1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/cpu.h> 17 #include <linux/vmstat.h> 18 #include <linux/sched.h> 19 #include <linux/math64.h> 20 #include <linux/writeback.h> 21 #include <linux/compaction.h> 22 23 #ifdef CONFIG_VM_EVENT_COUNTERS 24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 25 EXPORT_PER_CPU_SYMBOL(vm_event_states); 26 27 static void sum_vm_events(unsigned long *ret) 28 { 29 int cpu; 30 int i; 31 32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 33 34 for_each_online_cpu(cpu) { 35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 36 37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 38 ret[i] += this->event[i]; 39 } 40 } 41 42 /* 43 * Accumulate the vm event counters across all CPUs. 44 * The result is unavoidably approximate - it can change 45 * during and after execution of this function. 46 */ 47 void all_vm_events(unsigned long *ret) 48 { 49 get_online_cpus(); 50 sum_vm_events(ret); 51 put_online_cpus(); 52 } 53 EXPORT_SYMBOL_GPL(all_vm_events); 54 55 #ifdef CONFIG_HOTPLUG 56 /* 57 * Fold the foreign cpu events into our own. 58 * 59 * This is adding to the events on one processor 60 * but keeps the global counts constant. 61 */ 62 void vm_events_fold_cpu(int cpu) 63 { 64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 65 int i; 66 67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 68 count_vm_events(i, fold_state->event[i]); 69 fold_state->event[i] = 0; 70 } 71 } 72 #endif /* CONFIG_HOTPLUG */ 73 74 #endif /* CONFIG_VM_EVENT_COUNTERS */ 75 76 /* 77 * Manage combined zone based / global counters 78 * 79 * vm_stat contains the global counters 80 */ 81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 82 EXPORT_SYMBOL(vm_stat); 83 84 #ifdef CONFIG_SMP 85 86 int calculate_pressure_threshold(struct zone *zone) 87 { 88 int threshold; 89 int watermark_distance; 90 91 /* 92 * As vmstats are not up to date, there is drift between the estimated 93 * and real values. For high thresholds and a high number of CPUs, it 94 * is possible for the min watermark to be breached while the estimated 95 * value looks fine. The pressure threshold is a reduced value such 96 * that even the maximum amount of drift will not accidentally breach 97 * the min watermark 98 */ 99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 100 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 101 102 /* 103 * Maximum threshold is 125 104 */ 105 threshold = min(125, threshold); 106 107 return threshold; 108 } 109 110 int calculate_normal_threshold(struct zone *zone) 111 { 112 int threshold; 113 int mem; /* memory in 128 MB units */ 114 115 /* 116 * The threshold scales with the number of processors and the amount 117 * of memory per zone. More memory means that we can defer updates for 118 * longer, more processors could lead to more contention. 119 * fls() is used to have a cheap way of logarithmic scaling. 120 * 121 * Some sample thresholds: 122 * 123 * Threshold Processors (fls) Zonesize fls(mem+1) 124 * ------------------------------------------------------------------ 125 * 8 1 1 0.9-1 GB 4 126 * 16 2 2 0.9-1 GB 4 127 * 20 2 2 1-2 GB 5 128 * 24 2 2 2-4 GB 6 129 * 28 2 2 4-8 GB 7 130 * 32 2 2 8-16 GB 8 131 * 4 2 2 <128M 1 132 * 30 4 3 2-4 GB 5 133 * 48 4 3 8-16 GB 8 134 * 32 8 4 1-2 GB 4 135 * 32 8 4 0.9-1GB 4 136 * 10 16 5 <128M 1 137 * 40 16 5 900M 4 138 * 70 64 7 2-4 GB 5 139 * 84 64 7 4-8 GB 6 140 * 108 512 9 4-8 GB 6 141 * 125 1024 10 8-16 GB 8 142 * 125 1024 10 16-32 GB 9 143 */ 144 145 mem = zone->present_pages >> (27 - PAGE_SHIFT); 146 147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 148 149 /* 150 * Maximum threshold is 125 151 */ 152 threshold = min(125, threshold); 153 154 return threshold; 155 } 156 157 /* 158 * Refresh the thresholds for each zone. 159 */ 160 void refresh_zone_stat_thresholds(void) 161 { 162 struct zone *zone; 163 int cpu; 164 int threshold; 165 166 for_each_populated_zone(zone) { 167 unsigned long max_drift, tolerate_drift; 168 169 threshold = calculate_normal_threshold(zone); 