1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #ifdef CONFIG_VM_EVENT_COUNTERS 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 36 37 static void sum_vm_events(unsigned long *ret) 38 { 39 int cpu; 40 int i; 41 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 43 44 for_each_online_cpu(cpu) { 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 46 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 48 ret[i] += this->event[i]; 49 } 50 } 51 52 /* 53 * Accumulate the vm event counters across all CPUs. 54 * The result is unavoidably approximate - it can change 55 * during and after execution of this function. 56 */ 57 void all_vm_events(unsigned long *ret) 58 { 59 get_online_cpus(); 60 sum_vm_events(ret); 61 put_online_cpus(); 62 } 63 EXPORT_SYMBOL_GPL(all_vm_events); 64 65 /* 66 * Fold the foreign cpu events into our own. 67 * 68 * This is adding to the events on one processor 69 * but keeps the global counts constant. 70 */ 71 void vm_events_fold_cpu(int cpu) 72 { 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 74 int i; 75 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 77 count_vm_events(i, fold_state->event[i]); 78 fold_state->event[i] = 0; 79 } 80 } 81 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 83 84 /* 85 * Manage combined zone based / global counters 86 * 87 * vm_stat contains the global counters 88 */ 89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 90 EXPORT_SYMBOL(vm_stat); 91 92 #ifdef CONFIG_SMP 93 94 int calculate_pressure_threshold(struct zone *zone) 95 { 96 int threshold; 97 int watermark_distance; 98 99 /* 100 * As vmstats are not up to date, there is drift between the estimated 101 * and real values. For high thresholds and a high number of CPUs, it 102 * is possible for the min watermark to be breached while the estimated 103 * value looks fine. The pressure threshold is a reduced value such 104 * that even the maximum amount of drift will not accidentally breach 105 * the min watermark 106 */ 107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 108 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 109 110 /* 111 * Maximum threshold is 125 112 */ 113 threshold = min(125, threshold); 114 115 return threshold; 116 } 117 118 int calculate_normal_threshold(struct zone *zone) 119 { 120 int threshold; 121 int mem; /* memory in 128 MB units */ 122 123 /* 124 * The threshold scales with the number of processors and the amount 125 * of memory per zone. More memory means that we can defer updates for 126 * longer, more processors could lead to more contention. 127 * fls() is used to have a cheap way of logarithmic scaling. 128 * 129 * Some sample thresholds: 130 * 131 * Threshold Processors (fls) Zonesize fls(mem+1) 132 * ------------------------------------------------------------------ 133 * 8 1 1 0.9-1 GB 4 134 * 16 2 2 0.9-1 GB 4 135 * 20 2 2 1-2 GB 5 136 * 24 2 2 2-4 GB 6 137 * 28 2 2 4-8 GB 7 138 * 32 2 2 8-16 GB 8 139 * 4 2 2 <128M 1 140 * 30 4 3 2-4 GB 5 141 * 48 4 3 8-16 GB 8 142 * 32 8 4 1-2 GB 4 143 * 32 8 4 0.9-1GB 4 144 * 10 16 5 <128M 1 145 * 40 16 5 900M 4 146 * 70 64 7 2-4 GB 5 147 * 84 64 7 4-8 GB 6 148 * 108 512 9 4-8 GB 6 149 * 125 1024 10 8-16 GB 8 150 * 125 1024 10 16-32 GB 9 151 */ 152 153 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 154 155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 156 157 /* 158 * Maximum threshold is 125 159 */ 160 threshold = min(125, threshold); 161 162 return threshold; 163 } 164 165 /* 166 * Refresh the thresholds for each zone. 167 */ 168 void refresh_zone_stat_thresholds(void) 169 { 170 struct zone *zone; 171 int cpu; 172 int threshold; 173 174 for_each_populated_zone(zone) { 175 unsigned long max_drift, tolerate_drift; 176 177 threshold = calculate_normal_threshold(zone); 178 179 for_each_online_cpu(cpu) 180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 181 = threshold; 182 183 /* 184 * Only set percpu_drift_mark if there is a danger that 185 * NR_FREE_PAGES reports the low watermark is ok when in fact 186 * the min watermark could be breached by an allocation 187 */ 188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 189 max_drift = num_online_cpus() * threshold; 190 if (max_drift > tolerate_drift) 191 zone->percpu_drift_mark = high_wmark_pages(zone) + 192 max_drift; 193 } 194 } 195 196 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 197 int (*calculate_pressure)(struct zone *)) 198 { 199 struct zone *zone; 200 int cpu; 201 int threshold; 202 int i; 203 204 for (i = 0; i < pgdat->nr_zones; i++) { 205 zone = &pgdat->node_zones[i]; 206 if (!zone->percpu_drift_mark) 207 continue; 208 209 threshold = (*calculate_pressure)(zone); 210 for_each_online_cpu(cpu) 211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 212 = threshold; 213 } 214 } 215 216 /* 217 * For use when we know that interrupts are disabled, 218 * or when we know that preemption is disabled and that 219 * particular counter cannot be updated from interrupt context. 220 */ 221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 222 long delta) 223 { 224 struct per_cpu_pageset __percpu *pcp = zone->pageset; 225 s8 __percpu *p = pcp->vm_stat_diff + item; 226 long x; 227 long t; 228 229 x = delta + __this_cpu_read(*p); 230 231 t = __this_cpu_read(pcp->stat_threshold); 232 233 if (unlikely(x > t || x < -t)) { 234 zone_page_state_add(x, zone, item); 235 x = 0; 236 } 237 __this_cpu_write(*p, x); 238 } 239 EXPORT_SYMBOL(__mod_zone_page_state); 240 241 /* 242 * Optimized increment and decrement functions. 243 * 244 * These are only for a single page and therefore can take a struct page * 245 * argument instead of struct zone *. This allows the inclusion of the code 246 * generated for page_zone(page) into the optimized functions. 