xref: /openbmc/linux/mm/vmstat.c (revision 94c7b6fc)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23 
24 #include "internal.h"
25 
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29 
30 static void sum_vm_events(unsigned long *ret)
31 {
32 	int cpu;
33 	int i;
34 
35 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36 
37 	for_each_online_cpu(cpu) {
38 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39 
40 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 			ret[i] += this->event[i];
42 	}
43 }
44 
45 /*
46  * Accumulate the vm event counters across all CPUs.
47  * The result is unavoidably approximate - it can change
48  * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 	get_online_cpus();
53 	sum_vm_events(ret);
54 	put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57 
58 /*
59  * Fold the foreign cpu events into our own.
60  *
61  * This is adding to the events on one processor
62  * but keeps the global counts constant.
63  */
64 void vm_events_fold_cpu(int cpu)
65 {
66 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 	int i;
68 
69 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 		count_vm_events(i, fold_state->event[i]);
71 		fold_state->event[i] = 0;
72 	}
73 }
74 
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76 
77 /*
78  * Manage combined zone based / global counters
79  *
80  * vm_stat contains the global counters
81  */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84 
85 #ifdef CONFIG_SMP
86 
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 	int threshold;
90 	int watermark_distance;
91 
92 	/*
93 	 * As vmstats are not up to date, there is drift between the estimated
94 	 * and real values. For high thresholds and a high number of CPUs, it
95 	 * is possible for the min watermark to be breached while the estimated
96 	 * value looks fine. The pressure threshold is a reduced value such
97 	 * that even the maximum amount of drift will not accidentally breach
98 	 * the min watermark
99 	 */
100 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102 
103 	/*
104 	 * Maximum threshold is 125
105 	 */
106 	threshold = min(125, threshold);
107 
108 	return threshold;
109 }
110 
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 	int threshold;
114 	int mem;	/* memory in 128 MB units */
115 
116 	/*
117 	 * The threshold scales with the number of processors and the amount
118 	 * of memory per zone. More memory means that we can defer updates for
119 	 * longer, more processors could lead to more contention.
120  	 * fls() is used to have a cheap way of logarithmic scaling.
121 	 *
122 	 * Some sample thresholds:
123 	 *
124 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
125 	 * ------------------------------------------------------------------
126 	 * 8		1		1	0.9-1 GB	4
127 	 * 16		2		2	0.9-1 GB	4
128 	 * 20 		2		2	1-2 GB		5
129 	 * 24		2		2	2-4 GB		6
130 	 * 28		2		2	4-8 GB		7
131 	 * 32		2		2	8-16 GB		8
132 	 * 4		2		2	<128M		1
133 	 * 30		4		3	2-4 GB		5
134 	 * 48		4		3	8-16 GB		8
135 	 * 32		8		4	1-2 GB		4
136 	 * 32		8		4	0.9-1GB		4
137 	 * 10		16		5	<128M		1
138 	 * 40		16		5	900M		4
139 	 * 70		64		7	2-4 GB		5
140 	 * 84		64		7	4-8 GB		6
141 	 * 108		512		9	4-8 GB		6
142 	 * 125		1024		10	8-16 GB		8
143 	 * 125		1024		10	16-32 GB	9
144 	 */
145 
146 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147 
148 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149 
150 	/*
151 	 * Maximum threshold is 125
152 	 */
153 	threshold = min(125, threshold);
154 
155 	return threshold;
156 }
157 
158 /*
159  * Refresh the thresholds for each zone.
160  */
161 void refresh_zone_stat_thresholds(void)
162 {
163 	struct zone *zone;
164 	int cpu;
165 	int threshold;
166 
167 	for_each_populated_zone(zone) {
168 		unsigned long max_drift, tolerate_drift;
169 
170 		threshold = calculate_normal_threshold(zone);
171 
172 		for_each_online_cpu(cpu)
173 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 							= threshold;
175 
176 		/*
177 		 * Only set percpu_drift_mark if there is a danger that
178 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 		 * the min watermark could be breached by an allocation
180 		 */
181 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 		max_drift = num_online_cpus() * threshold;
183 		if (max_drift > tolerate_drift)
184 			zone->percpu_drift_mark = high_wmark_pages(zone) +
185 					max_drift;
186 	}
187 }
188 
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 				int (*calculate_pressure)(struct zone *))
191 {
192 	struct zone *zone;
193 	int cpu;
194 	int threshold;
195 	int i;
196 
197 	for (i = 0; i < pgdat->nr_zones; i++) {
198 		zone = &pgdat->node_zones[i];
199 		if (!zone->percpu_drift_mark)
200 			continue;
201 
202 		threshold = (*calculate_pressure)(zone);
203 		for_each_possible_cpu(cpu)
204 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 							= threshold;
206 	}
207 }
208 
209 /*
210  * For use when we know that interrupts are disabled,
211  * or when we know that preemption is disabled and that
212  * particular counter cannot be updated from interrupt context.
213  */
214 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215 				int delta)
216 {
217 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
218 	s8 __percpu *p = pcp->vm_stat_diff + item;
219 	long x;
220 	long t;
221 
222 	x = delta + __this_cpu_read(*p);
223 
224 	t = __this_cpu_read(pcp->stat_threshold);
225 
226 	if (unlikely(x > t || x < -t)) {
227 		zone_page_state_add(x, zone, item);
228 		x = 0;
229 	}
230 	__this_cpu_write(*p, x);
231 }
232 EXPORT_SYMBOL(__mod_zone_page_state);
233 
234 /*
235  * Optimized increment and decrement functions.
