xref: /openbmc/linux/mm/vmstat.c (revision 95e9fd10)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int watermark_distance;
90 
91 	/*
92 	 * As vmstats are not up to date, there is drift between the estimated
93 	 * and real values. For high thresholds and a high number of CPUs, it
94 	 * is possible for the min watermark to be breached while the estimated
95 	 * value looks fine. The pressure threshold is a reduced value such
96 	 * that even the maximum amount of drift will not accidentally breach
97 	 * the min watermark
98 	 */
99 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101 
102 	/*
103 	 * Maximum threshold is 125
104 	 */
105 	threshold = min(125, threshold);
106 
107 	return threshold;
108 }
109 
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 	int threshold;
113 	int mem;	/* memory in 128 MB units */
114 
115 	/*
116 	 * The threshold scales with the number of processors and the amount
117 	 * of memory per zone. More memory means that we can defer updates for
118 	 * longer, more processors could lead to more contention.
119  	 * fls() is used to have a cheap way of logarithmic scaling.
120 	 *
121 	 * Some sample thresholds:
122 	 *
123 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
124 	 * ------------------------------------------------------------------
125 	 * 8		1		1	0.9-1 GB	4
126 	 * 16		2		2	0.9-1 GB	4
127 	 * 20 		2		2	1-2 GB		5
128 	 * 24		2		2	2-4 GB		6
129 	 * 28		2		2	4-8 GB		7
130 	 * 32		2		2	8-16 GB		8
131 	 * 4		2		2	<128M		1
132 	 * 30		4		3	2-4 GB		5
133 	 * 48		4		3	8-16 GB		8
134 	 * 32		8		4	1-2 GB		4
135 	 * 32		8		4	0.9-1GB		4
136 	 * 10		16		5	<128M		1
137 	 * 40		16		5	900M		4
138 	 * 70		64		7	2-4 GB		5
139 	 * 84		64		7	4-8 GB		6
140 	 * 108		512		9	4-8 GB		6
141 	 * 125		1024		10	8-16 GB		8
142 	 * 125		1024		10	16-32 GB	9
143 	 */
144 
145 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
146 
147 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148 
149 	/*
150 	 * Maximum threshold is 125
151 	 */
152 	threshold = min(125, threshold);
153 
154 	return threshold;
155 }
156 
157 /*
158  * Refresh the thresholds for each zone.
159  */
160 void refresh_zone_stat_thresholds(void)
161 {
162 	struct zone *zone;
163 	int cpu;
164 	int threshold;
165 
166 	for_each_populated_zone(zone) {
167 		unsigned long max_drift, tolerate_drift;
168 
169 		threshold = calculate_normal_threshold(zone);
170 
171 		for_each_online_cpu(cpu)
172 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 							= threshold;
174 
175 		/*
176 		 * Only set percpu_drift_mark if there is a danger that
177 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 		 * the min watermark could be breached by an allocation
179 		 */
180 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 		max_drift = num_online_cpus() * threshold;
182 		if (max_drift > tolerate_drift)
183 			zone->percpu_drift_mark = high_wmark_pages(zone) +
184 					max_drift;
185 	}
186 }
187 
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 				int (*calculate_pressure)(struct zone *))
190 {
191 	struct zone *zone;
192 	int cpu;
193 	int threshold;
194 	int i;
195 
196 	for (i = 0; i < pgdat->nr_zones; i++) {
197 		zone = &pgdat->node_zones[i];
198 		if (!zone->percpu_drift_mark)
199 			continue;
200 
201 		threshold = (*calculate_pressure)(zone);
202 		for_each_possible_cpu(cpu)
203 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 							= threshold;
205 	}
206 }
207 
208 /*
209  * For use when we know that interrupts are disabled.
210  */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 				int delta)
213 {
214 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 	s8 __percpu *p = pcp->vm_stat_diff + item;
216 	long x;
217 	long t;
218 
219 	x = delta + __this_cpu_read(*p);
220 
221 	t = __this_cpu_read(pcp->stat_threshold);
222 
223 	if (unlikely(x > t || x < -t)) {
224 		zone_page_state_add(x, zone, item);
225 		x = 0;
226 	}
227 	__this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230 
231 /*
232  * Optimized increment and decrement functions.
233  *
234  * These are only for a single page and therefore can take a struct page *
235  * argument instead of struct zone *. This allows the inclusion of the code
236  * generated for page_zone(page) into the optimized functions.
237  *
238  * No overflow check is necessary and therefore the differential can be
239  * incremented or decremented in place which may allow the compilers to
240  * generate better code.
241  * The increment or decrement is known and therefore one boundary check can
242  * be omitted.
243  *
244  * NOTE: These functions are very performance sensitive. Change only
245  * with care.
246  *
247  * Some processors have inc/dec instructions that are atomic vs an interrupt.
