1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/sched.h> 21 #include <linux/math64.h> 22 #include <linux/writeback.h> 23 #include <linux/compaction.h> 24 #include <linux/mm_inline.h> 25 #include <linux/page_ext.h> 26 #include <linux/page_owner.h> 27 28 #include "internal.h" 29 30 #ifdef CONFIG_VM_EVENT_COUNTERS 31 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 32 EXPORT_PER_CPU_SYMBOL(vm_event_states); 33 34 static void sum_vm_events(unsigned long *ret) 35 { 36 int cpu; 37 int i; 38 39 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 40 41 for_each_online_cpu(cpu) { 42 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 43 44 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 45 ret[i] += this->event[i]; 46 } 47 } 48 49 /* 50 * Accumulate the vm event counters across all CPUs. 51 * The result is unavoidably approximate - it can change 52 * during and after execution of this function. 53 */ 54 void all_vm_events(unsigned long *ret) 55 { 56 get_online_cpus(); 57 sum_vm_events(ret); 58 put_online_cpus(); 59 } 60 EXPORT_SYMBOL_GPL(all_vm_events); 61 62 /* 63 * Fold the foreign cpu events into our own. 64 * 65 * This is adding to the events on one processor 66 * but keeps the global counts constant. 67 */ 68 void vm_events_fold_cpu(int cpu) 69 { 70 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 71 int i; 72 73 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 74 count_vm_events(i, fold_state->event[i]); 75 fold_state->event[i] = 0; 76 } 77 } 78 79 #endif /* CONFIG_VM_EVENT_COUNTERS */ 80 81 /* 82 * Manage combined zone based / global counters 83 * 84 * vm_stat contains the global counters 85 */ 86 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 87 EXPORT_SYMBOL(vm_stat); 88 89 #ifdef CONFIG_SMP 90 91 int calculate_pressure_threshold(struct zone *zone) 92 { 93 int threshold; 94 int watermark_distance; 95 96 /* 97 * As vmstats are not up to date, there is drift between the estimated 98 * and real values. For high thresholds and a high number of CPUs, it 99 * is possible for the min watermark to be breached while the estimated 100 * value looks fine. The pressure threshold is a reduced value such 101 * that even the maximum amount of drift will not accidentally breach 102 * the min watermark 103 */ 104 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 105 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 106 107 /* 108 * Maximum threshold is 125 109 */ 110 threshold = min(125, threshold); 111 112 return threshold; 113 } 114 115 int calculate_normal_threshold(struct zone *zone) 116 { 117 int threshold; 118 int mem; /* memory in 128 MB units */ 119 120 /* 121 * The threshold scales with the number of processors and the amount 122 * of memory per zone. More memory means that we can defer updates for 123 * longer, more processors could lead to more contention. 124 * fls() is used to have a cheap way of logarithmic scaling. 125 * 126 * Some sample thresholds: 127 * 128 * Threshold Processors (fls) Zonesize fls(mem+1) 129 * ------------------------------------------------------------------ 130 * 8 1 1 0.9-1 GB 4 131 * 16 2 2 0.9-1 GB 4 132 * 20 2 2 1-2 GB 5 133 * 24 2 2 2-4 GB 6 134 * 28 2 2 4-8 GB 7 135 * 32 2 2 8-16 GB 8 136 * 4 2 2 <128M 1 137 * 30 4 3 2-4 GB 5 138 * 48 4 3 8-16 GB 8 139 * 32 8 4 1-2 GB 4 140 * 32 8 4 0.9-1GB 4 141 * 10 16 5 <128M 1 142 * 40 16 5 900M 4 143 * 70 64 7 2-4 GB 5 144 * 84 64 7 4-8 GB 6 145 * 108 512 9 4-8 GB 6 146 * 125 1024 10 8-16 GB 8 147 * 125 1024 10 16-32 GB 9 148 */ 149 150 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 151 152 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 153 154 /* 155 * Maximum threshold is 125 156 */ 157 threshold = min(125, threshold); 158 159 return threshold; 160 } 161 162 /* 163 * Refresh the thresholds for each zone. 164 */ 165 void refresh_zone_stat_thresholds(void) 166 { 167 struct zone *zone; 168 int cpu; 169 int threshold; 170 171 for_each_populated_zone(zone) { 172 unsigned long max_drift, tolerate_drift; 173 174 threshold = calculate_normal_threshold(zone); 175 176 for_each_online_cpu(cpu) 177 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 178 = threshold; 179 180 /* 181 * Only set percpu_drift_mark if there is a danger that 182 * NR_FREE_PAGES reports the low watermark is ok when in fact 183 * the min watermark could be breached by an allocation 184 */ 185 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 186 max_drift = num_online_cpus() * threshold; 187 if (max_drift > tolerate_drift) 188 zone->percpu_drift_mark = high_wmark_pages(zone) + 189 max_drift; 190 } 191 } 192 193 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 194 int (*calculate_pressure)(struct zone *)) 195 { 196 struct zone *zone; 197 int cpu; 198 int threshold; 199 int i; 200 201 for (i = 0; i < pgdat->nr_zones; i++) { 202 zone = &pgdat->node_zones[i]; 203 if (!zone->percpu_drift_mark) 204 continue; 205 206 threshold = (*calculate_pressure)(zone); 207 for_each_online_cpu(cpu) 208 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 209 = threshold; 210 } 211 } 212 213 /* 214 * For use when we know that interrupts are disabled, 215 * or when we know that preemption is disabled and that 216 * particular counter cannot be updated from interrupt context. 217 */ 218 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 219 int delta) 220 { 221 struct per_cpu_pageset __percpu *pcp = zone->pageset; 222 s8 __percpu *p = pcp->vm_stat_diff + item; 223 long x; 224 long t; 225 226 x = delta + __this_cpu_read(*p); 227 228 t = __this_cpu_read(pcp->stat_threshold); 229 230 if (unlikely(x > t || x < -t)) { 231 zone_page_state_add(x, zone, item); 232 x = 0; 233 } 234 __this_cpu_write(*p, x); 235 } 236 EXPORT_SYMBOL(__mod_zone_page_state); 237 238 /* 239 * Optimized increment and decrement functions. 