247 * 248 * No overflow check is necessary and therefore the differential can be 249 * incremented or decremented in place which may allow the compilers to 250 * generate better code. 251 * The increment or decrement is known and therefore one boundary check can 252 * be omitted. 253 * 254 * NOTE: These functions are very performance sensitive. Change only 255 * with care. 256 * 257 * Some processors have inc/dec instructions that are atomic vs an interrupt. 258 * However, the code must first determine the differential location in a zone 259 * based on the processor number and then inc/dec the counter. There is no 260 * guarantee without disabling preemption that the processor will not change 261 * in between and therefore the atomicity vs. interrupt cannot be exploited 262 * in a useful way here. 263 */ 264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 265 { 266 struct per_cpu_pageset __percpu *pcp = zone->pageset; 267 s8 __percpu *p = pcp->vm_stat_diff + item; 268 s8 v, t; 269 270 v = __this_cpu_inc_return(*p); 271 t = __this_cpu_read(pcp->stat_threshold); 272 if (unlikely(v > t)) { 273 s8 overstep = t >> 1; 274 275 zone_page_state_add(v + overstep, zone, item); 276 __this_cpu_write(*p, -overstep); 277 } 278 } 279 280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 281 { 282 __inc_zone_state(page_zone(page), item); 283 } 284 EXPORT_SYMBOL(__inc_zone_page_state); 285 286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 287 { 288 struct per_cpu_pageset __percpu *pcp = zone->pageset; 289 s8 __percpu *p = pcp->vm_stat_diff + item; 290 s8 v, t; 291 292 v = __this_cpu_dec_return(*p); 293 t = __this_cpu_read(pcp->stat_threshold); 294 if (unlikely(v < - t)) { 295 s8 overstep = t >> 1; 296 297 zone_page_state_add(v - overstep, zone, item); 298 __this_cpu_write(*p, overstep); 299 } 300 } 301 302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 303 { 304 __dec_zone_state(page_zone(page), item); 305 } 306 EXPORT_SYMBOL(__dec_zone_page_state); 307 308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 309 /* 310 * If we have cmpxchg_local support then we do not need to incur the overhead 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 312 * 313 * mod_state() modifies the zone counter state through atomic per cpu 314 * operations. 315 * 316 * Overstep mode specifies how overstep should handled: 317 * 0 No overstepping 318 * 1 Overstepping half of threshold 319 * -1 Overstepping minus half of threshold 320 */ 321 static inline void mod_state(struct zone *zone, enum zone_stat_item item, 322 long delta, int overstep_mode) 323 { 324 struct per_cpu_pageset __percpu *pcp = zone->pageset; 325 s8 __percpu *p = pcp->vm_stat_diff + item; 326 long o, n, t, z; 327 328 do { 329 z = 0; /* overflow to zone counters */ 330 331 /* 332 * The fetching of the stat_threshold is racy. We may apply 333 * a counter threshold to the wrong the cpu if we get 334 * rescheduled while executing here. However, the next 335 * counter update will apply the threshold again and 336 * therefore bring the counter under the threshold again. 337 * 338 * Most of the time the thresholds are the same anyways 339 * for all cpus in a zone. 340 */ 341 t = this_cpu_read(pcp->stat_threshold); 342 343 o = this_cpu_read(*p); 344 n = delta + o; 345 346 if (n > t || n < -t) { 347 int os = overstep_mode * (t >> 1) ; 348 349 /* Overflow must be added to zone counters */ 350 z = n + os; 351 n = -os; 352 } 353 } while (this_cpu_cmpxchg(*p, o, n) != o); 354 355 if (z) 356 zone_page_state_add(z, zone, item); 357 } 358 359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 360 long delta) 361 { 362 mod_state(zone, item, delta, 0); 363 } 364 EXPORT_SYMBOL(mod_zone_page_state); 365 366 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 367 { 368 mod_state(zone, item, 1, 1); 369 } 370 371 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 372 { 373 mod_state(page_zone(page), item, 1, 1); 374 } 375 EXPORT_SYMBOL(inc_zone_page_state); 376 377 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 378 { 379 mod_state(page_zone(page), item, -1, -1); 380 } 381 EXPORT_SYMBOL(dec_zone_page_state); 382 #else 383 /* 384 * Use interrupt disable to serialize counter updates 385 */ 386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 387 long delta) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __mod_zone_page_state(zone, item, delta); 393 local_irq_restore(flags); 394 } 395 EXPORT_SYMBOL(mod_zone_page_state); 396 397 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 398 { 399 unsigned long flags; 400 401 local_irq_save(flags); 402 __inc_zone_state(zone, item); 403 local_irq_restore(flags); 404 } 405 406 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 407 { 408 unsigned long flags; 409 struct zone *zone; 410 411 zone = page_zone(page); 412 local_irq_save(flags); 413 __inc_zone_state(zone, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(inc_zone_page_state); 417 418 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 __dec_zone_page_state(page, item); 424 local_irq_restore(flags); 425 } 426 EXPORT_SYMBOL(dec_zone_page_state); 427 #endif 428 429 430 /* 431 * Fold a differential into the global counters. 432 * Returns the number of counters updated. 433 */ 434 static int fold_diff(int *diff) 435 { 436 int i; 437 int changes = 0; 438 439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 440 if (diff[i]) { 441 atomic_long_add(diff[i], &vm_stat[i]); 442 changes++; 443 } 444 return changes; 445 } 446 447 /* 448 * Update the zone counters for the current cpu. 449 * 450 * Note that refresh_cpu_vm_stats strives to only access 451 * node local memory. The per cpu pagesets on remote zones are placed 452 * in the memory local to the processor using that pageset. So the 453 * loop over all zones will access a series of cachelines local to 454 * the processor. 