170 171 for_each_online_cpu(cpu) 172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 173 = threshold; 174 175 /* 176 * Only set percpu_drift_mark if there is a danger that 177 * NR_FREE_PAGES reports the low watermark is ok when in fact 178 * the min watermark could be breached by an allocation 179 */ 180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 181 max_drift = num_online_cpus() * threshold; 182 if (max_drift > tolerate_drift) 183 zone->percpu_drift_mark = high_wmark_pages(zone) + 184 max_drift; 185 } 186 } 187 188 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 189 int (*calculate_pressure)(struct zone *)) 190 { 191 struct zone *zone; 192 int cpu; 193 int threshold; 194 int i; 195 196 for (i = 0; i < pgdat->nr_zones; i++) { 197 zone = &pgdat->node_zones[i]; 198 if (!zone->percpu_drift_mark) 199 continue; 200 201 threshold = (*calculate_pressure)(zone); 202 for_each_possible_cpu(cpu) 203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 204 = threshold; 205 } 206 } 207 208 /* 209 * For use when we know that interrupts are disabled. 210 */ 211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 212 int delta) 213 { 214 struct per_cpu_pageset __percpu *pcp = zone->pageset; 215 s8 __percpu *p = pcp->vm_stat_diff + item; 216 long x; 217 long t; 218 219 x = delta + __this_cpu_read(*p); 220 221 t = __this_cpu_read(pcp->stat_threshold); 222 223 if (unlikely(x > t || x < -t)) { 224 zone_page_state_add(x, zone, item); 225 x = 0; 226 } 227 __this_cpu_write(*p, x); 228 } 229 EXPORT_SYMBOL(__mod_zone_page_state); 230 231 /* 232 * Optimized increment and decrement functions. 233 * 234 * These are only for a single page and therefore can take a struct page * 235 * argument instead of struct zone *. This allows the inclusion of the code 236 * generated for page_zone(page) into the optimized functions. 237 * 238 * No overflow check is necessary and therefore the differential can be 239 * incremented or decremented in place which may allow the compilers to 240 * generate better code. 241 * The increment or decrement is known and therefore one boundary check can 242 * be omitted. 243 * 244 * NOTE: These functions are very performance sensitive. Change only 245 * with care. 246 * 247 * Some processors have inc/dec instructions that are atomic vs an interrupt. 248 * However, the code must first determine the differential location in a zone 249 * based on the processor number and then inc/dec the counter. There is no 250 * guarantee without disabling preemption that the processor will not change 251 * in between and therefore the atomicity vs. interrupt cannot be exploited 252 * in a useful way here. 253 */ 254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 255 { 256 struct per_cpu_pageset __percpu *pcp = zone->pageset; 257 s8 __percpu *p = pcp->vm_stat_diff + item; 258 s8 v, t; 259 260 v = __this_cpu_inc_return(*p); 261 t = __this_cpu_read(pcp->stat_threshold); 262 if (unlikely(v > t)) { 263 s8 overstep = t >> 1; 264 265 zone_page_state_add(v + overstep, zone, item); 266 __this_cpu_write(*p, -overstep); 267 } 268 } 269 270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 271 { 272 __inc_zone_state(page_zone(page), item); 273 } 274 EXPORT_SYMBOL(__inc_zone_page_state); 275 276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 277 { 278 struct per_cpu_pageset __percpu *pcp = zone->pageset; 279 s8 __percpu *p = pcp->vm_stat_diff + item; 280 s8 v, t; 281 282 v = __this_cpu_dec_return(*p); 283 t = __this_cpu_read(pcp->stat_threshold); 284 if (unlikely(v < - t)) { 285 s8 overstep = t >> 1; 286 287 zone_page_state_add(v - overstep, zone, item); 288 __this_cpu_write(*p, overstep); 289 } 290 } 291 292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 293 { 294 __dec_zone_state(page_zone(page), item); 295 } 296 EXPORT_SYMBOL(__dec_zone_page_state); 297 298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 299 /* 300 * If we have cmpxchg_local support then we do not need to incur the overhead 301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 302 * 303 * mod_state() modifies the zone counter state through atomic per cpu 304 * operations. 