240 * 241 * These are only for a single page and therefore can take a struct page * 242 * argument instead of struct zone *. This allows the inclusion of the code 243 * generated for page_zone(page) into the optimized functions. 244 * 245 * No overflow check is necessary and therefore the differential can be 246 * incremented or decremented in place which may allow the compilers to 247 * generate better code. 248 * The increment or decrement is known and therefore one boundary check can 249 * be omitted. 250 * 251 * NOTE: These functions are very performance sensitive. Change only 252 * with care. 253 * 254 * Some processors have inc/dec instructions that are atomic vs an interrupt. 255 * However, the code must first determine the differential location in a zone 256 * based on the processor number and then inc/dec the counter. There is no 257 * guarantee without disabling preemption that the processor will not change 258 * in between and therefore the atomicity vs. interrupt cannot be exploited 259 * in a useful way here. 260 */ 261 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 262 { 263 struct per_cpu_pageset __percpu *pcp = zone->pageset; 264 s8 __percpu *p = pcp->vm_stat_diff + item; 265 s8 v, t; 266 267 v = __this_cpu_inc_return(*p); 268 t = __this_cpu_read(pcp->stat_threshold); 269 if (unlikely(v > t)) { 270 s8 overstep = t >> 1; 271 272 zone_page_state_add(v + overstep, zone, item); 273 __this_cpu_write(*p, -overstep); 274 } 275 } 276 277 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 278 { 279 __inc_zone_state(page_zone(page), item); 280 } 281 EXPORT_SYMBOL(__inc_zone_page_state); 282 283 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 284 { 285 struct per_cpu_pageset __percpu *pcp = zone->pageset; 286 s8 __percpu *p = pcp->vm_stat_diff + item; 287 s8 v, t; 288 289 v = __this_cpu_dec_return(*p); 290 t = __this_cpu_read(pcp->stat_threshold); 291 if (unlikely(v < - t)) { 292 s8 overstep = t >> 1; 293 294 zone_page_state_add(v - overstep, zone, item); 295 __this_cpu_write(*p, overstep); 296 } 297 } 298 299 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 300 { 301 __dec_zone_state(page_zone(page), item); 302 } 303 EXPORT_SYMBOL(__dec_zone_page_state); 304 305 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 306 /* 307 * If we have cmpxchg_local support then we do not need to incur the overhead 308 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 309 * 310 * mod_state() modifies the zone counter state through atomic per cpu 311 * operations. 312 * 313 * Overstep mode specifies how overstep should handled: 314 * 0 No overstepping 315 * 1 Overstepping half of threshold 316 * -1 Overstepping minus half of threshold 317 */ 318 static inline void mod_state(struct zone *zone, 319 enum zone_stat_item item, int delta, int overstep_mode) 320 { 321 struct per_cpu_pageset __percpu *pcp = zone->pageset; 322 s8 __percpu *p = pcp->vm_stat_diff + item; 323 long o, n, t, z; 324 325 do { 326 z = 0; /* overflow to zone counters */ 327 328 /* 329 * The fetching of the stat_threshold is racy. We may apply 330 * a counter threshold to the wrong the cpu if we get 331 * rescheduled while executing here. However, the next 332 * counter update will apply the threshold again and 333 * therefore bring the counter under the threshold again. 334 * 335 * Most of the time the thresholds are the same anyways 336 * for all cpus in a zone. 337 */ 338 t = this_cpu_read(pcp->stat_threshold); 339 340 o = this_cpu_read(*p); 341 n = delta + o; 342 343 if (n > t || n < -t) { 344 int os = overstep_mode * (t >> 1) ; 345 346 /* Overflow must be added to zone counters */ 347 z = n + os; 348 n = -os; 349 } 350 } while (this_cpu_cmpxchg(*p, o, n) != o); 351 352 if (z) 353 zone_page_state_add(z, zone, item); 354 } 355 356 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 357 int delta) 358 { 359 mod_state(zone, item, delta, 0); 360 } 361 EXPORT_SYMBOL(mod_zone_page_state); 362 363 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 364 { 365 mod_state(zone, item, 1, 1); 366 } 367 368 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 369 { 370 mod_state(page_zone(page), item, 1, 1); 371 } 372 EXPORT_SYMBOL(inc_zone_page_state); 373 374 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 375 { 376 mod_state(page_zone(page), item, -1, -1); 377 } 378 EXPORT_SYMBOL(dec_zone_page_state); 379 #else 380 /* 381 * Use interrupt disable to serialize counter updates 382 */ 383 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 384 int delta) 385 { 386 unsigned long flags; 387 388 local_irq_save(flags); 389 __mod_zone_page_state(zone, item, delta); 390 local_irq_restore(flags); 391 } 392 EXPORT_SYMBOL(mod_zone_page_state); 393 394 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 395 { 396 unsigned long flags; 397 398 local_irq_save(flags); 399 __inc_zone_state(zone, item); 400 local_irq_restore(flags); 401 } 402 403 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 404 { 405 unsigned long flags; 406 struct zone *zone; 407 408 zone = page_zone(page); 409 local_irq_save(flags); 410 __inc_zone_state(zone, item); 411 local_irq_restore(flags); 412 } 413 EXPORT_SYMBOL(inc_zone_page_state); 414 415 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 __dec_zone_page_state(page, item); 421 local_irq_restore(flags); 422 } 423 EXPORT_SYMBOL(dec_zone_page_state); 424 #endif 425 426 427 /* 428 * Fold a differential into the global counters. 429 * Returns the number of counters updated. 