455 * 456 * The call to zone_page_state_add updates the cachelines with the 457 * statistics in the remote zone struct as well as the global cachelines 458 * with the global counters. These could cause remote node cache line 459 * bouncing and will have to be only done when necessary. 460 * 461 * The function returns the number of global counters updated. 462 */ 463 static int refresh_cpu_vm_stats(void) 464 { 465 struct zone *zone; 466 int i; 467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 468 int changes = 0; 469 470 for_each_populated_zone(zone) { 471 struct per_cpu_pageset __percpu *p = zone->pageset; 472 473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 474 int v; 475 476 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 477 if (v) { 478 479 atomic_long_add(v, &zone->vm_stat[i]); 480 global_diff[i] += v; 481 #ifdef CONFIG_NUMA 482 /* 3 seconds idle till flush */ 483 __this_cpu_write(p->expire, 3); 484 #endif 485 } 486 } 487 cond_resched(); 488 #ifdef CONFIG_NUMA 489 /* 490 * Deal with draining the remote pageset of this 491 * processor 492 * 493 * Check if there are pages remaining in this pageset 494 * if not then there is nothing to expire. 495 */ 496 if (!__this_cpu_read(p->expire) || 497 !__this_cpu_read(p->pcp.count)) 498 continue; 499 500 /* 501 * We never drain zones local to this processor. 502 */ 503 if (zone_to_nid(zone) == numa_node_id()) { 504 __this_cpu_write(p->expire, 0); 505 continue; 506 } 507 508 if (__this_cpu_dec_return(p->expire)) 509 continue; 510 511 if (__this_cpu_read(p->pcp.count)) { 512 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 513 changes++; 514 } 515 #endif 516 } 517 changes += fold_diff(global_diff); 518 return changes; 519 } 520 521 /* 522 * Fold the data for an offline cpu into the global array. 523 * There cannot be any access by the offline cpu and therefore 524 * synchronization is simplified. 525 */ 526 void cpu_vm_stats_fold(int cpu) 527 { 528 struct zone *zone; 529 int i; 530 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 531 532 for_each_populated_zone(zone) { 533 struct per_cpu_pageset *p; 534 535 p = per_cpu_ptr(zone->pageset, cpu); 536 537 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 538 if (p->vm_stat_diff[i]) { 539 int v; 540 541 v = p->vm_stat_diff[i]; 542 p->vm_stat_diff[i] = 0; 543 atomic_long_add(v, &zone->vm_stat[i]); 544 global_diff[i] += v; 545 } 546 } 547 548 fold_diff(global_diff); 549 } 550 551 /* 552 * this is only called if !populated_zone(zone), which implies no other users of 553 * pset->vm_stat_diff[] exsist. 554 */ 555 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 556 { 557 int i; 558 559 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 560 if (pset->vm_stat_diff[i]) { 561 int v = pset->vm_stat_diff[i]; 562 pset->vm_stat_diff[i] = 0; 563 atomic_long_add(v, &zone->vm_stat[i]); 564 atomic_long_add(v, &vm_stat[i]); 565 } 566 } 567 #endif 568 569 #ifdef CONFIG_NUMA 570 /* 571 * zonelist = the list of zones passed to the allocator 572 * z = the zone from which the allocation occurred. 573 * 574 * Must be called with interrupts disabled. 575 * 576 * When __GFP_OTHER_NODE is set assume the node of the preferred 577 * zone is the local node. This is useful for daemons who allocate 578 * memory on behalf of other processes. 579 */ 580 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 581 { 582 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 583 __inc_zone_state(z, NUMA_HIT); 584 } else { 585 __inc_zone_state(z, NUMA_MISS); 586 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 587 } 588 if (z->node == ((flags & __GFP_OTHER_NODE) ? 589 preferred_zone->node : numa_node_id())) 590 __inc_zone_state(z, NUMA_LOCAL); 591 else 592 __inc_zone_state(z, NUMA_OTHER); 593 } 594 595 /* 596 * Determine the per node value of a stat item. 597 */ 598 unsigned long node_page_state(int node, enum zone_stat_item item) 599 { 600 struct zone *zones = NODE_DATA(node)->node_zones; 601 602 return 603 #ifdef CONFIG_ZONE_DMA 604 zone_page_state(&zones[ZONE_DMA], item) + 605 #endif 606 #ifdef CONFIG_ZONE_DMA32 607 zone_page_state(&zones[ZONE_DMA32], item) + 608 #endif 609 #ifdef CONFIG_HIGHMEM 610 zone_page_state(&zones[ZONE_HIGHMEM], item) + 611 #endif 612 zone_page_state(&zones[ZONE_NORMAL], item) + 613 zone_page_state(&zones[ZONE_MOVABLE], item); 614 } 615 616 #endif 617 618 #ifdef CONFIG_COMPACTION 619 620 struct contig_page_info { 621 unsigned long free_pages; 622 unsigned long free_blocks_total; 623 unsigned long free_blocks_suitable; 624 }; 625 626 /* 627 * Calculate the number of free pages in a zone, how many contiguous 628 * pages are free and how many are large enough to satisfy an allocation of 629 * the target size. Note that this function makes no attempt to estimate 630 * how many suitable free blocks there *might* be if MOVABLE pages were 631 * migrated. Calculating that is possible, but expensive and can be 632 * figured out from userspace 633 */ 634 static void fill_contig_page_info(struct zone *zone, 635 unsigned int suitable_order, 636 struct contig_page_info *info) 637 { 638 unsigned int order; 639 640 info->free_pages = 0; 641 info->free_blocks_total = 0; 642 info->free_blocks_suitable = 0; 643 644 for (order = 0; order < MAX_ORDER; order++) { 645 unsigned long blocks; 646 647 /* Count number of free blocks */ 648 blocks = zone->free_area[order].nr_free; 649 info->free_blocks_total += blocks; 650 651 /* Count free base pages */ 652 info->free_pages += blocks << order; 653 654 /* Count the suitable free blocks */ 655 if (order >= suitable_order) 656 info->free_blocks_suitable += blocks << 657 (order - suitable_order); 658 } 659 } 660 661 /* 662 * A fragmentation index only makes sense if an allocation of a requested 663 * size would fail. If that is true, the fragmentation index indicates 664 * whether external fragmentation or a lack of memory was the problem. 