xref: /openbmc/linux/mm/vmstat.c (revision 8684014d)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25 #include <linux/page_ext.h>
26 #include <linux/page_owner.h>
27 
28 #include "internal.h"
29 
30 #ifdef CONFIG_VM_EVENT_COUNTERS
31 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
32 EXPORT_PER_CPU_SYMBOL(vm_event_states);
33 
34 static void sum_vm_events(unsigned long *ret)
35 {
36 	int cpu;
37 	int i;
38 
39 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
40 
41 	for_each_online_cpu(cpu) {
42 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
43 
44 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
45 			ret[i] += this->event[i];
46 	}
47 }
48 
49 /*
50  * Accumulate the vm event counters across all CPUs.
51  * The result is unavoidably approximate - it can change
52  * during and after execution of this function.
53 */
54 void all_vm_events(unsigned long *ret)
55 {
56 	get_online_cpus();
57 	sum_vm_events(ret);
58 	put_online_cpus();
59 }
60 EXPORT_SYMBOL_GPL(all_vm_events);
61 
62 /*
63  * Fold the foreign cpu events into our own.
64  *
65  * This is adding to the events on one processor
66  * but keeps the global counts constant.
67  */
68 void vm_events_fold_cpu(int cpu)
69 {
70 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
71 	int i;
72 
73 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
74 		count_vm_events(i, fold_state->event[i]);
75 		fold_state->event[i] = 0;
76 	}
77 }
78 
79 #endif /* CONFIG_VM_EVENT_COUNTERS */
80 
81 /*
82  * Manage combined zone based / global counters
83  *
84  * vm_stat contains the global counters
85  */
86 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
87 EXPORT_SYMBOL(vm_stat);
88 
89 #ifdef CONFIG_SMP
90 
91 int calculate_pressure_threshold(struct zone *zone)
92 {
93 	int threshold;
94 	int watermark_distance;
95 
96 	/*
97 	 * As vmstats are not up to date, there is drift between the estimated
98 	 * and real values. For high thresholds and a high number of CPUs, it
99 	 * is possible for the min watermark to be breached while the estimated
100 	 * value looks fine. The pressure threshold is a reduced value such
101 	 * that even the maximum amount of drift will not accidentally breach
102 	 * the min watermark
103 	 */
104 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
105 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
106 
107 	/*
108 	 * Maximum threshold is 125
109 	 */
110 	threshold = min(125, threshold);
111 
112 	return threshold;
113 }
114 
115 int calculate_normal_threshold(struct zone *zone)
116 {
117 	int threshold;
118 	int mem;	/* memory in 128 MB units */
119 
120 	/*
121 	 * The threshold scales with the number of processors and the amount
122 	 * of memory per zone. More memory means that we can defer updates for
123 	 * longer, more processors could lead to more contention.
124  	 * fls() is used to have a cheap way of logarithmic scaling.
125 	 *
126 	 * Some sample thresholds:
127 	 *
128 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
129 	 * ------------------------------------------------------------------
130 	 * 8		1		1	0.9-1 GB	4
131 	 * 16		2		2	0.9-1 GB	4
132 	 * 20 		2		2	1-2 GB		5
133 	 * 24		2		2	2-4 GB		6
134 	 * 28		2		2	4-8 GB		7
135 	 * 32		2		2	8-16 GB		8
136 	 * 4		2		2	<128M		1
137 	 * 30		4		3	2-4 GB		5
138 	 * 48		4		3	8-16 GB		8
139 	 * 32		8		4	1-2 GB		4
140 	 * 32		8		4	0.9-1GB		4
141 	 * 10		16		5	<128M		1
142 	 * 40		16		5	900M		4
143 	 * 70		64		7	2-4 GB		5
144 	 * 84		64		7	4-8 GB		6
145 	 * 108		512		9	4-8 GB		6
146 	 * 125		1024		10	8-16 GB		8
147 	 * 125		1024		10	16-32 GB	9
148 	 */
149 
150 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
151 
152 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
153 
154 	/*
155 	 * Maximum threshold is 125
156 	 */
157 	threshold = min(125, threshold);
158 
159 	return threshold;
160 }
161 
162 /*
163  * Refresh the thresholds for each zone.
164  */
165 void refresh_zone_stat_thresholds(void)
166 {
167 	struct zone *zone;
168 	int cpu;
169 	int threshold;
170 
171 	for_each_populated_zone(zone) {
172 		unsigned long max_drift, tolerate_drift;
173 
174 		threshold = calculate_normal_threshold(zone);
175 
176 		for_each_online_cpu(cpu)
177 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
178 							= threshold;
179 
180 		/*
181 		 * Only set percpu_drift_mark if there is a danger that
182 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
183 		 * the min watermark could be breached by an allocation
184 		 */
185 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
186 		max_drift = num_online_cpus() * threshold;
187 		if (max_drift > tolerate_drift)
188 			zone->percpu_drift_mark = high_wmark_pages(zone) +
189 					max_drift;
190 	}
191 }
192 
193 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
194 				int (*calculate_pressure)(struct zone *))
195 {
196 	struct zone *zone;
197 	int cpu;
198 	int threshold;
199 	int i;
200 
201 	for (i = 0; i < pgdat->nr_zones; i++) {
202 		zone = &pgdat->node_zones[i];
203 		if (!zone->percpu_drift_mark)
204 			continue;
205 
206 		threshold = (*calculate_pressure)(zone);
207 		for_each_online_cpu(cpu)
208 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
209 							= threshold;
210 	}
211 }
212 
213 /*
214  * For use when we know that interrupts are disabled,
215  * or when we know that preemption is disabled and that
216  * particular counter cannot be updated from interrupt context.
217  */
218 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
219 				int delta)
220 {
221 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
222 	s8 __percpu *p = pcp->vm_stat_diff + item;
223 	long x;
224 	long t;
225 
226 	x = delta + __this_cpu_read(*p);
227 
228 	t = __this_cpu_read(pcp->stat_threshold);
229 
230 	if (unlikely(x > t || x < -t)) {
231 		zone_page_state_add(x, zone, item);
232 		x = 0;
233 	}
234 	__this_cpu_write(*p, x);
235 }
236 EXPORT_SYMBOL(__mod_zone_page_state);
237 
238 /*
239  * Optimized increment and decrement functions.
240  *
241  * These are only for a single page and therefore can take a struct page *
242  * argument instead of struct zone *. This allows the inclusion of the code
243  * generated for page_zone(page) into the optimized functions.