430 */ 431 static int fold_diff(int *diff) 432 { 433 int i; 434 int changes = 0; 435 436 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 437 if (diff[i]) { 438 atomic_long_add(diff[i], &vm_stat[i]); 439 changes++; 440 } 441 return changes; 442 } 443 444 /* 445 * Update the zone counters for the current cpu. 446 * 447 * Note that refresh_cpu_vm_stats strives to only access 448 * node local memory. The per cpu pagesets on remote zones are placed 449 * in the memory local to the processor using that pageset. So the 450 * loop over all zones will access a series of cachelines local to 451 * the processor. 452 * 453 * The call to zone_page_state_add updates the cachelines with the 454 * statistics in the remote zone struct as well as the global cachelines 455 * with the global counters. These could cause remote node cache line 456 * bouncing and will have to be only done when necessary. 457 * 458 * The function returns the number of global counters updated. 459 */ 460 static int refresh_cpu_vm_stats(void) 461 { 462 struct zone *zone; 463 int i; 464 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 465 int changes = 0; 466 467 for_each_populated_zone(zone) { 468 struct per_cpu_pageset __percpu *p = zone->pageset; 469 470 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 471 int v; 472 473 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 474 if (v) { 475 476 atomic_long_add(v, &zone->vm_stat[i]); 477 global_diff[i] += v; 478 #ifdef CONFIG_NUMA 479 /* 3 seconds idle till flush */ 480 __this_cpu_write(p->expire, 3); 481 #endif 482 } 483 } 484 cond_resched(); 485 #ifdef CONFIG_NUMA 486 /* 487 * Deal with draining the remote pageset of this 488 * processor 489 * 490 * Check if there are pages remaining in this pageset 491 * if not then there is nothing to expire. 492 */ 493 if (!__this_cpu_read(p->expire) || 494 !__this_cpu_read(p->pcp.count)) 495 continue; 496 497 /* 498 * We never drain zones local to this processor. 499 */ 500 if (zone_to_nid(zone) == numa_node_id()) { 501 __this_cpu_write(p->expire, 0); 502 continue; 503 } 504 505 if (__this_cpu_dec_return(p->expire)) 506 continue; 507 508 if (__this_cpu_read(p->pcp.count)) { 509 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 510 changes++; 511 } 512 #endif 513 } 514 changes += fold_diff(global_diff); 515 return changes; 516 } 517 518 /* 519 * Fold the data for an offline cpu into the global array. 520 * There cannot be any access by the offline cpu and therefore 521 * synchronization is simplified. 522 */ 523 void cpu_vm_stats_fold(int cpu) 524 { 525 struct zone *zone; 526 int i; 527 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 528 529 for_each_populated_zone(zone) { 530 struct per_cpu_pageset *p; 531 532 p = per_cpu_ptr(zone->pageset, cpu); 533 534 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 535 if (p->vm_stat_diff[i]) { 536 int v; 537 538 v = p->vm_stat_diff[i]; 539 p->vm_stat_diff[i] = 0; 540 atomic_long_add(v, &zone->vm_stat[i]); 541 global_diff[i] += v; 542 } 543 } 544 545 fold_diff(global_diff); 546 } 547 548 /* 549 * this is only called if !populated_zone(zone), which implies no other users of 550 * pset->vm_stat_diff[] exsist. 551 */ 552 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 553 { 554 int i; 555 556 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 557 if (pset->vm_stat_diff[i]) { 558 int v = pset->vm_stat_diff[i]; 559 pset->vm_stat_diff[i] = 0; 560 atomic_long_add(v, &zone->vm_stat[i]); 561 atomic_long_add(v, &vm_stat[i]); 562 } 563 } 564 #endif 565 566 #ifdef CONFIG_NUMA 567 /* 568 * zonelist = the list of zones passed to the allocator 569 * z = the zone from which the allocation occurred. 570 * 571 * Must be called with interrupts disabled. 572 * 573 * When __GFP_OTHER_NODE is set assume the node of the preferred 574 * zone is the local node. This is useful for daemons who allocate 575 * memory on behalf of other processes. 576 */ 577 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 578 { 579 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 580 __inc_zone_state(z, NUMA_HIT); 581 } else { 582 __inc_zone_state(z, NUMA_MISS); 583 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 584 } 585 if (z->node == ((flags & __GFP_OTHER_NODE) ? 586 preferred_zone->node : numa_node_id())) 587 __inc_zone_state(z, NUMA_LOCAL); 588 else 589 __inc_zone_state(z, NUMA_OTHER); 590 } 591 #endif 592 593 #ifdef CONFIG_COMPACTION 594 595 struct contig_page_info { 596 unsigned long free_pages; 597 unsigned long free_blocks_total; 598 unsigned long free_blocks_suitable; 599 }; 600 601 /* 602 * Calculate the number of free pages in a zone, how many contiguous 603 * pages are free and how many are large enough to satisfy an allocation of 604 * the target size. Note that this function makes no attempt to estimate 605 * how many suitable free blocks there *might* be if MOVABLE pages were 606 * migrated. Calculating that is possible, but expensive and can be 607 * figured out from userspace 608 */ 609 static void fill_contig_page_info(struct zone *zone, 610 unsigned int suitable_order, 611 struct contig_page_info *info) 612 { 613 unsigned int order; 614 615 info->free_pages = 0; 616 info->free_blocks_total = 0; 617 info->free_blocks_suitable = 0; 618 619 for (order = 0; order < MAX_ORDER; order++) { 620 unsigned long blocks; 621 622 /* Count number of free blocks */ 623 blocks = zone->free_area[order].nr_free; 624 info->free_blocks_total += blocks; 625 626 /* Count free base pages */ 627 info->free_pages += blocks << order; 628 629 /* Count the suitable free blocks */ 630 if (order >= suitable_order) 631 info->free_blocks_suitable += blocks << 632 (order - suitable_order); 633 } 634 } 635 636 /* 637 * A fragmentation index only makes sense if an allocation of a requested 638 * size would fail. If that is true, the fragmentation index indicates 639 * whether external fragmentation or a lack of memory was the problem. 