305 * 306 * Overstep mode specifies how overstep should handled: 307 * 0 No overstepping 308 * 1 Overstepping half of threshold 309 * -1 Overstepping minus half of threshold 310 */ 311 static inline void mod_state(struct zone *zone, 312 enum zone_stat_item item, int delta, int overstep_mode) 313 { 314 struct per_cpu_pageset __percpu *pcp = zone->pageset; 315 s8 __percpu *p = pcp->vm_stat_diff + item; 316 long o, n, t, z; 317 318 do { 319 z = 0; /* overflow to zone counters */ 320 321 /* 322 * The fetching of the stat_threshold is racy. We may apply 323 * a counter threshold to the wrong the cpu if we get 324 * rescheduled while executing here. However, the next 325 * counter update will apply the threshold again and 326 * therefore bring the counter under the threshold again. 327 * 328 * Most of the time the thresholds are the same anyways 329 * for all cpus in a zone. 330 */ 331 t = this_cpu_read(pcp->stat_threshold); 332 333 o = this_cpu_read(*p); 334 n = delta + o; 335 336 if (n > t || n < -t) { 337 int os = overstep_mode * (t >> 1) ; 338 339 /* Overflow must be added to zone counters */ 340 z = n + os; 341 n = -os; 342 } 343 } while (this_cpu_cmpxchg(*p, o, n) != o); 344 345 if (z) 346 zone_page_state_add(z, zone, item); 347 } 348 349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 350 int delta) 351 { 352 mod_state(zone, item, delta, 0); 353 } 354 EXPORT_SYMBOL(mod_zone_page_state); 355 356 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 357 { 358 mod_state(zone, item, 1, 1); 359 } 360 361 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 362 { 363 mod_state(page_zone(page), item, 1, 1); 364 } 365 EXPORT_SYMBOL(inc_zone_page_state); 366 367 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 368 { 369 mod_state(page_zone(page), item, -1, -1); 370 } 371 EXPORT_SYMBOL(dec_zone_page_state); 372 #else 373 /* 374 * Use interrupt disable to serialize counter updates 375 */ 376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 377 int delta) 378 { 379 unsigned long flags; 380 381 local_irq_save(flags); 382 __mod_zone_page_state(zone, item, delta); 383 local_irq_restore(flags); 384 } 385 EXPORT_SYMBOL(mod_zone_page_state); 386 387 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __inc_zone_state(zone, item); 393 local_irq_restore(flags); 394 } 395 396 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 397 { 398 unsigned long flags; 399 struct zone *zone; 400 401 zone = page_zone(page); 402 local_irq_save(flags); 403 __inc_zone_state(zone, item); 404 local_irq_restore(flags); 405 } 406 EXPORT_SYMBOL(inc_zone_page_state); 407 408 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 __dec_zone_page_state(page, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(dec_zone_page_state); 417 #endif 418 419 /* 420 * Update the zone counters for one cpu. 421 * 422 * The cpu specified must be either the current cpu or a processor that 423 * is not online. If it is the current cpu then the execution thread must 424 * be pinned to the current cpu. 425 * 426 * Note that refresh_cpu_vm_stats strives to only access 427 * node local memory. The per cpu pagesets on remote zones are placed 428 * in the memory local to the processor using that pageset. So the 429 * loop over all zones will access a series of cachelines local to 430 * the processor. 431 * 432 * The call to zone_page_state_add updates the cachelines with the 433 * statistics in the remote zone struct as well as the global cachelines 434 * with the global counters. These could cause remote node cache line 435 * bouncing and will have to be only done when necessary. 