236  *
237  * These are only for a single page and therefore can take a struct page *
238  * argument instead of struct zone *. This allows the inclusion of the code
239  * generated for page_zone(page) into the optimized functions.
240  *
241  * No overflow check is necessary and therefore the differential can be
242  * incremented or decremented in place which may allow the compilers to
243  * generate better code.
244  * The increment or decrement is known and therefore one boundary check can
245  * be omitted.
246  *
247  * NOTE: These functions are very performance sensitive. Change only
248  * with care.
249  *
250  * Some processors have inc/dec instructions that are atomic vs an interrupt.
251  * However, the code must first determine the differential location in a zone
252  * based on the processor number and then inc/dec the counter. There is no
253  * guarantee without disabling preemption that the processor will not change
254  * in between and therefore the atomicity vs. interrupt cannot be exploited
255  * in a useful way here.
256  */
257 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258 {
259 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
260 	s8 __percpu *p = pcp->vm_stat_diff + item;
261 	s8 v, t;
262 
263 	v = __this_cpu_inc_return(*p);
264 	t = __this_cpu_read(pcp->stat_threshold);
265 	if (unlikely(v > t)) {
266 		s8 overstep = t >> 1;
267 
268 		zone_page_state_add(v + overstep, zone, item);
269 		__this_cpu_write(*p, -overstep);
270 	}
271 }
272 
273 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 	__inc_zone_state(page_zone(page), item);
276 }
277 EXPORT_SYMBOL(__inc_zone_page_state);
278 
279 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280 {
281 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
282 	s8 __percpu *p = pcp->vm_stat_diff + item;
283 	s8 v, t;
284 
285 	v = __this_cpu_dec_return(*p);
286 	t = __this_cpu_read(pcp->stat_threshold);
287 	if (unlikely(v < - t)) {
288 		s8 overstep = t >> 1;
289 
290 		zone_page_state_add(v - overstep, zone, item);
291 		__this_cpu_write(*p, overstep);
292 	}
293 }
294 
295 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296 {
297 	__dec_zone_state(page_zone(page), item);
298 }
299 EXPORT_SYMBOL(__dec_zone_page_state);
300 
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 /*
303  * If we have cmpxchg_local support then we do not need to incur the overhead
304  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305  *
306  * mod_state() modifies the zone counter state through atomic per cpu
307  * operations.
308  *
309  * Overstep mode specifies how overstep should handled:
310  *     0       No overstepping
311  *     1       Overstepping half of threshold
312  *     -1      Overstepping minus half of threshold
313 */
314 static inline void mod_state(struct zone *zone,
315        enum zone_stat_item item, int delta, int overstep_mode)
316 {
317 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long o, n, t, z;
320 
321 	do {
322 		z = 0;  /* overflow to zone counters */
323 
324 		/*
325 		 * The fetching of the stat_threshold is racy. We may apply
326 		 * a counter threshold to the wrong the cpu if we get
327 		 * rescheduled while executing here. However, the next
328 		 * counter update will apply the threshold again and
329 		 * therefore bring the counter under the threshold again.
330 		 *
331 		 * Most of the time the thresholds are the same anyways
332 		 * for all cpus in a zone.
333 		 */
334 		t = this_cpu_read(pcp->stat_threshold);
335 
336 		o = this_cpu_read(*p);
337 		n = delta + o;
338 
339 		if (n > t || n < -t) {
340 			int os = overstep_mode * (t >> 1) ;
341 
342 			/* Overflow must be added to zone counters */
343 			z = n + os;
344 			n = -os;
345 		}
346 	} while (this_cpu_cmpxchg(*p, o, n) != o);
347 
348 	if (z)
349 		zone_page_state_add(z, zone, item);
350 }
351 
352 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353 					int delta)
354 {
355 	mod_state(zone, item, delta, 0);
356 }
357 EXPORT_SYMBOL(mod_zone_page_state);
358 
359 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360 {
361 	mod_state(zone, item, 1, 1);
362 }
363 
364 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 	mod_state(page_zone(page), item, 1, 1);
367 }
368 EXPORT_SYMBOL(inc_zone_page_state);
369 
370 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371 {
372 	mod_state(page_zone(page), item, -1, -1);
373 }
374 EXPORT_SYMBOL(dec_zone_page_state);
375 #else
376 /*
377  * Use interrupt disable to serialize counter updates
378  */
379 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380 					int delta)
381 {
382 	unsigned long flags;
383 
384 	local_irq_save(flags);
385 	__mod_zone_page_state(zone, item, delta);
386 	local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL(mod_zone_page_state);
389 
390 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 	unsigned long flags;
393 
394 	local_irq_save(flags);
395 	__inc_zone_state(zone, item);
396 	local_irq_restore(flags);
397 }
398 
399 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400 {
401 	unsigned long flags;
402 	struct zone *zone;
403 
404 	zone = page_zone(page);
405 	local_irq_save(flags);
406 	__inc_zone_state(zone, item);
407 	local_irq_restore(flags);
408 }
409 EXPORT_SYMBOL(inc_zone_page_state);
410 
411 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 	unsigned long flags;
414 
415 	local_irq_save(flags);
416 	__dec_zone_page_state(page, item);
417 	local_irq_restore(flags);
418 }
419 EXPORT_SYMBOL(dec_zone_page_state);
420 #endif
421 
422 static inline void fold_diff(int *diff)
423 {
424 	int i;
425 
426 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427 		if (diff[i])
428 			atomic_long_add(diff[i], &vm_stat[i]);
429 }
430 
431 /*
432  * Update the zone counters for the current cpu.
