1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/cpu.h> 17 #include <linux/vmstat.h> 18 #include <linux/sched.h> 19 #include <linux/math64.h> 20 #include <linux/writeback.h> 21 #include <linux/compaction.h> 22 23 #ifdef CONFIG_VM_EVENT_COUNTERS 24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 25 EXPORT_PER_CPU_SYMBOL(vm_event_states); 26 27 static void sum_vm_events(unsigned long *ret) 28 { 29 int cpu; 30 int i; 31 32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 33 34 for_each_online_cpu(cpu) { 35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 36 37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 38 ret[i] += this->event[i]; 39 } 40 } 41 42 /* 43 * Accumulate the vm event counters across all CPUs. 44 * The result is unavoidably approximate - it can change 45 * during and after execution of this function. 46 */ 47 void all_vm_events(unsigned long *ret) 48 { 49 get_online_cpus(); 50 sum_vm_events(ret); 51 put_online_cpus(); 52 } 53 EXPORT_SYMBOL_GPL(all_vm_events); 54 55 #ifdef CONFIG_HOTPLUG 56 /* 57 * Fold the foreign cpu events into our own. 58 * 59 * This is adding to the events on one processor 60 * but keeps the global counts constant. 61 */ 62 void vm_events_fold_cpu(int cpu) 63 { 64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 65 int i; 66 67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 68 count_vm_events(i, fold_state->event[i]); 69 fold_state->event[i] = 0; 70 } 71 } 72 #endif /* CONFIG_HOTPLUG */ 73 74 #endif /* CONFIG_VM_EVENT_COUNTERS */ 75 76 /* 77 * Manage combined zone based / global counters 78 * 79 * vm_stat contains the global counters 80 */ 81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 82 EXPORT_SYMBOL(vm_stat); 83 84 #ifdef CONFIG_SMP 85 86 int calculate_pressure_threshold(struct zone *zone) 87 { 88 int threshold; 89 int watermark_distance; 90 91 /* 92 * As vmstats are not up to date, there is drift between the estimated 93 * and real values. For high thresholds and a high number of CPUs, it 94 * is possible for the min watermark to be breached while the estimated 95 * value looks fine. The pressure threshold is a reduced value such 96 * that even the maximum amount of drift will not accidentally breach 97 * the min watermark 98 */ 99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 100 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 101 102 /* 103 * Maximum threshold is 125 104 */ 105 threshold = min(125, threshold); 106 107 return threshold; 108 } 109 110 int calculate_normal_threshold(struct zone *zone) 111 { 112 int threshold; 113 int mem; /* memory in 128 MB units */ 114 115 /* 116 * The threshold scales with the number of processors and the amount 117 * of memory per zone. More memory means that we can defer updates for 118 * longer, more processors could lead to more contention. 119 * fls() is used to have a cheap way of logarithmic scaling. 120 * 121 * Some sample thresholds: 122 * 123 * Threshold Processors (fls) Zonesize fls(mem+1) 124 * ------------------------------------------------------------------ 125 * 8 1 1 0.9-1 GB 4 126 * 16 2 2 0.9-1 GB 4 127 * 20 2 2 1-2 GB 5 128 * 24 2 2 2-4 GB 6 129 * 28 2 2 4-8 GB 7 130 * 32 2 2 8-16 GB 8 131 * 4 2 2 <128M 1 132 * 30 4 3 2-4 GB 5 133 * 48 4 3 8-16 GB 8 134 * 32 8 4 1-2 GB 4 135 * 32 8 4 0.9-1GB 4 136 * 10 16 5 <128M 1 137 * 40 16 5 900M 4 138 * 70 64 7 2-4 GB 5 139 * 84 64 7 4-8 GB 6 140 * 108 512 9 4-8 GB 6 141 * 125 1024 10 8-16 GB 8 142 * 125 1024 10 16-32 GB 9 143 */ 144 145 mem = zone->present_pages >> (27 - PAGE_SHIFT); 146 147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 148 149 /* 150 * Maximum threshold is 125 151 */ 152 threshold = min(125, threshold); 153 154 return threshold; 155 } 156 157 /* 158 * Refresh the thresholds for each zone. 159 */ 160 void refresh_zone_stat_thresholds(void) 161 { 162 struct zone *zone; 163 int cpu; 164 int threshold; 165 166 for_each_populated_zone(zone) { 167 unsigned long max_drift, tolerate_drift; 168 169 threshold = calculate_normal_threshold(zone); 170 171 for_each_online_cpu(cpu) 172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 173 = threshold; 174 175 /* 176 * Only set percpu_drift_mark if there is a danger that 177 * NR_FREE_PAGES reports the low watermark is ok when in fact 178 * the min watermark could be breached by an allocation 179 */ 180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 181 max_drift = num_online_cpus() * threshold; 182 if (max_drift > tolerate_drift) 183 zone->percpu_drift_mark = high_wmark_pages(zone) + 184 max_drift; 185 } 186 } 187 188 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 189 int (*calculate_pressure)(struct zone *)) 190 { 191 struct zone *zone; 192 int cpu; 193 int threshold; 194 int i; 195 196 for (i = 0; i < pgdat->nr_zones; i++) { 197 zone = &pgdat->node_zones[i]; 198 if (!zone->percpu_drift_mark) 199 continue; 200 201 threshold = (*calculate_pressure)(zone); 202 for_each_possible_cpu(cpu) 203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 204 = threshold; 205 } 206 } 207 208 /* 209 * For use when we know that interrupts are disabled. 