637 	if (!populated_zone(zone)) {
1638 		seq_putc(m, '\n');
1639 		return;
1640 	}
1641 
1642 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1643 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1644 			   zone_page_state(zone, i));
1645 
1646 #ifdef CONFIG_NUMA
1647 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1648 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1649 			   zone_numa_event_state(zone, i));
1650 #endif
1651 
1652 	seq_printf(m, "\n  pagesets");
1653 	for_each_online_cpu(i) {
1654 		struct per_cpu_pages *pcp;
1655 		struct per_cpu_zonestat __maybe_unused *pzstats;
1656 
1657 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1658 		seq_printf(m,
1659 			   "\n    cpu: %i"
1660 			   "\n              count: %i"
1661 			   "\n              high:  %i"
1662 			   "\n              batch: %i",
1663 			   i,
1664 			   pcp->count,
1665 			   pcp->high,
1666 			   pcp->batch);
1667 #ifdef CONFIG_SMP
1668 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1669 		seq_printf(m, "\n  vm stats threshold: %d",
1670 				pzstats->stat_threshold);
1671 #endif
1672 	}
1673 	seq_printf(m,
1674 		   "\n  node_unreclaimable:  %u"
1675 		   "\n  start_pfn:           %lu",
1676 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1677 		   zone->zone_start_pfn);
1678 	seq_putc(m, '\n');
1679 }
1680 
1681 /*
1682  * Output information about zones in @pgdat.  All zones are printed regardless
1683  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1684  * set of all zones and userspace would not be aware of such zones if they are
1685  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1686  */
1687 static int zoneinfo_show(struct seq_file *m, void *arg)
1688 {
1689 	pg_data_t *pgdat = (pg_data_t *)arg;
1690 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1691 	return 0;
1692 }
1693 
1694 static const struct seq_operations zoneinfo_op = {
1695 	.start	= frag_start, /* iterate over all zones. The same as in
1696 			       * fragmentation. */
1697 	.next	= frag_next,
1698 	.stop	= frag_stop,
1699 	.show	= zoneinfo_show,
1700 };
1701 
1702 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1703 			 NR_VM_NUMA_EVENT_ITEMS + \
1704 			 NR_VM_NODE_STAT_ITEMS + \
1705 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1706 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1707 			  NR_VM_EVENT_ITEMS : 0))
1708 
1709 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1710 {
1711 	unsigned long *v;
1712 	int i;
1713 
1714 	if (*pos >= NR_VMSTAT_ITEMS)
1715 		return NULL;
1716 
1717 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1718 	fold_vm_numa_events();
1719 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1720 	m->private = v;
1721 	if (!v)
1722 		return ERR_PTR(-ENOMEM);
1723 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1724 		v[i] = global_zone_page_state(i);
1725 	v += NR_VM_ZONE_STAT_ITEMS;
1726 
1727 #ifdef CONFIG_NUMA
1728 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1729 		v[i] = global_numa_event_state(i);
1730 	v += NR_VM_NUMA_EVENT_ITEMS;
1731 #endif
1732 
1733 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1734 		v[i] = global_node_page_state_pages(i);
1735 		if (vmstat_item_print_in_thp(i))
1736 			v[i] /= HPAGE_PMD_NR;
1737 	}
1738 	v += NR_VM_NODE_STAT_ITEMS;
1739 
1740 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1741 			    v + NR_DIRTY_THRESHOLD);
1742 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1743 
1744 #ifdef CONFIG_VM_EVENT_COUNTERS
1745 	all_vm_events(v);
1746 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1747 	v[PGPGOUT] /= 2;
1748 #endif
1749 	return (unsigned long *)m->private + *pos;
1750 }
1751 
1752 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1753 {
1754 	(*pos)++;
1755 	if (*pos >= NR_VMSTAT_ITEMS)
1756 		return NULL;
1757 	return (unsigned long *)m->private + *pos;
1758 }
1759 
1760 static int vmstat_show(struct seq_file *m, void *arg)
1761 {
1762 	unsigned long *l = arg;
1763 	unsigned long off = l - (unsigned long *)m->private;
1764 
1765 	seq_puts(m, vmstat_text[off]);
1766 	seq_put_decimal_ull(m, " ", *l);
1767 	seq_putc(m, '\n');
1768 
1769 	if (off == NR_VMSTAT_ITEMS - 1) {
1770 		/*
1771 		 * We've come to the end - add any deprecated counters to avoid
1772 		 * breaking userspace which might depend on them being present.