433  *
434  * Note that refresh_cpu_vm_stats strives to only access
435  * node local memory. The per cpu pagesets on remote zones are placed
436  * in the memory local to the processor using that pageset. So the
437  * loop over all zones will access a series of cachelines local to
438  * the processor.
439  *
440  * The call to zone_page_state_add updates the cachelines with the
441  * statistics in the remote zone struct as well as the global cachelines
442  * with the global counters. These could cause remote node cache line
443  * bouncing and will have to be only done when necessary.
444  */
445 static void refresh_cpu_vm_stats(void)
446 {
447 	struct zone *zone;
448 	int i;
449 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450 
451 	for_each_populated_zone(zone) {
452 		struct per_cpu_pageset __percpu *p = zone->pageset;
453 
454 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455 			int v;
456 
457 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458 			if (v) {
459 
460 				atomic_long_add(v, &zone->vm_stat[i]);
461 				global_diff[i] += v;
462 #ifdef CONFIG_NUMA
463 				/* 3 seconds idle till flush */
464 				__this_cpu_write(p->expire, 3);
465 #endif
466 			}
467 		}
468 		cond_resched();
469 #ifdef CONFIG_NUMA
470 		/*
471 		 * Deal with draining the remote pageset of this
472 		 * processor
473 		 *
474 		 * Check if there are pages remaining in this pageset
475 		 * if not then there is nothing to expire.
476 		 */
477 		if (!__this_cpu_read(p->expire) ||
478 			       !__this_cpu_read(p->pcp.count))
479 			continue;
480 
481 		/*
482 		 * We never drain zones local to this processor.
483 		 */
484 		if (zone_to_nid(zone) == numa_node_id()) {
485 			__this_cpu_write(p->expire, 0);
486 			continue;
487 		}
488 
489 
490 		if (__this_cpu_dec_return(p->expire))
491 			continue;
492 
493 		if (__this_cpu_read(p->pcp.count))
494 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495 #endif
496 	}
497 	fold_diff(global_diff);
498 }
499 
500 /*
501  * Fold the data for an offline cpu into the global array.
502  * There cannot be any access by the offline cpu and therefore
503  * synchronization is simplified.
504  */
505 void cpu_vm_stats_fold(int cpu)
506 {
507 	struct zone *zone;
508 	int i;
509 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510 
511 	for_each_populated_zone(zone) {
512 		struct per_cpu_pageset *p;
513 
514 		p = per_cpu_ptr(zone->pageset, cpu);
515 
516 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517 			if (p->vm_stat_diff[i]) {
518 				int v;
519 
520 				v = p->vm_stat_diff[i];
521 				p->vm_stat_diff[i] = 0;
522 				atomic_long_add(v, &zone->vm_stat[i]);
523 				global_diff[i] += v;
524 			}
525 	}
526 
527 	fold_diff(global_diff);
528 }
529 
530 /*
531  * this is only called if !populated_zone(zone), which implies no other users of
532  * pset->vm_stat_diff[] exsist.
533  */
534 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535 {
536 	int i;
537 
538 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539 		if (pset->vm_stat_diff[i]) {
540 			int v = pset->vm_stat_diff[i];
541 			pset->vm_stat_diff[i] = 0;
542 			atomic_long_add(v, &zone->vm_stat[i]);
543 			atomic_long_add(v, &vm_stat[i]);
544 		}
545 }
546 #endif
547 
548 #ifdef CONFIG_NUMA
549 /*
550  * zonelist = the list of zones passed to the allocator
551  * z 	    = the zone from which the allocation occurred.
552  *
553  * Must be called with interrupts disabled.
554  *
555  * When __GFP_OTHER_NODE is set assume the node of the preferred
556  * zone is the local node. This is useful for daemons who allocate
557  * memory on behalf of other processes.
558  */
559 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560 {
561 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562 		__inc_zone_state(z, NUMA_HIT);
563 	} else {
564 		__inc_zone_state(z, NUMA_MISS);
565 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
566 	}
567 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
568 			preferred_zone->node : numa_node_id()))
569 		__inc_zone_state(z, NUMA_LOCAL);
570 	else
571 		__inc_zone_state(z, NUMA_OTHER);
572 }
573 #endif
574 
575 #ifdef CONFIG_COMPACTION
576 
577 struct contig_page_info {
578 	unsigned long free_pages;
579 	unsigned long free_blocks_total;
580 	unsigned long free_blocks_suitable;
581 };
582 
583 /*
584  * Calculate the number of free pages in a zone, how many contiguous
585  * pages are free and how many are large enough to satisfy an allocation of
586  * the target size. Note that this function makes no attempt to estimate
587  * how many suitable free blocks there *might* be if MOVABLE pages were
588  * migrated. Calculating that is possible, but expensive and can be
589  * figured out from userspace
590  */
591 static void fill_contig_page_info(struct zone *zone,
592 				unsigned int suitable_order,
593 				struct contig_page_info *info)
594 {
595 	unsigned int order;
596 
597 	info->free_pages = 0;
598 	info->free_blocks_total = 0;
599 	info->free_blocks_suitable = 0;
600 
601 	for (order = 0; order < MAX_ORDER; order++) {
602 		unsigned long blocks;
603 
604 		/* Count number of free blocks */
605 		blocks = zone->free_area[order].nr_free;
606 		info->free_blocks_total += blocks;
607 
608 		/* Count free base pages */
609 		info->free_pages += blocks << order;
610 
611 		/* Count the suitable free blocks */
612 		if (order >= suitable_order)
613 			info->free_blocks_suitable += blocks <<
614 						(order - suitable_order);
615 	}
616 }
617 
618 /*
619  * A fragmentation index only makes sense if an allocation of a requested
620  * size would fail. If that is true, the fragmentation index indicates
621  * whether external fragmentation or a lack of memory was the problem.