210 */ 211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 212 int delta) 213 { 214 struct per_cpu_pageset __percpu *pcp = zone->pageset; 215 s8 __percpu *p = pcp->vm_stat_diff + item; 216 long x; 217 long t; 218 219 x = delta + __this_cpu_read(*p); 220 221 t = __this_cpu_read(pcp->stat_threshold); 222 223 if (unlikely(x > t || x < -t)) { 224 zone_page_state_add(x, zone, item); 225 x = 0; 226 } 227 __this_cpu_write(*p, x); 228 } 229 EXPORT_SYMBOL(__mod_zone_page_state); 230 231 /* 232 * Optimized increment and decrement functions. 233 * 234 * These are only for a single page and therefore can take a struct page * 235 * argument instead of struct zone *. This allows the inclusion of the code 236 * generated for page_zone(page) into the optimized functions. 237 * 238 * No overflow check is necessary and therefore the differential can be 239 * incremented or decremented in place which may allow the compilers to 240 * generate better code. 241 * The increment or decrement is known and therefore one boundary check can 242 * be omitted. 243 * 244 * NOTE: These functions are very performance sensitive. Change only 245 * with care. 246 * 247 * Some processors have inc/dec instructions that are atomic vs an interrupt. 248 * However, the code must first determine the differential location in a zone 249 * based on the processor number and then inc/dec the counter. There is no 250 * guarantee without disabling preemption that the processor will not change 251 * in between and therefore the atomicity vs. interrupt cannot be exploited 252 * in a useful way here. 253 */ 254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 255 { 256 struct per_cpu_pageset __percpu *pcp = zone->pageset; 257 s8 __percpu *p = pcp->vm_stat_diff + item; 258 s8 v, t; 259 260 v = __this_cpu_inc_return(*p); 261 t = __this_cpu_read(pcp->stat_threshold); 262 if (unlikely(v > t)) { 263 s8 overstep = t >> 1; 264 265 zone_page_state_add(v + overstep, zone, item); 266 __this_cpu_write(*p, -overstep); 267 } 268 } 269 270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 271 { 272 __inc_zone_state(page_zone(page), item); 273 } 274 EXPORT_SYMBOL(__inc_zone_page_state); 275 276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 277 { 278 struct per_cpu_pageset __percpu *pcp = zone->pageset; 279 s8 __percpu *p = pcp->vm_stat_diff + item; 280 s8 v, t; 281 282 v = __this_cpu_dec_return(*p); 283 t = __this_cpu_read(pcp->stat_threshold); 284 if (unlikely(v < - t)) { 285 s8 overstep = t >> 1; 286 287 zone_page_state_add(v - overstep, zone, item); 288 __this_cpu_write(*p, overstep); 289 } 290 } 291 292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 293 { 294 __dec_zone_state(page_zone(page), item); 295 } 296 EXPORT_SYMBOL(__dec_zone_page_state); 297 298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 299 /* 300 * If we have cmpxchg_local support then we do not need to incur the overhead 301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 302 * 303 * mod_state() modifies the zone counter state through atomic per cpu 304 * operations. 305 * 306 * Overstep mode specifies how overstep should handled: 307 * 0 No overstepping 308 * 1 Overstepping half of threshold 309 * -1 Overstepping minus half of threshold 310 */ 311 static inline void mod_state(struct zone *zone, 312 enum zone_stat_item item, int delta, int overstep_mode) 313 { 314 struct per_cpu_pageset __percpu *pcp = zone->pageset; 315 s8 __percpu *p = pcp->vm_stat_diff + item; 316 long o, n, t, z; 317 318 do { 319 z = 0; /* overflow to zone counters */ 320 321 /* 322 * The fetching of the stat_threshold is racy. We may apply 323 * a counter threshold to the wrong the cpu if we get 324 * rescheduled while executing here. However, the next 325 * counter update will apply the threshold again and 326 * therefore bring the counter under the threshold again. 