1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/cpu.h> 17 #include <linux/vmstat.h> 18 #include <linux/sched.h> 19 #include <linux/math64.h> 20 #include <linux/writeback.h> 21 #include <linux/compaction.h> 22 #include <linux/mm_inline.h> 23 24 #include "internal.h" 25 26 #ifdef CONFIG_VM_EVENT_COUNTERS 27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 28 EXPORT_PER_CPU_SYMBOL(vm_event_states); 29 30 static void sum_vm_events(unsigned long *ret) 31 { 32 int cpu; 33 int i; 34 35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 36 37 for_each_online_cpu(cpu) { 38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 39 40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 41 ret[i] += this->event[i]; 42 } 43 } 44 45 /* 46 * Accumulate the vm event counters across all CPUs. 47 * The result is unavoidably approximate - it can change 48 * during and after execution of this function. 49 */ 50 void all_vm_events(unsigned long *ret) 51 { 52 get_online_cpus(); 53 sum_vm_events(ret); 54 put_online_cpus(); 55 } 56 EXPORT_SYMBOL_GPL(all_vm_events); 57 58 /* 59 * Fold the foreign cpu events into our own. 60 * 61 * This is adding to the events on one processor 62 * but keeps the global counts constant. 63 */ 64 void vm_events_fold_cpu(int cpu) 65 { 66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 67 int i; 68 69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 70 count_vm_events(i, fold_state->event[i]); 71 fold_state->event[i] = 0; 72 } 73 } 74 75 #endif /* CONFIG_VM_EVENT_COUNTERS */ 76 77 /* 78 * Manage combined zone based / global counters 79 * 80 * vm_stat contains the global counters 81 */ 82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 83 EXPORT_SYMBOL(vm_stat); 84 85 #ifdef CONFIG_SMP 86 87 int calculate_pressure_threshold(struct zone *zone) 88 { 89 int threshold; 90 int watermark_distance; 91 92 /* 93 * As vmstats are not up to date, there is drift between the estimated 94 * and real values. For high thresholds and a high number of CPUs, it 95 * is possible for the min watermark to be breached while the estimated 96 * value looks fine. The pressure threshold is a reduced value such 97 * that even the maximum amount of drift will not accidentally breach 98 * the min watermark 99 */ 100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 101 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 102 103 /* 104 * Maximum threshold is 125 105 */ 106 threshold = min(125, threshold); 107 108 return threshold; 109 } 110 111 int calculate_normal_threshold(struct zone *zone) 112 { 113 int threshold; 114 int mem; /* memory in 128 MB units */ 115 116 /* 117 * The threshold scales with the number of processors and the amount 118 * of memory per zone. More memory means that we can defer updates for 119 * longer, more processors could lead to more contention. 120 * fls() is used to have a cheap way of logarithmic scaling. 121 * 122 * Some sample thresholds: 123 * 124 * Threshold Processors (fls) Zonesize fls(mem+1) 125 * ------------------------------------------------------------------ 126 * 8 1 1 0.9-1 GB 4 127 * 16 2 2 0.9-1 GB 4 128 * 20 2 2 1-2 GB 5 129 * 24 2 2 2-4 GB 6 130 * 28 2 2 4-8 GB 7 131 * 32 2 2 8-16 GB 8 132 * 4 2 2 <128M 1 133 * 30 4 3 2-4 GB 5 134 * 48 4 3 8-16 GB 8 135 * 32 8 4 1-2 GB 4 136 * 32 8 4 0.9-1GB 4 137 * 10 16 5 <128M 1 138 * 40 16 5 900M 4 139 * 70 64 7 2-4 GB 5 140 * 84 64 7 4-8 GB 6 141 * 108 512 9 4-8 GB 6 142 * 125 1024 10 8-16 GB 8 143 * 125 1024 10 16-32 GB 9 144 */ 145 146 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 147 148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 149 150 /* 151 * Maximum threshold is 125 152 */ 153 threshold = min(125, threshold); 154 155 return threshold; 156 } 157 158 /* 159 * Refresh the thresholds for each zone. 160 */ 161 void refresh_zone_stat_thresholds(void) 162 { 163 struct zone *zone; 164 int cpu; 165 int threshold; 166 167 for_each_populated_zone(zone) { 168 unsigned long max_drift, tolerate_drift; 169 170 threshold = calculate_normal_threshold(zone); 171 172 for_each_online_cpu(cpu) 173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 174 = threshold; 175 176 /* 177 * Only set percpu_drift_mark if there is a danger that 178 * NR_FREE_PAGES reports the low watermark is ok when in fact 179 * the min watermark could be breached by an allocation 180 */ 181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 182 max_drift = num_online_cpus() * threshold; 183 if (max_drift > tolerate_drift) 184 zone->percpu_drift_mark = high_wmark_pages(zone) + 185 max_drift; 186 } 187 } 188 189 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 190 int (*calculate_pressure)(struct zone *)) 191 { 192 struct zone *zone; 193 int cpu; 194 int threshold; 195 int i; 196 197 for (i = 0; i < pgdat->nr_zones; i++) { 198 zone = &pgdat->node_zones[i]; 199 if (!zone->percpu_drift_mark) 200 continue; 201 202 threshold = (*calculate_pressure)(zone); 203 for_each_possible_cpu(cpu) 204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 205 = threshold; 206 } 207 } 208 209 /* 210 * For use when we know that interrupts are disabled. 