436 */ 437 void refresh_cpu_vm_stats(int cpu) 438 { 439 struct zone *zone; 440 int i; 441 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 442 443 for_each_populated_zone(zone) { 444 struct per_cpu_pageset *p; 445 446 p = per_cpu_ptr(zone->pageset, cpu); 447 448 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 449 if (p->vm_stat_diff[i]) { 450 unsigned long flags; 451 int v; 452 453 local_irq_save(flags); 454 v = p->vm_stat_diff[i]; 455 p->vm_stat_diff[i] = 0; 456 local_irq_restore(flags); 457 atomic_long_add(v, &zone->vm_stat[i]); 458 global_diff[i] += v; 459 #ifdef CONFIG_NUMA 460 /* 3 seconds idle till flush */ 461 p->expire = 3; 462 #endif 463 } 464 cond_resched(); 465 #ifdef CONFIG_NUMA 466 /* 467 * Deal with draining the remote pageset of this 468 * processor 469 * 470 * Check if there are pages remaining in this pageset 471 * if not then there is nothing to expire. 472 */ 473 if (!p->expire || !p->pcp.count) 474 continue; 475 476 /* 477 * We never drain zones local to this processor. 478 */ 479 if (zone_to_nid(zone) == numa_node_id()) { 480 p->expire = 0; 481 continue; 482 } 483 484 p->expire--; 485 if (p->expire) 486 continue; 487 488 if (p->pcp.count) 489 drain_zone_pages(zone, &p->pcp); 490 #endif 491 } 492 493 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 494 if (global_diff[i]) 495 atomic_long_add(global_diff[i], &vm_stat[i]); 496 } 497 498 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 499 { 500 int i; 501 502 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 503 if (pset->vm_stat_diff[i]) { 504 int v = pset->vm_stat_diff[i]; 505 pset->vm_stat_diff[i] = 0; 506 atomic_long_add(v, &zone->vm_stat[i]); 507 atomic_long_add(v, &vm_stat[i]); 508 } 509 } 510 #endif 511 512 #ifdef CONFIG_NUMA 513 /* 514 * zonelist = the list of zones passed to the allocator 515 * z = the zone from which the allocation occurred. 516 * 517 * Must be called with interrupts disabled. 518 * 519 * When __GFP_OTHER_NODE is set assume the node of the preferred 520 * zone is the local node. This is useful for daemons who allocate 521 * memory on behalf of other processes. 522 */ 523 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 524 { 525 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 526 __inc_zone_state(z, NUMA_HIT); 527 } else { 528 __inc_zone_state(z, NUMA_MISS); 529 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 530 } 531 if (z->node == ((flags & __GFP_OTHER_NODE) ? 532 preferred_zone->node : numa_node_id())) 533 __inc_zone_state(z, NUMA_LOCAL); 534 else 535 __inc_zone_state(z, NUMA_OTHER); 536 } 537 #endif 538 539 #ifdef CONFIG_COMPACTION 540 541 struct contig_page_info { 542 unsigned long free_pages; 543 unsigned long free_blocks_total; 544 unsigned long free_blocks_suitable; 545 }; 546 547 /* 548 * Calculate the number of free pages in a zone, how many contiguous 549 * pages are free and how many are large enough to satisfy an allocation of 550 * the target size. Note that this function makes no attempt to estimate 551 * how many suitable free blocks there *might* be if MOVABLE pages were 552 * migrated. Calculating that is possible, but expensive and can be 553 * figured out from userspace 554 */ 555 static void fill_contig_page_info(struct zone *zone, 556 unsigned int suitable_order, 557 struct contig_page_info *info) 558 { 559 unsigned int order; 560 561 info->free_pages = 0; 562 info->free_blocks_total = 0; 563 info->free_blocks_suitable = 0; 564 565 for (order = 0; order < MAX_ORDER; order++) { 566 unsigned long blocks; 567 568 /* Count number of free blocks */ 569 blocks = zone->free_area[order].nr_free; 570 info->free_blocks_total += blocks; 571 572 /* Count free base pages */ 573 info->free_pages += blocks << order; 574 575 /* Count the suitable free blocks */ 576 if (order >= suitable_order) 577 info->free_blocks_suitable += blocks << 578 (order - suitable_order); 579 } 580 } 581 582 /* 583 * A fragmentation index only makes sense if an allocation of a requested 584 * size would fail. If that is true, the fragmentation index indicates 585 * whether external fragmentation or a lack of memory was the problem. 