248  * However, the code must first determine the differential location in a zone
249  * based on the processor number and then inc/dec the counter. There is no
250  * guarantee without disabling preemption that the processor will not change
251  * in between and therefore the atomicity vs. interrupt cannot be exploited
252  * in a useful way here.
253  */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 	s8 __percpu *p = pcp->vm_stat_diff + item;
258 	s8 v, t;
259 
260 	v = __this_cpu_inc_return(*p);
261 	t = __this_cpu_read(pcp->stat_threshold);
262 	if (unlikely(v > t)) {
263 		s8 overstep = t >> 1;
264 
265 		zone_page_state_add(v + overstep, zone, item);
266 		__this_cpu_write(*p, -overstep);
267 	}
268 }
269 
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	__inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275 
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 	s8 __percpu *p = pcp->vm_stat_diff + item;
280 	s8 v, t;
281 
282 	v = __this_cpu_dec_return(*p);
283 	t = __this_cpu_read(pcp->stat_threshold);
284 	if (unlikely(v < - t)) {
285 		s8 overstep = t >> 1;
286 
287 		zone_page_state_add(v - overstep, zone, item);
288 		__this_cpu_write(*p, overstep);
289 	}
290 }
291 
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 	__dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297 
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299 /*
300  * If we have cmpxchg_local support then we do not need to incur the overhead
301  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302  *
303  * mod_state() modifies the zone counter state through atomic per cpu
304  * operations.
305  *
306  * Overstep mode specifies how overstep should handled:
307  *     0       No overstepping
308  *     1       Overstepping half of threshold
309  *     -1      Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312        enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 	s8 __percpu *p = pcp->vm_stat_diff + item;
316 	long o, n, t, z;
317 
318 	do {
319 		z = 0;  /* overflow to zone counters */
320 
321 		/*
322 		 * The fetching of the stat_threshold is racy. We may apply
323 		 * a counter threshold to the wrong the cpu if we get
324 		 * rescheduled while executing here. However, the next
325 		 * counter update will apply the threshold again and
326 		 * therefore bring the counter under the threshold again.
327 		 *
328 		 * Most of the time the thresholds are the same anyways
329 		 * for all cpus in a zone.
330 		 */
331 		t = this_cpu_read(pcp->stat_threshold);
332 
333 		o = this_cpu_read(*p);
334 		n = delta + o;
335 
336 		if (n > t || n < -t) {
337 			int os = overstep_mode * (t >> 1) ;
338 
339 			/* Overflow must be added to zone counters */
340 			z = n + os;
341 			n = -os;
342 		}
343 	} while (this_cpu_cmpxchg(*p, o, n) != o);
344 
345 	if (z)
346 		zone_page_state_add(z, zone, item);
347 }
348 
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350 					int delta)
351 {
352 	mod_state(zone, item, delta, 0);
353 }
354 EXPORT_SYMBOL(mod_zone_page_state);
355 
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357 {
358 	mod_state(zone, item, 1, 1);
359 }
360 
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362 {
363 	mod_state(page_zone(page), item, 1, 1);
364 }
365 EXPORT_SYMBOL(inc_zone_page_state);
366 
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368 {
369 	mod_state(page_zone(page), item, -1, -1);
370 }
371 EXPORT_SYMBOL(dec_zone_page_state);
372 #else
373 /*
374  * Use interrupt disable to serialize counter updates
375  */
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377 					int delta)
378 {
379 	unsigned long flags;
380 
381 	local_irq_save(flags);
382 	__mod_zone_page_state(zone, item, delta);
383 	local_irq_restore(flags);
384 }
385 EXPORT_SYMBOL(mod_zone_page_state);
386 
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388 {
389 	unsigned long flags;
390 
391 	local_irq_save(flags);
392 	__inc_zone_state(zone, item);
393 	local_irq_restore(flags);
394 }
395 
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397 {
398 	unsigned long flags;
399 	struct zone *zone;
400 
401 	zone = page_zone(page);
402 	local_irq_save(flags);
403 	__inc_zone_state(zone, item);
404 	local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL(inc_zone_page_state);
407 
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409 {
410 	unsigned long flags;
411 
412 	local_irq_save(flags);
413 	__dec_zone_page_state(page, item);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(dec_zone_page_state);
417 #endif
418 
419 /*
420  * Update the zone counters for one cpu.
421  *
422  * The cpu specified must be either the current cpu or a processor that
423  * is not online. If it is the current cpu then the execution thread must
424  * be pinned to the current cpu.
425  *
426  * Note that refresh_cpu_vm_stats strives to only access
427  * node local memory. The per cpu pagesets on remote zones are placed
428  * in the memory local to the processor using that pageset. So the
429  * loop over all zones will access a series of cachelines local to
430  * the processor.
431  *
432  * The call to zone_page_state_add updates the cachelines with the
433  * statistics in the remote zone struct as well as the global cachelines
434  * with the global counters. These could cause remote node cache line
435  * bouncing and will have to be only done when necessary.