327 * 328 * Most of the time the thresholds are the same anyways 329 * for all cpus in a zone. 330 */ 331 t = this_cpu_read(pcp->stat_threshold); 332 333 o = this_cpu_read(*p); 334 n = delta + o; 335 336 if (n > t || n < -t) { 337 int os = overstep_mode * (t >> 1) ; 338 339 /* Overflow must be added to zone counters */ 340 z = n + os; 341 n = -os; 342 } 343 } while (this_cpu_cmpxchg(*p, o, n) != o); 344 345 if (z) 346 zone_page_state_add(z, zone, item); 347 } 348 349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 350 int delta) 351 { 352 mod_state(zone, item, delta, 0); 353 } 354 EXPORT_SYMBOL(mod_zone_page_state); 355 356 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 357 { 358 mod_state(zone, item, 1, 1); 359 } 360 361 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 362 { 363 mod_state(page_zone(page), item, 1, 1); 364 } 365 EXPORT_SYMBOL(inc_zone_page_state); 366 367 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 368 { 369 mod_state(page_zone(page), item, -1, -1); 370 } 371 EXPORT_SYMBOL(dec_zone_page_state); 372 #else 373 /* 374 * Use interrupt disable to serialize counter updates 375 */ 376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 377 int delta) 378 { 379 unsigned long flags; 380 381 local_irq_save(flags); 382 __mod_zone_page_state(zone, item, delta); 383 local_irq_restore(flags); 384 } 385 EXPORT_SYMBOL(mod_zone_page_state); 386 387 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __inc_zone_state(zone, item); 393 local_irq_restore(flags); 394 } 395 396 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 397 { 398 unsigned long flags; 399 struct zone *zone; 400 401 zone = page_zone(page); 402 local_irq_save(flags); 403 __inc_zone_state(zone, item); 404 local_irq_restore(flags); 405 } 406 EXPORT_SYMBOL(inc_zone_page_state); 407 408 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 __dec_zone_page_state(page, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(dec_zone_page_state); 417 #endif 418 419 /* 420 * Update the zone counters for one cpu. 421 * 422 * The cpu specified must be either the current cpu or a processor that 423 * is not online. If it is the current cpu then the execution thread must 424 * be pinned to the current cpu. 425 * 426 * Note that refresh_cpu_vm_stats strives to only access 427 * node local memory. The per cpu pagesets on remote zones are placed 428 * in the memory local to the processor using that pageset. So the 429 * loop over all zones will access a series of cachelines local to 430 * the processor. 431 * 432 * The call to zone_page_state_add updates the cachelines with the 433 * statistics in the remote zone struct as well as the global cachelines 434 * with the global counters. These could cause remote node cache line 435 * bouncing and will have to be only done when necessary. 436 */ 437 void refresh_cpu_vm_stats(int cpu) 438 { 439 struct zone *zone; 440 int i; 441 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 442 443 for_each_populated_zone(zone) { 444 struct per_cpu_pageset *p; 445 446 p = per_cpu_ptr(zone->pageset, cpu); 447 448 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 449 if (p->vm_stat_diff[i]) { 450 unsigned long flags; 451 int v; 452 453 local_irq_save(flags); 454 v = p->vm_stat_diff[i]; 455 p->vm_stat_diff[i] = 0; 456 local_irq_restore(flags); 457 atomic_long_add(v, &zone->vm_stat[i]); 458 global_diff[i] += v; 459 #ifdef CONFIG_NUMA 460 /* 3 seconds idle till flush */ 461 p->expire = 3; 462 #endif 463 } 464 cond_resched(); 465 #ifdef CONFIG_NUMA 466 /* 467 * Deal with draining the remote pageset of this 468 * processor 469 * 470 * Check if there are pages remaining in this pageset 471 * if not then there is nothing to expire. 472 */ 473 if (!p->expire || !p->pcp.count) 474 continue; 475 476 /* 477 * We never drain zones local to this processor. 478 */ 479 if (zone_to_nid(zone) == numa_node_id()) { 480 p->expire = 0; 481 continue; 482 } 483 484 p->expire--; 485 if (p->expire) 486 continue; 487 488 if (p->pcp.count) 489 drain_zone_pages(zone, &p->pcp); 490 #endif 491 } 492 493 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 494 if (global_diff[i]) 495 atomic_long_add(global_diff[i], &vm_stat[i]); 496 } 497 498 #endif 499 500 #ifdef CONFIG_NUMA 501 /* 502 * zonelist = the list of zones passed to the allocator 503 * z = the zone from which the allocation occurred. 504 * 505 * Must be called with interrupts disabled. 506 * 507 * When __GFP_OTHER_NODE is set assume the node of the preferred 508 * zone is the local node. This is useful for daemons who allocate 509 * memory on behalf of other processes. 510 */ 511 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 512 { 513 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 514 __inc_zone_state(z, NUMA_HIT); 515 } else { 516 __inc_zone_state(z, NUMA_MISS); 517 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 518 } 519 if (z->node == ((flags & __GFP_OTHER_NODE) ? 