586 * The value can be used to determine if page reclaim or compaction 587 * should be used 588 */ 589 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 590 { 591 unsigned long requested = 1UL << order; 592 593 if (!info->free_blocks_total) 594 return 0; 595 596 /* Fragmentation index only makes sense when a request would fail */ 597 if (info->free_blocks_suitable) 598 return -1000; 599 600 /* 601 * Index is between 0 and 1 so return within 3 decimal places 602 * 603 * 0 => allocation would fail due to lack of memory 604 * 1 => allocation would fail due to fragmentation 605 */ 606 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 607 } 608 609 /* Same as __fragmentation index but allocs contig_page_info on stack */ 610 int fragmentation_index(struct zone *zone, unsigned int order) 611 { 612 struct contig_page_info info; 613 614 fill_contig_page_info(zone, order, &info); 615 return __fragmentation_index(order, &info); 616 } 617 #endif 618 619 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 620 #include <linux/proc_fs.h> 621 #include <linux/seq_file.h> 622 623 static char * const migratetype_names[MIGRATE_TYPES] = { 624 "Unmovable", 625 "Reclaimable", 626 "Movable", 627 "Reserve", 628 #ifdef CONFIG_CMA 629 "CMA", 630 #endif 631 "Isolate", 632 }; 633 634 static void *frag_start(struct seq_file *m, loff_t *pos) 635 { 636 pg_data_t *pgdat; 637 loff_t node = *pos; 638 for (pgdat = first_online_pgdat(); 639 pgdat && node; 640 pgdat = next_online_pgdat(pgdat)) 641 --node; 642 643 return pgdat; 644 } 645 646 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 647 { 648 pg_data_t *pgdat = (pg_data_t *)arg; 649 650 (*pos)++; 651 return next_online_pgdat(pgdat); 652 } 653 654 static void frag_stop(struct seq_file *m, void *arg) 655 { 656 } 657 658 /* Walk all the zones in a node and print using a callback */ 659 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 660 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 661 { 662 struct zone *zone; 663 struct zone *node_zones = pgdat->node_zones; 664 unsigned long flags; 665 666 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 667 if (!populated_zone(zone)) 668 continue; 669 670 spin_lock_irqsave(&zone->lock, flags); 671 print(m, pgdat, zone); 672 spin_unlock_irqrestore(&zone->lock, flags); 673 } 674 } 675 #endif 676 677 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 678 #ifdef CONFIG_ZONE_DMA 679 #define TEXT_FOR_DMA(xx) xx "_dma", 680 #else 681 #define TEXT_FOR_DMA(xx) 682 #endif 683 684 #ifdef CONFIG_ZONE_DMA32 685 #define TEXT_FOR_DMA32(xx) xx "_dma32", 686 #else 687 #define TEXT_FOR_DMA32(xx) 688 #endif 689 690 #ifdef CONFIG_HIGHMEM 691 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 692 #else 693 #define TEXT_FOR_HIGHMEM(xx) 694 #endif 695 696 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 697 TEXT_FOR_HIGHMEM(xx) xx "_movable", 698 699 const char * const vmstat_text[] = { 700 /* Zoned VM counters */ 701 "nr_free_pages", 702 "nr_inactive_anon", 703 "nr_active_anon", 704 "nr_inactive_file", 705 "nr_active_file", 706 "nr_unevictable", 707 "nr_mlock", 708 "nr_anon_pages", 709 "nr_mapped", 710 "nr_file_pages", 711 "nr_dirty", 712 "nr_writeback", 713 "nr_slab_reclaimable", 714 "nr_slab_unreclaimable", 715 "nr_page_table_pages", 716 "nr_kernel_stack", 717 "nr_unstable", 718 "nr_bounce", 719 "nr_vmscan_write", 720 "nr_vmscan_immediate_reclaim", 721 "nr_writeback_temp", 722 "nr_isolated_anon", 723 "nr_isolated_file", 724 "nr_shmem", 725 "nr_dirtied", 726 "nr_written", 727 728 #ifdef CONFIG_NUMA 729 "numa_hit", 730 "numa_miss", 731 "numa_foreign", 732 "numa_interleave", 733 "numa_local", 734 "numa_other", 735 #endif 736 "nr_anon_transparent_hugepages", 737 "nr_free_cma", 738 "nr_dirty_threshold", 739 "nr_dirty_background_threshold", 740 741 #ifdef CONFIG_VM_EVENT_COUNTERS 742 "pgpgin", 743 "pgpgout", 744 "pswpin", 745 "pswpout", 746 747 TEXTS_FOR_ZONES("pgalloc") 748 749 "pgfree", 750 "pgactivate", 751 "pgdeactivate", 752 753 "pgfault", 754 "pgmajfault", 755 756 TEXTS_FOR_ZONES("pgrefill") 757 TEXTS_FOR_ZONES("pgsteal_kswapd") 758 TEXTS_FOR_ZONES("pgsteal_direct") 759 TEXTS_FOR_ZONES("pgscan_kswapd") 