436  */
437 void refresh_cpu_vm_stats(int cpu)
438 {
439 	struct zone *zone;
440 	int i;
441 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442 
443 	for_each_populated_zone(zone) {
444 		struct per_cpu_pageset *p;
445 
446 		p = per_cpu_ptr(zone->pageset, cpu);
447 
448 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449 			if (p->vm_stat_diff[i]) {
450 				unsigned long flags;
451 				int v;
452 
453 				local_irq_save(flags);
454 				v = p->vm_stat_diff[i];
455 				p->vm_stat_diff[i] = 0;
456 				local_irq_restore(flags);
457 				atomic_long_add(v, &zone->vm_stat[i]);
458 				global_diff[i] += v;
459 #ifdef CONFIG_NUMA
460 				/* 3 seconds idle till flush */
461 				p->expire = 3;
462 #endif
463 			}
464 		cond_resched();
465 #ifdef CONFIG_NUMA
466 		/*
467 		 * Deal with draining the remote pageset of this
468 		 * processor
469 		 *
470 		 * Check if there are pages remaining in this pageset
471 		 * if not then there is nothing to expire.
472 		 */
473 		if (!p->expire || !p->pcp.count)
474 			continue;
475 
476 		/*
477 		 * We never drain zones local to this processor.
478 		 */
479 		if (zone_to_nid(zone) == numa_node_id()) {
480 			p->expire = 0;
481 			continue;
482 		}
483 
484 		p->expire--;
485 		if (p->expire)
486 			continue;
487 
488 		if (p->pcp.count)
489 			drain_zone_pages(zone, &p->pcp);
490 #endif
491 	}
492 
493 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494 		if (global_diff[i])
495 			atomic_long_add(global_diff[i], &vm_stat[i]);
496 }
497 
498 #endif
499 
500 #ifdef CONFIG_NUMA
501 /*
502  * zonelist = the list of zones passed to the allocator
503  * z 	    = the zone from which the allocation occurred.
504  *
505  * Must be called with interrupts disabled.
506  *
507  * When __GFP_OTHER_NODE is set assume the node of the preferred
508  * zone is the local node. This is useful for daemons who allocate
509  * memory on behalf of other processes.
510  */
511 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
512 {
513 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
514 		__inc_zone_state(z, NUMA_HIT);
515 	} else {
516 		__inc_zone_state(z, NUMA_MISS);
517 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
518 	}
519 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
520 			preferred_zone->node : numa_node_id()))
521 		__inc_zone_state(z, NUMA_LOCAL);
522 	else
523 		__inc_zone_state(z, NUMA_OTHER);
524 }
525 #endif
526 
527 #ifdef CONFIG_COMPACTION
528 
529 struct contig_page_info {
530 	unsigned long free_pages;
531 	unsigned long free_blocks_total;
532 	unsigned long free_blocks_suitable;
533 };
534 
535 /*
536  * Calculate the number of free pages in a zone, how many contiguous
537  * pages are free and how many are large enough to satisfy an allocation of
538  * the target size. Note that this function makes no attempt to estimate
539  * how many suitable free blocks there *might* be if MOVABLE pages were
540  * migrated. Calculating that is possible, but expensive and can be
541  * figured out from userspace
542  */
543 static void fill_contig_page_info(struct zone *zone,
544 				unsigned int suitable_order,
545 				struct contig_page_info *info)
546 {
547 	unsigned int order;
548 
549 	info->free_pages = 0;
550 	info->free_blocks_total = 0;
551 	info->free_blocks_suitable = 0;
552 
553 	for (order = 0; order < MAX_ORDER; order++) {
554 		unsigned long blocks;
555 
556 		/* Count number of free blocks */
557 		blocks = zone->free_area[order].nr_free;
558 		info->free_blocks_total += blocks;
559 
560 		/* Count free base pages */
561 		info->free_pages += blocks << order;
562 
563 		/* Count the suitable free blocks */
564 		if (order >= suitable_order)
565 			info->free_blocks_suitable += blocks <<
566 						(order - suitable_order);
567 	}
568 }
569 
570 /*
571  * A fragmentation index only makes sense if an allocation of a requested
572  * size would fail. If that is true, the fragmentation index indicates
573  * whether external fragmentation or a lack of memory was the problem.