211 */ 212 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 213 int delta) 214 { 215 struct per_cpu_pageset __percpu *pcp = zone->pageset; 216 s8 __percpu *p = pcp->vm_stat_diff + item; 217 long x; 218 long t; 219 220 x = delta + __this_cpu_read(*p); 221 222 t = __this_cpu_read(pcp->stat_threshold); 223 224 if (unlikely(x > t || x < -t)) { 225 zone_page_state_add(x, zone, item); 226 x = 0; 227 } 228 __this_cpu_write(*p, x); 229 } 230 EXPORT_SYMBOL(__mod_zone_page_state); 231 232 /* 233 * Optimized increment and decrement functions. 234 * 235 * These are only for a single page and therefore can take a struct page * 236 * argument instead of struct zone *. This allows the inclusion of the code 237 * generated for page_zone(page) into the optimized functions. 238 * 239 * No overflow check is necessary and therefore the differential can be 240 * incremented or decremented in place which may allow the compilers to 241 * generate better code. 242 * The increment or decrement is known and therefore one boundary check can 243 * be omitted. 244 * 245 * NOTE: These functions are very performance sensitive. Change only 246 * with care. 247 * 248 * Some processors have inc/dec instructions that are atomic vs an interrupt. 249 * However, the code must first determine the differential location in a zone 250 * based on the processor number and then inc/dec the counter. There is no 251 * guarantee without disabling preemption that the processor will not change 252 * in between and therefore the atomicity vs. interrupt cannot be exploited 253 * in a useful way here. 254 */ 255 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 256 { 257 struct per_cpu_pageset __percpu *pcp = zone->pageset; 258 s8 __percpu *p = pcp->vm_stat_diff + item; 259 s8 v, t; 260 261 v = __this_cpu_inc_return(*p); 262 t = __this_cpu_read(pcp->stat_threshold); 263 if (unlikely(v > t)) { 264 s8 overstep = t >> 1; 265 266 zone_page_state_add(v + overstep, zone, item); 267 __this_cpu_write(*p, -overstep); 268 } 269 } 270 271 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 272 { 273 __inc_zone_state(page_zone(page), item); 274 } 275 EXPORT_SYMBOL(__inc_zone_page_state); 276 277 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 278 { 279 struct per_cpu_pageset __percpu *pcp = zone->pageset; 280 s8 __percpu *p = pcp->vm_stat_diff + item; 281 s8 v, t; 282 283 v = __this_cpu_dec_return(*p); 284 t = __this_cpu_read(pcp->stat_threshold); 285 if (unlikely(v < - t)) { 286 s8 overstep = t >> 1; 287 288 zone_page_state_add(v - overstep, zone, item); 289 __this_cpu_write(*p, overstep); 290 } 291 } 292 293 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 294 { 295 __dec_zone_state(page_zone(page), item); 296 } 297 EXPORT_SYMBOL(__dec_zone_page_state); 298 299 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 300 /* 301 * If we have cmpxchg_local support then we do not need to incur the overhead 302 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 303 * 304 * mod_state() modifies the zone counter state through atomic per cpu 305 * operations. 306 * 307 * Overstep mode specifies how overstep should handled: 308 * 0 No overstepping 309 * 1 Overstepping half of threshold 310 * -1 Overstepping minus half of threshold 311 */ 312 static inline void mod_state(struct zone *zone, 313 enum zone_stat_item item, int delta, int overstep_mode) 314 { 315 struct per_cpu_pageset __percpu *pcp = zone->pageset; 316 s8 __percpu *p = pcp->vm_stat_diff + item; 317 long o, n, t, z; 318 319 do { 320 z = 0; /* overflow to zone counters */ 321 322 /* 323 * The fetching of the stat_threshold is racy. We may apply 324 * a counter threshold to the wrong the cpu if we get 325 * rescheduled while executing here. However, the next 326 * counter update will apply the threshold again and 327 * therefore bring the counter under the threshold again. 328 * 329 * Most of the time the thresholds are the same anyways 330 * for all cpus in a zone. 331 */ 332 t = this_cpu_read(pcp->stat_threshold); 333 334 o = this_cpu_read(*p); 335 n = delta + o; 336 337 if (n > t || n < -t) { 338 int os = overstep_mode * (t >> 1) ; 339 340 /* Overflow must be added to zone counters */ 341 z = n + os; 342 n = -os; 343 } 344 } while (this_cpu_cmpxchg(*p, o, n) != o); 345 346 if (z) 347 zone_page_state_add(z, zone, item); 348 } 349 350 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 351 int delta) 352 { 353 mod_state(zone, item, delta, 0); 354 } 355 EXPORT_SYMBOL(mod_zone_page_state); 356 357 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 358 { 359 mod_state(zone, item, 1, 1); 360 } 361 362 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 