1773 		 */
1774 		seq_puts(m, "nr_unstable 0\n");
1775 	}
1776 	return 0;
1777 }
1778 
1779 static void vmstat_stop(struct seq_file *m, void *arg)
1780 {
1781 	kfree(m->private);
1782 	m->private = NULL;
1783 }
1784 
1785 static const struct seq_operations vmstat_op = {
1786 	.start	= vmstat_start,
1787 	.next	= vmstat_next,
1788 	.stop	= vmstat_stop,
1789 	.show	= vmstat_show,
1790 };
1791 #endif /* CONFIG_PROC_FS */
1792 
1793 #ifdef CONFIG_SMP
1794 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1795 int sysctl_stat_interval __read_mostly = HZ;
1796 
1797 #ifdef CONFIG_PROC_FS
1798 static void refresh_vm_stats(struct work_struct *work)
1799 {
1800 	refresh_cpu_vm_stats(true);
1801 }
1802 
1803 int vmstat_refresh(struct ctl_table *table, int write,
1804 		   void *buffer, size_t *lenp, loff_t *ppos)
1805 {
1806 	long val;
1807 	int err;
1808 	int i;
1809 
1810 	/*
1811 	 * The regular update, every sysctl_stat_interval, may come later
1812 	 * than expected: leaving a significant amount in per_cpu buckets.
1813 	 * This is particularly misleading when checking a quantity of HUGE
1814 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1815 	 * which can equally be echo'ed to or cat'ted from (by root),
1816 	 * can be used to update the stats just before reading them.
1817 	 *
1818 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1819 	 * transiently negative values, report an error here if any of
1820 	 * the stats is negative, so we know to go looking for imbalance.
1821 	 */
1822 	err = schedule_on_each_cpu(refresh_vm_stats);
1823 	if (err)
1824 		return err;
1825 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1826 		/*
1827 		 * Skip checking stats known to go negative occasionally.
1828 		 */
1829 		switch (i) {
1830 		case NR_ZONE_WRITE_PENDING:
1831 		case NR_FREE_CMA_PAGES:
1832 			continue;
1833 		}
1834 		val = atomic_long_read(&vm_zone_stat[i]);
1835 		if (val < 0) {
1836 			pr_warn("%s: %s %ld\n",
1837 				__func__, zone_stat_name(i), val);
1838 		}
1839 	}
1840 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1841 		/*
1842 		 * Skip checking stats known to go negative occasionally.
1843 		 */
1844 		switch (i) {
1845 		case NR_WRITEBACK:
1846 			continue;
1847 		}
1848 		val = atomic_long_read(&vm_node_stat[i]);
1849 		if (val < 0) {
1850 			pr_warn("%s: %s %ld\n",
1851 				__func__, node_stat_name(i), val);
1852 		}
1853 	}
1854 	if (write)
1855 		*ppos += *lenp;
1856 	else
1857 		*lenp = 0;
1858 	return 0;
1859 }
1860 #endif /* CONFIG_PROC_FS */
1861 
1862 static void vmstat_update(struct work_struct *w)
1863 {
1864 	if (refresh_cpu_vm_stats(true)) {
1865 		/*
1866 		 * Counters were updated so we expect more updates
1867 		 * to occur in the future. Keep on running the
1868 		 * update worker thread.
1869 		 */
1870 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1871 				this_cpu_ptr(&vmstat_work),
1872 				round_jiffies_relative(sysctl_stat_interval));
1873 	}
1874 }
1875 
1876 /*
1877  * Switch off vmstat processing and then fold all the remaining differentials
1878  * until the diffs stay at zero. The function is used by NOHZ and can only be
1879  * invoked when tick processing is not active.
1880  */
1881 /*
1882  * Check if the diffs for a certain cpu indicate that
1883  * an update is needed.
1884  */
1885 static bool need_update(int cpu)
1886 {
1887 	pg_data_t *last_pgdat = NULL;
1888 	struct zone *zone;
1889 
1890 	for_each_populated_zone(zone) {
1891 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1892 		struct per_cpu_nodestat *n;
1893 
1894 		/*
1895 		 * The fast way of checking if there are any vmstat diffs.