244  *
245  * No overflow check is necessary and therefore the differential can be
246  * incremented or decremented in place which may allow the compilers to
247  * generate better code.
248  * The increment or decrement is known and therefore one boundary check can
249  * be omitted.
250  *
251  * NOTE: These functions are very performance sensitive. Change only
252  * with care.
253  *
254  * Some processors have inc/dec instructions that are atomic vs an interrupt.
255  * However, the code must first determine the differential location in a zone
256  * based on the processor number and then inc/dec the counter. There is no
257  * guarantee without disabling preemption that the processor will not change
258  * in between and therefore the atomicity vs. interrupt cannot be exploited
259  * in a useful way here.
260  */
261 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
262 {
263 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
264 	s8 __percpu *p = pcp->vm_stat_diff + item;
265 	s8 v, t;
266 
267 	v = __this_cpu_inc_return(*p);
268 	t = __this_cpu_read(pcp->stat_threshold);
269 	if (unlikely(v > t)) {
270 		s8 overstep = t >> 1;
271 
272 		zone_page_state_add(v + overstep, zone, item);
273 		__this_cpu_write(*p, -overstep);
274 	}
275 }
276 
277 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
278 {
279 	__inc_zone_state(page_zone(page), item);
280 }
281 EXPORT_SYMBOL(__inc_zone_page_state);
282 
283 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
284 {
285 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
286 	s8 __percpu *p = pcp->vm_stat_diff + item;
287 	s8 v, t;
288 
289 	v = __this_cpu_dec_return(*p);
290 	t = __this_cpu_read(pcp->stat_threshold);
291 	if (unlikely(v < - t)) {
292 		s8 overstep = t >> 1;
293 
294 		zone_page_state_add(v - overstep, zone, item);
295 		__this_cpu_write(*p, overstep);
296 	}
297 }
298 
299 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
300 {
301 	__dec_zone_state(page_zone(page), item);
302 }
303 EXPORT_SYMBOL(__dec_zone_page_state);
304 
305 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
306 /*
307  * If we have cmpxchg_local support then we do not need to incur the overhead
308  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
309  *
310  * mod_state() modifies the zone counter state through atomic per cpu
311  * operations.
312  *
313  * Overstep mode specifies how overstep should handled:
314  *     0       No overstepping
315  *     1       Overstepping half of threshold
316  *     -1      Overstepping minus half of threshold
317 */
318 static inline void mod_state(struct zone *zone,
319        enum zone_stat_item item, int delta, int overstep_mode)
320 {
321 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
322 	s8 __percpu *p = pcp->vm_stat_diff + item;
323 	long o, n, t, z;
324 
325 	do {
326 		z = 0;  /* overflow to zone counters */
327 
328 		/*
329 		 * The fetching of the stat_threshold is racy. We may apply
330 		 * a counter threshold to the wrong the cpu if we get
331 		 * rescheduled while executing here. However, the next
332 		 * counter update will apply the threshold again and
333 		 * therefore bring the counter under the threshold again.
334 		 *
335 		 * Most of the time the thresholds are the same anyways
336 		 * for all cpus in a zone.
337 		 */
338 		t = this_cpu_read(pcp->stat_threshold);
339 
340 		o = this_cpu_read(*p);
341 		n = delta + o;
342 
343 		if (n > t || n < -t) {
344 			int os = overstep_mode * (t >> 1) ;
345 
346 			/* Overflow must be added to zone counters */
347 			z = n + os;
348 			n = -os;
349 		}
350 	} while (this_cpu_cmpxchg(*p, o, n) != o);
351 
352 	if (z)
353 		zone_page_state_add(z, zone, item);
354 }
355 
356 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
357 					int delta)
358 {
359 	mod_state(zone, item, delta, 0);
360 }
361 EXPORT_SYMBOL(mod_zone_page_state);
362 
363 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
364 {
365 	mod_state(zone, item, 1, 1);
366 }
367 
368 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
369 {
370 	mod_state(page_zone(page), item, 1, 1);
371 }
372 EXPORT_SYMBOL(inc_zone_page_state);
373 
374 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
375 {
376 	mod_state(page_zone(page), item, -1, -1);
377 }
378 EXPORT_SYMBOL(dec_zone_page_state);
379 #else
380 /*
381  * Use interrupt disable to serialize counter updates
382  */
383 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
384 					int delta)
385 {
386 	unsigned long flags;
387 
388 	local_irq_save(flags);
389 	__mod_zone_page_state(zone, item, delta);
390 	local_irq_restore(flags);
391 }
392 EXPORT_SYMBOL(mod_zone_page_state);
393 
394 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
395 {
396 	unsigned long flags;
397 
398 	local_irq_save(flags);
399 	__inc_zone_state(zone, item);
400 	local_irq_restore(flags);
401 }
402 
403 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
404 {
405 	unsigned long flags;
406 	struct zone *zone;
407 
408 	zone = page_zone(page);
409 	local_irq_save(flags);
410 	__inc_zone_state(zone, item);
411 	local_irq_restore(flags);
412 }
413 EXPORT_SYMBOL(inc_zone_page_state);
414 
415 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
416 {
417 	unsigned long flags;
418 
419 	local_irq_save(flags);
420 	__dec_zone_page_state(page, item);
421 	local_irq_restore(flags);
422 }
423 EXPORT_SYMBOL(dec_zone_page_state);
424 #endif
425 
426 
427 /*
428  * Fold a differential into the global counters.
429  * Returns the number of counters updated.
430  */
431 static int fold_diff(int *diff)
432 {
433 	int i;
434 	int changes = 0;
435 
436 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
437 		if (diff[i]) {
438 			atomic_long_add(diff[i], &vm_stat[i]);
439 			changes++;
440 	}
441 	return changes;
442 }
443 
444 /*
445  * Update the zone counters for the current cpu.
446  *
447  * Note that refresh_cpu_vm_stats strives to only access
448  * node local memory. The per cpu pagesets on remote zones are placed
449  * in the memory local to the processor using that pageset. So the
450  * loop over all zones will access a series of cachelines local to
451  * the processor.
452  *
453  * The call to zone_page_state_add updates the cachelines with the
454  * statistics in the remote zone struct as well as the global cachelines
455  * with the global counters. These could cause remote node cache line
456  * bouncing and will have to be only done when necessary.
457  *
458  * The function returns the number of global counters updated.
