xref: /openbmc/linux/mm/vmstat.c (revision 9b9c2cd4)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30 
31 #include "internal.h"
32 
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36 
37 static void sum_vm_events(unsigned long *ret)
38 {
39 	int cpu;
40 	int i;
41 
42 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43 
44 	for_each_online_cpu(cpu) {
45 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46 
47 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 			ret[i] += this->event[i];
49 	}
50 }
51 
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 	get_online_cpus();
60 	sum_vm_events(ret);
61 	put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64 
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 	int i;
75 
76 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 		count_vm_events(i, fold_state->event[i]);
78 		fold_state->event[i] = 0;
79 	}
80 }
81 
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83 
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91 
92 #ifdef CONFIG_SMP
93 
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 	int threshold;
97 	int watermark_distance;
98 
99 	/*
100 	 * As vmstats are not up to date, there is drift between the estimated
101 	 * and real values. For high thresholds and a high number of CPUs, it
102 	 * is possible for the min watermark to be breached while the estimated
103 	 * value looks fine. The pressure threshold is a reduced value such
104 	 * that even the maximum amount of drift will not accidentally breach
105 	 * the min watermark
106 	 */
107 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109 
110 	/*
111 	 * Maximum threshold is 125
112 	 */
113 	threshold = min(125, threshold);
114 
115 	return threshold;
116 }
117 
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 	int threshold;
121 	int mem;	/* memory in 128 MB units */
122 
123 	/*
124 	 * The threshold scales with the number of processors and the amount
125 	 * of memory per zone. More memory means that we can defer updates for
126 	 * longer, more processors could lead to more contention.
127  	 * fls() is used to have a cheap way of logarithmic scaling.
128 	 *
129 	 * Some sample thresholds:
130 	 *
131 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
132 	 * ------------------------------------------------------------------
133 	 * 8		1		1	0.9-1 GB	4
134 	 * 16		2		2	0.9-1 GB	4
135 	 * 20 		2		2	1-2 GB		5
136 	 * 24		2		2	2-4 GB		6
137 	 * 28		2		2	4-8 GB		7
138 	 * 32		2		2	8-16 GB		8
139 	 * 4		2		2	<128M		1
140 	 * 30		4		3	2-4 GB		5
141 	 * 48		4		3	8-16 GB		8
142 	 * 32		8		4	1-2 GB		4
143 	 * 32		8		4	0.9-1GB		4
144 	 * 10		16		5	<128M		1
145 	 * 40		16		5	900M		4
146 	 * 70		64		7	2-4 GB		5
147 	 * 84		64		7	4-8 GB		6
148 	 * 108		512		9	4-8 GB		6
149 	 * 125		1024		10	8-16 GB		8
150 	 * 125		1024		10	16-32 GB	9
151 	 */
152 
153 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154 
155 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156 
157 	/*
158 	 * Maximum threshold is 125
159 	 */
160 	threshold = min(125, threshold);
161 
162 	return threshold;
163 }
164 
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170 	struct zone *zone;
171 	int cpu;
172 	int threshold;
173 
174 	for_each_populated_zone(zone) {
175 		unsigned long max_drift, tolerate_drift;
176 
177 		threshold = calculate_normal_threshold(zone);
178 
179 		for_each_online_cpu(cpu)
180 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 							= threshold;
182 
183 		/*
184 		 * Only set percpu_drift_mark if there is a danger that
185 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 		 * the min watermark could be breached by an allocation
187 		 */
188 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 		max_drift = num_online_cpus() * threshold;
190 		if (max_drift > tolerate_drift)
191 			zone->percpu_drift_mark = high_wmark_pages(zone) +
192 					max_drift;
193 	}
194 }
195 
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 				int (*calculate_pressure)(struct zone *))
198 {
199 	struct zone *zone;
200 	int cpu;
201 	int threshold;
202 	int i;
203 
204 	for (i = 0; i < pgdat->nr_zones; i++) {
205 		zone = &pgdat->node_zones[i];
206 		if (!zone->percpu_drift_mark)
207 			continue;
208 
209 		threshold = (*calculate_pressure)(zone);
210 		for_each_online_cpu(cpu)
211 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 							= threshold;
213 	}
214 }
215 
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 			   long delta)
223 {
224 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 	s8 __percpu *p = pcp->vm_stat_diff + item;
226 	long x;
227 	long t;
228 
229 	x = delta + __this_cpu_read(*p);
230 
231 	t = __this_cpu_read(pcp->stat_threshold);
232 
233 	if (unlikely(x > t || x < -t)) {
234 		zone_page_state_add(x, zone, item);
235 		x = 0;
236 	}
237 	__this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240 
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 	s8 __percpu *p = pcp->vm_stat_diff + item;
268 	s8 v, t;
269 
270 	v = __this_cpu_inc_return(*p);
271 	t = __this_cpu_read(pcp->stat_threshold);
272 	if (unlikely(v > t)) {
273 		s8 overstep = t >> 1;
274 
275 		zone_page_state_add(v + overstep, zone, item);
276 		__this_cpu_write(*p, -overstep);
277 	}
278 }
279 
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 	__inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285 
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 	s8 __percpu *p = pcp->vm_stat_diff + item;
290 	s8 v, t;
291 
292 	v = __this_cpu_dec_return(*p);
293 	t = __this_cpu_read(pcp->stat_threshold);
294 	if (unlikely(v < - t)) {
295 		s8 overstep = t >> 1;
296 
297 		zone_page_state_add(v - overstep, zone, item);
298 		__this_cpu_write(*p, overstep);
299 	}
300 }
301 
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 	__dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307 
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 			     long delta, int overstep_mode)
323 {
324 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 	s8 __percpu *p = pcp->vm_stat_diff + item;
326 	long o, n, t, z;
327 
328 	do {
329 		z = 0;  /* overflow to zone counters */
330 
331 		/*
332 		 * The fetching of the stat_threshold is racy. We may apply
333 		 * a counter threshold to the wrong the cpu if we get
334 		 * rescheduled while executing here. However, the next
335 		 * counter update will apply the threshold again and
336 		 * therefore bring the counter under the threshold again.