640 * The value can be used to determine if page reclaim or compaction 641 * should be used 642 */ 643 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 644 { 645 unsigned long requested = 1UL << order; 646 647 if (!info->free_blocks_total) 648 return 0; 649 650 /* Fragmentation index only makes sense when a request would fail */ 651 if (info->free_blocks_suitable) 652 return -1000; 653 654 /* 655 * Index is between 0 and 1 so return within 3 decimal places 656 * 657 * 0 => allocation would fail due to lack of memory 658 * 1 => allocation would fail due to fragmentation 659 */ 660 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 661 } 662 663 /* Same as __fragmentation index but allocs contig_page_info on stack */ 664 int fragmentation_index(struct zone *zone, unsigned int order) 665 { 666 struct contig_page_info info; 667 668 fill_contig_page_info(zone, order, &info); 669 return __fragmentation_index(order, &info); 670 } 671 #endif 672 673 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 674 #include <linux/proc_fs.h> 675 #include <linux/seq_file.h> 676 677 static char * const migratetype_names[MIGRATE_TYPES] = { 678 "Unmovable", 679 "Reclaimable", 680 "Movable", 681 "Reserve", 682 #ifdef CONFIG_CMA 683 "CMA", 684 #endif 685 #ifdef CONFIG_MEMORY_ISOLATION 686 "Isolate", 687 #endif 688 }; 689 690 static void *frag_start(struct seq_file *m, loff_t *pos) 691 { 692 pg_data_t *pgdat; 693 loff_t node = *pos; 694 for (pgdat = first_online_pgdat(); 695 pgdat && node; 696 pgdat = next_online_pgdat(pgdat)) 697 --node; 698 699 return pgdat; 700 } 701 702 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 703 { 704 pg_data_t *pgdat = (pg_data_t *)arg; 705 706 (*pos)++; 707 return next_online_pgdat(pgdat); 708 } 709 710 static void frag_stop(struct seq_file *m, void *arg) 711 { 712 } 713 714 /* Walk all the zones in a node and print using a callback */ 715 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 716 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 717 { 718 struct zone *zone; 719 struct zone *node_zones = pgdat->node_zones; 720 unsigned long flags; 721 722 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 723 if (!populated_zone(zone)) 724 continue; 725 726 spin_lock_irqsave(&zone->lock, flags); 727 print(m, pgdat, zone); 728 spin_unlock_irqrestore(&zone->lock, flags); 729 } 730 } 731 #endif 732 733 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 734 #ifdef CONFIG_ZONE_DMA 735 #define TEXT_FOR_DMA(xx) xx "_dma", 736 #else 737 #define TEXT_FOR_DMA(xx) 738 #endif 739 740 #ifdef CONFIG_ZONE_DMA32 741 #define TEXT_FOR_DMA32(xx) xx "_dma32", 742 #else 743 #define TEXT_FOR_DMA32(xx) 744 #endif 745 746 #ifdef CONFIG_HIGHMEM 747 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 748 #else 749 #define TEXT_FOR_HIGHMEM(xx) 750 #endif 751 752 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 753 TEXT_FOR_HIGHMEM(xx) xx "_movable", 754 755 const char * const vmstat_text[] = { 756 /* enum zone_stat_item countes */ 757 "nr_free_pages", 758 "nr_alloc_batch", 759 "nr_inactive_anon", 760 "nr_active_anon", 761 "nr_inactive_file", 762 "nr_active_file", 763 "nr_unevictable", 764 "nr_mlock", 765 "nr_anon_pages", 766 "nr_mapped", 767 "nr_file_pages", 768 "nr_dirty", 769 "nr_writeback", 770 "nr_slab_reclaimable", 771 "nr_slab_unreclaimable", 772 "nr_page_table_pages", 773 "nr_kernel_stack", 774 "nr_unstable", 775 "nr_bounce", 776 "nr_vmscan_write", 777 "nr_vmscan_immediate_reclaim", 778 "nr_writeback_temp", 779 "nr_isolated_anon", 780 "nr_isolated_file", 781 "nr_shmem", 782 "nr_dirtied", 783 "nr_written", 784 "nr_pages_scanned", 785 786 #ifdef CONFIG_NUMA 787 "numa_hit", 788 "numa_miss", 789 "numa_foreign", 790 "numa_interleave", 791 "numa_local", 792 "numa_other", 793 #endif 794 "workingset_refault", 795 "workingset_activate", 796 "workingset_nodereclaim", 797 "nr_anon_transparent_hugepages", 798 "nr_free_cma", 799 800 /* enum writeback_stat_item counters */ 801 "nr_dirty_threshold", 802 "nr_dirty_background_threshold", 803 804 #ifdef CONFIG_VM_EVENT_COUNTERS 805 /* enum vm_event_item counters */ 806 "pgpgin", 807 "pgpgout", 808 "pswpin", 809 "pswpout", 810 811 TEXTS_FOR_ZONES("pgalloc") 812 813 "pgfree", 814 "pgactivate", 815 "pgdeactivate", 816 817 "pgfault", 818 "pgmajfault", 819 820 TEXTS_FOR_ZONES("pgrefill") 821 TEXTS_FOR_ZONES("pgsteal_kswapd") 822 TEXTS_FOR_ZONES("pgsteal_direct") 823 TEXTS_FOR_ZONES("pgscan_kswapd") 824 TEXTS_FOR_ZONES("pgscan_direct") 825 "pgscan_direct_throttle", 826 827 #ifdef CONFIG_NUMA 828 "zone_reclaim_failed", 829 #endif 830 "pginodesteal", 831 "slabs_scanned", 832 "kswapd_inodesteal", 833 "kswapd_low_wmark_hit_quickly", 834 "kswapd_high_wmark_hit_quickly", 835 "pageoutrun", 836 "allocstall", 837 838 "pgrotated", 839 840 "drop_pagecache", 841 "drop_slab", 842 843 #ifdef CONFIG_NUMA_BALANCING 844 "numa_pte_updates", 845 "numa_huge_pte_updates", 846 "numa_hint_faults", 847 "numa_hint_faults_local", 848 "numa_pages_migrated", 849 #endif 850 #ifdef CONFIG_MIGRATION 851 "pgmigrate_success", 852 "pgmigrate_fail", 853 #endif 854 #ifdef CONFIG_COMPACTION 855 "compact_migrate_scanned", 856 "compact_free_scanned", 857 "compact_isolated", 858 "compact_stall", 859 "compact_fail", 860 "compact_success", 861 #endif 862 863 #ifdef CONFIG_HUGETLB_PAGE 864 "htlb_buddy_alloc_success", 865 "htlb_buddy_alloc_fail", 866 #endif 867 "unevictable_pgs_culled", 868 "unevictable_pgs_scanned", 869 "unevictable_pgs_rescued", 870 "unevictable_pgs_mlocked", 871 "unevictable_pgs_munlocked", 872 "unevictable_pgs_cleared", 