574  * The value can be used to determine if page reclaim or compaction
575  * should be used
576  */
577 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
578 {
579 	unsigned long requested = 1UL << order;
580 
581 	if (!info->free_blocks_total)
582 		return 0;
583 
584 	/* Fragmentation index only makes sense when a request would fail */
585 	if (info->free_blocks_suitable)
586 		return -1000;
587 
588 	/*
589 	 * Index is between 0 and 1 so return within 3 decimal places
590 	 *
591 	 * 0 => allocation would fail due to lack of memory
592 	 * 1 => allocation would fail due to fragmentation
593 	 */
594 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
595 }
596 
597 /* Same as __fragmentation index but allocs contig_page_info on stack */
598 int fragmentation_index(struct zone *zone, unsigned int order)
599 {
600 	struct contig_page_info info;
601 
602 	fill_contig_page_info(zone, order, &info);
603 	return __fragmentation_index(order, &info);
604 }
605 #endif
606 
607 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
608 #include <linux/proc_fs.h>
609 #include <linux/seq_file.h>
610 
611 static char * const migratetype_names[MIGRATE_TYPES] = {
612 	"Unmovable",
613 	"Reclaimable",
614 	"Movable",
615 	"Reserve",
616 #ifdef CONFIG_CMA
617 	"CMA",
618 #endif
619 	"Isolate",
620 };
621 
622 static void *frag_start(struct seq_file *m, loff_t *pos)
623 {
624 	pg_data_t *pgdat;
625 	loff_t node = *pos;
626 	for (pgdat = first_online_pgdat();
627 	     pgdat && node;
628 	     pgdat = next_online_pgdat(pgdat))
629 		--node;
630 
631 	return pgdat;
632 }
633 
634 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
635 {
636 	pg_data_t *pgdat = (pg_data_t *)arg;
637 
638 	(*pos)++;
639 	return next_online_pgdat(pgdat);
640 }
641 
642 static void frag_stop(struct seq_file *m, void *arg)
643 {
644 }
645 
646 /* Walk all the zones in a node and print using a callback */
647 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
648 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
649 {
650 	struct zone *zone;
651 	struct zone *node_zones = pgdat->node_zones;
652 	unsigned long flags;
653 
654 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
655 		if (!populated_zone(zone))
656 			continue;
657 
658 		spin_lock_irqsave(&zone->lock, flags);
659 		print(m, pgdat, zone);
660 		spin_unlock_irqrestore(&zone->lock, flags);
661 	}
662 }
663 #endif
664 
665 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
666 #ifdef CONFIG_ZONE_DMA
667 #define TEXT_FOR_DMA(xx) xx "_dma",
668 #else
669 #define TEXT_FOR_DMA(xx)
670 #endif
671 
672 #ifdef CONFIG_ZONE_DMA32
673 #define TEXT_FOR_DMA32(xx) xx "_dma32",
674 #else
675 #define TEXT_FOR_DMA32(xx)
676 #endif
677 
678 #ifdef CONFIG_HIGHMEM
679 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
680 #else
681 #define TEXT_FOR_HIGHMEM(xx)
682 #endif
683 
684 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
685 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
686 
687 const char * const vmstat_text[] = {
688 	/* Zoned VM counters */
689 	"nr_free_pages",
690 	"nr_inactive_anon",
691 	"nr_active_anon",
692 	"nr_inactive_file",
693 	"nr_active_file",
694 	"nr_unevictable",
695 	"nr_mlock",
696 	"nr_anon_pages",
697 	"nr_mapped",
698 	"nr_file_pages",
699 	"nr_dirty",
700 	"nr_writeback",
701 	"nr_slab_reclaimable",
702 	"nr_slab_unreclaimable",
703 	"nr_page_table_pages",
704 	"nr_kernel_stack",
705 	"nr_unstable",
706 	"nr_bounce",
707 	"nr_vmscan_write",
708 	"nr_vmscan_immediate_reclaim",
709 	"nr_writeback_temp",
710 	"nr_isolated_anon",
711 	"nr_isolated_file",
712 	"nr_shmem",
713 	"nr_dirtied",
714 	"nr_written",
715 
716 #ifdef CONFIG_NUMA
717 	"numa_hit",
718 	"numa_miss",
719 	"numa_foreign",
720 	"numa_interleave",
721 	"numa_local",
722 	"numa_other",
723 #endif
724 	"nr_anon_transparent_hugepages",
725 	"nr_dirty_threshold",
726 	"nr_dirty_background_threshold",
727 
728 #ifdef CONFIG_VM_EVENT_COUNTERS
729 	"pgpgin",
730 	"pgpgout",
731 	"pswpin",
732 	"pswpout",
733 
734 	TEXTS_FOR_ZONES("pgalloc")
735 
736 	"pgfree",
737 	"pgactivate",
738 	"pgdeactivate",
739 
740 	"pgfault",
741 	"pgmajfault",
742 
743 	TEXTS_FOR_ZONES("pgrefill")
744 	TEXTS_FOR_ZONES("pgsteal_kswapd")
745 	TEXTS_FOR_ZONES("pgsteal_direct")
746 	TEXTS_FOR_ZONES("pgscan_kswapd")
747 	TEXTS_FOR_ZONES("pgscan_direct")
748 	"pgscan_direct_throttle",
749 
750 #ifdef CONFIG_NUMA
751 	"zone_reclaim_failed",
752 #endif
753 	"pginodesteal",
754 	"slabs_scanned",