622  * The value can be used to determine if page reclaim or compaction
623  * should be used
624  */
625 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 {
627 	unsigned long requested = 1UL << order;
628 
629 	if (!info->free_blocks_total)
630 		return 0;
631 
632 	/* Fragmentation index only makes sense when a request would fail */
633 	if (info->free_blocks_suitable)
634 		return -1000;
635 
636 	/*
637 	 * Index is between 0 and 1 so return within 3 decimal places
638 	 *
639 	 * 0 => allocation would fail due to lack of memory
640 	 * 1 => allocation would fail due to fragmentation
641 	 */
642 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643 }
644 
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone *zone, unsigned int order)
647 {
648 	struct contig_page_info info;
649 
650 	fill_contig_page_info(zone, order, &info);
651 	return __fragmentation_index(order, &info);
652 }
653 #endif
654 
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
658 
659 static char * const migratetype_names[MIGRATE_TYPES] = {
660 	"Unmovable",
661 	"Reclaimable",
662 	"Movable",
663 	"Reserve",
664 #ifdef CONFIG_CMA
665 	"CMA",
666 #endif
667 #ifdef CONFIG_MEMORY_ISOLATION
668 	"Isolate",
669 #endif
670 };
671 
672 static void *frag_start(struct seq_file *m, loff_t *pos)
673 {
674 	pg_data_t *pgdat;
675 	loff_t node = *pos;
676 	for (pgdat = first_online_pgdat();
677 	     pgdat && node;
678 	     pgdat = next_online_pgdat(pgdat))
679 		--node;
680 
681 	return pgdat;
682 }
683 
684 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685 {
686 	pg_data_t *pgdat = (pg_data_t *)arg;
687 
688 	(*pos)++;
689 	return next_online_pgdat(pgdat);
690 }
691 
692 static void frag_stop(struct seq_file *m, void *arg)
693 {
694 }
695 
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 {
700 	struct zone *zone;
701 	struct zone *node_zones = pgdat->node_zones;
702 	unsigned long flags;
703 
704 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705 		if (!populated_zone(zone))
706 			continue;
707 
708 		spin_lock_irqsave(&zone->lock, flags);
709 		print(m, pgdat, zone);
710 		spin_unlock_irqrestore(&zone->lock, flags);
711 	}
712 }
713 #endif
714 
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
718 #else
719 #define TEXT_FOR_DMA(xx)
720 #endif
721 
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
724 #else
725 #define TEXT_FOR_DMA32(xx)
726 #endif
727 
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
730 #else
731 #define TEXT_FOR_HIGHMEM(xx)
732 #endif
733 
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
736 
737 const char * const vmstat_text[] = {
738 	/* Zoned VM counters */
739 	"nr_free_pages",
740 	"nr_alloc_batch",
741 	"nr_inactive_anon",
742 	"nr_active_anon",
743 	"nr_inactive_file",
744 	"nr_active_file",
745 	"nr_unevictable",
746 	"nr_mlock",
747 	"nr_anon_pages",
748 	"nr_mapped",
749 	"nr_file_pages",
750 	"nr_dirty",
751 	"nr_writeback",
752 	"nr_slab_reclaimable",
753 	"nr_slab_unreclaimable",
754 	"nr_page_table_pages",
755 	"nr_kernel_stack",
756 	"nr_unstable",
757 	"nr_bounce",
758 	"nr_vmscan_write",
759 	"nr_vmscan_immediate_reclaim",
760 	"nr_writeback_temp",
761 	"nr_isolated_anon",
762 	"nr_isolated_file",
763 	"nr_shmem",
764 	"nr_dirtied",
765 	"nr_written",
766 
767 #ifdef CONFIG_NUMA
768 	"numa_hit",
769 	"numa_miss",
770 	"numa_foreign",
771 	"numa_interleave",
772 	"numa_local",
773 	"numa_other",
774 #endif
775 	"workingset_refault",
776 	"workingset_activate",
777 	"workingset_nodereclaim",
778 	"nr_anon_transparent_hugepages",
779 	"nr_free_cma",
780 	"nr_dirty_threshold",
781 	"nr_dirty_background_threshold",
782 
783 #ifdef CONFIG_VM_EVENT_COUNTERS
784 	"pgpgin",
785 	"pgpgout",
786 	"pswpin",
787 	"pswpout",
788 
789 	TEXTS_FOR_ZONES("pgalloc")
790 
791 	"pgfree",
792 	"pgactivate",
793 	"pgdeactivate",
794 
795 	"pgfault",
796 	"pgmajfault",
797 
798 	TEXTS_FOR_ZONES("pgrefill")
799 	TEXTS_FOR_ZONES("pgsteal_kswapd")
800 	TEXTS_FOR_ZONES("pgsteal_direct")
801 	TEXTS_FOR_ZONES("pgscan_kswapd")
802 	TEXTS_FOR_ZONES("pgscan_direct")
803 	"pgscan_direct_throttle",
804 
805 #ifdef CONFIG_NUMA
806 	"zone_reclaim_failed",
807 #endif
808 	"pginodesteal",
809 	"slabs_scanned",
810 	"kswapd_inodesteal",
811 	"kswapd_low_wmark_hit_quickly",
812 	"kswapd_high_wmark_hit_quickly",
813 	"pageoutrun",
814 	"allocstall",
815 
816 	"pgrotated",
817 
818 	"drop_pagecache",
819 	"drop_slab",
820 
821 #ifdef CONFIG_NUMA_BALANCING
822 	"numa_pte_updates",
823 	"numa_huge_pte_updates",
824 	"numa_hint_faults",
825 	"numa_hint_faults_local",
826 	"numa_pages_migrated",
827 #endif
828 #ifdef CONFIG_MIGRATION