459  */
460 static int refresh_cpu_vm_stats(void)
461 {
462 	struct zone *zone;
463 	int i;
464 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
465 	int changes = 0;
466 
467 	for_each_populated_zone(zone) {
468 		struct per_cpu_pageset __percpu *p = zone->pageset;
469 
470 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
471 			int v;
472 
473 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
474 			if (v) {
475 
476 				atomic_long_add(v, &zone->vm_stat[i]);
477 				global_diff[i] += v;
478 #ifdef CONFIG_NUMA
479 				/* 3 seconds idle till flush */
480 				__this_cpu_write(p->expire, 3);
481 #endif
482 			}
483 		}
484 		cond_resched();
485 #ifdef CONFIG_NUMA
486 		/*
487 		 * Deal with draining the remote pageset of this
488 		 * processor
489 		 *
490 		 * Check if there are pages remaining in this pageset
491 		 * if not then there is nothing to expire.
492 		 */
493 		if (!__this_cpu_read(p->expire) ||
494 			       !__this_cpu_read(p->pcp.count))
495 			continue;
496 
497 		/*
498 		 * We never drain zones local to this processor.
499 		 */
500 		if (zone_to_nid(zone) == numa_node_id()) {
501 			__this_cpu_write(p->expire, 0);
502 			continue;
503 		}
504 
505 		if (__this_cpu_dec_return(p->expire))
506 			continue;
507 
508 		if (__this_cpu_read(p->pcp.count)) {
509 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
510 			changes++;
511 		}
512 #endif
513 	}
514 	changes += fold_diff(global_diff);
515 	return changes;
516 }
517 
518 /*
519  * Fold the data for an offline cpu into the global array.
520  * There cannot be any access by the offline cpu and therefore
521  * synchronization is simplified.
522  */
523 void cpu_vm_stats_fold(int cpu)
524 {
525 	struct zone *zone;
526 	int i;
527 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
528 
529 	for_each_populated_zone(zone) {
530 		struct per_cpu_pageset *p;
531 
532 		p = per_cpu_ptr(zone->pageset, cpu);
533 
534 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
535 			if (p->vm_stat_diff[i]) {
536 				int v;
537 
538 				v = p->vm_stat_diff[i];
539 				p->vm_stat_diff[i] = 0;
540 				atomic_long_add(v, &zone->vm_stat[i]);
541 				global_diff[i] += v;
542 			}
543 	}
544 
545 	fold_diff(global_diff);
546 }
547 
548 /*
549  * this is only called if !populated_zone(zone), which implies no other users of
550  * pset->vm_stat_diff[] exsist.
551  */
552 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
553 {
554 	int i;
555 
556 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
557 		if (pset->vm_stat_diff[i]) {
558 			int v = pset->vm_stat_diff[i];
559 			pset->vm_stat_diff[i] = 0;
560 			atomic_long_add(v, &zone->vm_stat[i]);
561 			atomic_long_add(v, &vm_stat[i]);
562 		}
563 }
564 #endif
565 
566 #ifdef CONFIG_NUMA
567 /*
568  * zonelist = the list of zones passed to the allocator
569  * z 	    = the zone from which the allocation occurred.
570  *
571  * Must be called with interrupts disabled.
572  *
573  * When __GFP_OTHER_NODE is set assume the node of the preferred
574  * zone is the local node. This is useful for daemons who allocate
575  * memory on behalf of other processes.
576  */
577 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
578 {
579 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
580 		__inc_zone_state(z, NUMA_HIT);
581 	} else {
582 		__inc_zone_state(z, NUMA_MISS);
583 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
584 	}
585 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
586 			preferred_zone->node : numa_node_id()))
587 		__inc_zone_state(z, NUMA_LOCAL);
588 	else
589 		__inc_zone_state(z, NUMA_OTHER);
590 }
591 #endif
592 
593 #ifdef CONFIG_COMPACTION
594 
595 struct contig_page_info {
596 	unsigned long free_pages;
597 	unsigned long free_blocks_total;
598 	unsigned long free_blocks_suitable;
599 };
600 
601 /*
602  * Calculate the number of free pages in a zone, how many contiguous
603  * pages are free and how many are large enough to satisfy an allocation of
604  * the target size. Note that this function makes no attempt to estimate
605  * how many suitable free blocks there *might* be if MOVABLE pages were
606  * migrated. Calculating that is possible, but expensive and can be
607  * figured out from userspace
608  */
609 static void fill_contig_page_info(struct zone *zone,
610 				unsigned int suitable_order,
611 				struct contig_page_info *info)
612 {
613 	unsigned int order;
614 
615 	info->free_pages = 0;
616 	info->free_blocks_total = 0;
617 	info->free_blocks_suitable = 0;
618 
619 	for (order = 0; order < MAX_ORDER; order++) {
620 		unsigned long blocks;
621 
622 		/* Count number of free blocks */
623 		blocks = zone->free_area[order].nr_free;
624 		info->free_blocks_total += blocks;
625 
626 		/* Count free base pages */
627 		info->free_pages += blocks << order;
628 
629 		/* Count the suitable free blocks */
630 		if (order >= suitable_order)
631 			info->free_blocks_suitable += blocks <<
632 						(order - suitable_order);
633 	}
634 }
635 
636 /*
637  * A fragmentation index only makes sense if an allocation of a requested
638  * size would fail. If that is true, the fragmentation index indicates
639  * whether external fragmentation or a lack of memory was the problem.