337 		 *
338 		 * Most of the time the thresholds are the same anyways
339 		 * for all cpus in a zone.
340 		 */
341 		t = this_cpu_read(pcp->stat_threshold);
342 
343 		o = this_cpu_read(*p);
344 		n = delta + o;
345 
346 		if (n > t || n < -t) {
347 			int os = overstep_mode * (t >> 1) ;
348 
349 			/* Overflow must be added to zone counters */
350 			z = n + os;
351 			n = -os;
352 		}
353 	} while (this_cpu_cmpxchg(*p, o, n) != o);
354 
355 	if (z)
356 		zone_page_state_add(z, zone, item);
357 }
358 
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 			 long delta)
361 {
362 	mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365 
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 	mod_state(zone, item, 1, 1);
369 }
370 
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 	mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376 
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 	mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 			 long delta)
388 {
389 	unsigned long flags;
390 
391 	local_irq_save(flags);
392 	__mod_zone_page_state(zone, item, delta);
393 	local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396 
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 	unsigned long flags;
400 
401 	local_irq_save(flags);
402 	__inc_zone_state(zone, item);
403 	local_irq_restore(flags);
404 }
405 
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 	unsigned long flags;
409 	struct zone *zone;
410 
411 	zone = page_zone(page);
412 	local_irq_save(flags);
413 	__inc_zone_state(zone, item);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417 
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 	unsigned long flags;
421 
422 	local_irq_save(flags);
423 	__dec_zone_page_state(page, item);
424 	local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428 
429 
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436 	int i;
437 	int changes = 0;
438 
439 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 		if (diff[i]) {
441 			atomic_long_add(diff[i], &vm_stat[i]);
442 			changes++;
443 	}
444 	return changes;
445 }
446 
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(void)
464 {
465 	struct zone *zone;
466 	int i;
467 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 	int changes = 0;
469 
470 	for_each_populated_zone(zone) {
471 		struct per_cpu_pageset __percpu *p = zone->pageset;
472 
473 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 			int v;
475 
476 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 			if (v) {
478 
479 				atomic_long_add(v, &zone->vm_stat[i]);
480 				global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 				/* 3 seconds idle till flush */
483 				__this_cpu_write(p->expire, 3);
484 #endif
485 			}
486 		}
487 		cond_resched();
488 #ifdef CONFIG_NUMA
489 		/*
490 		 * Deal with draining the remote pageset of this
491 		 * processor
492 		 *
493 		 * Check if there are pages remaining in this pageset
494 		 * if not then there is nothing to expire.
495 		 */
496 		if (!__this_cpu_read(p->expire) ||
497 			       !__this_cpu_read(p->pcp.count))
498 			continue;
499 
500 		/*
501 		 * We never drain zones local to this processor.
502 		 */
503 		if (zone_to_nid(zone) == numa_node_id()) {
504 			__this_cpu_write(p->expire, 0);
505 			continue;
506 		}
507 
508 		if (__this_cpu_dec_return(p->expire))
509 			continue;
510 
511 		if (__this_cpu_read(p->pcp.count)) {
512 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
513 			changes++;
514 		}
515 #endif
516 	}
517 	changes += fold_diff(global_diff);
518 	return changes;
519 }
520 
521 /*
522  * Fold the data for an offline cpu into the global array.
523  * There cannot be any access by the offline cpu and therefore
524  * synchronization is simplified.
525  */
526 void cpu_vm_stats_fold(int cpu)
527 {
528 	struct zone *zone;
529 	int i;
530 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
531 
532 	for_each_populated_zone(zone) {
533 		struct per_cpu_pageset *p;
534 
535 		p = per_cpu_ptr(zone->pageset, cpu);
536 
537 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
538 			if (p->vm_stat_diff[i]) {
539 				int v;
540 
541 				v = p->vm_stat_diff[i];
542 				p->vm_stat_diff[i] = 0;
543 				atomic_long_add(v, &zone->vm_stat[i]);
544 				global_diff[i] += v;
545 			}
546 	}
547 
548 	fold_diff(global_diff);
549 }
550 
551 /*
552  * this is only called if !populated_zone(zone), which implies no other users of
553  * pset->vm_stat_diff[] exsist.
554  */
555 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
556 {
557 	int i;
558 
559 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
560 		if (pset->vm_stat_diff[i]) {
561 			int v = pset->vm_stat_diff[i];
562 			pset->vm_stat_diff[i] = 0;
563 			atomic_long_add(v, &zone->vm_stat[i]);
564 			atomic_long_add(v, &vm_stat[i]);
565 		}
566 }
567 #endif
568 
569 #ifdef CONFIG_NUMA
570 /*
571  * zonelist = the list of zones passed to the allocator
572  * z 	    = the zone from which the allocation occurred.
573  *
574  * Must be called with interrupts disabled.
575  *
576  * When __GFP_OTHER_NODE is set assume the node of the preferred
577  * zone is the local node. This is useful for daemons who allocate
578  * memory on behalf of other processes.
579  */
580 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
581 {
582 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
583 		__inc_zone_state(z, NUMA_HIT);
584 	} else {
585 		__inc_zone_state(z, NUMA_MISS);
586 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
587 	}
588 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
589 			preferred_zone->node : numa_node_id()))
590 		__inc_zone_state(z, NUMA_LOCAL);
591 	else
592 		__inc_zone_state(z, NUMA_OTHER);
593 }
594 
595 /*
596  * Determine the per node value of a stat item.