873 "unevictable_pgs_stranded", 874 875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 876 "thp_fault_alloc", 877 "thp_fault_fallback", 878 "thp_collapse_alloc", 879 "thp_collapse_alloc_failed", 880 "thp_split", 881 "thp_zero_page_alloc", 882 "thp_zero_page_alloc_failed", 883 #endif 884 #ifdef CONFIG_MEMORY_BALLOON 885 "balloon_inflate", 886 "balloon_deflate", 887 #ifdef CONFIG_BALLOON_COMPACTION 888 "balloon_migrate", 889 #endif 890 #endif /* CONFIG_MEMORY_BALLOON */ 891 #ifdef CONFIG_DEBUG_TLBFLUSH 892 #ifdef CONFIG_SMP 893 "nr_tlb_remote_flush", 894 "nr_tlb_remote_flush_received", 895 #endif /* CONFIG_SMP */ 896 "nr_tlb_local_flush_all", 897 "nr_tlb_local_flush_one", 898 #endif /* CONFIG_DEBUG_TLBFLUSH */ 899 900 #ifdef CONFIG_DEBUG_VM_VMACACHE 901 "vmacache_find_calls", 902 "vmacache_find_hits", 903 "vmacache_full_flushes", 904 #endif 905 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 906 }; 907 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 908 909 910 #ifdef CONFIG_PROC_FS 911 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 912 struct zone *zone) 913 { 914 int order; 915 916 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 917 for (order = 0; order < MAX_ORDER; ++order) 918 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 919 seq_putc(m, '\n'); 920 } 921 922 /* 923 * This walks the free areas for each zone. 924 */ 925 static int frag_show(struct seq_file *m, void *arg) 926 { 927 pg_data_t *pgdat = (pg_data_t *)arg; 928 walk_zones_in_node(m, pgdat, frag_show_print); 929 return 0; 930 } 931 932 static void pagetypeinfo_showfree_print(struct seq_file *m, 933 pg_data_t *pgdat, struct zone *zone) 934 { 935 int order, mtype; 936 937 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 938 seq_printf(m, "Node %4d, zone %8s, type %12s ", 939 pgdat->node_id, 940 zone->name, 941 migratetype_names[mtype]); 942 for (order = 0; order < MAX_ORDER; ++order) { 943 unsigned long freecount = 0; 944 struct free_area *area; 945 struct list_head *curr; 946 947 area = &(zone->free_area[order]); 948 949 list_for_each(curr, &area->free_list[mtype]) 950 freecount++; 951 seq_printf(m, "%6lu ", freecount); 952 } 953 seq_putc(m, '\n'); 954 } 955 } 956 957 /* Print out the free pages at each order for each migatetype */ 958 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 959 { 960 int order; 961 pg_data_t *pgdat = (pg_data_t *)arg; 962 963 /* Print header */ 964 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 965 for (order = 0; order < MAX_ORDER; ++order) 966 seq_printf(m, "%6d ", order); 967 seq_putc(m, '\n'); 968 969 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 970 971 return 0; 972 } 973 974 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 975 pg_data_t *pgdat, struct zone *zone) 976 { 977 int mtype; 978 unsigned long pfn; 979 unsigned long start_pfn = zone->zone_start_pfn; 980 unsigned long end_pfn = zone_end_pfn(zone); 981 unsigned long count[MIGRATE_TYPES] = { 0, }; 982 983 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 984 struct page *page; 985 986 if (!pfn_valid(pfn)) 987 continue; 988 989 page = pfn_to_page(pfn); 990 991 /* Watch for unexpected holes punched in the memmap */ 992 if (!memmap_valid_within(pfn, page, zone)) 993 continue; 994 995 mtype = get_pageblock_migratetype(page); 996 997 if (mtype < MIGRATE_TYPES) 998 count[mtype]++; 999 } 1000 1001 /* Print counts */ 1002 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1003 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1004 seq_printf(m, "%12lu ", count[mtype]); 1005 seq_putc(m, '\n'); 1006 } 1007 1008 /* Print out the free pages at each order for each migratetype */ 1009 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1010 { 1011 int mtype; 1012 pg_data_t *pgdat = (pg_data_t *)arg; 1013 1014 seq_printf(m, "\n%-23s", "Number of blocks type "); 1015 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1016 seq_printf(m, "%12s ", migratetype_names[mtype]); 1017 seq_putc(m, '\n'); 1018 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1019 1020 return 0; 1021 } 1022 1023 #ifdef CONFIG_PAGE_OWNER 1024 static void pagetypeinfo_showmixedcount_print(struct seq_file *m, 1025 pg_data_t *pgdat, 1026 struct zone *zone) 1027 { 1028 struct page *page; 1029 struct page_ext *page_ext; 1030 unsigned long pfn = zone->zone_start_pfn, block_end_pfn; 1031 unsigned long end_pfn = pfn + zone->spanned_pages; 1032 unsigned long count[MIGRATE_TYPES] = { 0, }; 1033 int pageblock_mt, page_mt; 1034 int i; 1035 1036 /* Scan block by block. First and last block may be incomplete */ 1037 pfn = zone->zone_start_pfn; 1038 1039 /* 1040 * Walk the zone in pageblock_nr_pages steps. If a page block spans 1041 * a zone boundary, it will be double counted between zones. This does 1042 * not matter as the mixed block count will still be correct 1043 */ 1044 for (; pfn < end_pfn; ) { 1045 if (!pfn_valid(pfn)) { 1046 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); 1047 continue; 1048 } 1049 1050 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 1051 block_end_pfn = min(block_end_pfn, end_pfn); 1052 1053 page = pfn_to_page(pfn); 1054 pageblock_mt = get_pfnblock_migratetype(page, pfn); 1055 1056 for (; pfn < block_end_pfn; pfn++) { 1057 if (!pfn_valid_within(pfn)) 1058 continue; 1059 1060 page = pfn_to_page(pfn); 1061 if (PageBuddy(page)) { 1062 pfn += (1UL << page_order(page)) - 1; 1063 continue; 1064 } 1065 1066 if (PageReserved(page)) 1067 continue; 1068 1069 page_ext = lookup_page_ext(page); 1070 1071 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) 1072 continue; 1073 1074 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); 1075 if (pageblock_mt != page_mt) { 1076 