755 	"kswapd_inodesteal",
756 	"kswapd_low_wmark_hit_quickly",
757 	"kswapd_high_wmark_hit_quickly",
758 	"kswapd_skip_congestion_wait",
759 	"pageoutrun",
760 	"allocstall",
761 
762 	"pgrotated",
763 
764 #ifdef CONFIG_COMPACTION
765 	"compact_blocks_moved",
766 	"compact_pages_moved",
767 	"compact_pagemigrate_failed",
768 	"compact_stall",
769 	"compact_fail",
770 	"compact_success",
771 #endif
772 
773 #ifdef CONFIG_HUGETLB_PAGE
774 	"htlb_buddy_alloc_success",
775 	"htlb_buddy_alloc_fail",
776 #endif
777 	"unevictable_pgs_culled",
778 	"unevictable_pgs_scanned",
779 	"unevictable_pgs_rescued",
780 	"unevictable_pgs_mlocked",
781 	"unevictable_pgs_munlocked",
782 	"unevictable_pgs_cleared",
783 	"unevictable_pgs_stranded",
784 	"unevictable_pgs_mlockfreed",
785 
786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
787 	"thp_fault_alloc",
788 	"thp_fault_fallback",
789 	"thp_collapse_alloc",
790 	"thp_collapse_alloc_failed",
791 	"thp_split",
792 #endif
793 
794 #endif /* CONFIG_VM_EVENTS_COUNTERS */
795 };
796 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
797 
798 
799 #ifdef CONFIG_PROC_FS
800 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
801 						struct zone *zone)
802 {
803 	int order;
804 
805 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
806 	for (order = 0; order < MAX_ORDER; ++order)
807 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
808 	seq_putc(m, '\n');
809 }
810 
811 /*
812  * This walks the free areas for each zone.
813  */
814 static int frag_show(struct seq_file *m, void *arg)
815 {
816 	pg_data_t *pgdat = (pg_data_t *)arg;
817 	walk_zones_in_node(m, pgdat, frag_show_print);
818 	return 0;
819 }
820 
821 static void pagetypeinfo_showfree_print(struct seq_file *m,
822 					pg_data_t *pgdat, struct zone *zone)
823 {
824 	int order, mtype;
825 
826 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
827 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
828 					pgdat->node_id,
829 					zone->name,
830 					migratetype_names[mtype]);
831 		for (order = 0; order < MAX_ORDER; ++order) {
832 			unsigned long freecount = 0;
833 			struct free_area *area;
834 			struct list_head *curr;
835 
836 			area = &(zone->free_area[order]);
837 
838 			list_for_each(curr, &area->free_list[mtype])
839 				freecount++;
840 			seq_printf(m, "%6lu ", freecount);
841 		}
842 		seq_putc(m, '\n');
843 	}
844 }
845 
846 /* Print out the free pages at each order for each migatetype */
847 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
848 {
849 	int order;
850 	pg_data_t *pgdat = (pg_data_t *)arg;
851 
852 	/* Print header */
853 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
854 	for (order = 0; order < MAX_ORDER; ++order)
855 		seq_printf(m, "%6d ", order);
856 	seq_putc(m, '\n');
857 
858 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
859 
860 	return 0;
861 }
862 
863 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
864 					pg_data_t *pgdat, struct zone *zone)
865 {
866 	int mtype;
867 	unsigned long pfn;
868 	unsigned long start_pfn = zone->zone_start_pfn;
869 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
870 	unsigned long count[MIGRATE_TYPES] = { 0, };
871 
872 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
873 		struct page *page;
874 
875 		if (!pfn_valid(pfn))
876 			continue;
877 
878 		page = pfn_to_page(pfn);
879 
880 		/* Watch for unexpected holes punched in the memmap */
881 		if (!memmap_valid_within(pfn, page, zone))
882 			continue;
883 
884 		mtype = get_pageblock_migratetype(page);
885 
886 		if (mtype < MIGRATE_TYPES)
887 			count[mtype]++;
888 	}
889 
890 	/* Print counts */
891 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
892 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
893 		seq_printf(m, "%12lu ", count[mtype]);
894 	seq_putc(m, '\n');
895 }
896 
897 /* Print out the free pages at each order for each migratetype */
898 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
899 {
900 	int mtype;
901 	pg_data_t *pgdat = (pg_data_t *)arg;
902 
903 	seq_printf(m, "\n%-23s", "Number of blocks type ");
904 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
905 		seq_printf(m, "%12s ", migratetype_names[mtype]);
906 	seq_putc(m, '\n');
907 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
908 
909 	return 0;
910 }
911 
912 /*
913  * This prints out statistics in relation to grouping pages by mobility.
914  * It is expensive to collect so do not constantly read the file.