520 preferred_zone->node : numa_node_id())) 521 __inc_zone_state(z, NUMA_LOCAL); 522 else 523 __inc_zone_state(z, NUMA_OTHER); 524 } 525 #endif 526 527 #ifdef CONFIG_COMPACTION 528 529 struct contig_page_info { 530 unsigned long free_pages; 531 unsigned long free_blocks_total; 532 unsigned long free_blocks_suitable; 533 }; 534 535 /* 536 * Calculate the number of free pages in a zone, how many contiguous 537 * pages are free and how many are large enough to satisfy an allocation of 538 * the target size. Note that this function makes no attempt to estimate 539 * how many suitable free blocks there *might* be if MOVABLE pages were 540 * migrated. Calculating that is possible, but expensive and can be 541 * figured out from userspace 542 */ 543 static void fill_contig_page_info(struct zone *zone, 544 unsigned int suitable_order, 545 struct contig_page_info *info) 546 { 547 unsigned int order; 548 549 info->free_pages = 0; 550 info->free_blocks_total = 0; 551 info->free_blocks_suitable = 0; 552 553 for (order = 0; order < MAX_ORDER; order++) { 554 unsigned long blocks; 555 556 /* Count number of free blocks */ 557 blocks = zone->free_area[order].nr_free; 558 info->free_blocks_total += blocks; 559 560 /* Count free base pages */ 561 info->free_pages += blocks << order; 562 563 /* Count the suitable free blocks */ 564 if (order >= suitable_order) 565 info->free_blocks_suitable += blocks << 566 (order - suitable_order); 567 } 568 } 569 570 /* 571 * A fragmentation index only makes sense if an allocation of a requested 572 * size would fail. If that is true, the fragmentation index indicates 573 * whether external fragmentation or a lack of memory was the problem. 574 * The value can be used to determine if page reclaim or compaction 575 * should be used 576 */ 577 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 578 { 579 unsigned long requested = 1UL << order; 580 581 if (!info->free_blocks_total) 582 return 0; 583 584 /* Fragmentation index only makes sense when a request would fail */ 585 if (info->free_blocks_suitable) 586 return -1000; 587 588 /* 589 * Index is between 0 and 1 so return within 3 decimal places 590 * 591 * 0 => allocation would fail due to lack of memory 592 * 1 => allocation would fail due to fragmentation 593 */ 594 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 595 } 596 597 /* Same as __fragmentation index but allocs contig_page_info on stack */ 598 int fragmentation_index(struct zone *zone, unsigned int order) 599 { 600 struct contig_page_info info; 601 602 fill_contig_page_info(zone, order, &info); 603 return __fragmentation_index(order, &info); 604 } 605 #endif 606 607 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 608 #include <linux/proc_fs.h> 609 #include <linux/seq_file.h> 610 611 static char * const migratetype_names[MIGRATE_TYPES] = { 612 "Unmovable", 613 "Reclaimable", 614 "Movable", 615 "Reserve", 616 #ifdef CONFIG_CMA 617 "CMA", 618 #endif 619 "Isolate", 620 }; 621 622 static void *frag_start(struct seq_file *m, loff_t *pos) 623 { 624 pg_data_t *pgdat; 625 loff_t node = *pos; 626 for (pgdat = first_online_pgdat(); 627 pgdat && node; 628 pgdat = next_online_pgdat(pgdat)) 629 --node; 630 631 return pgdat; 632 } 633 634 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 635 { 636 pg_data_t *pgdat = (pg_data_t *)arg; 637 638 (*pos)++; 639 return next_online_pgdat(pgdat); 640 } 641 642 static void frag_stop(struct seq_file *m, void *arg) 643 { 644 } 645 646 /* Walk all the zones in a node and print using a callback */ 647 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 648 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 649 { 650 struct zone *zone; 651 struct zone *node_zones = pgdat->node_zones; 652 unsigned long flags; 653 654 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 655 if (!populated_zone(zone)) 656 continue; 657 658 spin_lock_irqsave(&zone->lock, flags); 659 print(m, pgdat, zone); 660 spin_unlock_irqrestore(&zone->lock, flags); 661 } 662 } 663 #endif 664 665 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 666 #ifdef CONFIG_ZONE_DMA 667 #define TEXT_FOR_DMA(xx) xx "_dma", 668 #else 669 #define TEXT_FOR_DMA(xx) 670 #endif 671 672 #ifdef CONFIG_ZONE_DMA32 673 #define TEXT_FOR_DMA32(xx) xx "_dma32", 674 #else 675 #define TEXT_FOR_DMA32(xx) 676 #endif 677 678 #ifdef CONFIG_HIGHMEM 679 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 680 #else 681 #define TEXT_FOR_HIGHMEM(xx) 682 #endif 683 684 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 685 TEXT_FOR_HIGHMEM(xx) xx "_movable", 686 687 const char * const