829 	"pgmigrate_success",
830 	"pgmigrate_fail",
831 #endif
832 #ifdef CONFIG_COMPACTION
833 	"compact_migrate_scanned",
834 	"compact_free_scanned",
835 	"compact_isolated",
836 	"compact_stall",
837 	"compact_fail",
838 	"compact_success",
839 #endif
840 
841 #ifdef CONFIG_HUGETLB_PAGE
842 	"htlb_buddy_alloc_success",
843 	"htlb_buddy_alloc_fail",
844 #endif
845 	"unevictable_pgs_culled",
846 	"unevictable_pgs_scanned",
847 	"unevictable_pgs_rescued",
848 	"unevictable_pgs_mlocked",
849 	"unevictable_pgs_munlocked",
850 	"unevictable_pgs_cleared",
851 	"unevictable_pgs_stranded",
852 
853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
854 	"thp_fault_alloc",
855 	"thp_fault_fallback",
856 	"thp_collapse_alloc",
857 	"thp_collapse_alloc_failed",
858 	"thp_split",
859 	"thp_zero_page_alloc",
860 	"thp_zero_page_alloc_failed",
861 #endif
862 #ifdef CONFIG_DEBUG_TLBFLUSH
863 #ifdef CONFIG_SMP
864 	"nr_tlb_remote_flush",
865 	"nr_tlb_remote_flush_received",
866 #endif /* CONFIG_SMP */
867 	"nr_tlb_local_flush_all",
868 	"nr_tlb_local_flush_one",
869 #endif /* CONFIG_DEBUG_TLBFLUSH */
870 
871 #ifdef CONFIG_DEBUG_VM_VMACACHE
872 	"vmacache_find_calls",
873 	"vmacache_find_hits",
874 #endif
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
876 };
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
878 
879 
880 #ifdef CONFIG_PROC_FS
881 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
882 						struct zone *zone)
883 {
884 	int order;
885 
886 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
887 	for (order = 0; order < MAX_ORDER; ++order)
888 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
889 	seq_putc(m, '\n');
890 }
891 
892 /*
893  * This walks the free areas for each zone.
894  */
895 static int frag_show(struct seq_file *m, void *arg)
896 {
897 	pg_data_t *pgdat = (pg_data_t *)arg;
898 	walk_zones_in_node(m, pgdat, frag_show_print);
899 	return 0;
900 }
901 
902 static void pagetypeinfo_showfree_print(struct seq_file *m,
903 					pg_data_t *pgdat, struct zone *zone)
904 {
905 	int order, mtype;
906 
907 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
908 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
909 					pgdat->node_id,
910 					zone->name,
911 					migratetype_names[mtype]);
912 		for (order = 0; order < MAX_ORDER; ++order) {
913 			unsigned long freecount = 0;
914 			struct free_area *area;
915 			struct list_head *curr;
916 
917 			area = &(zone->free_area[order]);
918 
919 			list_for_each(curr, &area->free_list[mtype])
920 				freecount++;
921 			seq_printf(m, "%6lu ", freecount);
922 		}
923 		seq_putc(m, '\n');
924 	}
925 }
926 
927 /* Print out the free pages at each order for each migatetype */
928 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
929 {
930 	int order;
931 	pg_data_t *pgdat = (pg_data_t *)arg;
932 
933 	/* Print header */
934 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
935 	for (order = 0; order < MAX_ORDER; ++order)
936 		seq_printf(m, "%6d ", order);
937 	seq_putc(m, '\n');
938 
939 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
940 
941 	return 0;
942 }
943 
944 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
945 					pg_data_t *pgdat, struct zone *zone)
946 {
947 	int mtype;
948 	unsigned long pfn;
949 	unsigned long start_pfn = zone->zone_start_pfn;
950 	unsigned long end_pfn = zone_end_pfn(zone);
951 	unsigned long count[MIGRATE_TYPES] = { 0, };
952 
953 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
954 		struct page *page;
955 
956 		if (!pfn_valid(pfn))
957 			continue;
958 
959 		page = pfn_to_page(pfn);
960 
961 		/* Watch for unexpected holes punched in the memmap */
962 		if (!memmap_valid_within(pfn, page, zone))
963 			continue;
964 
965 		mtype = get_pageblock_migratetype(page);
966 
967 		if (mtype < MIGRATE_TYPES)
968 			count[mtype]++;
969 	}
970 
971 	/* Print counts */
972 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
973 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
974 		seq_printf(m, "%12lu ", count[mtype]);
975 	seq_putc(m, '\n');
976 }
977 
978 /* Print out the free pages at each order for each migratetype */
979 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
980 {
981 	int mtype;
982 	pg_data_t *pgdat = (pg_data_t *)arg;
983 
984 	seq_printf(m, "\n%-23s", "Number of blocks type ");
985 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
986 		seq_printf(m, "%12s ", migratetype_names[mtype]);
987 	seq_putc(m, '\n');
988 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
989 
990 	return 0;
991 }
992 
993 /*
994  * This prints out statistics in relation to grouping pages by mobility.