665 * The value can be used to determine if page reclaim or compaction 666 * should be used 667 */ 668 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 669 { 670 unsigned long requested = 1UL << order; 671 672 if (!info->free_blocks_total) 673 return 0; 674 675 /* Fragmentation index only makes sense when a request would fail */ 676 if (info->free_blocks_suitable) 677 return -1000; 678 679 /* 680 * Index is between 0 and 1 so return within 3 decimal places 681 * 682 * 0 => allocation would fail due to lack of memory 683 * 1 => allocation would fail due to fragmentation 684 */ 685 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 686 } 687 688 /* Same as __fragmentation index but allocs contig_page_info on stack */ 689 int fragmentation_index(struct zone *zone, unsigned int order) 690 { 691 struct contig_page_info info; 692 693 fill_contig_page_info(zone, order, &info); 694 return __fragmentation_index(order, &info); 695 } 696 #endif 697 698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 699 #ifdef CONFIG_ZONE_DMA 700 #define TEXT_FOR_DMA(xx) xx "_dma", 701 #else 702 #define TEXT_FOR_DMA(xx) 703 #endif 704 705 #ifdef CONFIG_ZONE_DMA32 706 #define TEXT_FOR_DMA32(xx) xx "_dma32", 707 #else 708 #define TEXT_FOR_DMA32(xx) 709 #endif 710 711 #ifdef CONFIG_HIGHMEM 712 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 713 #else 714 #define TEXT_FOR_HIGHMEM(xx) 715 #endif 716 717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 718 TEXT_FOR_HIGHMEM(xx) xx "_movable", 719 720 const char * const vmstat_text[] = { 721 /* enum zone_stat_item countes */ 722 "nr_free_pages", 723 "nr_alloc_batch", 724 "nr_inactive_anon", 725 "nr_active_anon", 726 "nr_inactive_file", 727 "nr_active_file", 728 "nr_unevictable", 729 "nr_mlock", 730 "nr_anon_pages", 731 "nr_mapped", 732 "nr_file_pages", 733 "nr_dirty", 734 "nr_writeback", 735 "nr_slab_reclaimable", 736 "nr_slab_unreclaimable", 737 "nr_page_table_pages", 738 "nr_kernel_stack", 739 "nr_unstable", 740 "nr_bounce", 741 "nr_vmscan_write", 742 "nr_vmscan_immediate_reclaim", 743 "nr_writeback_temp", 744 "nr_isolated_anon", 745 "nr_isolated_file", 746 "nr_shmem", 747 "nr_dirtied", 748 "nr_written", 749 "nr_pages_scanned", 750 751 #ifdef CONFIG_NUMA 752 "numa_hit", 753 "numa_miss", 754 "numa_foreign", 755 "numa_interleave", 756 "numa_local", 757 "numa_other", 758 #endif 759 "workingset_refault", 760 "workingset_activate", 761 "workingset_nodereclaim", 762 "nr_anon_transparent_hugepages", 763 "nr_free_cma", 764 765 /* enum writeback_stat_item counters */ 766 "nr_dirty_threshold", 767 "nr_dirty_background_threshold", 768 769 #ifdef CONFIG_VM_EVENT_COUNTERS 770 /* enum vm_event_item counters */ 771 "pgpgin", 772 "pgpgout", 773 "pswpin", 774 "pswpout", 775 776 TEXTS_FOR_ZONES("pgalloc") 777 778 "pgfree", 779 "pgactivate", 780 "pgdeactivate", 781 782 "pgfault", 783 "pgmajfault", 784 785 TEXTS_FOR_ZONES("pgrefill") 786 TEXTS_FOR_ZONES("pgsteal_kswapd") 787 TEXTS_FOR_ZONES("pgsteal_direct") 788 TEXTS_FOR_ZONES("pgscan_kswapd") 789 TEXTS_FOR_ZONES("pgscan_direct") 790 "pgscan_direct_throttle", 791 792 #ifdef CONFIG_NUMA 793 "zone_reclaim_failed", 794 #endif 795 "pginodesteal", 796 "slabs_scanned", 797 "kswapd_inodesteal", 798 "kswapd_low_wmark_hit_quickly", 799 "kswapd_high_wmark_hit_quickly", 800 "pageoutrun", 801 "allocstall", 802 803 "pgrotated", 804 805 "drop_pagecache", 806 "drop_slab", 807 808 #ifdef CONFIG_NUMA_BALANCING 809 "numa_pte_updates", 810 "numa_huge_pte_updates", 811 "numa_hint_faults", 812 "numa_hint_faults_local", 813 "numa_pages_migrated", 814 #endif 815 #ifdef CONFIG_MIGRATION 816 "pgmigrate_success", 817 "pgmigrate_fail", 818 #endif 819 #ifdef CONFIG_COMPACTION 820 "compact_migrate_scanned", 821 "compact_free_scanned", 822 "compact_isolated", 823 "compact_stall", 824 "compact_fail", 825 "compact_success", 826 #endif 827 828 #ifdef CONFIG_HUGETLB_PAGE 829 "htlb_buddy_alloc_success", 830 "htlb_buddy_alloc_fail", 831 #endif 832 "unevictable_pgs_culled", 833 "unevictable_pgs_scanned", 834 "unevictable_pgs_rescued", 835 "unevictable_pgs_mlocked", 836 "unevictable_pgs_munlocked", 837 "unevictable_pgs_cleared", 838 "unevictable_pgs_stranded", 839 840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 841 "thp_fault_alloc", 842 "thp_fault_fallback", 843 "thp_collapse_alloc", 844 "thp_collapse_alloc_failed", 845 "thp_split", 846 "thp_zero_page_alloc", 847 "thp_zero_page_alloc_failed", 848 #endif 849 #ifdef CONFIG_MEMORY_BALLOON 850 "balloon_inflate", 851 "balloon_deflate", 852 #ifdef CONFIG_BALLOON_COMPACTION 853 "balloon_migrate", 854 #endif 855 #endif /* CONFIG_MEMORY_BALLOON */ 856 #ifdef CONFIG_DEBUG_TLBFLUSH 857 #ifdef CONFIG_SMP 858 "nr_tlb_remote_flush", 859 "nr_tlb_remote_flush_received", 860 #endif /* CONFIG_SMP */ 861 "nr_tlb_local_flush_all", 862 "nr_tlb_local_flush_one", 863 #endif /* CONFIG_DEBUG_TLBFLUSH */ 864 865 #ifdef CONFIG_DEBUG_VM_VMACACHE 866 "vmacache_find_calls", 867 "vmacache_find_hits", 868 "vmacache_full_flushes", 869 #endif 870 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 871 }; 872 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 873 874 875 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 876 defined(CONFIG_PROC_FS) 877 static void *frag_start(struct seq_file *m, loff_t *pos) 878 { 879 pg_data_t *pgdat; 880 loff_t node = *pos; 881 882 for (pgdat = first_online_pgdat(); 883 pgdat && node; 884 pgdat = next_online_pgdat(pgdat)) 885 --node; 886 