if (is_migrate_cma(pageblock_mt)) 1077 count[MIGRATE_MOVABLE]++; 1078 else 1079 count[pageblock_mt]++; 1080 1081 pfn = block_end_pfn; 1082 break; 1083 } 1084 pfn += (1UL << page_ext->order) - 1; 1085 } 1086 } 1087 1088 /* Print counts */ 1089 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1090 for (i = 0; i < MIGRATE_TYPES; i++) 1091 seq_printf(m, "%12lu ", count[i]); 1092 seq_putc(m, '\n'); 1093 } 1094 #endif /* CONFIG_PAGE_OWNER */ 1095 1096 /* 1097 * Print out the number of pageblocks for each migratetype that contain pages 1098 * of other types. This gives an indication of how well fallbacks are being 1099 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1100 * to determine what is going on 1101 */ 1102 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1103 { 1104 #ifdef CONFIG_PAGE_OWNER 1105 int mtype; 1106 1107 if (!page_owner_inited) 1108 return; 1109 1110 drain_all_pages(NULL); 1111 1112 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1113 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1114 seq_printf(m, "%12s ", migratetype_names[mtype]); 1115 seq_putc(m, '\n'); 1116 1117 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1118 #endif /* CONFIG_PAGE_OWNER */ 1119 } 1120 1121 /* 1122 * This prints out statistics in relation to grouping pages by mobility. 1123 * It is expensive to collect so do not constantly read the file. 1124 */ 1125 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1126 { 1127 pg_data_t *pgdat = (pg_data_t *)arg; 1128 1129 /* check memoryless node */ 1130 if (!node_state(pgdat->node_id, N_MEMORY)) 1131 return 0; 1132 1133 seq_printf(m, "Page block order: %d\n", pageblock_order); 1134 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1135 seq_putc(m, '\n'); 1136 pagetypeinfo_showfree(m, pgdat); 1137 pagetypeinfo_showblockcount(m, pgdat); 1138 pagetypeinfo_showmixedcount(m, pgdat); 1139 1140 return 0; 1141 } 1142 1143 static const struct seq_operations fragmentation_op = { 1144 .start = frag_start, 1145 .next = frag_next, 1146 .stop = frag_stop, 1147 .show = frag_show, 1148 }; 1149 1150 static int fragmentation_open(struct inode *inode, struct file *file) 1151 { 1152 return seq_open(file, &fragmentation_op); 1153 } 1154 1155 static const struct file_operations fragmentation_file_operations = { 1156 .open = fragmentation_open, 1157 .read = seq_read, 1158 .llseek = seq_lseek, 1159 .release = seq_release, 1160 }; 1161 1162 static const struct seq_operations pagetypeinfo_op = { 1163 .start = frag_start, 1164 .next = frag_next, 1165 .stop = frag_stop, 1166 .show = pagetypeinfo_show, 1167 }; 1168 1169 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1170 { 1171 return seq_open(file, &pagetypeinfo_op); 1172 } 1173 1174 static const struct file_operations pagetypeinfo_file_ops = { 1175 .open = pagetypeinfo_open, 1176 .read = seq_read, 1177 .llseek = seq_lseek, 1178 .release = seq_release, 1179 }; 1180 1181 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1182 struct zone *zone) 1183 { 1184 int i; 1185 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1186 seq_printf(m, 1187 "\n pages free %lu" 1188 "\n min %lu" 1189 "\n low %lu" 1190 "\n high %lu" 1191 "\n scanned %lu" 1192 "\n spanned %lu" 1193 "\n present %lu" 1194 "\n managed %lu", 1195 zone_page_state(zone, NR_FREE_PAGES), 1196 min_wmark_pages(zone), 1197 low_wmark_pages(zone), 1198 high_wmark_pages(zone), 1199 zone_page_state(zone, NR_PAGES_SCANNED), 1200 zone->spanned_pages, 1201 zone->present_pages, 1202 zone->managed_pages); 1203 1204 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1205 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1206 zone_page_state(zone, i)); 1207 1208 seq_printf(m, 1209 "\n protection: (%ld", 1210 zone->lowmem_reserve[0]); 1211 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1212 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1213 seq_printf(m, 1214 ")" 1215 "\n pagesets"); 1216 for_each_online_cpu(i) { 1217 struct per_cpu_pageset *pageset; 1218 1219 pageset = per_cpu_ptr(zone->pageset, i); 1220 seq_printf(m, 1221 "\n cpu: %i" 1222 "\n count: %i" 1223 "\n high: %i" 1224 "\n batch: %i", 1225 i, 1226 pageset->pcp.count, 1227 pageset->pcp.high, 1228 pageset->pcp.batch); 1229 #ifdef CONFIG_SMP 1230 seq_printf(m, "\n vm stats threshold: %d", 1231 pageset->stat_threshold); 1232 #endif 1233 } 1234 seq_printf(m, 1235 "\n all_unreclaimable: %u" 1236 "\n start_pfn: %lu" 1237 "\n inactive_ratio: %u", 1238 !zone_reclaimable(zone), 1239 zone->zone_start_pfn, 1240 zone->inactive_ratio); 1241 seq_putc(m, '\n'); 1242 } 1243 1244 /* 1245 * Output information about zones in @pgdat. 1246 */ 1247 static int zoneinfo_show(struct seq_file *m, void *arg) 1248 { 1249 pg_data_t *pgdat = (pg_data_t *)arg; 1250 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1251 return 0; 1252 } 1253 1254 static const struct seq_operations zoneinfo_op = { 1255 .start = frag_start, /* iterate over all zones. The same as in 1256 * fragmentation. */ 1257 .next = frag_next, 1258 .stop = frag_stop, 1259 .show = zoneinfo_show, 1260 }; 1261 1262 static int zoneinfo_open(struct inode *inode, struct file *file) 1263 { 1264 return seq_open(file, &zoneinfo_op); 1265 } 1266 1267 static const struct file_operations proc_zoneinfo_file_operations = { 1268 .open = zoneinfo_open, 1269 .read = seq_read, 1270 .llseek = seq_lseek, 1271 .release = seq_release, 1272 }; 1273 1274 enum writeback_stat_item { 1275 NR_DIRTY_THRESHOLD, 1276 NR_DIRTY_BG_THRESHOLD, 1277 NR_VM_WRITEBACK_STAT_ITEMS, 1278 }; 1279 1280 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1281 { 1282 unsigned long *v; 1283 int i, stat_items_size; 1284 1285 if (*pos >= ARRAY_SIZE(vmstat_text)) 1286 return NULL; 