vmstat_text[] = { 688 /* Zoned VM counters */ 689 "nr_free_pages", 690 "nr_inactive_anon", 691 "nr_active_anon", 692 "nr_inactive_file", 693 "nr_active_file", 694 "nr_unevictable", 695 "nr_mlock", 696 "nr_anon_pages", 697 "nr_mapped", 698 "nr_file_pages", 699 "nr_dirty", 700 "nr_writeback", 701 "nr_slab_reclaimable", 702 "nr_slab_unreclaimable", 703 "nr_page_table_pages", 704 "nr_kernel_stack", 705 "nr_unstable", 706 "nr_bounce", 707 "nr_vmscan_write", 708 "nr_vmscan_immediate_reclaim", 709 "nr_writeback_temp", 710 "nr_isolated_anon", 711 "nr_isolated_file", 712 "nr_shmem", 713 "nr_dirtied", 714 "nr_written", 715 716 #ifdef CONFIG_NUMA 717 "numa_hit", 718 "numa_miss", 719 "numa_foreign", 720 "numa_interleave", 721 "numa_local", 722 "numa_other", 723 #endif 724 "nr_anon_transparent_hugepages", 725 "nr_dirty_threshold", 726 "nr_dirty_background_threshold", 727 728 #ifdef CONFIG_VM_EVENT_COUNTERS 729 "pgpgin", 730 "pgpgout", 731 "pswpin", 732 "pswpout", 733 734 TEXTS_FOR_ZONES("pgalloc") 735 736 "pgfree", 737 "pgactivate", 738 "pgdeactivate", 739 740 "pgfault", 741 "pgmajfault", 742 743 TEXTS_FOR_ZONES("pgrefill") 744 TEXTS_FOR_ZONES("pgsteal_kswapd") 745 TEXTS_FOR_ZONES("pgsteal_direct") 746 TEXTS_FOR_ZONES("pgscan_kswapd") 747 TEXTS_FOR_ZONES("pgscan_direct") 748 "pgscan_direct_throttle", 749 750 #ifdef CONFIG_NUMA 751 "zone_reclaim_failed", 752 #endif 753 "pginodesteal", 754 "slabs_scanned", 755 "kswapd_inodesteal", 756 "kswapd_low_wmark_hit_quickly", 757 "kswapd_high_wmark_hit_quickly", 758 "kswapd_skip_congestion_wait", 759 "pageoutrun", 760 "allocstall", 761 762 "pgrotated", 763 764 #ifdef CONFIG_COMPACTION 765 "compact_blocks_moved", 766 "compact_pages_moved", 767 "compact_pagemigrate_failed", 768 "compact_stall", 769 "compact_fail", 770 "compact_success", 771 #endif 772 773 #ifdef CONFIG_HUGETLB_PAGE 774 "htlb_buddy_alloc_success", 775 "htlb_buddy_alloc_fail", 776 #endif 777 "unevictable_pgs_culled", 778 "unevictable_pgs_scanned", 779 "unevictable_pgs_rescued", 780 "unevictable_pgs_mlocked", 781 "unevictable_pgs_munlocked", 782 "unevictable_pgs_cleared", 783 "unevictable_pgs_stranded", 784 "unevictable_pgs_mlockfreed", 785 786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 787 "thp_fault_alloc", 788 "thp_fault_fallback", 789 "thp_collapse_alloc", 790 "thp_collapse_alloc_failed", 791 "thp_split", 792 #endif 793 794 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 795 }; 796 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 797 798 799 #ifdef CONFIG_PROC_FS 800 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 801 struct zone *zone) 802 { 803 int order; 804 805 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 806 for (order = 0; order < MAX_ORDER; ++order) 807 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 808 seq_putc(m, '\n'); 809 } 810 811 /* 812 * This walks the free areas for each zone. 813 */ 814 static int frag_show(struct seq_file *m, void *arg) 815 { 816 pg_data_t *pgdat = (pg_data_t *)arg; 817 walk_zones_in_node(m, pgdat, frag_show_print); 818 return 0; 819 } 820 821 static void pagetypeinfo_showfree_print(struct seq_file *m, 822 pg_data_t *pgdat, struct zone *zone) 823 { 824 int order, mtype; 825 826 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 827 seq_printf(m, "Node %4d, zone %8s, type %12s ", 828 pgdat->node_id, 829 zone->name, 830 migratetype_names[mtype]); 831 for (order = 0; order < MAX_ORDER; ++order) { 832 unsigned long freecount = 0; 833 struct free_area *area; 834 struct list_head *curr; 835 836 area = &(zone->free_area[order]); 837 838 list_for_each(curr, &area->free_list[mtype]) 839 freecount++; 840 seq_printf(m, "%6lu ", freecount); 841 } 842 seq_putc(m, '\n'); 843 } 844 } 845 846 /* Print out the free pages at each order for each migatetype */ 847 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 848 { 849 int order; 850 pg_data_t *pgdat = (pg_data_t *)arg; 851 852 /* Print header */ 853 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 854 for (order = 0; order < MAX_ORDER; ++order) 855 seq_printf(m, "%6d ", order); 856 seq_putc(m, '\n'); 857 858 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 859 860 return 0; 861 } 862 863 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 864 pg_data_t *pgdat, struct zone *zone) 865 { 866 int mtype; 867 unsigned long pfn; 868 unsigned long start_pfn = zone->zone_start_pfn; 869 unsigned long end_pfn = start_pfn + zone->spanned_pages; 870 unsigned long count[MIGRATE_TYPES] = { 0, }; 871 872 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 873 struct page *page; 874 875 if (!pfn_valid(pfn)) 876 continue; 