887 return pgdat; 888 } 889 890 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 891 { 892 pg_data_t *pgdat = (pg_data_t *)arg; 893 894 (*pos)++; 895 return next_online_pgdat(pgdat); 896 } 897 898 static void frag_stop(struct seq_file *m, void *arg) 899 { 900 } 901 902 /* Walk all the zones in a node and print using a callback */ 903 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 904 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 905 { 906 struct zone *zone; 907 struct zone *node_zones = pgdat->node_zones; 908 unsigned long flags; 909 910 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 911 if (!populated_zone(zone)) 912 continue; 913 914 spin_lock_irqsave(&zone->lock, flags); 915 print(m, pgdat, zone); 916 spin_unlock_irqrestore(&zone->lock, flags); 917 } 918 } 919 #endif 920 921 #ifdef CONFIG_PROC_FS 922 static char * const migratetype_names[MIGRATE_TYPES] = { 923 "Unmovable", 924 "Movable", 925 "Reclaimable", 926 "HighAtomic", 927 #ifdef CONFIG_CMA 928 "CMA", 929 #endif 930 #ifdef CONFIG_MEMORY_ISOLATION 931 "Isolate", 932 #endif 933 }; 934 935 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 936 struct zone *zone) 937 { 938 int order; 939 940 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 941 for (order = 0; order < MAX_ORDER; ++order) 942 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 943 seq_putc(m, '\n'); 944 } 945 946 /* 947 * This walks the free areas for each zone. 948 */ 949 static int frag_show(struct seq_file *m, void *arg) 950 { 951 pg_data_t *pgdat = (pg_data_t *)arg; 952 walk_zones_in_node(m, pgdat, frag_show_print); 953 return 0; 954 } 955 956 static void pagetypeinfo_showfree_print(struct seq_file *m, 957 pg_data_t *pgdat, struct zone *zone) 958 { 959 int order, mtype; 960 961 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 962 seq_printf(m, "Node %4d, zone %8s, type %12s ", 963 pgdat->node_id, 964 zone->name, 965 migratetype_names[mtype]); 966 for (order = 0; order < MAX_ORDER; ++order) { 967 unsigned long freecount = 0; 968 struct free_area *area; 969 struct list_head *curr; 970 971 area = &(zone->free_area[order]); 972 973 list_for_each(curr, &area->free_list[mtype]) 974 freecount++; 975 seq_printf(m, "%6lu ", freecount); 976 } 977 seq_putc(m, '\n'); 978 } 979 } 980 981 /* Print out the free pages at each order for each migatetype */ 982 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 983 { 984 int order; 985 pg_data_t *pgdat = (pg_data_t *)arg; 986 987 /* Print header */ 988 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 989 for (order = 0; order < MAX_ORDER; ++order) 990 seq_printf(m, "%6d ", order); 991 seq_putc(m, '\n'); 992 993 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 994 995 return 0; 996 } 997 998 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 999 pg_data_t *pgdat, struct zone *zone) 1000 { 1001 int mtype; 1002 unsigned long pfn; 1003 unsigned long start_pfn = zone->zone_start_pfn; 1004 unsigned long end_pfn = zone_end_pfn(zone); 1005 unsigned long count[MIGRATE_TYPES] = { 0, }; 1006 1007 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1008 struct page *page; 1009 1010 if (!pfn_valid(pfn)) 1011 continue; 1012 1013 page = pfn_to_page(pfn); 1014 1015 /* Watch for unexpected holes punched in the memmap */ 1016 if (!memmap_valid_within(pfn, page, zone)) 1017 continue; 1018 1019 mtype = get_pageblock_migratetype(page); 1020 1021 if (mtype < MIGRATE_TYPES) 1022 count[mtype]++; 1023 } 1024 1025 /* Print counts */ 1026 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1027 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1028 seq_printf(m, "%12lu ", count[mtype]); 1029 seq_putc(m, '\n'); 1030 } 1031 1032 /* Print out the free pages at each order for each migratetype */ 1033 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1034 { 1035 int mtype; 1036 pg_data_t *pgdat = (pg_data_t *)arg; 1037 1038 seq_printf(m, "\n%-23s", "Number of blocks type "); 1039 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1040 seq_printf(m, "%12s ", migratetype_names[mtype]); 1041 seq_putc(m, '\n'); 1042 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1043 1044 return 0; 1045 } 1046 1047 #ifdef CONFIG_PAGE_OWNER 1048 static void pagetypeinfo_showmixedcount_print(struct seq_file *m, 1049 pg_data_t *pgdat, 1050 struct zone *zone) 1051 { 1052 struct page *page; 1053 struct page_ext *page_ext; 1054 unsigned long pfn = zone->zone_start_pfn, block_end_pfn; 1055 unsigned long end_pfn = pfn + zone->spanned_pages; 1056 unsigned long count[MIGRATE_TYPES] = { 0, }; 1057 int pageblock_mt, page_mt; 1058 int i; 1059 1060 /* Scan block by block. First and last block may be incomplete */ 1061 pfn = zone->zone_start_pfn; 1062 1063 /* 1064 * Walk the zone in pageblock_nr_pages steps. If a page block spans 1065 * a zone boundary, it will be double counted between zones. This does 1066 * not matter as the mixed block count will still be correct 1067 */ 1068 for (; pfn < end_pfn; ) { 1069 if (!pfn_valid(pfn)) { 1070 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); 1071 continue; 1072 } 1073 1074 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 1075 block_end_pfn = min(block_end_pfn, end_pfn); 1076 1077 page = pfn_to_page(pfn); 1078 pageblock_mt = get_pfnblock_migratetype(page, pfn); 1079 1080 for (; pfn < block_end_pfn; pfn++) { 1081 if (!pfn_valid_within(pfn)) 1082 continue; 1083 1084 page = pfn_to_page(pfn); 1085 if (PageBuddy(page)) { 1086 pfn += (1UL << page_order(page)) - 1; 1087 continue; 1088 } 1089 1090 if (PageReserved(page)) 1091 continue; 1092 1093 page_ext = lookup_page_ext(page); 1094 1095 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) 1096 continue; 1097 1098 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); 