597  */
598 unsigned long node_page_state(int node, enum zone_stat_item item)
599 {
600 	struct zone *zones = NODE_DATA(node)->node_zones;
601 
602 	return
603 #ifdef CONFIG_ZONE_DMA
604 		zone_page_state(&zones[ZONE_DMA], item) +
605 #endif
606 #ifdef CONFIG_ZONE_DMA32
607 		zone_page_state(&zones[ZONE_DMA32], item) +
608 #endif
609 #ifdef CONFIG_HIGHMEM
610 		zone_page_state(&zones[ZONE_HIGHMEM], item) +
611 #endif
612 		zone_page_state(&zones[ZONE_NORMAL], item) +
613 		zone_page_state(&zones[ZONE_MOVABLE], item);
614 }
615 
616 #endif
617 
618 #ifdef CONFIG_COMPACTION
619 
620 struct contig_page_info {
621 	unsigned long free_pages;
622 	unsigned long free_blocks_total;
623 	unsigned long free_blocks_suitable;
624 };
625 
626 /*
627  * Calculate the number of free pages in a zone, how many contiguous
628  * pages are free and how many are large enough to satisfy an allocation of
629  * the target size. Note that this function makes no attempt to estimate
630  * how many suitable free blocks there *might* be if MOVABLE pages were
631  * migrated. Calculating that is possible, but expensive and can be
632  * figured out from userspace
633  */
634 static void fill_contig_page_info(struct zone *zone,
635 				unsigned int suitable_order,
636 				struct contig_page_info *info)
637 {
638 	unsigned int order;
639 
640 	info->free_pages = 0;
641 	info->free_blocks_total = 0;
642 	info->free_blocks_suitable = 0;
643 
644 	for (order = 0; order < MAX_ORDER; order++) {
645 		unsigned long blocks;
646 
647 		/* Count number of free blocks */
648 		blocks = zone->free_area[order].nr_free;
649 		info->free_blocks_total += blocks;
650 
651 		/* Count free base pages */
652 		info->free_pages += blocks << order;
653 
654 		/* Count the suitable free blocks */
655 		if (order >= suitable_order)
656 			info->free_blocks_suitable += blocks <<
657 						(order - suitable_order);
658 	}
659 }
660 
661 /*
662  * A fragmentation index only makes sense if an allocation of a requested
663  * size would fail. If that is true, the fragmentation index indicates
664  * whether external fragmentation or a lack of memory was the problem.
665  * The value can be used to determine if page reclaim or compaction
666  * should be used
667  */
668 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
669 {
670 	unsigned long requested = 1UL << order;
671 
672 	if (!info->free_blocks_total)
673 		return 0;
674 
675 	/* Fragmentation index only makes sense when a request would fail */
676 	if (info->free_blocks_suitable)
677 		return -1000;
678 
679 	/*
680 	 * Index is between 0 and 1 so return within 3 decimal places
681 	 *
682 	 * 0 => allocation would fail due to lack of memory
683 	 * 1 => allocation would fail due to fragmentation
684 	 */
685 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
686 }
687 
688 /* Same as __fragmentation index but allocs contig_page_info on stack */
689 int fragmentation_index(struct zone *zone, unsigned int order)
690 {
691 	struct contig_page_info info;
692 
693 	fill_contig_page_info(zone, order, &info);
694 	return __fragmentation_index(order, &info);
695 }
696 #endif
697 
698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
699 #ifdef CONFIG_ZONE_DMA
700 #define TEXT_FOR_DMA(xx) xx "_dma",
701 #else
702 #define TEXT_FOR_DMA(xx)
703 #endif
704 
705 #ifdef CONFIG_ZONE_DMA32
706 #define TEXT_FOR_DMA32(xx) xx "_dma32",
707 #else
708 #define TEXT_FOR_DMA32(xx)
709 #endif
710 
711 #ifdef CONFIG_HIGHMEM
712 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
713 #else
714 #define TEXT_FOR_HIGHMEM(xx)
715 #endif
716 
717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
719 
720 const char * const vmstat_text[] = {
721 	/* enum zone_stat_item countes */
722 	"nr_free_pages",
723 	"nr_alloc_batch",
724 	"nr_inactive_anon",
725 	"nr_active_anon",
726 	"nr_inactive_file",
727 	"nr_active_file",
728 	"nr_unevictable",
729 	"nr_mlock",
730 	"nr_anon_pages",
731 	"nr_mapped",
732 	"nr_file_pages",
733 	"nr_dirty",
734 	"nr_writeback",
735 	"nr_slab_reclaimable",
736 	"nr_slab_unreclaimable",
737 	"nr_page_table_pages",
738 	"nr_kernel_stack",
739 	"nr_unstable",
740 	"nr_bounce",
741 	"nr_vmscan_write",
742 	"nr_vmscan_immediate_reclaim",
743 	"nr_writeback_temp",
744 	"nr_isolated_anon",
745 	"nr_isolated_file",
746 	"nr_shmem",
747 	"nr_dirtied",
748 	"nr_written",
749 	"nr_pages_scanned",
750 
751 #ifdef CONFIG_NUMA
752 	"numa_hit",
753 	"numa_miss",
754 	"numa_foreign",
755 	"numa_interleave",
756 	"numa_local",
757 	"numa_other",
758 #endif
759 	"workingset_refault",
760 	"workingset_activate",