877 878 page = pfn_to_page(pfn); 879 880 /* Watch for unexpected holes punched in the memmap */ 881 if (!memmap_valid_within(pfn, page, zone)) 882 continue; 883 884 mtype = get_pageblock_migratetype(page); 885 886 if (mtype < MIGRATE_TYPES) 887 count[mtype]++; 888 } 889 890 /* Print counts */ 891 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 892 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 893 seq_printf(m, "%12lu ", count[mtype]); 894 seq_putc(m, '\n'); 895 } 896 897 /* Print out the free pages at each order for each migratetype */ 898 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 899 { 900 int mtype; 901 pg_data_t *pgdat = (pg_data_t *)arg; 902 903 seq_printf(m, "\n%-23s", "Number of blocks type "); 904 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 905 seq_printf(m, "%12s ", migratetype_names[mtype]); 906 seq_putc(m, '\n'); 907 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 908 909 return 0; 910 } 911 912 /* 913 * This prints out statistics in relation to grouping pages by mobility. 914 * It is expensive to collect so do not constantly read the file. 915 */ 916 static int pagetypeinfo_show(struct seq_file *m, void *arg) 917 { 918 pg_data_t *pgdat = (pg_data_t *)arg; 919 920 /* check memoryless node */ 921 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 922 return 0; 923 924 seq_printf(m, "Page block order: %d\n", pageblock_order); 925 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 926 seq_putc(m, '\n'); 927 pagetypeinfo_showfree(m, pgdat); 928 pagetypeinfo_showblockcount(m, pgdat); 929 930 return 0; 931 } 932 933 static const struct seq_operations fragmentation_op = { 934 .start = frag_start, 935 .next = frag_next, 936 .stop = frag_stop, 937 .show = frag_show, 938 }; 939 940 static int fragmentation_open(struct inode *inode, struct file *file) 941 { 942 return seq_open(file, &fragmentation_op); 943 } 944 945 static const struct file_operations fragmentation_file_operations = { 946 .open = fragmentation_open, 947 .read = seq_read, 948 .llseek = seq_lseek, 949 .release = seq_release, 950 }; 951 952 static const struct seq_operations pagetypeinfo_op = { 953 .start = frag_start, 954 .next = frag_next, 955 .stop = frag_stop, 956 .show = pagetypeinfo_show, 957 }; 958 959 static int pagetypeinfo_open(struct inode *inode, struct file *file) 960 { 961 return seq_open(file, &pagetypeinfo_op); 962 } 963 964 static const struct file_operations pagetypeinfo_file_ops = { 965 .open = pagetypeinfo_open, 966 .read = seq_read, 967 .llseek = seq_lseek, 968 .release = seq_release, 969 }; 970 971 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 972 struct zone *zone) 973 { 974 int i; 975 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 976 seq_printf(m, 977 "\n pages free %lu" 978 "\n min %lu" 979 "\n low %lu" 980 "\n high %lu" 981 "\n scanned %lu" 982 "\n spanned %lu" 983 "\n present %lu", 984 zone_page_state(zone, NR_FREE_PAGES), 985 min_wmark_pages(zone), 986 low_wmark_pages(zone), 987 high_wmark_pages(zone), 988 zone->pages_scanned, 989 zone->spanned_pages, 990 zone->present_pages); 991 992 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 993 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 994 zone_page_state(zone, i)); 995 996 seq_printf(m, 997 "\n protection: (%lu", 998 zone->lowmem_reserve[0]); 999 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1000 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 1001 seq_printf(m, 1002 ")" 1003 "\n pagesets"); 1004 for_each_online_cpu(i) { 1005 struct per_cpu_pageset *pageset; 1006 1007 pageset = per_cpu_ptr(zone->pageset, i); 1008 seq_printf(m, 1009 "\n cpu: %i" 1010 "\n count: %i" 1011 "\n high: %i" 1012 "\n batch: %i", 1013 i, 1014 pageset->pcp.count, 1015 pageset->pcp.high, 1016 pageset->pcp.batch); 1017 #ifdef CONFIG_SMP 1018 seq_printf(m, "\n vm stats threshold: %d", 1019 pageset->stat_threshold); 1020 #endif 1021 } 1022 seq_printf(m, 1023 "\n all_unreclaimable: %u" 1024 "\n start_pfn: %lu" 1025 "\n inactive_ratio: %u", 1026 zone->all_unreclaimable, 1027 zone->zone_start_pfn, 1028 zone->inactive_ratio); 1029 seq_putc(m, '\n'); 1030 } 1031 1032 /* 1033 * Output information about zones in @pgdat. 