640  * The value can be used to determine if page reclaim or compaction
641  * should be used
642  */
643 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
644 {
645 	unsigned long requested = 1UL << order;
646 
647 	if (!info->free_blocks_total)
648 		return 0;
649 
650 	/* Fragmentation index only makes sense when a request would fail */
651 	if (info->free_blocks_suitable)
652 		return -1000;
653 
654 	/*
655 	 * Index is between 0 and 1 so return within 3 decimal places
656 	 *
657 	 * 0 => allocation would fail due to lack of memory
658 	 * 1 => allocation would fail due to fragmentation
659 	 */
660 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
661 }
662 
663 /* Same as __fragmentation index but allocs contig_page_info on stack */
664 int fragmentation_index(struct zone *zone, unsigned int order)
665 {
666 	struct contig_page_info info;
667 
668 	fill_contig_page_info(zone, order, &info);
669 	return __fragmentation_index(order, &info);
670 }
671 #endif
672 
673 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
674 #include <linux/proc_fs.h>
675 #include <linux/seq_file.h>
676 
677 static char * const migratetype_names[MIGRATE_TYPES] = {
678 	"Unmovable",
679 	"Reclaimable",
680 	"Movable",
681 	"Reserve",
682 #ifdef CONFIG_CMA
683 	"CMA",
684 #endif
685 #ifdef CONFIG_MEMORY_ISOLATION
686 	"Isolate",
687 #endif
688 };
689 
690 static void *frag_start(struct seq_file *m, loff_t *pos)
691 {
692 	pg_data_t *pgdat;
693 	loff_t node = *pos;
694 	for (pgdat = first_online_pgdat();
695 	     pgdat && node;
696 	     pgdat = next_online_pgdat(pgdat))
697 		--node;
698 
699 	return pgdat;
700 }
701 
702 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
703 {
704 	pg_data_t *pgdat = (pg_data_t *)arg;
705 
706 	(*pos)++;
707 	return next_online_pgdat(pgdat);
708 }
709 
710 static void frag_stop(struct seq_file *m, void *arg)
711 {
712 }
713 
714 /* Walk all the zones in a node and print using a callback */
715 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
716 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
717 {
718 	struct zone *zone;
719 	struct zone *node_zones = pgdat->node_zones;
720 	unsigned long flags;
721 
722 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
723 		if (!populated_zone(zone))
724 			continue;
725 
726 		spin_lock_irqsave(&zone->lock, flags);
727 		print(m, pgdat, zone);
728 		spin_unlock_irqrestore(&zone->lock, flags);
729 	}
730 }
731 #endif
732 
733 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
734 #ifdef CONFIG_ZONE_DMA
735 #define TEXT_FOR_DMA(xx) xx "_dma",
736 #else
737 #define TEXT_FOR_DMA(xx)
738 #endif
739 
740 #ifdef CONFIG_ZONE_DMA32
741 #define TEXT_FOR_DMA32(xx) xx "_dma32",
742 #else
743 #define TEXT_FOR_DMA32(xx)
744 #endif
745 
746 #ifdef CONFIG_HIGHMEM
747 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
748 #else
749 #define TEXT_FOR_HIGHMEM(xx)
750 #endif
751 
752 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
753 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
754 
755 const char * const vmstat_text[] = {
756 	/* enum zone_stat_item countes */
757 	"nr_free_pages",
758 	"nr_alloc_batch",
759 	"nr_inactive_anon",
760 	"nr_active_anon",
761 	"nr_inactive_file",
762 	"nr_active_file",
763 	"nr_unevictable",
764 	"nr_mlock",
765 	"nr_anon_pages",
766 	"nr_mapped",
767 	"nr_file_pages",
768 	"nr_dirty",
769 	"nr_writeback",
770 	"nr_slab_reclaimable",
771 	"nr_slab_unreclaimable",
772 	"nr_page_table_pages",
773 	"nr_kernel_stack",
774 	"nr_unstable",
775 	"nr_bounce",
776 	"nr_vmscan_write",
777 	"nr_vmscan_immediate_reclaim",
778 	"nr_writeback_temp",
779 	"nr_isolated_anon",
780 	"nr_isolated_file",
781 	"nr_shmem",
782 	"nr_dirtied",
783 	"nr_written",
784 	"nr_pages_scanned",
785 
786 #ifdef CONFIG_NUMA
787 	"numa_hit",
788 	"numa_miss",
789 	"numa_foreign",
790 	"numa_interleave",
791 	"numa_local",
792 	"numa_other",
793 #endif
794 	"workingset_refault",
795 	"workingset_activate",
796 	"workingset_nodereclaim",
797 	"nr_anon_transparent_hugepages",
798 	"nr_free_cma",
799 
800 	/* enum writeback_stat_item counters */
801 	"nr_dirty_threshold",
802 	"nr_dirty_background_threshold",
803 
804 #ifdef CONFIG_VM_EVENT_COUNTERS
805 	/* enum vm_event_item counters */
806 	"pgpgin",
807 	"pgpgout",
808 	"pswpin",
809 	"pswpout",
810 
811 	TEXTS_FOR_ZONES("pgalloc")
812 
813 	"pgfree",
814 	"pgactivate",
815 	"pgdeactivate",
816 
817 	"pgfault",
818 	"pgmajfault",
819 
820 	TEXTS_FOR_ZONES("pgrefill")
821 	TEXTS_FOR_ZONES("pgsteal_kswapd")
822 	TEXTS_FOR_ZONES("pgsteal_direct")
823 	TEXTS_FOR_ZONES("pgscan_kswapd")
824 	TEXTS_FOR_ZONES("pgscan_direct")
825 	"pgscan_direct_throttle",
826 
827 #ifdef CONFIG_NUMA
828 	"zone_reclaim_failed",
829 #endif
830 	"pginodesteal",
831 	"slabs_scanned",
832 	"kswapd_inodesteal",
833 	"kswapd_low_wmark_hit_quickly",
834 	"kswapd_high_wmark_hit_quickly",
835 	"pageoutrun",
836 	"allocstall",
837 
838 	"pgrotated",
839 
840 	"drop_pagecache",
841 	"drop_slab",
842 
843 #ifdef CONFIG_NUMA_BALANCING
844 	"numa_pte_updates",
845 	"numa_huge_pte_updates",
846 	"numa_hint_faults",
847 	"numa_hint_faults_local",
848 	"numa_pages_migrated",
849 #endif
850 #ifdef CONFIG_MIGRATION
851 	"pgmigrate_success",
852 	"pgmigrate_fail",
853 #endif
854 #ifdef CONFIG_COMPACTION
855 	"compact_migrate_scanned",
856 	"compact_free_scanned",
857 	"compact_isolated",
858 	"compact_stall",
859 	"compact_fail",
860 	"compact_success",
861 #endif
862 
863 #ifdef CONFIG_HUGETLB_PAGE
864 	"htlb_buddy_alloc_success",
865 	"htlb_buddy_alloc_fail",
866 #endif
867 	"unevictable_pgs_culled",
868 	"unevictable_pgs_scanned",
869 	"unevictable_pgs_rescued",
870 	"unevictable_pgs_mlocked",
871 	"unevictable_pgs_munlocked",
872 	"unevictable_pgs_cleared",
873 	"unevictable_pgs_stranded",
874 
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 	"thp_fault_alloc",
877 	"thp_fault_fallback",
878 	"thp_collapse_alloc",
879 	"thp_collapse_alloc_failed",
880 	"thp_split",
881 	"thp_zero_page_alloc",
882 	"thp_zero_page_alloc_failed",
883 #endif
884 #ifdef CONFIG_MEMORY_BALLOON
885 	"balloon_inflate",
886 	"balloon_deflate",
887 #ifdef CONFIG_BALLOON_COMPACTION
888 	"balloon_migrate",
889 #endif
890 #endif /* CONFIG_MEMORY_BALLOON */
891 #ifdef CONFIG_DEBUG_TLBFLUSH
892 #ifdef CONFIG_SMP
893 	"nr_tlb_remote_flush",
894 	"nr_tlb_remote_flush_received",
895 #endif /* CONFIG_SMP */
896 	"nr_tlb_local_flush_all",
897 	"nr_tlb_local_flush_one",
898 #endif /* CONFIG_DEBUG_TLBFLUSH */
899 
900 #ifdef CONFIG_DEBUG_VM_VMACACHE
901 	"vmacache_find_calls",
902 	"vmacache_find_hits",
903 	"vmacache_full_flushes",
904 #endif
905 #endif /* CONFIG_VM_EVENTS_COUNTERS */
906 };
907 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
908 
909 
910 #ifdef CONFIG_PROC_FS
911 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
912 						struct zone *zone)
913 {
914 	int order;
915 
916 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
917 	for (order = 0; order < MAX_ORDER; ++order)
918 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
919 	seq_putc(m, '\n');
920 }
921 
922 /*
923  * This walks the free areas for each zone.