1287 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1288 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1289 1290 #ifdef CONFIG_VM_EVENT_COUNTERS 1291 stat_items_size += sizeof(struct vm_event_state); 1292 #endif 1293 1294 v = kmalloc(stat_items_size, GFP_KERNEL); 1295 m->private = v; 1296 if (!v) 1297 return ERR_PTR(-ENOMEM); 1298 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1299 v[i] = global_page_state(i); 1300 v += NR_VM_ZONE_STAT_ITEMS; 1301 1302 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1303 v + NR_DIRTY_THRESHOLD); 1304 v += NR_VM_WRITEBACK_STAT_ITEMS; 1305 1306 #ifdef CONFIG_VM_EVENT_COUNTERS 1307 all_vm_events(v); 1308 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1309 v[PGPGOUT] /= 2; 1310 #endif 1311 return (unsigned long *)m->private + *pos; 1312 } 1313 1314 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1315 { 1316 (*pos)++; 1317 if (*pos >= ARRAY_SIZE(vmstat_text)) 1318 return NULL; 1319 return (unsigned long *)m->private + *pos; 1320 } 1321 1322 static int vmstat_show(struct seq_file *m, void *arg) 1323 { 1324 unsigned long *l = arg; 1325 unsigned long off = l - (unsigned long *)m->private; 1326 1327 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1328 return 0; 1329 } 1330 1331 static void vmstat_stop(struct seq_file *m, void *arg) 1332 { 1333 kfree(m->private); 1334 m->private = NULL; 1335 } 1336 1337 static const struct seq_operations vmstat_op = { 1338 .start = vmstat_start, 1339 .next = vmstat_next, 1340 .stop = vmstat_stop, 1341 .show = vmstat_show, 1342 }; 1343 1344 static int vmstat_open(struct inode *inode, struct file *file) 1345 { 1346 return seq_open(file, &vmstat_op); 1347 } 1348 1349 static const struct file_operations proc_vmstat_file_operations = { 1350 .open = vmstat_open, 1351 .read = seq_read, 1352 .llseek = seq_lseek, 1353 .release = seq_release, 1354 }; 1355 #endif /* CONFIG_PROC_FS */ 1356 1357 #ifdef CONFIG_SMP 1358 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1359 int sysctl_stat_interval __read_mostly = HZ; 1360 static cpumask_var_t cpu_stat_off; 1361 1362 static void vmstat_update(struct work_struct *w) 1363 { 1364 if (refresh_cpu_vm_stats()) 1365 /* 1366 * Counters were updated so we expect more updates 1367 * to occur in the future. Keep on running the 1368 * update worker thread. 1369 */ 1370 schedule_delayed_work(this_cpu_ptr(&vmstat_work), 1371 round_jiffies_relative(sysctl_stat_interval)); 1372 else { 1373 /* 1374 * We did not update any counters so the app may be in 1375 * a mode where it does not cause counter updates. 1376 * We may be uselessly running vmstat_update. 1377 * Defer the checking for differentials to the 1378 * shepherd thread on a different processor. 1379 */ 1380 int r; 1381 /* 1382 * Shepherd work thread does not race since it never 1383 * changes the bit if its zero but the cpu 1384 * online / off line code may race if 1385 * worker threads are still allowed during 1386 * shutdown / startup. 1387 */ 1388 r = cpumask_test_and_set_cpu(smp_processor_id(), 1389 cpu_stat_off); 1390 VM_BUG_ON(r); 1391 } 1392 } 1393 1394 /* 1395 * Check if the diffs for a certain cpu indicate that 1396 * an update is needed. 1397 */ 1398 static bool need_update(int cpu) 1399 { 1400 struct zone *zone; 1401 1402 for_each_populated_zone(zone) { 1403 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1404 1405 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1406 /* 1407 * The fast way of checking if there are any vmstat diffs. 1408 * This works because the diffs are byte sized items. 1409 */ 1410 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1411 return true; 1412 1413 } 1414 return false; 1415 } 1416 1417 1418 /* 1419 * Shepherd worker thread that checks the 1420 * differentials of processors that have their worker 1421 * threads for vm statistics updates disabled because of 1422 * inactivity. 1423 */ 1424 static void vmstat_shepherd(struct work_struct *w); 1425 1426 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd); 1427 1428 static void vmstat_shepherd(struct work_struct *w) 1429 { 1430 int cpu; 1431 1432 get_online_cpus(); 1433 /* Check processors whose vmstat worker threads have been disabled */ 1434 for_each_cpu(cpu, cpu_stat_off) 1435 if (need_update(cpu) && 1436 cpumask_test_and_clear_cpu(cpu, cpu_stat_off)) 1437 1438 schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu), 1439 __round_jiffies_relative(sysctl_stat_interval, cpu)); 1440 1441 put_online_cpus(); 1442 1443 schedule_delayed_work(&shepherd, 1444 round_jiffies_relative(sysctl_stat_interval)); 1445 1446 } 1447 1448 static void __init start_shepherd_timer(void) 1449 { 1450 int cpu; 1451 1452 for_each_possible_cpu(cpu) 1453 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1454 vmstat_update); 1455 1456 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL)) 1457 BUG(); 1458 cpumask_copy(cpu_stat_off, cpu_online_mask); 1459 1460 schedule_delayed_work(&shepherd, 1461 round_jiffies_relative(sysctl_stat_interval)); 1462 } 1463 1464 static void vmstat_cpu_dead(int node) 1465 { 1466 int cpu; 1467 1468 get_online_cpus(); 1469 for_each_online_cpu(cpu) 1470 if (cpu_to_node(cpu) == node) 1471 goto end; 1472 1473 node_clear_state(node, N_CPU); 1474 end: 1475 put_online_cpus(); 1476 } 1477 1478 /* 1479 * Use the cpu notifier to insure that the thresholds are recalculated 1480 * when necessary. 