995  * It is expensive to collect so do not constantly read the file.
996  */
997 static int pagetypeinfo_show(struct seq_file *m, void *arg)
998 {
999 	pg_data_t *pgdat = (pg_data_t *)arg;
1000 
1001 	/* check memoryless node */
1002 	if (!node_state(pgdat->node_id, N_MEMORY))
1003 		return 0;
1004 
1005 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1006 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1007 	seq_putc(m, '\n');
1008 	pagetypeinfo_showfree(m, pgdat);
1009 	pagetypeinfo_showblockcount(m, pgdat);
1010 
1011 	return 0;
1012 }
1013 
1014 static const struct seq_operations fragmentation_op = {
1015 	.start	= frag_start,
1016 	.next	= frag_next,
1017 	.stop	= frag_stop,
1018 	.show	= frag_show,
1019 };
1020 
1021 static int fragmentation_open(struct inode *inode, struct file *file)
1022 {
1023 	return seq_open(file, &fragmentation_op);
1024 }
1025 
1026 static const struct file_operations fragmentation_file_operations = {
1027 	.open		= fragmentation_open,
1028 	.read		= seq_read,
1029 	.llseek		= seq_lseek,
1030 	.release	= seq_release,
1031 };
1032 
1033 static const struct seq_operations pagetypeinfo_op = {
1034 	.start	= frag_start,
1035 	.next	= frag_next,
1036 	.stop	= frag_stop,
1037 	.show	= pagetypeinfo_show,
1038 };
1039 
1040 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1041 {
1042 	return seq_open(file, &pagetypeinfo_op);
1043 }
1044 
1045 static const struct file_operations pagetypeinfo_file_ops = {
1046 	.open		= pagetypeinfo_open,
1047 	.read		= seq_read,
1048 	.llseek		= seq_lseek,
1049 	.release	= seq_release,
1050 };
1051 
1052 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1053 							struct zone *zone)
1054 {
1055 	int i;
1056 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1057 	seq_printf(m,
1058 		   "\n  pages free     %lu"
1059 		   "\n        min      %lu"
1060 		   "\n        low      %lu"
1061 		   "\n        high     %lu"
1062 		   "\n        scanned  %lu"
1063 		   "\n        spanned  %lu"
1064 		   "\n        present  %lu"
1065 		   "\n        managed  %lu",
1066 		   zone_page_state(zone, NR_FREE_PAGES),
1067 		   min_wmark_pages(zone),
1068 		   low_wmark_pages(zone),
1069 		   high_wmark_pages(zone),
1070 		   zone->pages_scanned,
1071 		   zone->spanned_pages,
1072 		   zone->present_pages,
1073 		   zone->managed_pages);
1074 
1075 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1076 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1077 				zone_page_state(zone, i));
1078 
1079 	seq_printf(m,
1080 		   "\n        protection: (%lu",
1081 		   zone->lowmem_reserve[0]);
1082 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1083 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1084 	seq_printf(m,
1085 		   ")"
1086 		   "\n  pagesets");
1087 	for_each_online_cpu(i) {
1088 		struct per_cpu_pageset *pageset;
1089 
1090 		pageset = per_cpu_ptr(zone->pageset, i);
1091 		seq_printf(m,
1092 			   "\n    cpu: %i"
1093 			   "\n              count: %i"
1094 			   "\n              high:  %i"
1095 			   "\n              batch: %i",
1096 			   i,
1097 			   pageset->pcp.count,
1098 			   pageset->pcp.high,
1099 			   pageset->pcp.batch);
1100 #ifdef CONFIG_SMP
1101 		seq_printf(m, "\n  vm stats threshold: %d",
1102 				pageset->stat_threshold);
1103 #endif
1104 	}
1105 	seq_printf(m,
1106 		   "\n  all_unreclaimable: %u"
1107 		   "\n  start_pfn:         %lu"
1108 		   "\n  inactive_ratio:    %u",
1109 		   !zone_reclaimable(zone),
1110 		   zone->zone_start_pfn,
1111 		   zone->inactive_ratio);
1112 	seq_putc(m, '\n');
1113 }
1114 
1115 /*
1116  * Output information about zones in @pgdat.