363 { 364 mod_state(page_zone(page), item, 1, 1); 365 } 366 EXPORT_SYMBOL(inc_zone_page_state); 367 368 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 369 { 370 mod_state(page_zone(page), item, -1, -1); 371 } 372 EXPORT_SYMBOL(dec_zone_page_state); 373 #else 374 /* 375 * Use interrupt disable to serialize counter updates 376 */ 377 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 378 int delta) 379 { 380 unsigned long flags; 381 382 local_irq_save(flags); 383 __mod_zone_page_state(zone, item, delta); 384 local_irq_restore(flags); 385 } 386 EXPORT_SYMBOL(mod_zone_page_state); 387 388 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 389 { 390 unsigned long flags; 391 392 local_irq_save(flags); 393 __inc_zone_state(zone, item); 394 local_irq_restore(flags); 395 } 396 397 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 398 { 399 unsigned long flags; 400 struct zone *zone; 401 402 zone = page_zone(page); 403 local_irq_save(flags); 404 __inc_zone_state(zone, item); 405 local_irq_restore(flags); 406 } 407 EXPORT_SYMBOL(inc_zone_page_state); 408 409 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 __dec_zone_page_state(page, item); 415 local_irq_restore(flags); 416 } 417 EXPORT_SYMBOL(dec_zone_page_state); 418 #endif 419 420 static inline void fold_diff(int *diff) 421 { 422 int i; 423 424 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 425 if (diff[i]) 426 atomic_long_add(diff[i], &vm_stat[i]); 427 } 428 429 /* 430 * Update the zone counters for the current cpu. 431 * 432 * Note that refresh_cpu_vm_stats strives to only access 433 * node local memory. The per cpu pagesets on remote zones are placed 434 * in the memory local to the processor using that pageset. So the 435 * loop over all zones will access a series of cachelines local to 436 * the processor. 437 * 438 * The call to zone_page_state_add updates the cachelines with the 439 * statistics in the remote zone struct as well as the global cachelines 440 * with the global counters. These could cause remote node cache line 441 * bouncing and will have to be only done when necessary. 442 */ 443 static void refresh_cpu_vm_stats(void) 444 { 445 struct zone *zone; 446 int i; 447 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 448 449 for_each_populated_zone(zone) { 450 struct per_cpu_pageset __percpu *p = zone->pageset; 451 452 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 453 int v; 454 455 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 456 if (v) { 457 458 atomic_long_add(v, &zone->vm_stat[i]); 459 global_diff[i] += v; 460 #ifdef CONFIG_NUMA 461 /* 3 seconds idle till flush */ 462 __this_cpu_write(p->expire, 3); 463 #endif 464 } 465 } 466 cond_resched(); 467 #ifdef CONFIG_NUMA 468 /* 469 * Deal with draining the remote pageset of this 470 * processor 471 * 472 * Check if there are pages remaining in this pageset 473 * if not then there is nothing to expire. 474 */ 475 if (!__this_cpu_read(p->expire) || 476 !__this_cpu_read(p->pcp.count)) 477 continue; 478 479 /* 480 * We never drain zones local to this processor. 481 */ 482 if (zone_to_nid(zone) == numa_node_id()) { 483 __this_cpu_write(p->expire, 0); 484 continue; 485 } 486 487 488 if (__this_cpu_dec_return(p->expire)) 489 continue; 490 491 if (__this_cpu_read(p->pcp.count)) 492 drain_zone_pages(zone, __this_cpu_ptr(&p->pcp)); 493 #endif 494 } 495 fold_diff(global_diff); 496 } 497 498 /* 499 * Fold the data for an offline cpu into the global array. 500 * There cannot be any access by the offline cpu and therefore 501 * synchronization is simplified. 502 */ 503 void cpu_vm_stats_fold(int cpu) 504 { 505 struct zone *zone; 506 int i; 507 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 508 509 for_each_populated_zone(zone) { 510 struct per_cpu_pageset *p; 511 512 p = per_cpu_ptr(zone->pageset, cpu); 513 514 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 515 if (p->vm_stat_diff[i]) { 516 int v; 517 518 v = p->vm_stat_diff[i]; 519 p->vm_stat_diff[i] = 0; 520 atomic_long_add(v, &zone->vm_stat[i]); 521 global_diff[i] += v; 522 } 523 } 524 525 fold_diff(global_diff); 526 } 527 528 /* 529 * this is only called if !populated_zone(zone), which implies no other users of 530 * pset->vm_stat_diff[] exsist. 531 */ 532 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 533 { 534 int i; 535 536 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 537 if (pset->vm_stat_diff[i]) { 538 int v = pset->vm_stat_diff[i]; 539 pset->vm_stat_diff[i] = 0; 540 atomic_long_add(v, &zone->vm_stat[i]); 541 atomic_long_add(v, &vm_stat[i]); 542 } 543 } 544 #endif 545 546 #ifdef CONFIG_NUMA 547 /* 548 * zonelist = the list of zones passed to the allocator 549 * z = the zone from which the allocation occurred. 550 * 551 * Must be called with interrupts disabled. 