1034 */ 1035 static int zoneinfo_show(struct seq_file *m, void *arg) 1036 { 1037 pg_data_t *pgdat = (pg_data_t *)arg; 1038 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1039 return 0; 1040 } 1041 1042 static const struct seq_operations zoneinfo_op = { 1043 .start = frag_start, /* iterate over all zones. The same as in 1044 * fragmentation. */ 1045 .next = frag_next, 1046 .stop = frag_stop, 1047 .show = zoneinfo_show, 1048 }; 1049 1050 static int zoneinfo_open(struct inode *inode, struct file *file) 1051 { 1052 return seq_open(file, &zoneinfo_op); 1053 } 1054 1055 static const struct file_operations proc_zoneinfo_file_operations = { 1056 .open = zoneinfo_open, 1057 .read = seq_read, 1058 .llseek = seq_lseek, 1059 .release = seq_release, 1060 }; 1061 1062 enum writeback_stat_item { 1063 NR_DIRTY_THRESHOLD, 1064 NR_DIRTY_BG_THRESHOLD, 1065 NR_VM_WRITEBACK_STAT_ITEMS, 1066 }; 1067 1068 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1069 { 1070 unsigned long *v; 1071 int i, stat_items_size; 1072 1073 if (*pos >= ARRAY_SIZE(vmstat_text)) 1074 return NULL; 1075 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1076 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1077 1078 #ifdef CONFIG_VM_EVENT_COUNTERS 1079 stat_items_size += sizeof(struct vm_event_state); 1080 #endif 1081 1082 v = kmalloc(stat_items_size, GFP_KERNEL); 1083 m->private = v; 1084 if (!v) 1085 return ERR_PTR(-ENOMEM); 1086 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1087 v[i] = global_page_state(i); 1088 v += NR_VM_ZONE_STAT_ITEMS; 1089 1090 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1091 v + NR_DIRTY_THRESHOLD); 1092 v += NR_VM_WRITEBACK_STAT_ITEMS; 1093 1094 #ifdef CONFIG_VM_EVENT_COUNTERS 1095 all_vm_events(v); 1096 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1097 v[PGPGOUT] /= 2; 1098 #endif 1099 return (unsigned long *)m->private + *pos; 1100 } 1101 1102 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1103 { 1104 (*pos)++; 1105 if (*pos >= ARRAY_SIZE(vmstat_text)) 1106 return NULL; 1107 return (unsigned long *)m->private + *pos; 1108 } 1109 1110 static int vmstat_show(struct seq_file *m, void *arg) 1111 { 1112 unsigned long *l = arg; 1113 unsigned long off = l - (unsigned long *)m->private; 1114 1115 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1116 return 0; 1117 } 1118 1119 static void vmstat_stop(struct seq_file *m, void *arg) 1120 { 1121 kfree(m->private); 1122 m->private = NULL; 1123 } 1124 1125 static const struct seq_operations vmstat_op = { 1126 .start = vmstat_start, 1127 .next = vmstat_next, 1128 .stop = vmstat_stop, 1129 .show = vmstat_show, 1130 }; 1131 1132 static int vmstat_open(struct inode *inode, struct file *file) 1133 { 1134 return seq_open(file, &vmstat_op); 1135 } 1136 1137 static const struct file_operations proc_vmstat_file_operations = { 1138 .open = vmstat_open, 1139 .read = seq_read, 1140 .llseek = seq_lseek, 1141 .release = seq_release, 1142 }; 1143 #endif /* CONFIG_PROC_FS */ 1144 1145 #ifdef CONFIG_SMP 1146 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1147 int sysctl_stat_interval __read_mostly = HZ; 1148 1149 static void vmstat_update(struct work_struct *w) 1150 { 1151 refresh_cpu_vm_stats(smp_processor_id()); 1152 schedule_delayed_work(&__get_cpu_var(vmstat_work), 1153 round_jiffies_relative(sysctl_stat_interval)); 1154 } 1155 1156 static void __cpuinit start_cpu_timer(int cpu) 1157 { 1158 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 1159 1160 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); 1161 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 1162 } 1163 1164 /* 1165 * Use the cpu notifier to insure that the thresholds are recalculated 1166 * when necessary. 1167 */ 1168 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 1169 unsigned long action, 1170 void *hcpu) 1171 { 1172 long cpu = (long)hcpu; 1173 1174 switch (action) { 1175 case CPU_ONLINE: 1176 case CPU_ONLINE_FROZEN: 1177 refresh_zone_stat_thresholds(); 1178 start_cpu_timer(cpu); 1179 node_set_state(cpu_to_node(cpu), N_CPU); 1180 break; 1181 case CPU_DOWN_PREPARE: 1182 case CPU_DOWN_PREPARE_FROZEN: 1183 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1184 per_cpu(vmstat_work, cpu).work.func = NULL; 1185 break; 1186 case CPU_DOWN_FAILED: 1187 case CPU_DOWN_FAILED_FROZEN: 1188 start_cpu_timer(cpu); 1189 break; 1190 case CPU_DEAD: 1191 case CPU_DEAD_FROZEN: 1192 refresh_zone_stat_thresholds(); 1193 break; 1194 default: 1195 break; 1196 } 1197 return NOTIFY_OK; 1198 } 1199 1200 static struct notifier_block __cpuinitdata vmstat_notifier = 1201 { &vmstat_cpuup_callback, NULL, 0 }; 1202 #endif 1203 1204 static int __init setup_vmstat(void) 1205 { 1206 #ifdef CONFIG_SMP 1207 int cpu; 1208 1209 register_cpu_notifier(&vmstat_notifier); 1210 1211 for_each_online_cpu(cpu) 1212 start_cpu_timer(cpu); 1213 #endif 1214 #ifdef CONFIG_PROC_FS 1215 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1216 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1217 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1218 