761 	"workingset_nodereclaim",
762 	"nr_anon_transparent_hugepages",
763 	"nr_free_cma",
764 
765 	/* enum writeback_stat_item counters */
766 	"nr_dirty_threshold",
767 	"nr_dirty_background_threshold",
768 
769 #ifdef CONFIG_VM_EVENT_COUNTERS
770 	/* enum vm_event_item counters */
771 	"pgpgin",
772 	"pgpgout",
773 	"pswpin",
774 	"pswpout",
775 
776 	TEXTS_FOR_ZONES("pgalloc")
777 
778 	"pgfree",
779 	"pgactivate",
780 	"pgdeactivate",
781 
782 	"pgfault",
783 	"pgmajfault",
784 
785 	TEXTS_FOR_ZONES("pgrefill")
786 	TEXTS_FOR_ZONES("pgsteal_kswapd")
787 	TEXTS_FOR_ZONES("pgsteal_direct")
788 	TEXTS_FOR_ZONES("pgscan_kswapd")
789 	TEXTS_FOR_ZONES("pgscan_direct")
790 	"pgscan_direct_throttle",
791 
792 #ifdef CONFIG_NUMA
793 	"zone_reclaim_failed",
794 #endif
795 	"pginodesteal",
796 	"slabs_scanned",
797 	"kswapd_inodesteal",
798 	"kswapd_low_wmark_hit_quickly",
799 	"kswapd_high_wmark_hit_quickly",
800 	"pageoutrun",
801 	"allocstall",
802 
803 	"pgrotated",
804 
805 	"drop_pagecache",
806 	"drop_slab",
807 
808 #ifdef CONFIG_NUMA_BALANCING
809 	"numa_pte_updates",
810 	"numa_huge_pte_updates",
811 	"numa_hint_faults",
812 	"numa_hint_faults_local",
813 	"numa_pages_migrated",
814 #endif
815 #ifdef CONFIG_MIGRATION
816 	"pgmigrate_success",
817 	"pgmigrate_fail",
818 #endif
819 #ifdef CONFIG_COMPACTION
820 	"compact_migrate_scanned",
821 	"compact_free_scanned",
822 	"compact_isolated",
823 	"compact_stall",
824 	"compact_fail",
825 	"compact_success",
826 #endif
827 
828 #ifdef CONFIG_HUGETLB_PAGE
829 	"htlb_buddy_alloc_success",
830 	"htlb_buddy_alloc_fail",
831 #endif
832 	"unevictable_pgs_culled",
833 	"unevictable_pgs_scanned",
834 	"unevictable_pgs_rescued",
835 	"unevictable_pgs_mlocked",
836 	"unevictable_pgs_munlocked",
837 	"unevictable_pgs_cleared",
838 	"unevictable_pgs_stranded",
839 
840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
841 	"thp_fault_alloc",
842 	"thp_fault_fallback",
843 	"thp_collapse_alloc",
844 	"thp_collapse_alloc_failed",
845 	"thp_split",
846 	"thp_zero_page_alloc",
847 	"thp_zero_page_alloc_failed",
848 #endif
849 #ifdef CONFIG_MEMORY_BALLOON
850 	"balloon_inflate",
851 	"balloon_deflate",
852 #ifdef CONFIG_BALLOON_COMPACTION
853 	"balloon_migrate",
854 #endif
855 #endif /* CONFIG_MEMORY_BALLOON */
856 #ifdef CONFIG_DEBUG_TLBFLUSH
857 #ifdef CONFIG_SMP
858 	"nr_tlb_remote_flush",
859 	"nr_tlb_remote_flush_received",
860 #endif /* CONFIG_SMP */
861 	"nr_tlb_local_flush_all",
862 	"nr_tlb_local_flush_one",
863 #endif /* CONFIG_DEBUG_TLBFLUSH */
864 
865 #ifdef CONFIG_DEBUG_VM_VMACACHE
866 	"vmacache_find_calls",
867 	"vmacache_find_hits",
868 	"vmacache_full_flushes",
869 #endif
870 #endif /* CONFIG_VM_EVENTS_COUNTERS */
871 };
872 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
873 
874 
875 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
876      defined(CONFIG_PROC_FS)
877 static void *frag_start(struct seq_file *m, loff_t *pos)
878 {
879 	pg_data_t *pgdat;
880 	loff_t node = *pos;
881 
882 	for (pgdat = first_online_pgdat();
883 	     pgdat && node;
884 	     pgdat = next_online_pgdat(pgdat))
885 		--node;
886 
887 	return pgdat;
888 }
889 
890 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
891 {
892 	pg_data_t *pgdat = (pg_data_t *)arg;
893 
894 	(*pos)++;
895 	return next_online_pgdat(pgdat);
896 }
897 
898 static void frag_stop(struct seq_file *m, void *arg)
899 {
900 }
901 
902 /* Walk all the zones in a node and print using a callback */
903 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
904 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
905 {
906 	struct zone *zone;
907 	struct zone *node_zones = pgdat->node_zones;
908 	unsigned long flags;
909 
910 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
911 		if (!populated_zone(zone))
912 			continue;
913 
914 		spin_lock_irqsave(&zone->lock, flags);
915 		print(m, pgdat, zone);
916 		spin_unlock_irqrestore(&zone->lock, flags);
917 	}
918 }
919 #endif
920 
921 #ifdef CONFIG_PROC_FS
922 static char * const migratetype_names[MIGRATE_TYPES] = {
923 	"Unmovable",
924 	"Movable",
925 	"Reclaimable",
926 	"HighAtomic",
927 #ifdef CONFIG_CMA
928 	"CMA",
929 #endif
930 #ifdef CONFIG_MEMORY_ISOLATION
931 	"Isolate",
932 #endif
933 };
934 
935 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
936 						struct zone *zone)
937 {
938 	int order;
939 
940 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
941 	for (order = 0; order < MAX_ORDER; ++order)
942 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
943 	seq_putc(m, '\n');
944 }
945 
946 /*
947  * This walks the free areas for each zone.