1117  */
1118 static int zoneinfo_show(struct seq_file *m, void *arg)
1119 {
1120 	pg_data_t *pgdat = (pg_data_t *)arg;
1121 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1122 	return 0;
1123 }
1124 
1125 static const struct seq_operations zoneinfo_op = {
1126 	.start	= frag_start, /* iterate over all zones. The same as in
1127 			       * fragmentation. */
1128 	.next	= frag_next,
1129 	.stop	= frag_stop,
1130 	.show	= zoneinfo_show,
1131 };
1132 
1133 static int zoneinfo_open(struct inode *inode, struct file *file)
1134 {
1135 	return seq_open(file, &zoneinfo_op);
1136 }
1137 
1138 static const struct file_operations proc_zoneinfo_file_operations = {
1139 	.open		= zoneinfo_open,
1140 	.read		= seq_read,
1141 	.llseek		= seq_lseek,
1142 	.release	= seq_release,
1143 };
1144 
1145 enum writeback_stat_item {
1146 	NR_DIRTY_THRESHOLD,
1147 	NR_DIRTY_BG_THRESHOLD,
1148 	NR_VM_WRITEBACK_STAT_ITEMS,
1149 };
1150 
1151 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1152 {
1153 	unsigned long *v;
1154 	int i, stat_items_size;
1155 
1156 	if (*pos >= ARRAY_SIZE(vmstat_text))
1157 		return NULL;
1158 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1159 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1160 
1161 #ifdef CONFIG_VM_EVENT_COUNTERS
1162 	stat_items_size += sizeof(struct vm_event_state);
1163 #endif
1164 
1165 	v = kmalloc(stat_items_size, GFP_KERNEL);
1166 	m->private = v;
1167 	if (!v)
1168 		return ERR_PTR(-ENOMEM);
1169 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1170 		v[i] = global_page_state(i);
1171 	v += NR_VM_ZONE_STAT_ITEMS;
1172 
1173 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1174 			    v + NR_DIRTY_THRESHOLD);
1175 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1176 
1177 #ifdef CONFIG_VM_EVENT_COUNTERS
1178 	all_vm_events(v);
1179 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1180 	v[PGPGOUT] /= 2;
1181 #endif
1182 	return (unsigned long *)m->private + *pos;
1183 }
1184 
1185 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1186 {
1187 	(*pos)++;
1188 	if (*pos >= ARRAY_SIZE(vmstat_text))
1189 		return NULL;
1190 	return (unsigned long *)m->private + *pos;
1191 }
1192 
1193 static int vmstat_show(struct seq_file *m, void *arg)
1194 {
1195 	unsigned long *l = arg;
1196 	unsigned long off = l - (unsigned long *)m->private;
1197 
1198 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1199 	return 0;
1200 }
1201 
1202 static void vmstat_stop(struct seq_file *m, void *arg)
1203 {
1204 	kfree(m->private);
1205 	m->private = NULL;
1206 }
1207 
1208 static const struct seq_operations vmstat_op = {
1209 	.start	= vmstat_start,
1210 	.next	= vmstat_next,
1211 	.stop	= vmstat_stop,
1212 	.show	= vmstat_show,
1213 };
1214 
1215 static int vmstat_open(struct inode *inode, struct file *file)
1216 {
1217 	return seq_open(file, &vmstat_op);
1218 }
1219 
1220 static const struct file_operations proc_vmstat_file_operations = {
1221 	.open		= vmstat_open,
1222 	.read		= seq_read,
1223 	.llseek		= seq_lseek,
1224 	.release	= seq_release,
1225 };
1226 #endif /* CONFIG_PROC_FS */
1227 
1228 #ifdef CONFIG_SMP
1229 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1230 int sysctl_stat_interval __read_mostly = HZ;
1231 
1232 static void vmstat_update(struct work_struct *w)
1233 {
1234 	refresh_cpu_vm_stats();
1235 	schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1236 		round_jiffies_relative(sysctl_stat_interval));
1237 }
1238 
1239 static void start_cpu_timer(int cpu)
1240 {
1241 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1242 
1243 	INIT_DEFERRABLE_WORK(work, vmstat_update);
1244 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1245 }
1246 
1247 static void vmstat_cpu_dead(int node)
1248 {
1249 	int cpu;
1250 
1251 	get_online_cpus();
1252 	for_each_online_cpu(cpu)
1253 		if (cpu_to_node(cpu) == node)
1254 			goto end;
1255 
1256 	node_clear_state(node, N_CPU);
1257 end:
1258 	put_online_cpus();
1259 }
1260 
1261 /*
1262  * Use the cpu notifier to insure that the thresholds are recalculated
1263  * when necessary.
1264  */
1265 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1266 		unsigned long action,
1267 		void *hcpu)
1268 {
1269 	long cpu = (long)hcpu;
1270 
1271 	switch (action) {
1272 	case CPU_ONLINE:
1273 	case CPU_ONLINE_FROZEN:
1274 		refresh_zone_stat_thresholds();
1275 		start_cpu_timer(cpu);
1276 		node_set_state(cpu_to_node(cpu), N_CPU);
1277 		break;
1278 	case CPU_DOWN_PREPARE:
1279 	case CPU_DOWN_PREPARE_FROZEN:
1280 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1281 		per_cpu(vmstat_work, cpu).work.func = NULL;
1282 		break;
1283 	case CPU_DOWN_FAILED:
1284 	case CPU_DOWN_FAILED_FROZEN:
1285 		start_cpu_timer(cpu);
1286 		break;
1287 	case CPU_DEAD:
1288 	case CPU_DEAD_FROZEN:
1289 		refresh_zone_stat_thresholds();
1290 		vmstat_cpu_dead(cpu_to_node(cpu));
1291 		break;
1292 	default:
1293 		break;
1294 	}
1295 	return NOTIFY_OK;
1296 }
1297 
1298 static struct notifier_block vmstat_notifier =
1299 	{ &vmstat_cpuup_callback, NULL, 0 };
1300 #endif
1301 
1302 static int __init setup_vmstat(void)
1303 {
1304 #ifdef CONFIG_SMP
1305 	int cpu;
1306 
1307 	cpu_notifier_register_begin();
1308 	__register_cpu_notifier(&vmstat_notifier);
1309 
1310 	for_each_online_cpu(cpu) {
1311 		start_cpu_timer(cpu);
1312 		node_set_state(cpu_to_node(cpu), N_CPU);
1313 	}
1314 	cpu_notifier_register_done();
1315 #endif
1316 #ifdef CONFIG_PROC_FS
1317 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1318 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1319 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1320 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1321 #endif
1322 	return 0;
1323 }
1324 module_init(setup_vmstat)
1325 
1326 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1327 #include <linux/debugfs.h>
1328 
1329 
1330 /*
1331  * Return an index indicating how much of the available free memory is
1332  * unusable for an allocation of the requested size.