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1219 #endif 1220 return 0; 1221 } 1222 module_init(setup_vmstat) 1223 1224 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1225 #include <linux/debugfs.h> 1226 1227 1228 /* 1229 * Return an index indicating how much of the available free memory is 1230 * unusable for an allocation of the requested size. 1231 */ 1232 static int unusable_free_index(unsigned int order, 1233 struct contig_page_info *info) 1234 { 1235 /* No free memory is interpreted as all free memory is unusable */ 1236 if (info->free_pages == 0) 1237 return 1000; 1238 1239 /* 1240 * Index should be a value between 0 and 1. Return a value to 3 1241 * decimal places. 1242 * 1243 * 0 => no fragmentation 1244 * 1 => high fragmentation 1245 */ 1246 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1247 1248 } 1249 1250 static void unusable_show_print(struct seq_file *m, 1251 pg_data_t *pgdat, struct zone *zone) 1252 { 1253 unsigned int order; 1254 int index; 1255 struct contig_page_info info; 1256 1257 seq_printf(m, "Node %d, zone %8s ", 1258 pgdat->node_id, 1259 zone->name); 1260 for (order = 0; order < MAX_ORDER; ++order) { 1261 fill_contig_page_info(zone, order, &info); 1262 index = unusable_free_index(order, &info); 1263 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1264 } 1265 1266 seq_putc(m, '\n'); 1267 } 1268 1269 /* 1270 * Display unusable free space index 1271 * 1272 * The unusable free space index measures how much of the available free 1273 * memory cannot be used to satisfy an allocation of a given size and is a 1274 * value between 0 and 1. The higher the value, the more of free memory is 1275 * unusable and by implication, the worse the external fragmentation is. This 1276 * can be expressed as a percentage by multiplying by 100. 1277 */ 1278 static int unusable_show(struct seq_file *m, void *arg) 1279 { 1280 pg_data_t *pgdat = (pg_data_t *)arg; 1281 1282 /* check memoryless node */ 1283 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 1284 return 0; 1285 1286 walk_zones_in_node(m, pgdat, unusable_show_print); 1287 1288 return 0; 1289 } 1290 1291 static const struct seq_operations unusable_op = { 1292 .start = frag_start, 1293 .next = frag_next, 1294 .stop = frag_stop, 1295 .show = unusable_show, 1296 }; 1297 1298 static int unusable_open(struct inode *inode, struct file *file) 1299 { 1300 return seq_open(file, &unusable_op); 1301 } 1302 1303 static const struct file_operations unusable_file_ops = { 1304 .open = unusable_open, 1305 .read = seq_read, 1306 .llseek = seq_lseek, 1307 .release = seq_release, 1308 }; 1309 1310 static void extfrag_show_print(struct seq_file *m, 1311 pg_data_t *pgdat, struct zone *zone) 1312 { 1313 unsigned int order; 1314 int index; 1315 1316 /* Alloc on stack as interrupts are disabled for zone walk */ 1317 struct contig_page_info info; 1318 1319 seq_printf(m, "Node %d, zone %8s ", 1320 pgdat->node_id, 1321 zone->name); 1322 for (order = 0; order < MAX_ORDER; ++order) { 1323 fill_contig_page_info(zone, order, &info); 1324 index = __fragmentation_index(order, &info); 1325 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1326 } 1327 1328 seq_putc(m, '\n'); 1329 } 1330 1331 /* 1332 * Display fragmentation index for orders that allocations would fail for 1333 */ 1334 static int extfrag_show(struct seq_file *m, void *arg) 1335 { 1336 pg_data_t *pgdat = (pg_data_t *)arg; 1337 1338 walk_zones_in_node(m, pgdat, extfrag_show_print); 1339 1340 return 0; 1341 } 1342 1343 static const struct seq_operations extfrag_op = { 1344 .start = frag_start, 1345 .next = frag_next, 1346 .stop = frag_stop, 1347 .show = extfrag_show, 1348 }; 1349 1350 static int extfrag_open(struct inode *inode, struct file *file) 1351 { 1352 return seq_open(file, &extfrag_op); 1353 } 1354 1355 static const struct file_operations extfrag_file_ops = { 1356 .open = extfrag_open, 1357 .read = seq_read, 1358 .llseek = seq_lseek, 1359 .release = seq_release, 1360 }; 1361 1362 static int __init extfrag_debug_init(void) 1363 { 1364 struct dentry *extfrag_debug_root; 1365 1366 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1367 if (!extfrag_debug_root) 1368 return -ENOMEM; 1369 1370 if (!debugfs_create_file("unusable_index", 0444, 1371 extfrag_debug_root, NULL, &unusable_file_ops)) 1372 goto fail; 1373 1374 if (!debugfs_create_file("extfrag_index", 0444, 1375 extfrag_debug_root, NULL, &extfrag_file_ops)) 1376 goto fail; 1377 1378 return 0; 1379 fail: 1380 debugfs_remove_recursive(extfrag_debug_root); 1381 return -ENOMEM; 1382 } 1383 1384 module_init(extfrag_debug_init); 1385 #endif 1386