924  */
925 static int frag_show(struct seq_file *m, void *arg)
926 {
927 	pg_data_t *pgdat = (pg_data_t *)arg;
928 	walk_zones_in_node(m, pgdat, frag_show_print);
929 	return 0;
930 }
931 
932 static void pagetypeinfo_showfree_print(struct seq_file *m,
933 					pg_data_t *pgdat, struct zone *zone)
934 {
935 	int order, mtype;
936 
937 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
938 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
939 					pgdat->node_id,
940 					zone->name,
941 					migratetype_names[mtype]);
942 		for (order = 0; order < MAX_ORDER; ++order) {
943 			unsigned long freecount = 0;
944 			struct free_area *area;
945 			struct list_head *curr;
946 
947 			area = &(zone->free_area[order]);
948 
949 			list_for_each(curr, &area->free_list[mtype])
950 				freecount++;
951 			seq_printf(m, "%6lu ", freecount);
952 		}
953 		seq_putc(m, '\n');
954 	}
955 }
956 
957 /* Print out the free pages at each order for each migatetype */
958 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
959 {
960 	int order;
961 	pg_data_t *pgdat = (pg_data_t *)arg;
962 
963 	/* Print header */
964 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
965 	for (order = 0; order < MAX_ORDER; ++order)
966 		seq_printf(m, "%6d ", order);
967 	seq_putc(m, '\n');
968 
969 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
970 
971 	return 0;
972 }
973 
974 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
975 					pg_data_t *pgdat, struct zone *zone)
976 {
977 	int mtype;
978 	unsigned long pfn;
979 	unsigned long start_pfn = zone->zone_start_pfn;
980 	unsigned long end_pfn = zone_end_pfn(zone);
981 	unsigned long count[MIGRATE_TYPES] = { 0, };
982 
983 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
984 		struct page *page;
985 
986 		if (!pfn_valid(pfn))
987 			continue;
988 
989 		page = pfn_to_page(pfn);
990 
991 		/* Watch for unexpected holes punched in the memmap */
992 		if (!memmap_valid_within(pfn, page, zone))
993 			continue;
994 
995 		mtype = get_pageblock_migratetype(page);
996 
997 		if (mtype < MIGRATE_TYPES)
998 			count[mtype]++;
999 	}
1000 
1001 	/* Print counts */
1002 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1003 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1004 		seq_printf(m, "%12lu ", count[mtype]);
1005 	seq_putc(m, '\n');
1006 }
1007 
1008 /* Print out the free pages at each order for each migratetype */
1009 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1010 {
1011 	int mtype;
1012 	pg_data_t *pgdat = (pg_data_t *)arg;
1013 
1014 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1015 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1016 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1017 	seq_putc(m, '\n');
1018 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1019 
1020 	return 0;
1021 }
1022 
1023 #ifdef CONFIG_PAGE_OWNER
1024 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1025 							pg_data_t *pgdat,
1026 							struct zone *zone)
1027 {
1028 	struct page *page;
1029 	struct page_ext *page_ext;
1030 	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1031 	unsigned long end_pfn = pfn + zone->spanned_pages;
1032 	unsigned long count[MIGRATE_TYPES] = { 0, };
1033 	int pageblock_mt, page_mt;
1034 	int i;
1035 
1036 	/* Scan block by block. First and last block may be incomplete */
1037 	pfn = zone->zone_start_pfn;
1038 
1039 	/*
1040 	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1041 	 * a zone boundary, it will be double counted between zones. This does
1042 	 * not matter as the mixed block count will still be correct
1043 	 */
1044 	for (; pfn < end_pfn; ) {
1045 		if (!pfn_valid(pfn)) {
1046 			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1047 			continue;
1048 		}
1049 
1050 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1051 		block_end_pfn = min(block_end_pfn, end_pfn);
1052 
1053 		page = pfn_to_page(pfn);
1054 		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1055 
1056 		for (; pfn < block_end_pfn; pfn++) {
1057 			if (!pfn_valid_within(pfn))
1058 				continue;
1059 
1060 			page = pfn_to_page(pfn);
1061 			if (PageBuddy(page)) {
1062 				pfn += (1UL << page_order(page)) - 1;
1063 				continue;
1064 			}
1065 
1066 			if (PageReserved(page))
1067 				continue;
1068 
1069 			page_ext = lookup_page_ext(page);
1070 
1071 			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1072 				continue;
1073 
1074 			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1075 			if (pageblock_mt != page_mt) {
1076 				if (is_migrate_cma(pageblock_mt))
1077 					count[MIGRATE_MOVABLE]++;
1078 				else
1079 					count[pageblock_mt]++;
1080 
1081 				pfn = block_end_pfn;
1082 				break;
1083 			}
1084 			pfn += (1UL << page_ext->order) - 1;
1085 		}
1086 	}
1087 
1088 	/* Print counts */
1089 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1090 	for (i = 0; i < MIGRATE_TYPES; i++)
1091 		seq_printf(m, "%12lu ", count[i]);
1092 	seq_putc(m, '\n');
1093 }
1094 #endif /* CONFIG_PAGE_OWNER */
1095 
1096 /*
1097  * Print out the number of pageblocks for each migratetype that contain pages
1098  * of other types. This gives an indication of how well fallbacks are being
1099  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1100  * to determine what is going on
1101  */
1102 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1103 {
1104 #ifdef CONFIG_PAGE_OWNER
1105 	int mtype;
1106 
1107 	if (!page_owner_inited)
1108 		return;
1109 
1110 	drain_all_pages(NULL);
1111 
1112 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1113 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1114 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1115 	seq_putc(m, '\n');
1116 
1117 	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1118 #endif /* CONFIG_PAGE_OWNER */
1119 }
1120 
1121 /*
1122  * This prints out statistics in relation to grouping pages by mobility.