552 * 553 * When __GFP_OTHER_NODE is set assume the node of the preferred 554 * zone is the local node. This is useful for daemons who allocate 555 * memory on behalf of other processes. 556 */ 557 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 558 { 559 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 560 __inc_zone_state(z, NUMA_HIT); 561 } else { 562 __inc_zone_state(z, NUMA_MISS); 563 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 564 } 565 if (z->node == ((flags & __GFP_OTHER_NODE) ? 566 preferred_zone->node : numa_node_id())) 567 __inc_zone_state(z, NUMA_LOCAL); 568 else 569 __inc_zone_state(z, NUMA_OTHER); 570 } 571 #endif 572 573 #ifdef CONFIG_COMPACTION 574 575 struct contig_page_info { 576 unsigned long free_pages; 577 unsigned long free_blocks_total; 578 unsigned long free_blocks_suitable; 579 }; 580 581 /* 582 * Calculate the number of free pages in a zone, how many contiguous 583 * pages are free and how many are large enough to satisfy an allocation of 584 * the target size. Note that this function makes no attempt to estimate 585 * how many suitable free blocks there *might* be if MOVABLE pages were 586 * migrated. Calculating that is possible, but expensive and can be 587 * figured out from userspace 588 */ 589 static void fill_contig_page_info(struct zone *zone, 590 unsigned int suitable_order, 591 struct contig_page_info *info) 592 { 593 unsigned int order; 594 595 info->free_pages = 0; 596 info->free_blocks_total = 0; 597 info->free_blocks_suitable = 0; 598 599 for (order = 0; order < MAX_ORDER; order++) { 600 unsigned long blocks; 601 602 /* Count number of free blocks */ 603 blocks = zone->free_area[order].nr_free; 604 info->free_blocks_total += blocks; 605 606 /* Count free base pages */ 607 info->free_pages += blocks << order; 608 609 /* Count the suitable free blocks */ 610 if (order >= suitable_order) 611 info->free_blocks_suitable += blocks << 612 (order - suitable_order); 613 } 614 } 615 616 /* 617 * A fragmentation index only makes sense if an allocation of a requested 618 * size would fail. If that is true, the fragmentation index indicates 619 * whether external fragmentation or a lack of memory was the problem. 620 * The value can be used to determine if page reclaim or compaction 621 * should be used 622 */ 623 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 624 { 625 unsigned long requested = 1UL << order; 626 627 if (!info->free_blocks_total) 628 return 0; 629 630 /* Fragmentation index only makes sense when a request would fail */ 631 if (info->free_blocks_suitable) 632 return -1000; 633 634 /* 635 * Index is between 0 and 1 so return within 3 decimal places 636 * 637 * 0 => allocation would fail due to lack of memory 638 * 1 => allocation would fail due to fragmentation 639 */ 640 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 641 } 642 643 /* Same as __fragmentation index but allocs contig_page_info on stack */ 644 int fragmentation_index(struct zone *zone, unsigned int order) 645 { 646 struct contig_page_info info; 647 648 fill_contig_page_info(zone, order, &info); 649 return __fragmentation_index(order, &info); 650 } 651 #endif 652 653 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 654 #include <linux/proc_fs.h> 655 #include <linux/seq_file.h> 656 657 static char * const migratetype_names[MIGRATE_TYPES] = { 658 "Unmovable", 659 "Reclaimable", 660 "Movable", 661 "Reserve", 662 #ifdef CONFIG_CMA 663 "CMA", 664 #endif 665 #ifdef CONFIG_MEMORY_ISOLATION 666 "Isolate", 667 #endif 668 }; 669 670 static void *frag_start(struct seq_file *m, loff_t *pos) 671 { 672 pg_data_t *pgdat; 673 loff_t node = *pos; 674 for (pgdat = first_online_pgdat(); 675 pgdat && node; 676 pgdat = next_online_pgdat(pgdat)) 677 --node; 678 679 return pgdat; 680 } 681 682 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 683 { 684 pg_data_t *pgdat = (pg_data_t *)arg; 685 686 (*pos)++; 687 return next_online_pgdat(pgdat); 688 } 689 690 static void frag_stop(struct seq_file *m, void *arg) 691 { 692 } 693 694 /* Walk all the zones in a node and print using a callback */ 695 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 696 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 697 { 698 struct zone *zone; 699 struct zone *node_zones = pgdat->node_zones; 700 unsigned long flags; 701 702 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 703 if (!populated_zone(zone)) 704 continue; 705 706 spin_lock_irqsave(&zone->lock, flags); 707 print(m, pgdat, zone); 708 spin_unlock_irqrestore(&zone->lock, flags); 709 } 710 } 711 #endif 712 713 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 714 #ifdef CONFIG_ZONE_DMA 715 #define TEXT_FOR_DMA(xx) xx "_dma", 716 #else 717 #define TEXT_FOR_DMA(xx) 718 #endif 719 720 #ifdef CONFIG_ZONE_DMA32 721 #define TEXT_FOR_DMA32(xx) xx "_dma32", 722 #else 723 #define TEXT_FOR_DMA32(xx) 724 #endif 725 726 #ifdef CONFIG_HIGHMEM 727 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 