948  */
949 static int frag_show(struct seq_file *m, void *arg)
950 {
951 	pg_data_t *pgdat = (pg_data_t *)arg;
952 	walk_zones_in_node(m, pgdat, frag_show_print);
953 	return 0;
954 }
955 
956 static void pagetypeinfo_showfree_print(struct seq_file *m,
957 					pg_data_t *pgdat, struct zone *zone)
958 {
959 	int order, mtype;
960 
961 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
962 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
963 					pgdat->node_id,
964 					zone->name,
965 					migratetype_names[mtype]);
966 		for (order = 0; order < MAX_ORDER; ++order) {
967 			unsigned long freecount = 0;
968 			struct free_area *area;
969 			struct list_head *curr;
970 
971 			area = &(zone->free_area[order]);
972 
973 			list_for_each(curr, &area->free_list[mtype])
974 				freecount++;
975 			seq_printf(m, "%6lu ", freecount);
976 		}
977 		seq_putc(m, '\n');
978 	}
979 }
980 
981 /* Print out the free pages at each order for each migatetype */
982 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
983 {
984 	int order;
985 	pg_data_t *pgdat = (pg_data_t *)arg;
986 
987 	/* Print header */
988 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
989 	for (order = 0; order < MAX_ORDER; ++order)
990 		seq_printf(m, "%6d ", order);
991 	seq_putc(m, '\n');
992 
993 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
994 
995 	return 0;
996 }
997 
998 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
999 					pg_data_t *pgdat, struct zone *zone)
1000 {
1001 	int mtype;
1002 	unsigned long pfn;
1003 	unsigned long start_pfn = zone->zone_start_pfn;
1004 	unsigned long end_pfn = zone_end_pfn(zone);
1005 	unsigned long count[MIGRATE_TYPES] = { 0, };
1006 
1007 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1008 		struct page *page;
1009 
1010 		if (!pfn_valid(pfn))
1011 			continue;
1012 
1013 		page = pfn_to_page(pfn);
1014 
1015 		/* Watch for unexpected holes punched in the memmap */
1016 		if (!memmap_valid_within(pfn, page, zone))
1017 			continue;
1018 
1019 		mtype = get_pageblock_migratetype(page);
1020 
1021 		if (mtype < MIGRATE_TYPES)
1022 			count[mtype]++;
1023 	}
1024 
1025 	/* Print counts */
1026 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1027 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1028 		seq_printf(m, "%12lu ", count[mtype]);
1029 	seq_putc(m, '\n');
1030 }
1031 
1032 /* Print out the free pages at each order for each migratetype */
1033 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1034 {
1035 	int mtype;
1036 	pg_data_t *pgdat = (pg_data_t *)arg;
1037 
1038 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1039 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1040 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1041 	seq_putc(m, '\n');
1042 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1043 
1044 	return 0;
1045 }
1046 
1047 #ifdef CONFIG_PAGE_OWNER
1048 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1049 							pg_data_t *pgdat,
1050 							struct zone *zone)
1051 {
1052 	struct page *page;
1053 	struct page_ext *page_ext;
1054 	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1055 	unsigned long end_pfn = pfn + zone->spanned_pages;
1056 	unsigned long count[MIGRATE_TYPES] = { 0, };
1057 	int pageblock_mt, page_mt;
1058 	int i;
1059 
1060 	/* Scan block by block. First and last block may be incomplete */
1061 	pfn = zone->zone_start_pfn;
1062 
1063 	/*
1064 	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1065 	 * a zone boundary, it will be double counted between zones. This does
1066 	 * not matter as the mixed block count will still be correct
1067 	 */
1068 	for (; pfn < end_pfn; ) {
1069 		if (!pfn_valid(pfn)) {
1070 			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1071 			continue;
1072 		}
1073 
1074 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1075 		block_end_pfn = min(block_end_pfn, end_pfn);
1076 
1077 		page = pfn_to_page(pfn);
1078 		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1079 
1080 		for (; pfn < block_end_pfn; pfn++) {
1081 			if (!pfn_valid_within(pfn))
1082 				continue;
1083 
1084 			page = pfn_to_page(pfn);
1085 			if (PageBuddy(page)) {
1086 				pfn += (1UL << page_order(page)) - 1;
1087 				continue;
1088 			}
1089 
1090 			if (PageReserved(page))
1091 				continue;
1092 
1093 			page_ext = lookup_page_ext(page);
1094 
1095 			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1096 				continue;
1097 
1098 			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1099 			if (pageblock_mt != page_mt) {
1100 				if (is_migrate_cma(pageblock_mt))
1101 					count[MIGRATE_MOVABLE]++;
1102 				else
1103 					count[pageblock_mt]++;
1104 
1105 				pfn = block_end_pfn;
1106 				break;
1107 			}
1108 			pfn += (1UL << page_ext->order) - 1;
1109 		}
1110 	}
1111 
1112 	/* Print counts */
1113 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1114 	for (i = 0; i < MIGRATE_TYPES; i++)
1115 		seq_printf(m, "%12lu ", count[i]);
1116 	seq_putc(m, '\n');
1117 }
1118 #endif /* CONFIG_PAGE_OWNER */
1119 
1120 /*
1121  * Print out the number of pageblocks for each migratetype that contain pages
1122  * of other types. This gives an indication of how well fallbacks are being
1123  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1124  * to determine what is going on
1125  */
1126 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1127 {
1128 #ifdef CONFIG_PAGE_OWNER
1129 	int mtype;
1130 
1131 	if (!page_owner_inited)
1132 		return;
1133 
1134 	drain_all_pages(NULL);
1135 
1136 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1137 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1138 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1139 	seq_putc(m, '\n');
1140 
1141 	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1142 #endif /* CONFIG_PAGE_OWNER */
1143 }
1144 
1145 /*
1146  * This prints out statistics in relation to grouping pages by mobility.
1147  * It is expensive to collect so do not constantly read the file.