915  */
916 static int pagetypeinfo_show(struct seq_file *m, void *arg)
917 {
918 	pg_data_t *pgdat = (pg_data_t *)arg;
919 
920 	/* check memoryless node */
921 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
922 		return 0;
923 
924 	seq_printf(m, "Page block order: %d\n", pageblock_order);
925 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
926 	seq_putc(m, '\n');
927 	pagetypeinfo_showfree(m, pgdat);
928 	pagetypeinfo_showblockcount(m, pgdat);
929 
930 	return 0;
931 }
932 
933 static const struct seq_operations fragmentation_op = {
934 	.start	= frag_start,
935 	.next	= frag_next,
936 	.stop	= frag_stop,
937 	.show	= frag_show,
938 };
939 
940 static int fragmentation_open(struct inode *inode, struct file *file)
941 {
942 	return seq_open(file, &fragmentation_op);
943 }
944 
945 static const struct file_operations fragmentation_file_operations = {
946 	.open		= fragmentation_open,
947 	.read		= seq_read,
948 	.llseek		= seq_lseek,
949 	.release	= seq_release,
950 };
951 
952 static const struct seq_operations pagetypeinfo_op = {
953 	.start	= frag_start,
954 	.next	= frag_next,
955 	.stop	= frag_stop,
956 	.show	= pagetypeinfo_show,
957 };
958 
959 static int pagetypeinfo_open(struct inode *inode, struct file *file)
960 {
961 	return seq_open(file, &pagetypeinfo_op);
962 }
963 
964 static const struct file_operations pagetypeinfo_file_ops = {
965 	.open		= pagetypeinfo_open,
966 	.read		= seq_read,
967 	.llseek		= seq_lseek,
968 	.release	= seq_release,
969 };
970 
971 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
972 							struct zone *zone)
973 {
974 	int i;
975 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
976 	seq_printf(m,
977 		   "\n  pages free     %lu"
978 		   "\n        min      %lu"
979 		   "\n        low      %lu"
980 		   "\n        high     %lu"
981 		   "\n        scanned  %lu"
982 		   "\n        spanned  %lu"
983 		   "\n        present  %lu",
984 		   zone_page_state(zone, NR_FREE_PAGES),
985 		   min_wmark_pages(zone),
986 		   low_wmark_pages(zone),
987 		   high_wmark_pages(zone),
988 		   zone->pages_scanned,
989 		   zone->spanned_pages,
990 		   zone->present_pages);
991 
992 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
993 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
994 				zone_page_state(zone, i));
995 
996 	seq_printf(m,
997 		   "\n        protection: (%lu",
998 		   zone->lowmem_reserve[0]);
999 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1000 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1001 	seq_printf(m,
1002 		   ")"
1003 		   "\n  pagesets");
1004 	for_each_online_cpu(i) {
1005 		struct per_cpu_pageset *pageset;
1006 
1007 		pageset = per_cpu_ptr(zone->pageset, i);
1008 		seq_printf(m,
1009 			   "\n    cpu: %i"
1010 			   "\n              count: %i"
1011 			   "\n              high:  %i"
1012 			   "\n              batch: %i",
1013 			   i,
1014 			   pageset->pcp.count,
1015 			   pageset->pcp.high,
1016 			   pageset->pcp.batch);
1017 #ifdef CONFIG_SMP
1018 		seq_printf(m, "\n  vm stats threshold: %d",
1019 				pageset->stat_threshold);
1020 #endif
1021 	}
1022 	seq_printf(m,
1023 		   "\n  all_unreclaimable: %u"
1024 		   "\n  start_pfn:         %lu"
1025 		   "\n  inactive_ratio:    %u",
1026 		   zone->all_unreclaimable,
1027 		   zone->zone_start_pfn,
1028 		   zone->inactive_ratio);
1029 	seq_putc(m, '\n');
1030 }
1031 
1032 /*
1033  * Output information about zones in @pgdat.