728 #else 729 #define TEXT_FOR_HIGHMEM(xx) 730 #endif 731 732 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 733 TEXT_FOR_HIGHMEM(xx) xx "_movable", 734 735 const char * const vmstat_text[] = { 736 /* Zoned VM counters */ 737 "nr_free_pages", 738 "nr_alloc_batch", 739 "nr_inactive_anon", 740 "nr_active_anon", 741 "nr_inactive_file", 742 "nr_active_file", 743 "nr_unevictable", 744 "nr_mlock", 745 "nr_anon_pages", 746 "nr_mapped", 747 "nr_file_pages", 748 "nr_dirty", 749 "nr_writeback", 750 "nr_slab_reclaimable", 751 "nr_slab_unreclaimable", 752 "nr_page_table_pages", 753 "nr_kernel_stack", 754 "nr_unstable", 755 "nr_bounce", 756 "nr_vmscan_write", 757 "nr_vmscan_immediate_reclaim", 758 "nr_writeback_temp", 759 "nr_isolated_anon", 760 "nr_isolated_file", 761 "nr_shmem", 762 "nr_dirtied", 763 "nr_written", 764 765 #ifdef CONFIG_NUMA 766 "numa_hit", 767 "numa_miss", 768 "numa_foreign", 769 "numa_interleave", 770 "numa_local", 771 "numa_other", 772 #endif 773 "nr_anon_transparent_hugepages", 774 "nr_free_cma", 775 "nr_dirty_threshold", 776 "nr_dirty_background_threshold", 777 778 #ifdef CONFIG_VM_EVENT_COUNTERS 779 "pgpgin", 780 "pgpgout", 781 "pswpin", 782 "pswpout", 783 784 TEXTS_FOR_ZONES("pgalloc") 785 786 "pgfree", 787 "pgactivate", 788 "pgdeactivate", 789 790 "pgfault", 791 "pgmajfault", 792 793 TEXTS_FOR_ZONES("pgrefill") 794 TEXTS_FOR_ZONES("pgsteal_kswapd") 795 TEXTS_FOR_ZONES("pgsteal_direct") 796 TEXTS_FOR_ZONES("pgscan_kswapd") 797 TEXTS_FOR_ZONES("pgscan_direct") 798 "pgscan_direct_throttle", 799 800 #ifdef CONFIG_NUMA 801 "zone_reclaim_failed", 802 #endif 803 "pginodesteal", 804 "slabs_scanned", 805 "kswapd_inodesteal", 806 "kswapd_low_wmark_hit_quickly", 807 "kswapd_high_wmark_hit_quickly", 808 "pageoutrun", 809 "allocstall", 810 811 "pgrotated", 812 813 #ifdef CONFIG_NUMA_BALANCING 814 "numa_pte_updates", 815 "numa_huge_pte_updates", 816 "numa_hint_faults", 817 "numa_hint_faults_local", 818 "numa_pages_migrated", 819 #endif 820 #ifdef CONFIG_MIGRATION 821 "pgmigrate_success", 822 "pgmigrate_fail", 823 #endif 824 #ifdef CONFIG_COMPACTION 825 "compact_migrate_scanned", 826 "compact_free_scanned", 827 "compact_isolated", 828 "compact_stall", 829 "compact_fail", 830 "compact_success", 831 #endif 832 833 #ifdef CONFIG_HUGETLB_PAGE 834 "htlb_buddy_alloc_success", 835 "htlb_buddy_alloc_fail", 836 #endif 837 "unevictable_pgs_culled", 838 "unevictable_pgs_scanned", 839 "unevictable_pgs_rescued", 840 "unevictable_pgs_mlocked", 841 "unevictable_pgs_munlocked", 842 "unevictable_pgs_cleared", 843 "unevictable_pgs_stranded", 844 845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 846 "thp_fault_alloc", 847 "thp_fault_fallback", 848 "thp_collapse_alloc", 849 "thp_collapse_alloc_failed", 850 "thp_split", 851 "thp_zero_page_alloc", 852 "thp_zero_page_alloc_failed", 853 #endif 854 #ifdef CONFIG_SMP 855 "nr_tlb_remote_flush", 856 "nr_tlb_remote_flush_received", 857 #endif 858 "nr_tlb_local_flush_all", 859 "nr_tlb_local_flush_one", 860 861 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 862 }; 863 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 864 865 866 #ifdef CONFIG_PROC_FS 867 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 868 struct zone *zone) 869 { 870 int order; 871 872 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 873 for (order = 0; order < MAX_ORDER; ++order) 874 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 875 seq_putc(m, '\n'); 876 } 877 878 /* 879 * This walks the free areas for each zone. 880 */ 881 static int frag_show(struct seq_file *m, void *arg) 882 { 883 pg_data_t *pgdat = (pg_data_t *)arg; 884 walk_zones_in_node(m, pgdat, frag_show_print); 885 return 0; 886 } 887 888 static void pagetypeinfo_showfree_print(struct seq_file *m, 889 pg_data_t *pgdat, struct zone *zone) 890 { 891 int order, mtype; 892 893 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 894 seq_printf(m, "Node %4d, zone %8s, type %12s ", 895 pgdat->node_id, 896 zone->name, 897 migratetype_names[mtype]); 898 for (order = 0; order < MAX_ORDER; ++order) { 899 unsigned long freecount = 0; 900 struct free_area *area; 901 struct list_head *curr; 902 903 area = &(zone->free_area[order]); 904 905 list_for_each(curr, &area->free_list[mtype]) 906 freecount++; 907 seq_printf(m, "%6lu ", freecount); 908 } 909 seq_putc(m, '\n'); 910 } 911 } 912 913 /* Print out the free pages at each order for each migatetype */ 914 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 915 { 916 int order; 917 pg_data_t *pgdat = (pg_data_t *)arg; 918 919 /* Print header */ 920 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 921 for (order = 0; order < MAX_ORDER; ++order) 922 seq_printf(m, "%6d ", order); 923 seq_putc(m, '\n'); 924 925 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 926 927 return 0; 928 } 929 930 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 