1148  */
1149 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1150 {
1151 	pg_data_t *pgdat = (pg_data_t *)arg;
1152 
1153 	/* check memoryless node */
1154 	if (!node_state(pgdat->node_id, N_MEMORY))
1155 		return 0;
1156 
1157 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1158 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1159 	seq_putc(m, '\n');
1160 	pagetypeinfo_showfree(m, pgdat);
1161 	pagetypeinfo_showblockcount(m, pgdat);
1162 	pagetypeinfo_showmixedcount(m, pgdat);
1163 
1164 	return 0;
1165 }
1166 
1167 static const struct seq_operations fragmentation_op = {
1168 	.start	= frag_start,
1169 	.next	= frag_next,
1170 	.stop	= frag_stop,
1171 	.show	= frag_show,
1172 };
1173 
1174 static int fragmentation_open(struct inode *inode, struct file *file)
1175 {
1176 	return seq_open(file, &fragmentation_op);
1177 }
1178 
1179 static const struct file_operations fragmentation_file_operations = {
1180 	.open		= fragmentation_open,
1181 	.read		= seq_read,
1182 	.llseek		= seq_lseek,
1183 	.release	= seq_release,
1184 };
1185 
1186 static const struct seq_operations pagetypeinfo_op = {
1187 	.start	= frag_start,
1188 	.next	= frag_next,
1189 	.stop	= frag_stop,
1190 	.show	= pagetypeinfo_show,
1191 };
1192 
1193 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1194 {
1195 	return seq_open(file, &pagetypeinfo_op);
1196 }
1197 
1198 static const struct file_operations pagetypeinfo_file_ops = {
1199 	.open		= pagetypeinfo_open,
1200 	.read		= seq_read,
1201 	.llseek		= seq_lseek,
1202 	.release	= seq_release,
1203 };
1204 
1205 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1206 							struct zone *zone)
1207 {
1208 	int i;
1209 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1210 	seq_printf(m,
1211 		   "\n  pages free     %lu"
1212 		   "\n        min      %lu"
1213 		   "\n        low      %lu"
1214 		   "\n        high     %lu"
1215 		   "\n        scanned  %lu"
1216 		   "\n        spanned  %lu"
1217 		   "\n        present  %lu"
1218 		   "\n        managed  %lu",
1219 		   zone_page_state(zone, NR_FREE_PAGES),
1220 		   min_wmark_pages(zone),
1221 		   low_wmark_pages(zone),
1222 		   high_wmark_pages(zone),
1223 		   zone_page_state(zone, NR_PAGES_SCANNED),
1224 		   zone->spanned_pages,
1225 		   zone->present_pages,
1226 		   zone->managed_pages);
1227 
1228 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1229 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1230 				zone_page_state(zone, i));
1231 
1232 	seq_printf(m,
1233 		   "\n        protection: (%ld",
1234 		   zone->lowmem_reserve[0]);
1235 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1236 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1237 	seq_printf(m,
1238 		   ")"
1239 		   "\n  pagesets");
1240 	for_each_online_cpu(i) {
1241 		struct per_cpu_pageset *pageset;
1242 
1243 		pageset = per_cpu_ptr(zone->pageset, i);
1244 		seq_printf(m,
1245 			   "\n    cpu: %i"
1246 			   "\n              count: %i"
1247 			   "\n              high:  %i"
1248 			   "\n              batch: %i",
1249 			   i,
1250 			   pageset->pcp.count,
1251 			   pageset->pcp.high,
1252 			   pageset->pcp.batch);
1253 #ifdef CONFIG_SMP
1254 		seq_printf(m, "\n  vm stats threshold: %d",
1255 				pageset->stat_threshold);
1256 #endif
1257 	}
1258 	seq_printf(m,
1259 		   "\n  all_unreclaimable: %u"
1260 		   "\n  start_pfn:         %lu"
1261 		   "\n  inactive_ratio:    %u",
1262 		   !zone_reclaimable(zone),
1263 		   zone->zone_start_pfn,
1264 		   zone->inactive_ratio);
1265 	seq_putc(m, '\n');
1266 }
1267 
1268 /*
1269  * Output information about zones in @pgdat.
1270  */
1271 static int zoneinfo_show(struct seq_file *m, void *arg)
1272 {
1273 	pg_data_t *pgdat = (pg_data_t *)arg;
1274 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1275 	return 0;
1276 }
1277 
1278 static const struct seq_operations zoneinfo_op = {
1279 	.start	= frag_start, /* iterate over all zones. The same as in
1280 			       * fragmentation. */
1281 	.next	= frag_next,
1282 	.stop	= frag_stop,
1283 	.show	= zoneinfo_show,
1284 };
1285 
1286 static int zoneinfo_open(struct inode *inode, struct file *file)
1287 {
1288 	return seq_open(file, &zoneinfo_op);
1289 }
1290 
1291 static const struct file_operations proc_zoneinfo_file_operations = {
1292 	.open		= zoneinfo_open,
1293 	.read		= seq_read,
1294 	.llseek		= seq_lseek,
1295 	.release	= seq_release,
1296 };
1297 
1298 enum writeback_stat_item {
1299 	NR_DIRTY_THRESHOLD,
1300 	NR_DIRTY_BG_THRESHOLD,
1301 	NR_VM_WRITEBACK_STAT_ITEMS,
1302 };
1303 
1304 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1305 {
1306 	unsigned long *v;
1307 	int i, stat_items_size;
1308 
1309 	if (*pos >= ARRAY_SIZE(vmstat_text))
1310 		return NULL;
1311 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1312 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1313 
1314 #ifdef CONFIG_VM_EVENT_COUNTERS
1315 	stat_items_size += sizeof(struct vm_event_state);
1316 #endif
1317 
1318 	v = kmalloc(stat_items_size, GFP_KERNEL);
1319 	m->private = v;
1320 	if (!v)
1321 		return ERR_PTR(-ENOMEM);
1322 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1323 		v[i] = global_page_state(i);
1324 	v += NR_VM_ZONE_STAT_ITEMS;
1325 
1326 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1327 			    v + NR_DIRTY_THRESHOLD);
1328 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1329 
1330 #ifdef CONFIG_VM_EVENT_COUNTERS
1331 	all_vm_events(v);
1332 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1333 	v[PGPGOUT] /= 2;
1334 #endif
1335 	return (unsigned long *)m->private + *pos;
1336 }
1337 
1338 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1339 {
1340 	(*pos)++;
1341 	if (*pos >= ARRAY_SIZE(vmstat_text))
1342 		return NULL;
1343 	return (unsigned long *)m->private + *pos;
1344 }
1345 
1346 static int vmstat_show(struct seq_file *m, void *arg)
1347 {
1348 	unsigned long *l = arg;
1349 	unsigned long off = l - (unsigned long *)m->private;
1350 
1351 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1352 	return 0;
1353 }
1354 
1355 static void vmstat_stop(struct seq_file *m, void *arg)
1356 {
1357 	kfree(m->private);
1358 	m->private = NULL;
1359 }
1360 
1361 static const struct seq_operations vmstat_op = {
1362 	.start	= vmstat_start,
1363 	.next	= vmstat_next,
1364 	.stop	= vmstat_stop,
1365 	.show	= vmstat_show,
1366 };
1367 
1368 static int vmstat_open(struct inode *inode, struct file *file)
1369 {
1370 	return seq_open(file, &vmstat_op);
1371 }
1372 
1373 static const struct file_operations proc_vmstat_file_operations = {
1374 	.open		= vmstat_open,
1375 	.read		= seq_read,
1376 	.llseek		= seq_lseek,
1377 	.release	= seq_release,
1378 };
1379 #endif /* CONFIG_PROC_FS */
1380 
1381 #ifdef CONFIG_SMP
1382 static struct workqueue_struct *vmstat_wq;
1383 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1384 int sysctl_stat_interval __read_mostly = HZ;
1385 static cpumask_var_t cpu_stat_off;
1386 
1387 static void vmstat_update(struct work_struct *w)
1388 {
1389 	if (refresh_cpu_vm_stats()) {
1390 		/*
1391 		 * Counters were updated so we expect more updates
1392 		 * to occur in the future. Keep on running the
1393 		 * update worker thread.