1123  * It is expensive to collect so do not constantly read the file.
1124  */
1125 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1126 {
1127 	pg_data_t *pgdat = (pg_data_t *)arg;
1128 
1129 	/* check memoryless node */
1130 	if (!node_state(pgdat->node_id, N_MEMORY))
1131 		return 0;
1132 
1133 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1134 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1135 	seq_putc(m, '\n');
1136 	pagetypeinfo_showfree(m, pgdat);
1137 	pagetypeinfo_showblockcount(m, pgdat);
1138 	pagetypeinfo_showmixedcount(m, pgdat);
1139 
1140 	return 0;
1141 }
1142 
1143 static const struct seq_operations fragmentation_op = {
1144 	.start	= frag_start,
1145 	.next	= frag_next,
1146 	.stop	= frag_stop,
1147 	.show	= frag_show,
1148 };
1149 
1150 static int fragmentation_open(struct inode *inode, struct file *file)
1151 {
1152 	return seq_open(file, &fragmentation_op);
1153 }
1154 
1155 static const struct file_operations fragmentation_file_operations = {
1156 	.open		= fragmentation_open,
1157 	.read		= seq_read,
1158 	.llseek		= seq_lseek,
1159 	.release	= seq_release,
1160 };
1161 
1162 static const struct seq_operations pagetypeinfo_op = {
1163 	.start	= frag_start,
1164 	.next	= frag_next,
1165 	.stop	= frag_stop,
1166 	.show	= pagetypeinfo_show,
1167 };
1168 
1169 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1170 {
1171 	return seq_open(file, &pagetypeinfo_op);
1172 }
1173 
1174 static const struct file_operations pagetypeinfo_file_ops = {
1175 	.open		= pagetypeinfo_open,
1176 	.read		= seq_read,
1177 	.llseek		= seq_lseek,
1178 	.release	= seq_release,
1179 };
1180 
1181 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1182 							struct zone *zone)
1183 {
1184 	int i;
1185 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1186 	seq_printf(m,
1187 		   "\n  pages free     %lu"
1188 		   "\n        min      %lu"
1189 		   "\n        low      %lu"
1190 		   "\n        high     %lu"
1191 		   "\n        scanned  %lu"
1192 		   "\n        spanned  %lu"
1193 		   "\n        present  %lu"
1194 		   "\n        managed  %lu",
1195 		   zone_page_state(zone, NR_FREE_PAGES),
1196 		   min_wmark_pages(zone),
1197 		   low_wmark_pages(zone),
1198 		   high_wmark_pages(zone),
1199 		   zone_page_state(zone, NR_PAGES_SCANNED),
1200 		   zone->spanned_pages,
1201 		   zone->present_pages,
1202 		   zone->managed_pages);
1203 
1204 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1205 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1206 				zone_page_state(zone, i));
1207 
1208 	seq_printf(m,
1209 		   "\n        protection: (%ld",
1210 		   zone->lowmem_reserve[0]);
1211 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1212 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1213 	seq_printf(m,
1214 		   ")"
1215 		   "\n  pagesets");
1216 	for_each_online_cpu(i) {
1217 		struct per_cpu_pageset *pageset;
1218 
1219 		pageset = per_cpu_ptr(zone->pageset, i);
1220 		seq_printf(m,
1221 			   "\n    cpu: %i"
1222 			   "\n              count: %i"
1223 			   "\n              high:  %i"
1224 			   "\n              batch: %i",
1225 			   i,
1226 			   pageset->pcp.count,
1227 			   pageset->pcp.high,
1228 			   pageset->pcp.batch);
1229 #ifdef CONFIG_SMP
1230 		seq_printf(m, "\n  vm stats threshold: %d",
1231 				pageset->stat_threshold);
1232 #endif
1233 	}
1234 	seq_printf(m,
1235 		   "\n  all_unreclaimable: %u"
1236 		   "\n  start_pfn:         %lu"
1237 		   "\n  inactive_ratio:    %u",
1238 		   !zone_reclaimable(zone),
1239 		   zone->zone_start_pfn,
1240 		   zone->inactive_ratio);
1241 	seq_putc(m, '\n');
1242 }
1243 
1244 /*
1245  * Output information about zones in @pgdat.