931 pg_data_t *pgdat, struct zone *zone) 932 { 933 int mtype; 934 unsigned long pfn; 935 unsigned long start_pfn = zone->zone_start_pfn; 936 unsigned long end_pfn = zone_end_pfn(zone); 937 unsigned long count[MIGRATE_TYPES] = { 0, }; 938 939 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 940 struct page *page; 941 942 if (!pfn_valid(pfn)) 943 continue; 944 945 page = pfn_to_page(pfn); 946 947 /* Watch for unexpected holes punched in the memmap */ 948 if (!memmap_valid_within(pfn, page, zone)) 949 continue; 950 951 mtype = get_pageblock_migratetype(page); 952 953 if (mtype < MIGRATE_TYPES) 954 count[mtype]++; 955 } 956 957 /* Print counts */ 958 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 959 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 960 seq_printf(m, "%12lu ", count[mtype]); 961 seq_putc(m, '\n'); 962 } 963 964 /* Print out the free pages at each order for each migratetype */ 965 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 966 { 967 int mtype; 968 pg_data_t *pgdat = (pg_data_t *)arg; 969 970 seq_printf(m, "\n%-23s", "Number of blocks type "); 971 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 972 seq_printf(m, "%12s ", migratetype_names[mtype]); 973 seq_putc(m, '\n'); 974 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 975 976 return 0; 977 } 978 979 /* 980 * This prints out statistics in relation to grouping pages by mobility. 981 * It is expensive to collect so do not constantly read the file. 982 */ 983 static int pagetypeinfo_show(struct seq_file *m, void *arg) 984 { 985 pg_data_t *pgdat = (pg_data_t *)arg; 986 987 /* check memoryless node */ 988 if (!node_state(pgdat->node_id, N_MEMORY)) 989 return 0; 990 991 seq_printf(m, "Page block order: %d\n", pageblock_order); 992 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 993 seq_putc(m, '\n'); 994 pagetypeinfo_showfree(m, pgdat); 995 pagetypeinfo_showblockcount(m, pgdat); 996 997 return 0; 998 } 999 1000 static const struct seq_operations fragmentation_op = { 1001 .start = frag_start, 1002 .next = frag_next, 1003 .stop = frag_stop, 1004 .show = frag_show, 1005 }; 1006 1007 static int fragmentation_open(struct inode *inode, struct file *file) 1008 { 1009 return seq_open(file, &fragmentation_op); 1010 } 1011 1012 static const struct file_operations fragmentation_file_operations = { 1013 .open = fragmentation_open, 1014 .read = seq_read, 1015 .llseek = seq_lseek, 1016 .release = seq_release, 1017 }; 1018 1019 static const struct seq_operations pagetypeinfo_op = { 1020 .start = frag_start, 1021 .next = frag_next, 1022 .stop = frag_stop, 1023 .show = pagetypeinfo_show, 1024 }; 1025 1026 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1027 { 1028 return seq_open(file, &pagetypeinfo_op); 1029 } 1030 1031 static const struct file_operations pagetypeinfo_file_ops = { 1032 .open = pagetypeinfo_open, 1033 .read = seq_read, 1034 .llseek = seq_lseek, 1035 .release = seq_release, 1036 }; 1037 1038 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1039 struct zone *zone) 1040 { 1041 int i; 1042 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1043 seq_printf(m, 1044 "\n pages free %lu" 1045 "\n min %lu" 1046 "\n low %lu" 1047 "\n high %lu" 1048 "\n scanned %lu" 1049 "\n spanned %lu" 1050 "\n present %lu" 1051 "\n managed %lu", 1052 zone_page_state(zone, NR_FREE_PAGES), 1053 min_wmark_pages(zone), 1054 low_wmark_pages(zone), 1055 high_wmark_pages(zone), 1056 zone->pages_scanned, 1057 zone->spanned_pages, 1058 zone->present_pages, 1059 zone->managed_pages); 1060 1061 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1062 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1063 zone_page_state(zone, i)); 1064 1065 seq_printf(m, 1066 "\n protection: (%lu", 1067 zone->lowmem_reserve[0]); 1068 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1069 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 1070 seq_printf(m, 1071 ")" 1072 "\n pagesets"); 1073 for_each_online_cpu(i) { 1074 struct per_cpu_pageset *pageset; 1075 1076 pageset = per_cpu_ptr(zone->pageset, i); 1077 seq_printf(m, 1078 "\n cpu: %i" 1079 "\n count: %i" 1080 "\n high: %i" 1081 "\n batch: %i", 1082 i, 1083 pageset->pcp.count, 1084 pageset->pcp.high, 1085 pageset->pcp.batch); 1086 #ifdef CONFIG_SMP 1087 seq_printf(m, "\n vm stats threshold: %d", 1088 pageset->stat_threshold); 1089 #endif 1090 } 1091 seq_printf(m, 1092 "\n all_unreclaimable: %u" 1093 "\n start_pfn: %lu" 1094 "\n inactive_ratio: %u", 1095 !zone_reclaimable(zone), 1096 zone->zone_start_pfn, 1097 zone->inactive_ratio); 1098 seq_putc(m, '\n'); 1099 } 1100 1101 /* 1102 * Output information about zones in @pgdat. 