1034  */
1035 static int zoneinfo_show(struct seq_file *m, void *arg)
1036 {
1037 	pg_data_t *pgdat = (pg_data_t *)arg;
1038 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1039 	return 0;
1040 }
1041 
1042 static const struct seq_operations zoneinfo_op = {
1043 	.start	= frag_start, /* iterate over all zones. The same as in
1044 			       * fragmentation. */
1045 	.next	= frag_next,
1046 	.stop	= frag_stop,
1047 	.show	= zoneinfo_show,
1048 };
1049 
1050 static int zoneinfo_open(struct inode *inode, struct file *file)
1051 {
1052 	return seq_open(file, &zoneinfo_op);
1053 }
1054 
1055 static const struct file_operations proc_zoneinfo_file_operations = {
1056 	.open		= zoneinfo_open,
1057 	.read		= seq_read,
1058 	.llseek		= seq_lseek,
1059 	.release	= seq_release,
1060 };
1061 
1062 enum writeback_stat_item {
1063 	NR_DIRTY_THRESHOLD,
1064 	NR_DIRTY_BG_THRESHOLD,
1065 	NR_VM_WRITEBACK_STAT_ITEMS,
1066 };
1067 
1068 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1069 {
1070 	unsigned long *v;
1071 	int i, stat_items_size;
1072 
1073 	if (*pos >= ARRAY_SIZE(vmstat_text))
1074 		return NULL;
1075 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1076 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1077 
1078 #ifdef CONFIG_VM_EVENT_COUNTERS
1079 	stat_items_size += sizeof(struct vm_event_state);
1080 #endif
1081 
1082 	v = kmalloc(stat_items_size, GFP_KERNEL);
1083 	m->private = v;
1084 	if (!v)
1085 		return ERR_PTR(-ENOMEM);
1086 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1087 		v[i] = global_page_state(i);
1088 	v += NR_VM_ZONE_STAT_ITEMS;
1089 
1090 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1091 			    v + NR_DIRTY_THRESHOLD);
1092 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1093 
1094 #ifdef CONFIG_VM_EVENT_COUNTERS
1095 	all_vm_events(v);
1096 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1097 	v[PGPGOUT] /= 2;
1098 #endif
1099 	return (unsigned long *)m->private + *pos;
1100 }
1101 
1102 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1103 {
1104 	(*pos)++;
1105 	if (*pos >= ARRAY_SIZE(vmstat_text))
1106 		return NULL;
1107 	return (unsigned long *)m->private + *pos;
1108 }
1109 
1110 static int vmstat_show(struct seq_file *m, void *arg)
1111 {
1112 	unsigned long *l = arg;
1113 	unsigned long off = l - (unsigned long *)m->private;
1114 
1115 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1116 	return 0;
1117 }
1118 
1119 static void vmstat_stop(struct seq_file *m, void *arg)
1120 {
1121 	kfree(m->private);
1122 	m->private = NULL;
1123 }
1124 
1125 static const struct seq_operations vmstat_op = {
1126 	.start	= vmstat_start,
1127 	.next	= vmstat_next,
1128 	.stop	= vmstat_stop,
1129 	.show	= vmstat_show,
1130 };
1131 
1132 static int vmstat_open(struct inode *inode, struct file *file)
1133 {
1134 	return seq_open(file, &vmstat_op);
1135 }
1136 
1137 static const struct file_operations proc_vmstat_file_operations = {
1138 	.open		= vmstat_open,
1139 	.read		= seq_read,
1140 	.llseek		= seq_lseek,
1141 	.release	= seq_release,
1142 };
1143 #endif /* CONFIG_PROC_FS */
1144 
1145 #ifdef CONFIG_SMP
1146 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1147 int sysctl_stat_interval __read_mostly = HZ;
1148 
1149 static void vmstat_update(struct work_struct *w)
1150 {
1151 	refresh_cpu_vm_stats(smp_processor_id());
1152 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1153 		round_jiffies_relative(sysctl_stat_interval));
1154 }
1155 
1156 static void __cpuinit start_cpu_timer(int cpu)
1157 {
1158 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1159 
1160 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1161 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1162 }
1163 
1164 /*
1165  * Use the cpu notifier to insure that the thresholds are recalculated
1166  * when necessary.
1167  */
1168 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1169 		unsigned long action,
1170 		void *hcpu)
1171 {
1172 	long cpu = (long)hcpu;
1173 
1174 	switch (action) {
1175 	case CPU_ONLINE:
1176 	case CPU_ONLINE_FROZEN:
1177 		refresh_zone_stat_thresholds();
1178 		start_cpu_timer(cpu);
1179 		node_set_state(cpu_to_node(cpu), N_CPU);
1180 		break;
1181 	case CPU_DOWN_PREPARE:
1182 	case CPU_DOWN_PREPARE_FROZEN:
1183 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1184 		per_cpu(vmstat_work, cpu).work.func = NULL;
1185 		break;
1186 	case CPU_DOWN_FAILED:
1187 	case CPU_DOWN_FAILED_FROZEN:
1188 		start_cpu_timer(cpu);
1189 		break;
1190 	case CPU_DEAD:
1191 	case CPU_DEAD_FROZEN:
1192 		refresh_zone_stat_thresholds();
1193 		break;
1194 	default:
1195 		break;
1196 	}
1197 	return NOTIFY_OK;
1198 }
1199 
1200 static struct notifier_block __cpuinitdata vmstat_notifier =
1201 	{ &vmstat_cpuup_callback, NULL, 0 };
1202 #endif
1203 
1204 static int __init setup_vmstat(void)
1205 {
1206 #ifdef CONFIG_SMP
1207 	int cpu;
1208 
1209 	register_cpu_notifier(&vmstat_notifier);
1210 
1211 	for_each_online_cpu(cpu)
1212 		start_cpu_timer(cpu);
1213 #endif
1214 #ifdef CONFIG_PROC_FS
1215 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1216 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1217 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1218 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1219 #endif
1220 	return 0;
1221 }
1222 module_init(setup_vmstat)
1223 
1224 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1225 #include <linux/debugfs.h>
1226 
1227 
1228 /*
1229  * Return an index indicating how much of the available free memory is
1230  * unusable for an allocation of the requested size.