1246  */
1247 static int zoneinfo_show(struct seq_file *m, void *arg)
1248 {
1249 	pg_data_t *pgdat = (pg_data_t *)arg;
1250 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1251 	return 0;
1252 }
1253 
1254 static const struct seq_operations zoneinfo_op = {
1255 	.start	= frag_start, /* iterate over all zones. The same as in
1256 			       * fragmentation. */
1257 	.next	= frag_next,
1258 	.stop	= frag_stop,
1259 	.show	= zoneinfo_show,
1260 };
1261 
1262 static int zoneinfo_open(struct inode *inode, struct file *file)
1263 {
1264 	return seq_open(file, &zoneinfo_op);
1265 }
1266 
1267 static const struct file_operations proc_zoneinfo_file_operations = {
1268 	.open		= zoneinfo_open,
1269 	.read		= seq_read,
1270 	.llseek		= seq_lseek,
1271 	.release	= seq_release,
1272 };
1273 
1274 enum writeback_stat_item {
1275 	NR_DIRTY_THRESHOLD,
1276 	NR_DIRTY_BG_THRESHOLD,
1277 	NR_VM_WRITEBACK_STAT_ITEMS,
1278 };
1279 
1280 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1281 {
1282 	unsigned long *v;
1283 	int i, stat_items_size;
1284 
1285 	if (*pos >= ARRAY_SIZE(vmstat_text))
1286 		return NULL;
1287 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1288 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1289 
1290 #ifdef CONFIG_VM_EVENT_COUNTERS
1291 	stat_items_size += sizeof(struct vm_event_state);
1292 #endif
1293 
1294 	v = kmalloc(stat_items_size, GFP_KERNEL);
1295 	m->private = v;
1296 	if (!v)
1297 		return ERR_PTR(-ENOMEM);
1298 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1299 		v[i] = global_page_state(i);
1300 	v += NR_VM_ZONE_STAT_ITEMS;
1301 
1302 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1303 			    v + NR_DIRTY_THRESHOLD);
1304 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1305 
1306 #ifdef CONFIG_VM_EVENT_COUNTERS
1307 	all_vm_events(v);
1308 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1309 	v[PGPGOUT] /= 2;
1310 #endif
1311 	return (unsigned long *)m->private + *pos;
1312 }
1313 
1314 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1315 {
1316 	(*pos)++;
1317 	if (*pos >= ARRAY_SIZE(vmstat_text))
1318 		return NULL;
1319 	return (unsigned long *)m->private + *pos;
1320 }
1321 
1322 static int vmstat_show(struct seq_file *m, void *arg)
1323 {
1324 	unsigned long *l = arg;
1325 	unsigned long off = l - (unsigned long *)m->private;
1326 
1327 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1328 	return 0;
1329 }
1330 
1331 static void vmstat_stop(struct seq_file *m, void *arg)
1332 {
1333 	kfree(m->private);
1334 	m->private = NULL;
1335 }
1336 
1337 static const struct seq_operations vmstat_op = {
1338 	.start	= vmstat_start,
1339 	.next	= vmstat_next,
1340 	.stop	= vmstat_stop,
1341 	.show	= vmstat_show,
1342 };
1343 
1344 static int vmstat_open(struct inode *inode, struct file *file)
1345 {
1346 	return seq_open(file, &vmstat_op);
1347 }
1348 
1349 static const struct file_operations proc_vmstat_file_operations = {
1350 	.open		= vmstat_open,
1351 	.read		= seq_read,
1352 	.llseek		= seq_lseek,
1353 	.release	= seq_release,
1354 };
1355 #endif /* CONFIG_PROC_FS */
1356 
1357 #ifdef CONFIG_SMP
1358 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1359 int sysctl_stat_interval __read_mostly = HZ;
1360 static cpumask_var_t cpu_stat_off;
1361 
1362 static void vmstat_update(struct work_struct *w)
1363 {
1364 	if (refresh_cpu_vm_stats())
1365 		/*
1366 		 * Counters were updated so we expect more updates
1367 		 * to occur in the future. Keep on running the
1368 		 * update worker thread.
1369 		 */
1370 		schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1371 			round_jiffies_relative(sysctl_stat_interval));
1372 	else {
1373 		/*
1374 		 * We did not update any counters so the app may be in
1375 		 * a mode where it does not cause counter updates.
1376 		 * We may be uselessly running vmstat_update.
1377 		 * Defer the checking for differentials to the
1378 		 * shepherd thread on a different processor.
1379 		 */
1380 		int r;
1381 		/*
1382 		 * Shepherd work thread does not race since it never
1383 		 * changes the bit if its zero but the cpu
1384 		 * online / off line code may race if
1385 		 * worker threads are still allowed during
1386 		 * shutdown / startup.
1387 		 */
1388 		r = cpumask_test_and_set_cpu(smp_processor_id(),
1389 			cpu_stat_off);
1390 		VM_BUG_ON(r);
1391 	}
1392 }
1393 
1394 /*
1395  * Check if the diffs for a certain cpu indicate that
1396  * an update is needed.
1397  */
1398 static bool need_update(int cpu)
1399 {
1400 	struct zone *zone;
1401 
1402 	for_each_populated_zone(zone) {
1403 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1404 
1405 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1406 		/*
1407 		 * The fast way of checking if there are any vmstat diffs.
1408 		 * This works because the diffs are byte sized items.
1409 		 */
1410 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1411 			return true;
1412 
1413 	}
1414 	return false;
1415 }
1416 
1417 
1418 /*
1419  * Shepherd worker thread that checks the
1420  * differentials of processors that have their worker
1421  * threads for vm statistics updates disabled because of
1422  * inactivity.
1423  */
1424 static void vmstat_shepherd(struct work_struct *w);
1425 
1426 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1427 
1428 static void vmstat_shepherd(struct work_struct *w)
1429 {
1430 	int cpu;
1431 
1432 	get_online_cpus();
1433 	/* Check processors whose vmstat worker threads have been disabled */
1434 	for_each_cpu(cpu, cpu_stat_off)
1435 		if (need_update(cpu) &&
1436 			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1437 
1438 			schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1439 				__round_jiffies_relative(sysctl_stat_interval, cpu));
1440 
1441 	put_online_cpus();
1442 
1443 	schedule_delayed_work(&shepherd,
1444 		round_jiffies_relative(sysctl_stat_interval));
1445 
1446 }
1447 
1448 static void __init start_shepherd_timer(void)
1449 {
1450 	int cpu;
1451 
1452 	for_each_possible_cpu(cpu)
1453 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1454 			vmstat_update);
1455 
1456 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1457 		BUG();
1458 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1459 
1460 	schedule_delayed_work(&shepherd,
1461 		round_jiffies_relative(sysctl_stat_interval));
1462 }
1463 
1464 static void vmstat_cpu_dead(int node)
1465 {
1466 	int cpu;
1467 
1468 	get_online_cpus();
1469 	for_each_online_cpu(cpu)
1470 		if (cpu_to_node(cpu) == node)
1471 			goto end;
1472 
1473 	node_clear_state(node, N_CPU);
1474 end:
1475 	put_online_cpus();
1476 }
1477 
1478 /*
1479  * Use the cpu notifier to insure that the thresholds are recalculated
1480  * when necessary.