1103 */ 1104 static int zoneinfo_show(struct seq_file *m, void *arg) 1105 { 1106 pg_data_t *pgdat = (pg_data_t *)arg; 1107 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1108 return 0; 1109 } 1110 1111 static const struct seq_operations zoneinfo_op = { 1112 .start = frag_start, /* iterate over all zones. The same as in 1113 * fragmentation. */ 1114 .next = frag_next, 1115 .stop = frag_stop, 1116 .show = zoneinfo_show, 1117 }; 1118 1119 static int zoneinfo_open(struct inode *inode, struct file *file) 1120 { 1121 return seq_open(file, &zoneinfo_op); 1122 } 1123 1124 static const struct file_operations proc_zoneinfo_file_operations = { 1125 .open = zoneinfo_open, 1126 .read = seq_read, 1127 .llseek = seq_lseek, 1128 .release = seq_release, 1129 }; 1130 1131 enum writeback_stat_item { 1132 NR_DIRTY_THRESHOLD, 1133 NR_DIRTY_BG_THRESHOLD, 1134 NR_VM_WRITEBACK_STAT_ITEMS, 1135 }; 1136 1137 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1138 { 1139 unsigned long *v; 1140 int i, stat_items_size; 1141 1142 if (*pos >= ARRAY_SIZE(vmstat_text)) 1143 return NULL; 1144 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1145 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1146 1147 #ifdef CONFIG_VM_EVENT_COUNTERS 1148 stat_items_size += sizeof(struct vm_event_state); 1149 #endif 1150 1151 v = kmalloc(stat_items_size, GFP_KERNEL); 1152 m->private = v; 1153 if (!v) 1154 return ERR_PTR(-ENOMEM); 1155 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1156 v[i] = global_page_state(i); 1157 v += NR_VM_ZONE_STAT_ITEMS; 1158 1159 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1160 v + NR_DIRTY_THRESHOLD); 1161 v += NR_VM_WRITEBACK_STAT_ITEMS; 1162 1163 #ifdef CONFIG_VM_EVENT_COUNTERS 1164 all_vm_events(v); 1165 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1166 v[PGPGOUT] /= 2; 1167 #endif 1168 return (unsigned long *)m->private + *pos; 1169 } 1170 1171 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1172 { 1173 (*pos)++; 1174 if (*pos >= ARRAY_SIZE(vmstat_text)) 1175 return NULL; 1176 return (unsigned long *)m->private + *pos; 1177 } 1178 1179 static int vmstat_show(struct seq_file *m, void *arg) 1180 { 1181 unsigned long *l = arg; 1182 unsigned long off = l - (unsigned long *)m->private; 1183 1184 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1185 return 0; 1186 } 1187 1188 static void vmstat_stop(struct seq_file *m, void *arg) 1189 { 1190 kfree(m->private); 1191 m->private = NULL; 1192 } 1193 1194 static const struct seq_operations vmstat_op = { 1195 .start = vmstat_start, 1196 .next = vmstat_next, 1197 .stop = vmstat_stop, 1198 .show = vmstat_show, 1199 }; 1200 1201 static int vmstat_open(struct inode *inode, struct file *file) 1202 { 1203 return seq_open(file, &vmstat_op); 1204 } 1205 1206 static const struct file_operations proc_vmstat_file_operations = { 1207 .open = vmstat_open, 1208 .read = seq_read, 1209 .llseek = seq_lseek, 1210 .release = seq_release, 1211 }; 1212 #endif /* CONFIG_PROC_FS */ 1213 1214 #ifdef CONFIG_SMP 1215 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1216 int sysctl_stat_interval __read_mostly = HZ; 1217 1218 static void vmstat_update(struct work_struct *w) 1219 { 1220 refresh_cpu_vm_stats(); 1221 schedule_delayed_work(&__get_cpu_var(vmstat_work), 1222 round_jiffies_relative(sysctl_stat_interval)); 1223 } 1224 1225 static void start_cpu_timer(int cpu) 1226 { 1227 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 1228 1229 INIT_DEFERRABLE_WORK(work, vmstat_update); 1230 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 1231 } 1232 1233 static void vmstat_cpu_dead(int node) 1234 { 1235 int cpu; 1236 1237 get_online_cpus(); 1238 for_each_online_cpu(cpu) 1239 if (cpu_to_node(cpu) == node) 1240 goto end; 1241 1242 node_clear_state(node, N_CPU); 1243 end: 1244 put_online_cpus(); 1245 } 1246 1247 /* 1248 * Use the cpu notifier to insure that the thresholds are recalculated 1249 * when necessary. 1250 */ 1251 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1252 unsigned long action, 1253 void *hcpu) 1254 { 1255 long cpu = (long)hcpu; 1256 1257 switch (action) { 1258 case CPU_ONLINE: 1259 case CPU_ONLINE_FROZEN: 1260 refresh_zone_stat_thresholds(); 1261 start_cpu_timer(cpu); 1262 node_set_state(cpu_to_node(cpu), N_CPU); 1263 break; 1264 case CPU_DOWN_PREPARE: 1265 case CPU_DOWN_PREPARE_FROZEN: 1266 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1267 per_cpu(vmstat_work, cpu).work.func = NULL; 1268 break; 1269 case CPU_DOWN_FAILED: 1270 case CPU_DOWN_FAILED_FROZEN: 1271 start_cpu_timer(cpu); 1272 break; 1273 case CPU_DEAD: 1274 case CPU_DEAD_FROZEN: 1275 refresh_zone_stat_thresholds(); 1276 vmstat_cpu_dead(cpu_to_node(cpu)); 1277 break; 1278 default: 1279 break; 1280 } 1281 return NOTIFY_OK; 1282 } 1283 1284 static struct notifier_block vmstat_notifier = 1285 { &vmstat_cpuup_callback, NULL, 0 }; 1286 #endif 1287 1288 static int __init setup_vmstat(void) 1289 { 1290 #ifdef CONFIG_SMP 1291 int cpu; 1292 1293 register_cpu_notifier(&vmstat_notifier); 1294 1295 get_online_cpus(); 1296 for_each_online_cpu(cpu) { 1297 start_cpu_timer(cpu); 1298 