1896 		 */
1897 		if (memchr_inv(pzstats->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1898 			       sizeof(pzstats->vm_stat_diff[0])))
1899 			return true;
1900 
1901 		if (last_pgdat == zone->zone_pgdat)
1902 			continue;
1903 		last_pgdat = zone->zone_pgdat;
1904 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1905 		if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS *
1906 			       sizeof(n->vm_node_stat_diff[0])))
1907 		    return true;
1908 	}
1909 	return false;
1910 }
1911 
1912 /*
1913  * Switch off vmstat processing and then fold all the remaining differentials
1914  * until the diffs stay at zero. The function is used by NOHZ and can only be
1915  * invoked when tick processing is not active.
1916  */
1917 void quiet_vmstat(void)
1918 {
1919 	if (system_state != SYSTEM_RUNNING)
1920 		return;
1921 
1922 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1923 		return;
1924 
1925 	if (!need_update(smp_processor_id()))
1926 		return;
1927 
1928 	/*
1929 	 * Just refresh counters and do not care about the pending delayed
1930 	 * vmstat_update. It doesn't fire that often to matter and canceling
1931 	 * it would be too expensive from this path.
1932 	 * vmstat_shepherd will take care about that for us.
1933 	 */
1934 	refresh_cpu_vm_stats(false);
1935 }
1936 
1937 /*
1938  * Shepherd worker thread that checks the
1939  * differentials of processors that have their worker
1940  * threads for vm statistics updates disabled because of
1941  * inactivity.
1942  */
1943 static void vmstat_shepherd(struct work_struct *w);
1944 
1945 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1946 
1947 static void vmstat_shepherd(struct work_struct *w)
1948 {
1949 	int cpu;
1950 
1951 	get_online_cpus();
1952 	/* Check processors whose vmstat worker threads have been disabled */
1953 	for_each_online_cpu(cpu) {
1954 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1955 
1956 		if (!delayed_work_pending(dw) && need_update(cpu))
1957 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1958 
1959 		cond_resched();
1960 	}
1961 	put_online_cpus();
1962 
1963 	schedule_delayed_work(&shepherd,
1964 		round_jiffies_relative(sysctl_stat_interval));
1965 }
1966 
1967 static void __init start_shepherd_timer(void)
1968 {
1969 	int cpu;
1970 
1971 	for_each_possible_cpu(cpu)
1972 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1973 			vmstat_update);
1974 
1975 	schedule_delayed_work(&shepherd,
1976 		round_jiffies_relative(sysctl_stat_interval));
1977 }
1978 
1979 static void __init init_cpu_node_state(void)
1980 {
1981 	int node;
1982 
1983 	for_each_online_node(node) {
1984 		if (cpumask_weight(cpumask_of_node(node)) > 0)
1985 			node_set_state(node, N_CPU);
1986 	}
1987 }
1988 
1989 static int vmstat_cpu_online(unsigned int cpu)
1990 {
1991 	refresh_zone_stat_thresholds();
1992 	node_set_state(cpu_to_node(cpu), N_CPU);
1993 	return 0;
1994 }
1995 
1996 static int vmstat_cpu_down_prep(unsigned int cpu)
1997 {
1998 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1999 	return 0;
2000 }
2001 
2002 static int vmstat_cpu_dead(unsigned int cpu)
2003 {
2004 	const struct cpumask *node_cpus;
2005 	int node;
2006 
2007 	node = cpu_to_node(cpu);
2008 
2009 	refresh_zone_stat_thresholds();
2010 	node_cpus = cpumask_of_node(node);
2011 	if (cpumask_weight(node_cpus) > 0)
2012 		return 0;
2013 
2014 	node_clear_state(node, N_CPU);
2015 	return 0;
2016 }
2017 
2018 #endif
2019 
2020 struct workqueue_struct *mm_percpu_wq;
2021 
2022 void __init init_mm_internals(void)
2023 {
2024 	int ret __maybe_unused;
2025 
2026 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2027 
2028 #ifdef CONFIG_SMP
2029 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2030 					NULL, vmstat_cpu_dead);
2031 	if (ret < 0)
2032 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2033 
2034 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2035 					vmstat_cpu_online,
2036 					vmstat_cpu_down_prep);
2037 	if (ret < 0)
2038 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2039 
2040 	get_online_cpus();
2041 	init_cpu_node_state();
2042 	put_online_cpus();
2043 
2044 	start_shepherd_timer();
2045 #endif
2046 #ifdef CONFIG_PROC_FS
2047 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2048 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2049 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2050 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2051 #endif
2052 }
2053 
2054 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2055 
2056 /*
2057  * Return an index indicating how much of the available free memory is
2058  * unusable for an allocation of the requested size.