1099 if (pageblock_mt != page_mt) { 1100 if (is_migrate_cma(pageblock_mt)) 1101 count[MIGRATE_MOVABLE]++; 1102 else 1103 count[pageblock_mt]++; 1104 1105 pfn = block_end_pfn; 1106 break; 1107 } 1108 pfn += (1UL << page_ext->order) - 1; 1109 } 1110 } 1111 1112 /* Print counts */ 1113 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1114 for (i = 0; i < MIGRATE_TYPES; i++) 1115 seq_printf(m, "%12lu ", count[i]); 1116 seq_putc(m, '\n'); 1117 } 1118 #endif /* CONFIG_PAGE_OWNER */ 1119 1120 /* 1121 * Print out the number of pageblocks for each migratetype that contain pages 1122 * of other types. This gives an indication of how well fallbacks are being 1123 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1124 * to determine what is going on 1125 */ 1126 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1127 { 1128 #ifdef CONFIG_PAGE_OWNER 1129 int mtype; 1130 1131 if (!page_owner_inited) 1132 return; 1133 1134 drain_all_pages(NULL); 1135 1136 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1137 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1138 seq_printf(m, "%12s ", migratetype_names[mtype]); 1139 seq_putc(m, '\n'); 1140 1141 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1142 #endif /* CONFIG_PAGE_OWNER */ 1143 } 1144 1145 /* 1146 * This prints out statistics in relation to grouping pages by mobility. 1147 * It is expensive to collect so do not constantly read the file. 1148 */ 1149 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1150 { 1151 pg_data_t *pgdat = (pg_data_t *)arg; 1152 1153 /* check memoryless node */ 1154 if (!node_state(pgdat->node_id, N_MEMORY)) 1155 return 0; 1156 1157 seq_printf(m, "Page block order: %d\n", pageblock_order); 1158 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1159 seq_putc(m, '\n'); 1160 pagetypeinfo_showfree(m, pgdat); 1161 pagetypeinfo_showblockcount(m, pgdat); 1162 pagetypeinfo_showmixedcount(m, pgdat); 1163 1164 return 0; 1165 } 1166 1167 static const struct seq_operations fragmentation_op = { 1168 .start = frag_start, 1169 .next = frag_next, 1170 .stop = frag_stop, 1171 .show = frag_show, 1172 }; 1173 1174 static int fragmentation_open(struct inode *inode, struct file *file) 1175 { 1176 return seq_open(file, &fragmentation_op); 1177 } 1178 1179 static const struct file_operations fragmentation_file_operations = { 1180 .open = fragmentation_open, 1181 .read = seq_read, 1182 .llseek = seq_lseek, 1183 .release = seq_release, 1184 }; 1185 1186 static const struct seq_operations pagetypeinfo_op = { 1187 .start = frag_start, 1188 .next = frag_next, 1189 .stop = frag_stop, 1190 .show = pagetypeinfo_show, 1191 }; 1192 1193 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1194 { 1195 return seq_open(file, &pagetypeinfo_op); 1196 } 1197 1198 static const struct file_operations pagetypeinfo_file_ops = { 1199 .open = pagetypeinfo_open, 1200 .read = seq_read, 1201 .llseek = seq_lseek, 1202 .release = seq_release, 1203 }; 1204 1205 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1206 struct zone *zone) 1207 { 1208 int i; 1209 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1210 seq_printf(m, 1211 "\n pages free %lu" 1212 "\n min %lu" 1213 "\n low %lu" 1214 "\n high %lu" 1215 "\n scanned %lu" 1216 "\n spanned %lu" 1217 "\n present %lu" 1218 "\n managed %lu", 1219 zone_page_state(zone, NR_FREE_PAGES), 1220 min_wmark_pages(zone), 1221 low_wmark_pages(zone), 1222 high_wmark_pages(zone), 1223 zone_page_state(zone, NR_PAGES_SCANNED), 1224 zone->spanned_pages, 1225 zone->present_pages, 1226 zone->managed_pages); 1227 1228 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1229 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1230 zone_page_state(zone, i)); 1231 1232 seq_printf(m, 1233 "\n protection: (%ld", 1234 zone->lowmem_reserve[0]); 1235 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1236 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1237 seq_printf(m, 1238 ")" 1239 "\n pagesets"); 1240 for_each_online_cpu(i) { 1241 struct per_cpu_pageset *pageset; 1242 1243 pageset = per_cpu_ptr(zone->pageset, i); 1244 seq_printf(m, 1245 "\n cpu: %i" 1246 "\n count: %i" 1247 "\n high: %i" 1248 "\n batch: %i", 1249 i, 1250 pageset->pcp.count, 1251 pageset->pcp.high, 1252 pageset->pcp.batch); 1253 #ifdef CONFIG_SMP 1254 seq_printf(m, "\n vm stats threshold: %d", 1255 pageset->stat_threshold); 1256 #endif 1257 } 1258 seq_printf(m, 1259 "\n all_unreclaimable: %u" 1260 "\n start_pfn: %lu" 1261 "\n inactive_ratio: %u", 1262 !zone_reclaimable(zone), 1263 zone->zone_start_pfn, 1264 zone->inactive_ratio); 1265 seq_putc(m, '\n'); 1266 } 1267 1268 /* 1269 * Output information about zones in @pgdat. 1270 */ 1271 static int zoneinfo_show(struct seq_file *m, void *arg) 1272 { 1273 pg_data_t *pgdat = (pg_data_t *)arg; 1274 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1275 return 0; 1276 } 1277 1278 static const struct seq_operations zoneinfo_op = { 1279 .start = frag_start, /* iterate over all zones. The same as in 1280 * fragmentation. */ 1281 .next = frag_next, 1282 .stop = frag_stop, 1283 .show = zoneinfo_show, 1284 }; 1285 1286 static int zoneinfo_open(struct inode *inode, struct file *file) 1287 { 1288 return seq_open(file, &zoneinfo_op); 1289 } 1290 1291 static const struct file_operations proc_zoneinfo_file_operations = { 1292 .open = zoneinfo_open, 1293 .read = seq_read, 1294 .llseek = seq_lseek, 1295 .release = seq_release, 1296 }; 1297 1298 enum writeback_stat_item { 1299 NR_DIRTY_THRESHOLD, 1300 NR_DIRTY_BG_THRESHOLD, 1301 NR_VM_WRITEBACK_STAT_ITEMS, 1302 }; 1303 1304 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1305 { 1306 unsigned long *v; 1307 int i, stat_items_size; 1308 1309 if (*pos >= ARRAY_SIZE(vmstat_text)) 1310 