1481 */ 1482 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1483 unsigned long action, 1484 void *hcpu) 1485 { 1486 long cpu = (long)hcpu; 1487 1488 switch (action) { 1489 case CPU_ONLINE: 1490 case CPU_ONLINE_FROZEN: 1491 refresh_zone_stat_thresholds(); 1492 node_set_state(cpu_to_node(cpu), N_CPU); 1493 cpumask_set_cpu(cpu, cpu_stat_off); 1494 break; 1495 case CPU_DOWN_PREPARE: 1496 case CPU_DOWN_PREPARE_FROZEN: 1497 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1498 cpumask_clear_cpu(cpu, cpu_stat_off); 1499 break; 1500 case CPU_DOWN_FAILED: 1501 case CPU_DOWN_FAILED_FROZEN: 1502 cpumask_set_cpu(cpu, cpu_stat_off); 1503 break; 1504 case CPU_DEAD: 1505 case CPU_DEAD_FROZEN: 1506 refresh_zone_stat_thresholds(); 1507 vmstat_cpu_dead(cpu_to_node(cpu)); 1508 break; 1509 default: 1510 break; 1511 } 1512 return NOTIFY_OK; 1513 } 1514 1515 static struct notifier_block vmstat_notifier = 1516 { &vmstat_cpuup_callback, NULL, 0 }; 1517 #endif 1518 1519 static int __init setup_vmstat(void) 1520 { 1521 #ifdef CONFIG_SMP 1522 cpu_notifier_register_begin(); 1523 __register_cpu_notifier(&vmstat_notifier); 1524 1525 start_shepherd_timer(); 1526 cpu_notifier_register_done(); 1527 #endif 1528 #ifdef CONFIG_PROC_FS 1529 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1530 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1531 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1532 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1533 #endif 1534 return 0; 1535 } 1536 module_init(setup_vmstat) 1537 1538 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1539 #include <linux/debugfs.h> 1540 1541 1542 /* 1543 * Return an index indicating how much of the available free memory is 1544 * unusable for an allocation of the requested size. 1545 */ 1546 static int unusable_free_index(unsigned int order, 1547 struct contig_page_info *info) 1548 { 1549 /* No free memory is interpreted as all free memory is unusable */ 1550 if (info->free_pages == 0) 1551 return 1000; 1552 1553 /* 1554 * Index should be a value between 0 and 1. Return a value to 3 1555 * decimal places. 1556 * 1557 * 0 => no fragmentation 1558 * 1 => high fragmentation 1559 */ 1560 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1561 1562 } 1563 1564 static void unusable_show_print(struct seq_file *m, 1565 pg_data_t *pgdat, struct zone *zone) 1566 { 1567 unsigned int order; 1568 int index; 1569 struct contig_page_info info; 1570 1571 seq_printf(m, "Node %d, zone %8s ", 1572 pgdat->node_id, 1573 zone->name); 1574 for (order = 0; order < MAX_ORDER; ++order) { 1575 fill_contig_page_info(zone, order, &info); 1576 index = unusable_free_index(order, &info); 1577 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1578 } 1579 1580 seq_putc(m, '\n'); 1581 } 1582 1583 /* 1584 * Display unusable free space index 1585 * 1586 * The unusable free space index measures how much of the available free 1587 * memory cannot be used to satisfy an allocation of a given size and is a 1588 * value between 0 and 1. The higher the value, the more of free memory is 1589 * unusable and by implication, the worse the external fragmentation is. This 1590 * can be expressed as a percentage by multiplying by 100. 1591 */ 1592 static int unusable_show(struct seq_file *m, void *arg) 1593 { 1594 pg_data_t *pgdat = (pg_data_t *)arg; 1595 1596 /* check memoryless node */ 1597 if (!node_state(pgdat->node_id, N_MEMORY)) 1598 return 0; 1599 1600 walk_zones_in_node(m, pgdat, unusable_show_print); 1601 1602 return 0; 1603 } 1604 1605 static const struct seq_operations unusable_op = { 1606 .start = frag_start, 1607 .next = frag_next, 1608 .stop = frag_stop, 1609 .show = unusable_show, 1610 }; 1611 1612 static int unusable_open(struct inode *inode, struct file *file) 1613 { 1614 return seq_open(file, &unusable_op); 1615 } 1616 1617 static const struct file_operations unusable_file_ops = { 1618 .open = unusable_open, 1619 .read = seq_read, 1620 .llseek = seq_lseek, 1621 .release = seq_release, 1622 }; 1623 1624 static void extfrag_show_print(struct seq_file *m, 1625 pg_data_t *pgdat, struct zone *zone) 1626 { 1627 unsigned int order; 1628 int index; 1629 1630 /* Alloc on stack as interrupts are disabled for zone walk */ 1631 struct contig_page_info info; 1632 1633 seq_printf(m, "Node %d, zone %8s ", 1634 pgdat->node_id, 1635 zone->name); 1636 for (order = 0; order < MAX_ORDER; ++order) { 1637 fill_contig_page_info(zone, order, &info); 1638 index = __fragmentation_index(order, &info); 1639 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1640 } 1641 1642 seq_putc(m, '\n'); 1643 } 1644 1645 /* 1646 * Display fragmentation index for orders that allocations would fail for 1647 */ 1648 static int extfrag_show(struct seq_file *m, void *arg) 1649 { 1650 pg_data_t *pgdat = (pg_data_t *)arg; 1651 1652 walk_zones_in_node(m, pgdat, extfrag_show_print); 1653 1654 return 0; 1655 } 1656 1657 static const struct seq_operations extfrag_op = { 1658 .start = frag_start, 1659 .next = frag_next, 1660 .stop = frag_stop, 1661 .show = extfrag_show, 1662 }; 1663 1664 static int extfrag_open(struct inode *inode, struct file *file) 1665 { 1666 return seq_open(file, &extfrag_op); 1667 } 1668 1669 static const struct file_operations extfrag_file_ops = { 1670 .open = extfrag_open, 1671 .read = seq_read, 1672 .llseek = seq_lseek, 1673 .release = seq_release, 1674 }; 1675 1676 static int __init extfrag_debug_init(void) 1677 { 1678 struct dentry *extfrag_debug_root; 1679 1680 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1681 if (!extfrag_debug_root) 1682 return -ENOMEM; 1683 1684 if (!debugfs_create_file("unusable_index", 0444, 1685 extfrag_debug_root, NULL, &unusable_file_ops)) 1686 goto fail; 1687 1688 if (!debugfs_create_file("extfrag_index", 0444, 1689 extfrag_debug_root, NULL, &extfrag_file_ops)) 1690 goto fail; 1691 1692 return 0; 1693 fail: 1694 debugfs_remove_recursive(extfrag_debug_root); 1695 return -ENOMEM; 1696 } 1697 1698 module_init(extfrag_debug_init); 1699 #endif 1700