1333  */
1334 static int unusable_free_index(unsigned int order,
1335 				struct contig_page_info *info)
1336 {
1337 	/* No free memory is interpreted as all free memory is unusable */
1338 	if (info->free_pages == 0)
1339 		return 1000;
1340 
1341 	/*
1342 	 * Index should be a value between 0 and 1. Return a value to 3
1343 	 * decimal places.
1344 	 *
1345 	 * 0 => no fragmentation
1346 	 * 1 => high fragmentation
1347 	 */
1348 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1349 
1350 }
1351 
1352 static void unusable_show_print(struct seq_file *m,
1353 					pg_data_t *pgdat, struct zone *zone)
1354 {
1355 	unsigned int order;
1356 	int index;
1357 	struct contig_page_info info;
1358 
1359 	seq_printf(m, "Node %d, zone %8s ",
1360 				pgdat->node_id,
1361 				zone->name);
1362 	for (order = 0; order < MAX_ORDER; ++order) {
1363 		fill_contig_page_info(zone, order, &info);
1364 		index = unusable_free_index(order, &info);
1365 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1366 	}
1367 
1368 	seq_putc(m, '\n');
1369 }
1370 
1371 /*
1372  * Display unusable free space index
1373  *
1374  * The unusable free space index measures how much of the available free
1375  * memory cannot be used to satisfy an allocation of a given size and is a
1376  * value between 0 and 1. The higher the value, the more of free memory is
1377  * unusable and by implication, the worse the external fragmentation is. This
1378  * can be expressed as a percentage by multiplying by 100.
1379  */
1380 static int unusable_show(struct seq_file *m, void *arg)
1381 {
1382 	pg_data_t *pgdat = (pg_data_t *)arg;
1383 
1384 	/* check memoryless node */
1385 	if (!node_state(pgdat->node_id, N_MEMORY))
1386 		return 0;
1387 
1388 	walk_zones_in_node(m, pgdat, unusable_show_print);
1389 
1390 	return 0;
1391 }
1392 
1393 static const struct seq_operations unusable_op = {
1394 	.start	= frag_start,
1395 	.next	= frag_next,
1396 	.stop	= frag_stop,
1397 	.show	= unusable_show,
1398 };
1399 
1400 static int unusable_open(struct inode *inode, struct file *file)
1401 {
1402 	return seq_open(file, &unusable_op);
1403 }
1404 
1405 static const struct file_operations unusable_file_ops = {
1406 	.open		= unusable_open,
1407 	.read		= seq_read,
1408 	.llseek		= seq_lseek,
1409 	.release	= seq_release,
1410 };
1411 
1412 static void extfrag_show_print(struct seq_file *m,
1413 					pg_data_t *pgdat, struct zone *zone)
1414 {
1415 	unsigned int order;
1416 	int index;
1417 
1418 	/* Alloc on stack as interrupts are disabled for zone walk */
1419 	struct contig_page_info info;
1420 
1421 	seq_printf(m, "Node %d, zone %8s ",
1422 				pgdat->node_id,
1423 				zone->name);
1424 	for (order = 0; order < MAX_ORDER; ++order) {
1425 		fill_contig_page_info(zone, order, &info);
1426 		index = __fragmentation_index(order, &info);
1427 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1428 	}
1429 
1430 	seq_putc(m, '\n');
1431 }
1432 
1433 /*
1434  * Display fragmentation index for orders that allocations would fail for
1435  */
1436 static int extfrag_show(struct seq_file *m, void *arg)
1437 {
1438 	pg_data_t *pgdat = (pg_data_t *)arg;
1439 
1440 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1441 
1442 	return 0;
1443 }
1444 
1445 static const struct seq_operations extfrag_op = {
1446 	.start	= frag_start,
1447 	.next	= frag_next,
1448 	.stop	= frag_stop,
1449 	.show	= extfrag_show,
1450 };
1451 
1452 static int extfrag_open(struct inode *inode, struct file *file)
1453 {
1454 	return seq_open(file, &extfrag_op);
1455 }
1456 
1457 static const struct file_operations extfrag_file_ops = {
1458 	.open		= extfrag_open,
1459 	.read		= seq_read,
1460 	.llseek		= seq_lseek,
1461 	.release	= seq_release,
1462 };
1463 
1464 static int __init extfrag_debug_init(void)
1465 {
1466 	struct dentry *extfrag_debug_root;
1467 
1468 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1469 	if (!extfrag_debug_root)
1470 		return -ENOMEM;
1471 
1472 	if (!debugfs_create_file("unusable_index", 0444,
1473 			extfrag_debug_root, NULL, &unusable_file_ops))
1474 		goto fail;
1475 
1476 	if (!debugfs_create_file("extfrag_index", 0444,
1477 			extfrag_debug_root, NULL, &extfrag_file_ops))
1478 		goto fail;
1479 
1480 	return 0;
1481 fail:
1482 	debugfs_remove_recursive(extfrag_debug_root);
1483 	return -ENOMEM;
1484 }
1485 
1486 module_init(extfrag_debug_init);
1487 #endif
1488