return NULL; 1311 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1312 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1313 1314 #ifdef CONFIG_VM_EVENT_COUNTERS 1315 stat_items_size += sizeof(struct vm_event_state); 1316 #endif 1317 1318 v = kmalloc(stat_items_size, GFP_KERNEL); 1319 m->private = v; 1320 if (!v) 1321 return ERR_PTR(-ENOMEM); 1322 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1323 v[i] = global_page_state(i); 1324 v += NR_VM_ZONE_STAT_ITEMS; 1325 1326 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1327 v + NR_DIRTY_THRESHOLD); 1328 v += NR_VM_WRITEBACK_STAT_ITEMS; 1329 1330 #ifdef CONFIG_VM_EVENT_COUNTERS 1331 all_vm_events(v); 1332 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1333 v[PGPGOUT] /= 2; 1334 #endif 1335 return (unsigned long *)m->private + *pos; 1336 } 1337 1338 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1339 { 1340 (*pos)++; 1341 if (*pos >= ARRAY_SIZE(vmstat_text)) 1342 return NULL; 1343 return (unsigned long *)m->private + *pos; 1344 } 1345 1346 static int vmstat_show(struct seq_file *m, void *arg) 1347 { 1348 unsigned long *l = arg; 1349 unsigned long off = l - (unsigned long *)m->private; 1350 1351 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1352 return 0; 1353 } 1354 1355 static void vmstat_stop(struct seq_file *m, void *arg) 1356 { 1357 kfree(m->private); 1358 m->private = NULL; 1359 } 1360 1361 static const struct seq_operations vmstat_op = { 1362 .start = vmstat_start, 1363 .next = vmstat_next, 1364 .stop = vmstat_stop, 1365 .show = vmstat_show, 1366 }; 1367 1368 static int vmstat_open(struct inode *inode, struct file *file) 1369 { 1370 return seq_open(file, &vmstat_op); 1371 } 1372 1373 static const struct file_operations proc_vmstat_file_operations = { 1374 .open = vmstat_open, 1375 .read = seq_read, 1376 .llseek = seq_lseek, 1377 .release = seq_release, 1378 }; 1379 #endif /* CONFIG_PROC_FS */ 1380 1381 #ifdef CONFIG_SMP 1382 static struct workqueue_struct *vmstat_wq; 1383 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1384 int sysctl_stat_interval __read_mostly = HZ; 1385 static cpumask_var_t cpu_stat_off; 1386 1387 static void vmstat_update(struct work_struct *w) 1388 { 1389 if (refresh_cpu_vm_stats()) { 1390 /* 1391 * Counters were updated so we expect more updates 1392 * to occur in the future. Keep on running the 1393 * update worker thread. 1394 */ 1395 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 1396 this_cpu_ptr(&vmstat_work), 1397 round_jiffies_relative(sysctl_stat_interval)); 1398 } else { 1399 /* 1400 * We did not update any counters so the app may be in 1401 * a mode where it does not cause counter updates. 1402 * We may be uselessly running vmstat_update. 1403 * Defer the checking for differentials to the 1404 * shepherd thread on a different processor. 1405 */ 1406 int r; 1407 /* 1408 * Shepherd work thread does not race since it never 1409 * changes the bit if its zero but the cpu 1410 * online / off line code may race if 1411 * worker threads are still allowed during 1412 * shutdown / startup. 1413 */ 1414 r = cpumask_test_and_set_cpu(smp_processor_id(), 1415 cpu_stat_off); 1416 VM_BUG_ON(r); 1417 } 1418 } 1419 1420 /* 1421 * Check if the diffs for a certain cpu indicate that 1422 * an update is needed. 1423 */ 1424 static bool need_update(int cpu) 1425 { 1426 struct zone *zone; 1427 1428 for_each_populated_zone(zone) { 1429 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1430 1431 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1432 /* 1433 * The fast way of checking if there are any vmstat diffs. 1434 * This works because the diffs are byte sized items. 1435 */ 1436 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1437 return true; 1438 1439 } 1440 return false; 1441 } 1442 1443 1444 /* 1445 * Shepherd worker thread that checks the 1446 * differentials of processors that have their worker 1447 * threads for vm statistics updates disabled because of 1448 * inactivity. 1449 */ 1450 static void vmstat_shepherd(struct work_struct *w); 1451 1452 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd); 1453 1454 static void vmstat_shepherd(struct work_struct *w) 1455 { 1456 int cpu; 1457 1458 get_online_cpus(); 1459 /* Check processors whose vmstat worker threads have been disabled */ 1460 for_each_cpu(cpu, cpu_stat_off) 1461 if (need_update(cpu) && 1462 cpumask_test_and_clear_cpu(cpu, cpu_stat_off)) 1463 1464 queue_delayed_work_on(cpu, vmstat_wq, 1465 &per_cpu(vmstat_work, cpu), 0); 1466 1467 put_online_cpus(); 1468 1469 schedule_delayed_work(&shepherd, 1470 round_jiffies_relative(sysctl_stat_interval)); 1471 1472 } 1473 1474 static void __init start_shepherd_timer(void) 1475 { 1476 int cpu; 1477 1478 for_each_possible_cpu(cpu) 1479 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu), 1480 vmstat_update); 1481 1482 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL)) 1483 BUG(); 1484 cpumask_copy(cpu_stat_off, cpu_online_mask); 1485 1486 schedule_delayed_work(&shepherd, 1487 round_jiffies_relative(sysctl_stat_interval)); 1488 } 1489 1490 static void vmstat_cpu_dead(int node) 1491 { 1492 int cpu; 1493 1494 get_online_cpus(); 1495 for_each_online_cpu(cpu) 1496 if (cpu_to_node(cpu) == node) 1497 goto end; 1498 1499 node_clear_state(node, N_CPU); 1500 end: 1501 put_online_cpus(); 1502 } 1503 1504 /* 1505 * Use the cpu notifier to insure that the thresholds are recalculated 1506 * when necessary. 