1231  */
1232 static int unusable_free_index(unsigned int order,
1233 				struct contig_page_info *info)
1234 {
1235 	/* No free memory is interpreted as all free memory is unusable */
1236 	if (info->free_pages == 0)
1237 		return 1000;
1238 
1239 	/*
1240 	 * Index should be a value between 0 and 1. Return a value to 3
1241 	 * decimal places.
1242 	 *
1243 	 * 0 => no fragmentation
1244 	 * 1 => high fragmentation
1245 	 */
1246 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1247 
1248 }
1249 
1250 static void unusable_show_print(struct seq_file *m,
1251 					pg_data_t *pgdat, struct zone *zone)
1252 {
1253 	unsigned int order;
1254 	int index;
1255 	struct contig_page_info info;
1256 
1257 	seq_printf(m, "Node %d, zone %8s ",
1258 				pgdat->node_id,
1259 				zone->name);
1260 	for (order = 0; order < MAX_ORDER; ++order) {
1261 		fill_contig_page_info(zone, order, &info);
1262 		index = unusable_free_index(order, &info);
1263 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1264 	}
1265 
1266 	seq_putc(m, '\n');
1267 }
1268 
1269 /*
1270  * Display unusable free space index
1271  *
1272  * The unusable free space index measures how much of the available free
1273  * memory cannot be used to satisfy an allocation of a given size and is a
1274  * value between 0 and 1. The higher the value, the more of free memory is
1275  * unusable and by implication, the worse the external fragmentation is. This
1276  * can be expressed as a percentage by multiplying by 100.
1277  */
1278 static int unusable_show(struct seq_file *m, void *arg)
1279 {
1280 	pg_data_t *pgdat = (pg_data_t *)arg;
1281 
1282 	/* check memoryless node */
1283 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1284 		return 0;
1285 
1286 	walk_zones_in_node(m, pgdat, unusable_show_print);
1287 
1288 	return 0;
1289 }
1290 
1291 static const struct seq_operations unusable_op = {
1292 	.start	= frag_start,
1293 	.next	= frag_next,
1294 	.stop	= frag_stop,
1295 	.show	= unusable_show,
1296 };
1297 
1298 static int unusable_open(struct inode *inode, struct file *file)
1299 {
1300 	return seq_open(file, &unusable_op);
1301 }
1302 
1303 static const struct file_operations unusable_file_ops = {
1304 	.open		= unusable_open,
1305 	.read		= seq_read,
1306 	.llseek		= seq_lseek,
1307 	.release	= seq_release,
1308 };
1309 
1310 static void extfrag_show_print(struct seq_file *m,
1311 					pg_data_t *pgdat, struct zone *zone)
1312 {
1313 	unsigned int order;
1314 	int index;
1315 
1316 	/* Alloc on stack as interrupts are disabled for zone walk */
1317 	struct contig_page_info info;
1318 
1319 	seq_printf(m, "Node %d, zone %8s ",
1320 				pgdat->node_id,
1321 				zone->name);
1322 	for (order = 0; order < MAX_ORDER; ++order) {
1323 		fill_contig_page_info(zone, order, &info);
1324 		index = __fragmentation_index(order, &info);
1325 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1326 	}
1327 
1328 	seq_putc(m, '\n');
1329 }
1330 
1331 /*
1332  * Display fragmentation index for orders that allocations would fail for
1333  */
1334 static int extfrag_show(struct seq_file *m, void *arg)
1335 {
1336 	pg_data_t *pgdat = (pg_data_t *)arg;
1337 
1338 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1339 
1340 	return 0;
1341 }
1342 
1343 static const struct seq_operations extfrag_op = {
1344 	.start	= frag_start,
1345 	.next	= frag_next,
1346 	.stop	= frag_stop,
1347 	.show	= extfrag_show,
1348 };
1349 
1350 static int extfrag_open(struct inode *inode, struct file *file)
1351 {
1352 	return seq_open(file, &extfrag_op);
1353 }
1354 
1355 static const struct file_operations extfrag_file_ops = {
1356 	.open		= extfrag_open,
1357 	.read		= seq_read,
1358 	.llseek		= seq_lseek,
1359 	.release	= seq_release,
1360 };
1361 
1362 static int __init extfrag_debug_init(void)
1363 {
1364 	struct dentry *extfrag_debug_root;
1365 
1366 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1367 	if (!extfrag_debug_root)
1368 		return -ENOMEM;
1369 
1370 	if (!debugfs_create_file("unusable_index", 0444,
1371 			extfrag_debug_root, NULL, &unusable_file_ops))
1372 		goto fail;
1373 
1374 	if (!debugfs_create_file("extfrag_index", 0444,
1375 			extfrag_debug_root, NULL, &extfrag_file_ops))
1376 		goto fail;
1377 
1378 	return 0;
1379 fail:
1380 	debugfs_remove_recursive(extfrag_debug_root);
1381 	return -ENOMEM;
1382 }
1383 
1384 module_init(extfrag_debug_init);
1385 #endif
1386