2059  */
2060 static int unusable_free_index(unsigned int order,
2061 				struct contig_page_info *info)
2062 {
2063 	/* No free memory is interpreted as all free memory is unusable */
2064 	if (info->free_pages == 0)
2065 		return 1000;
2066 
2067 	/*
2068 	 * Index should be a value between 0 and 1. Return a value to 3
2069 	 * decimal places.
2070 	 *
2071 	 * 0 => no fragmentation
2072 	 * 1 => high fragmentation
2073 	 */
2074 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2075 
2076 }
2077 
2078 static void unusable_show_print(struct seq_file *m,
2079 					pg_data_t *pgdat, struct zone *zone)
2080 {
2081 	unsigned int order;
2082 	int index;
2083 	struct contig_page_info info;
2084 
2085 	seq_printf(m, "Node %d, zone %8s ",
2086 				pgdat->node_id,
2087 				zone->name);
2088 	for (order = 0; order < MAX_ORDER; ++order) {
2089 		fill_contig_page_info(zone, order, &info);
2090 		index = unusable_free_index(order, &info);
2091 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2092 	}
2093 
2094 	seq_putc(m, '\n');
2095 }
2096 
2097 /*
2098  * Display unusable free space index
2099  *
2100  * The unusable free space index measures how much of the available free
2101  * memory cannot be used to satisfy an allocation of a given size and is a
2102  * value between 0 and 1. The higher the value, the more of free memory is
2103  * unusable and by implication, the worse the external fragmentation is. This
2104  * can be expressed as a percentage by multiplying by 100.
2105  */
2106 static int unusable_show(struct seq_file *m, void *arg)
2107 {
2108 	pg_data_t *pgdat = (pg_data_t *)arg;
2109 
2110 	/* check memoryless node */
2111 	if (!node_state(pgdat->node_id, N_MEMORY))
2112 		return 0;
2113 
2114 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2115 
2116 	return 0;
2117 }
2118 
2119 static const struct seq_operations unusable_sops = {
2120 	.start	= frag_start,
2121 	.next	= frag_next,
2122 	.stop	= frag_stop,
2123 	.show	= unusable_show,
2124 };
2125 
2126 DEFINE_SEQ_ATTRIBUTE(unusable);
2127 
2128 static void extfrag_show_print(struct seq_file *m,
2129 					pg_data_t *pgdat, struct zone *zone)
2130 {
2131 	unsigned int order;
2132 	int index;
2133 
2134 	/* Alloc on stack as interrupts are disabled for zone walk */
2135 	struct contig_page_info info;
2136 
2137 	seq_printf(m, "Node %d, zone %8s ",
2138 				pgdat->node_id,
2139 				zone->name);
2140 	for (order = 0; order < MAX_ORDER; ++order) {
2141 		fill_contig_page_info(zone, order, &info);
2142 		index = __fragmentation_index(order, &info);
2143 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2144 	}
2145 
2146 	seq_putc(m, '\n');
2147 }
2148 
2149 /*
2150  * Display fragmentation index for orders that allocations would fail for
2151  */
2152 static int extfrag_show(struct seq_file *m, void *arg)
2153 {
2154 	pg_data_t *pgdat = (pg_data_t *)arg;
2155 
2156 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2157 
2158 	return 0;
2159 }
2160 
2161 static const struct seq_operations extfrag_sops = {
2162 	.start	= frag_start,
2163 	.next	= frag_next,
2164 	.stop	= frag_stop,
2165 	.show	= extfrag_show,
2166 };
2167 
2168 DEFINE_SEQ_ATTRIBUTE(extfrag);
2169 
2170 static int __init extfrag_debug_init(void)
2171 {
2172 	struct dentry *extfrag_debug_root;
2173 
2174 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2175 
2176 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2177 			    &unusable_fops);
2178 
2179 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2180 			    &extfrag_fops);
2181 
2182 	return 0;
2183 }
2184 
2185 module_init(extfrag_debug_init);
2186 #endif
2187