1507 */ 1508 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1509 unsigned long action, 1510 void *hcpu) 1511 { 1512 long cpu = (long)hcpu; 1513 1514 switch (action) { 1515 case CPU_ONLINE: 1516 case CPU_ONLINE_FROZEN: 1517 refresh_zone_stat_thresholds(); 1518 node_set_state(cpu_to_node(cpu), N_CPU); 1519 cpumask_set_cpu(cpu, cpu_stat_off); 1520 break; 1521 case CPU_DOWN_PREPARE: 1522 case CPU_DOWN_PREPARE_FROZEN: 1523 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1524 cpumask_clear_cpu(cpu, cpu_stat_off); 1525 break; 1526 case CPU_DOWN_FAILED: 1527 case CPU_DOWN_FAILED_FROZEN: 1528 cpumask_set_cpu(cpu, cpu_stat_off); 1529 break; 1530 case CPU_DEAD: 1531 case CPU_DEAD_FROZEN: 1532 refresh_zone_stat_thresholds(); 1533 vmstat_cpu_dead(cpu_to_node(cpu)); 1534 break; 1535 default: 1536 break; 1537 } 1538 return NOTIFY_OK; 1539 } 1540 1541 static struct notifier_block vmstat_notifier = 1542 { &vmstat_cpuup_callback, NULL, 0 }; 1543 #endif 1544 1545 static int __init setup_vmstat(void) 1546 { 1547 #ifdef CONFIG_SMP 1548 cpu_notifier_register_begin(); 1549 __register_cpu_notifier(&vmstat_notifier); 1550 1551 start_shepherd_timer(); 1552 cpu_notifier_register_done(); 1553 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 1554 #endif 1555 #ifdef CONFIG_PROC_FS 1556 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1557 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1558 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1559 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1560 #endif 1561 return 0; 1562 } 1563 module_init(setup_vmstat) 1564 1565 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1566 1567 /* 1568 * Return an index indicating how much of the available free memory is 1569 * unusable for an allocation of the requested size. 1570 */ 1571 static int unusable_free_index(unsigned int order, 1572 struct contig_page_info *info) 1573 { 1574 /* No free memory is interpreted as all free memory is unusable */ 1575 if (info->free_pages == 0) 1576 return 1000; 1577 1578 /* 1579 * Index should be a value between 0 and 1. Return a value to 3 1580 * decimal places. 1581 * 1582 * 0 => no fragmentation 1583 * 1 => high fragmentation 1584 */ 1585 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1586 1587 } 1588 1589 static void unusable_show_print(struct seq_file *m, 1590 pg_data_t *pgdat, struct zone *zone) 1591 { 1592 unsigned int order; 1593 int index; 1594 struct contig_page_info info; 1595 1596 seq_printf(m, "Node %d, zone %8s ", 1597 pgdat->node_id, 1598 zone->name); 1599 for (order = 0; order < MAX_ORDER; ++order) { 1600 fill_contig_page_info(zone, order, &info); 1601 index = unusable_free_index(order, &info); 1602 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1603 } 1604 1605 seq_putc(m, '\n'); 1606 } 1607 1608 /* 1609 * Display unusable free space index 1610 * 1611 * The unusable free space index measures how much of the available free 1612 * memory cannot be used to satisfy an allocation of a given size and is a 1613 * value between 0 and 1. The higher the value, the more of free memory is 1614 * unusable and by implication, the worse the external fragmentation is. This 1615 * can be expressed as a percentage by multiplying by 100. 1616 */ 1617 static int unusable_show(struct seq_file *m, void *arg) 1618 { 1619 pg_data_t *pgdat = (pg_data_t *)arg; 1620 1621 /* check memoryless node */ 1622 if (!node_state(pgdat->node_id, N_MEMORY)) 1623 return 0; 1624 1625 walk_zones_in_node(m, pgdat, unusable_show_print); 1626 1627 return 0; 1628 } 1629 1630 static const struct seq_operations unusable_op = { 1631 .start = frag_start, 1632 .next = frag_next, 1633 .stop = frag_stop, 1634 .show = unusable_show, 1635 }; 1636 1637 static int unusable_open(struct inode *inode, struct file *file) 1638 { 1639 return seq_open(file, &unusable_op); 1640 } 1641 1642 static const struct file_operations unusable_file_ops = { 1643 .open = unusable_open, 1644 .read = seq_read, 1645 .llseek = seq_lseek, 1646 .release = seq_release, 1647 }; 1648 1649 static void extfrag_show_print(struct seq_file *m, 1650 pg_data_t *pgdat, struct zone *zone) 1651 { 1652 unsigned int order; 1653 int index; 1654 1655 /* Alloc on stack as interrupts are disabled for zone walk */ 1656 struct contig_page_info info; 1657 1658 seq_printf(m, "Node %d, zone %8s ", 1659 pgdat->node_id, 1660 zone->name); 1661 for (order = 0; order < MAX_ORDER; ++order) { 1662 fill_contig_page_info(zone, order, &info); 1663 index = __fragmentation_index(order, &info); 1664 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1665 } 1666 1667 seq_putc(m, '\n'); 1668 } 1669 1670 /* 1671 * Display fragmentation index for orders that allocations would fail for 1672 */ 1673 static int extfrag_show(struct seq_file *m, void *arg) 1674 { 1675 pg_data_t *pgdat = (pg_data_t *)arg; 1676 1677 walk_zones_in_node(m, pgdat, extfrag_show_print); 1678 1679 return 0; 1680 } 1681 1682 static const struct seq_operations extfrag_op = { 1683 .start = frag_start, 1684 .next = frag_next, 1685 .stop = frag_stop, 1686 .show = extfrag_show, 1687 }; 1688 1689 static int extfrag_open(struct inode *inode, struct file *file) 1690 { 1691 return seq_open(file, &extfrag_op); 1692 } 1693 1694 static const struct file_operations extfrag_file_ops = { 1695 .open = extfrag_open, 1696 .read = seq_read, 1697 .llseek = seq_lseek, 1698 .release = seq_release, 1699 }; 1700 1701 static int __init extfrag_debug_init(void) 1702 { 1703 struct dentry *extfrag_debug_root; 1704 1705 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1706 if (!extfrag_debug_root) 1707 return -ENOMEM; 1708 1709 if (!debugfs_create_file("unusable_index", 0444, 1710 extfrag_debug_root, NULL, &unusable_file_ops)) 1711 goto fail; 1712 1713 if (!debugfs_create_file("extfrag_index", 0444, 1714 extfrag_debug_root, NULL, &extfrag_file_ops)) 1715 goto fail; 1716 1717 return 0; 1718 fail: 1719 debugfs_remove_recursive(extfrag_debug_root); 1720 return -ENOMEM; 1721 } 1722 1723 module_init(extfrag_debug_init); 1724 #endif 1725