1394 		 */
1395 		queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1396 			this_cpu_ptr(&vmstat_work),
1397 			round_jiffies_relative(sysctl_stat_interval));
1398 	} else {
1399 		/*
1400 		 * We did not update any counters so the app may be in
1401 		 * a mode where it does not cause counter updates.
1402 		 * We may be uselessly running vmstat_update.
1403 		 * Defer the checking for differentials to the
1404 		 * shepherd thread on a different processor.
1405 		 */
1406 		int r;
1407 		/*
1408 		 * Shepherd work thread does not race since it never
1409 		 * changes the bit if its zero but the cpu
1410 		 * online / off line code may race if
1411 		 * worker threads are still allowed during
1412 		 * shutdown / startup.
1413 		 */
1414 		r = cpumask_test_and_set_cpu(smp_processor_id(),
1415 			cpu_stat_off);
1416 		VM_BUG_ON(r);
1417 	}
1418 }
1419 
1420 /*
1421  * Check if the diffs for a certain cpu indicate that
1422  * an update is needed.
1423  */
1424 static bool need_update(int cpu)
1425 {
1426 	struct zone *zone;
1427 
1428 	for_each_populated_zone(zone) {
1429 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1430 
1431 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1432 		/*
1433 		 * The fast way of checking if there are any vmstat diffs.
1434 		 * This works because the diffs are byte sized items.
1435 		 */
1436 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1437 			return true;
1438 
1439 	}
1440 	return false;
1441 }
1442 
1443 
1444 /*
1445  * Shepherd worker thread that checks the
1446  * differentials of processors that have their worker
1447  * threads for vm statistics updates disabled because of
1448  * inactivity.
1449  */
1450 static void vmstat_shepherd(struct work_struct *w);
1451 
1452 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1453 
1454 static void vmstat_shepherd(struct work_struct *w)
1455 {
1456 	int cpu;
1457 
1458 	get_online_cpus();
1459 	/* Check processors whose vmstat worker threads have been disabled */
1460 	for_each_cpu(cpu, cpu_stat_off)
1461 		if (need_update(cpu) &&
1462 			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1463 
1464 			queue_delayed_work_on(cpu, vmstat_wq,
1465 				&per_cpu(vmstat_work, cpu), 0);
1466 
1467 	put_online_cpus();
1468 
1469 	schedule_delayed_work(&shepherd,
1470 		round_jiffies_relative(sysctl_stat_interval));
1471 
1472 }
1473 
1474 static void __init start_shepherd_timer(void)
1475 {
1476 	int cpu;
1477 
1478 	for_each_possible_cpu(cpu)
1479 		INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1480 			vmstat_update);
1481 
1482 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1483 		BUG();
1484 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1485 
1486 	schedule_delayed_work(&shepherd,
1487 		round_jiffies_relative(sysctl_stat_interval));
1488 }
1489 
1490 static void vmstat_cpu_dead(int node)
1491 {
1492 	int cpu;
1493 
1494 	get_online_cpus();
1495 	for_each_online_cpu(cpu)
1496 		if (cpu_to_node(cpu) == node)
1497 			goto end;
1498 
1499 	node_clear_state(node, N_CPU);
1500 end:
1501 	put_online_cpus();
1502 }
1503 
1504 /*
1505  * Use the cpu notifier to insure that the thresholds are recalculated
1506  * when necessary.
1507  */
1508 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1509 		unsigned long action,
1510 		void *hcpu)
1511 {
1512 	long cpu = (long)hcpu;
1513 
1514 	switch (action) {
1515 	case CPU_ONLINE:
1516 	case CPU_ONLINE_FROZEN:
1517 		refresh_zone_stat_thresholds();
1518 		node_set_state(cpu_to_node(cpu), N_CPU);
1519 		cpumask_set_cpu(cpu, cpu_stat_off);
1520 		break;
1521 	case CPU_DOWN_PREPARE:
1522 	case CPU_DOWN_PREPARE_FROZEN:
1523 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1524 		cpumask_clear_cpu(cpu, cpu_stat_off);
1525 		break;
1526 	case CPU_DOWN_FAILED:
1527 	case CPU_DOWN_FAILED_FROZEN:
1528 		cpumask_set_cpu(cpu, cpu_stat_off);
1529 		break;
1530 	case CPU_DEAD:
1531 	case CPU_DEAD_FROZEN:
1532 		refresh_zone_stat_thresholds();
1533 		vmstat_cpu_dead(cpu_to_node(cpu));
1534 		break;
1535 	default:
1536 		break;
1537 	}
1538 	return NOTIFY_OK;
1539 }
1540 
1541 static struct notifier_block vmstat_notifier =
1542 	{ &vmstat_cpuup_callback, NULL, 0 };
1543 #endif
1544 
1545 static int __init setup_vmstat(void)
1546 {
1547 #ifdef CONFIG_SMP
1548 	cpu_notifier_register_begin();
1549 	__register_cpu_notifier(&vmstat_notifier);
1550 
1551 	start_shepherd_timer();
1552 	cpu_notifier_register_done();
1553 	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1554 #endif
1555 #ifdef CONFIG_PROC_FS
1556 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1557 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1558 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1559 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1560 #endif
1561 	return 0;
1562 }
1563 module_init(setup_vmstat)
1564 
1565 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1566 
1567 /*
1568  * Return an index indicating how much of the available free memory is
1569  * unusable for an allocation of the requested size.