1481  */
1482 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1483 		unsigned long action,
1484 		void *hcpu)
1485 {
1486 	long cpu = (long)hcpu;
1487 
1488 	switch (action) {
1489 	case CPU_ONLINE:
1490 	case CPU_ONLINE_FROZEN:
1491 		refresh_zone_stat_thresholds();
1492 		node_set_state(cpu_to_node(cpu), N_CPU);
1493 		cpumask_set_cpu(cpu, cpu_stat_off);
1494 		break;
1495 	case CPU_DOWN_PREPARE:
1496 	case CPU_DOWN_PREPARE_FROZEN:
1497 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1498 		cpumask_clear_cpu(cpu, cpu_stat_off);
1499 		break;
1500 	case CPU_DOWN_FAILED:
1501 	case CPU_DOWN_FAILED_FROZEN:
1502 		cpumask_set_cpu(cpu, cpu_stat_off);
1503 		break;
1504 	case CPU_DEAD:
1505 	case CPU_DEAD_FROZEN:
1506 		refresh_zone_stat_thresholds();
1507 		vmstat_cpu_dead(cpu_to_node(cpu));
1508 		break;
1509 	default:
1510 		break;
1511 	}
1512 	return NOTIFY_OK;
1513 }
1514 
1515 static struct notifier_block vmstat_notifier =
1516 	{ &vmstat_cpuup_callback, NULL, 0 };
1517 #endif
1518 
1519 static int __init setup_vmstat(void)
1520 {
1521 #ifdef CONFIG_SMP
1522 	cpu_notifier_register_begin();
1523 	__register_cpu_notifier(&vmstat_notifier);
1524 
1525 	start_shepherd_timer();
1526 	cpu_notifier_register_done();
1527 #endif
1528 #ifdef CONFIG_PROC_FS
1529 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1530 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1531 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1532 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1533 #endif
1534 	return 0;
1535 }
1536 module_init(setup_vmstat)
1537 
1538 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1539 #include <linux/debugfs.h>
1540 
1541 
1542 /*
1543  * Return an index indicating how much of the available free memory is
1544  * unusable for an allocation of the requested size.
1545  */
1546 static int unusable_free_index(unsigned int order,
1547 				struct contig_page_info *info)
1548 {
1549 	/* No free memory is interpreted as all free memory is unusable */
1550 	if (info->free_pages == 0)
1551 		return 1000;
1552 
1553 	/*
1554 	 * Index should be a value between 0 and 1. Return a value to 3
1555 	 * decimal places.
1556 	 *
1557 	 * 0 => no fragmentation
1558 	 * 1 => high fragmentation
1559 	 */
1560 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1561 
1562 }
1563 
1564 static void unusable_show_print(struct seq_file *m,
1565 					pg_data_t *pgdat, struct zone *zone)
1566 {
1567 	unsigned int order;
1568 	int index;
1569 	struct contig_page_info info;
1570 
1571 	seq_printf(m, "Node %d, zone %8s ",
1572 				pgdat->node_id,
1573 				zone->name);
1574 	for (order = 0; order < MAX_ORDER; ++order) {
1575 		fill_contig_page_info(zone, order, &info);
1576 		index = unusable_free_index(order, &info);
1577 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1578 	}
1579 
1580 	seq_putc(m, '\n');
1581 }
1582 
1583 /*
1584  * Display unusable free space index
1585  *
1586  * The unusable free space index measures how much of the available free
1587  * memory cannot be used to satisfy an allocation of a given size and is a
1588  * value between 0 and 1. The higher the value, the more of free memory is
1589  * unusable and by implication, the worse the external fragmentation is. This
1590  * can be expressed as a percentage by multiplying by 100.
1591  */
1592 static int unusable_show(struct seq_file *m, void *arg)
1593 {
1594 	pg_data_t *pgdat = (pg_data_t *)arg;
1595 
1596 	/* check memoryless node */
1597 	if (!node_state(pgdat->node_id, N_MEMORY))
1598 		return 0;
1599 
1600 	walk_zones_in_node(m, pgdat, unusable_show_print);
1601 
1602 	return 0;
1603 }
1604 
1605 static const struct seq_operations unusable_op = {
1606 	.start	= frag_start,
1607 	.next	= frag_next,
1608 	.stop	= frag_stop,
1609 	.show	= unusable_show,
1610 };
1611 
1612 static int unusable_open(struct inode *inode, struct file *file)
1613 {
1614 	return seq_open(file, &unusable_op);
1615 }
1616 
1617 static const struct file_operations unusable_file_ops = {
1618 	.open		= unusable_open,
1619 	.read		= seq_read,
1620 	.llseek		= seq_lseek,
1621 	.release	= seq_release,
1622 };
1623 
1624 static void extfrag_show_print(struct seq_file *m,
1625 					pg_data_t *pgdat, struct zone *zone)
1626 {
1627 	unsigned int order;
1628 	int index;
1629 
1630 	/* Alloc on stack as interrupts are disabled for zone walk */
1631 	struct contig_page_info info;
1632 
1633 	seq_printf(m, "Node %d, zone %8s ",
1634 				pgdat->node_id,
1635 				zone->name);
1636 	for (order = 0; order < MAX_ORDER; ++order) {
1637 		fill_contig_page_info(zone, order, &info);
1638 		index = __fragmentation_index(order, &info);
1639 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1640 	}
1641 
1642 	seq_putc(m, '\n');
1643 }
1644 
1645 /*
1646  * Display fragmentation index for orders that allocations would fail for
1647  */
1648 static int extfrag_show(struct seq_file *m, void *arg)
1649 {
1650 	pg_data_t *pgdat = (pg_data_t *)arg;
1651 
1652 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1653 
1654 	return 0;
1655 }
1656 
1657 static const struct seq_operations extfrag_op = {
1658 	.start	= frag_start,
1659 	.next	= frag_next,
1660 	.stop	= frag_stop,
1661 	.show	= extfrag_show,
1662 };
1663 
1664 static int extfrag_open(struct inode *inode, struct file *file)
1665 {
1666 	return seq_open(file, &extfrag_op);
1667 }
1668 
1669 static const struct file_operations extfrag_file_ops = {
1670 	.open		= extfrag_open,
1671 	.read		= seq_read,
1672 	.llseek		= seq_lseek,
1673 	.release	= seq_release,
1674 };
1675 
1676 static int __init extfrag_debug_init(void)
1677 {
1678 	struct dentry *extfrag_debug_root;
1679 
1680 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1681 	if (!extfrag_debug_root)
1682 		return -ENOMEM;
1683 
1684 	if (!debugfs_create_file("unusable_index", 0444,
1685 			extfrag_debug_root, NULL, &unusable_file_ops))
1686 		goto fail;
1687 
1688 	if (!debugfs_create_file("extfrag_index", 0444,
1689 			extfrag_debug_root, NULL, &extfrag_file_ops))
1690 		goto fail;
1691 
1692 	return 0;
1693 fail:
1694 	debugfs_remove_recursive(extfrag_debug_root);
1695 	return -ENOMEM;
1696 }
1697 
1698 module_init(extfrag_debug_init);
1699 #endif
1700