node_set_state(cpu_to_node(cpu), N_CPU); 1299 } 1300 put_online_cpus(); 1301 #endif 1302 #ifdef CONFIG_PROC_FS 1303 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1304 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1305 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1306 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1307 #endif 1308 return 0; 1309 } 1310 module_init(setup_vmstat) 1311 1312 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1313 #include <linux/debugfs.h> 1314 1315 1316 /* 1317 * Return an index indicating how much of the available free memory is 1318 * unusable for an allocation of the requested size. 1319 */ 1320 static int unusable_free_index(unsigned int order, 1321 struct contig_page_info *info) 1322 { 1323 /* No free memory is interpreted as all free memory is unusable */ 1324 if (info->free_pages == 0) 1325 return 1000; 1326 1327 /* 1328 * Index should be a value between 0 and 1. Return a value to 3 1329 * decimal places. 1330 * 1331 * 0 => no fragmentation 1332 * 1 => high fragmentation 1333 */ 1334 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1335 1336 } 1337 1338 static void unusable_show_print(struct seq_file *m, 1339 pg_data_t *pgdat, struct zone *zone) 1340 { 1341 unsigned int order; 1342 int index; 1343 struct contig_page_info info; 1344 1345 seq_printf(m, "Node %d, zone %8s ", 1346 pgdat->node_id, 1347 zone->name); 1348 for (order = 0; order < MAX_ORDER; ++order) { 1349 fill_contig_page_info(zone, order, &info); 1350 index = unusable_free_index(order, &info); 1351 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1352 } 1353 1354 seq_putc(m, '\n'); 1355 } 1356 1357 /* 1358 * Display unusable free space index 1359 * 1360 * The unusable free space index measures how much of the available free 1361 * memory cannot be used to satisfy an allocation of a given size and is a 1362 * value between 0 and 1. The higher the value, the more of free memory is 1363 * unusable and by implication, the worse the external fragmentation is. This 1364 * can be expressed as a percentage by multiplying by 100. 1365 */ 1366 static int unusable_show(struct seq_file *m, void *arg) 1367 { 1368 pg_data_t *pgdat = (pg_data_t *)arg; 1369 1370 /* check memoryless node */ 1371 if (!node_state(pgdat->node_id, N_MEMORY)) 1372 return 0; 1373 1374 walk_zones_in_node(m, pgdat, unusable_show_print); 1375 1376 return 0; 1377 } 1378 1379 static const struct seq_operations unusable_op = { 1380 .start = frag_start, 1381 .next = frag_next, 1382 .stop = frag_stop, 1383 .show = unusable_show, 1384 }; 1385 1386 static int unusable_open(struct inode *inode, struct file *file) 1387 { 1388 return seq_open(file, &unusable_op); 1389 } 1390 1391 static const struct file_operations unusable_file_ops = { 1392 .open = unusable_open, 1393 .read = seq_read, 1394 .llseek = seq_lseek, 1395 .release = seq_release, 1396 }; 1397 1398 static void extfrag_show_print(struct seq_file *m, 1399 pg_data_t *pgdat, struct zone *zone) 1400 { 1401 unsigned int order; 1402 int index; 1403 1404 /* Alloc on stack as interrupts are disabled for zone walk */ 1405 struct contig_page_info info; 1406 1407 seq_printf(m, "Node %d, zone %8s ", 1408 pgdat->node_id, 1409 zone->name); 1410 for (order = 0; order < MAX_ORDER; ++order) { 1411 fill_contig_page_info(zone, order, &info); 1412 index = __fragmentation_index(order, &info); 1413 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1414 } 1415 1416 seq_putc(m, '\n'); 1417 } 1418 1419 /* 1420 * Display fragmentation index for orders that allocations would fail for 1421 */ 1422 static int extfrag_show(struct seq_file *m, void *arg) 1423 { 1424 pg_data_t *pgdat = (pg_data_t *)arg; 1425 1426 walk_zones_in_node(m, pgdat, extfrag_show_print); 1427 1428 return 0; 1429 } 1430 1431 static const struct seq_operations extfrag_op = { 1432 .start = frag_start, 1433 .next = frag_next, 1434 .stop = frag_stop, 1435 .show = extfrag_show, 1436 }; 1437 1438 static int extfrag_open(struct inode *inode, struct file *file) 1439 { 1440 return seq_open(file, &extfrag_op); 1441 } 1442 1443 static const struct file_operations extfrag_file_ops = { 1444 .open = extfrag_open, 1445 .read = seq_read, 1446 .llseek = seq_lseek, 1447 .release = seq_release, 1448 }; 1449 1450 static int __init extfrag_debug_init(void) 1451 { 1452 struct dentry *extfrag_debug_root; 1453 1454 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1455 if (!extfrag_debug_root) 1456 return -ENOMEM; 1457 1458 if (!debugfs_create_file("unusable_index", 0444, 1459 extfrag_debug_root, NULL, &unusable_file_ops)) 1460 goto fail; 1461 1462 if (!debugfs_create_file("extfrag_index", 0444, 1463 extfrag_debug_root, NULL, &extfrag_file_ops)) 1464 goto fail; 1465 1466 return 0; 1467 fail: 1468 debugfs_remove_recursive(extfrag_debug_root); 1469 return -ENOMEM; 1470 } 1471 1472 module_init(extfrag_debug_init); 1473 #endif 1474