1570  */
1571 static int unusable_free_index(unsigned int order,
1572 				struct contig_page_info *info)
1573 {
1574 	/* No free memory is interpreted as all free memory is unusable */
1575 	if (info->free_pages == 0)
1576 		return 1000;
1577 
1578 	/*
1579 	 * Index should be a value between 0 and 1. Return a value to 3
1580 	 * decimal places.
1581 	 *
1582 	 * 0 => no fragmentation
1583 	 * 1 => high fragmentation
1584 	 */
1585 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1586 
1587 }
1588 
1589 static void unusable_show_print(struct seq_file *m,
1590 					pg_data_t *pgdat, struct zone *zone)
1591 {
1592 	unsigned int order;
1593 	int index;
1594 	struct contig_page_info info;
1595 
1596 	seq_printf(m, "Node %d, zone %8s ",
1597 				pgdat->node_id,
1598 				zone->name);
1599 	for (order = 0; order < MAX_ORDER; ++order) {
1600 		fill_contig_page_info(zone, order, &info);
1601 		index = unusable_free_index(order, &info);
1602 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1603 	}
1604 
1605 	seq_putc(m, '\n');
1606 }
1607 
1608 /*
1609  * Display unusable free space index
1610  *
1611  * The unusable free space index measures how much of the available free
1612  * memory cannot be used to satisfy an allocation of a given size and is a
1613  * value between 0 and 1. The higher the value, the more of free memory is
1614  * unusable and by implication, the worse the external fragmentation is. This
1615  * can be expressed as a percentage by multiplying by 100.
1616  */
1617 static int unusable_show(struct seq_file *m, void *arg)
1618 {
1619 	pg_data_t *pgdat = (pg_data_t *)arg;
1620 
1621 	/* check memoryless node */
1622 	if (!node_state(pgdat->node_id, N_MEMORY))
1623 		return 0;
1624 
1625 	walk_zones_in_node(m, pgdat, unusable_show_print);
1626 
1627 	return 0;
1628 }
1629 
1630 static const struct seq_operations unusable_op = {
1631 	.start	= frag_start,
1632 	.next	= frag_next,
1633 	.stop	= frag_stop,
1634 	.show	= unusable_show,
1635 };
1636 
1637 static int unusable_open(struct inode *inode, struct file *file)
1638 {
1639 	return seq_open(file, &unusable_op);
1640 }
1641 
1642 static const struct file_operations unusable_file_ops = {
1643 	.open		= unusable_open,
1644 	.read		= seq_read,
1645 	.llseek		= seq_lseek,
1646 	.release	= seq_release,
1647 };
1648 
1649 static void extfrag_show_print(struct seq_file *m,
1650 					pg_data_t *pgdat, struct zone *zone)
1651 {
1652 	unsigned int order;
1653 	int index;
1654 
1655 	/* Alloc on stack as interrupts are disabled for zone walk */
1656 	struct contig_page_info info;
1657 
1658 	seq_printf(m, "Node %d, zone %8s ",
1659 				pgdat->node_id,
1660 				zone->name);
1661 	for (order = 0; order < MAX_ORDER; ++order) {
1662 		fill_contig_page_info(zone, order, &info);
1663 		index = __fragmentation_index(order, &info);
1664 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1665 	}
1666 
1667 	seq_putc(m, '\n');
1668 }
1669 
1670 /*
1671  * Display fragmentation index for orders that allocations would fail for
1672  */
1673 static int extfrag_show(struct seq_file *m, void *arg)
1674 {
1675 	pg_data_t *pgdat = (pg_data_t *)arg;
1676 
1677 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1678 
1679 	return 0;
1680 }
1681 
1682 static const struct seq_operations extfrag_op = {
1683 	.start	= frag_start,
1684 	.next	= frag_next,
1685 	.stop	= frag_stop,
1686 	.show	= extfrag_show,
1687 };
1688 
1689 static int extfrag_open(struct inode *inode, struct file *file)
1690 {
1691 	return seq_open(file, &extfrag_op);
1692 }
1693 
1694 static const struct file_operations extfrag_file_ops = {
1695 	.open		= extfrag_open,
1696 	.read		= seq_read,
1697 	.llseek		= seq_lseek,
1698 	.release	= seq_release,
1699 };
1700 
1701 static int __init extfrag_debug_init(void)
1702 {
1703 	struct dentry *extfrag_debug_root;
1704 
1705 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1706 	if (!extfrag_debug_root)
1707 		return -ENOMEM;
1708 
1709 	if (!debugfs_create_file("unusable_index", 0444,
1710 			extfrag_debug_root, NULL, &unusable_file_ops))
1711 		goto fail;
1712 
1713 	if (!debugfs_create_file("extfrag_index", 0444,
1714 			extfrag_debug_root, NULL, &extfrag_file_ops))
1715 		goto fail;
1716 
1717 	return 0;
1718 fail:
1719 	debugfs_remove_recursive(extfrag_debug_root);
1720 	return -ENOMEM;
1721 }
1722 
1723 module_init(extfrag_debug_init);
1724 #endif
1725