760 TEXTS_FOR_ZONES("pgscan_direct") 761 "pgscan_direct_throttle", 762 763 #ifdef CONFIG_NUMA 764 "zone_reclaim_failed", 765 #endif 766 "pginodesteal", 767 "slabs_scanned", 768 "kswapd_inodesteal", 769 "kswapd_low_wmark_hit_quickly", 770 "kswapd_high_wmark_hit_quickly", 771 "kswapd_skip_congestion_wait", 772 "pageoutrun", 773 "allocstall", 774 775 "pgrotated", 776 777 #ifdef CONFIG_COMPACTION 778 "compact_blocks_moved", 779 "compact_pages_moved", 780 "compact_pagemigrate_failed", 781 "compact_stall", 782 "compact_fail", 783 "compact_success", 784 #endif 785 786 #ifdef CONFIG_HUGETLB_PAGE 787 "htlb_buddy_alloc_success", 788 "htlb_buddy_alloc_fail", 789 #endif 790 "unevictable_pgs_culled", 791 "unevictable_pgs_scanned", 792 "unevictable_pgs_rescued", 793 "unevictable_pgs_mlocked", 794 "unevictable_pgs_munlocked", 795 "unevictable_pgs_cleared", 796 "unevictable_pgs_stranded", 797 798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 799 "thp_fault_alloc", 800 "thp_fault_fallback", 801 "thp_collapse_alloc", 802 "thp_collapse_alloc_failed", 803 "thp_split", 804 #endif 805 806 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 807 }; 808 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 809 810 811 #ifdef CONFIG_PROC_FS 812 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 813 struct zone *zone) 814 { 815 int order; 816 817 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 818 for (order = 0; order < MAX_ORDER; ++order) 819 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 820 seq_putc(m, '\n'); 821 } 822 823 /* 824 * This walks the free areas for each zone. 825 */ 826 static int frag_show(struct seq_file *m, void *arg) 827 { 828 pg_data_t *pgdat = (pg_data_t *)arg; 829 walk_zones_in_node(m, pgdat, frag_show_print); 830 return 0; 831 } 832 833 static void pagetypeinfo_showfree_print(struct seq_file *m, 834 pg_data_t *pgdat, struct zone *zone) 835 { 836 int order, mtype; 837 838 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 839 seq_printf(m, "Node %4d, zone %8s, type %12s ", 840 pgdat->node_id, 841 zone->name, 842 migratetype_names[mtype]); 843 for (order = 0; order < MAX_ORDER; ++order) { 844 unsigned long freecount = 0; 845 struct free_area *area; 846 struct list_head *curr; 847 848 area = &(zone->free_area[order]); 849 850 list_for_each(curr, &area->free_list[mtype]) 851 freecount++; 852 seq_printf(m, "%6lu ", freecount); 853 } 854 seq_putc(m, '\n'); 855 } 856 } 857 858 /* Print out the free pages at each order for each migatetype */ 859 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 860 { 861 int order; 862 pg_data_t *pgdat = (pg_data_t *)arg; 863 864 /* Print header */ 865 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 866 for (order = 0; order < MAX_ORDER; ++order) 867 seq_printf(m, "%6d ", order); 868 seq_putc(m, '\n'); 869 870 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 871 872 return 0; 873 } 874 875 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 876 pg_data_t *pgdat, struct zone *zone) 877 { 878 int mtype; 879 unsigned long pfn; 880 unsigned long start_pfn = zone->zone_start_pfn; 881 unsigned long end_pfn = start_pfn + zone->spanned_pages; 882 unsigned long count[MIGRATE_TYPES] = { 0, }; 883 884 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 885 struct page *page; 886 887 if (!pfn_valid(pfn)) 888 continue; 889 890 page = pfn_to_page(pfn); 891 892 /* Watch for unexpected holes punched in the memmap */ 893 if (!memmap_valid_within(pfn, page, zone)) 894 continue; 895 896 mtype = get_pageblock_migratetype(page); 897 898 if (mtype < MIGRATE_TYPES) 899 count[mtype]++; 900 } 901 902 /* Print counts */ 903 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 904 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 905 seq_printf(m, "%12lu ", count[mtype]); 906 seq_putc(m, '\n'); 907 } 908 909 /* Print out the free pages at each order for each migratetype */ 910 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 911 { 912 int mtype; 913 pg_data_t *pgdat = (pg_data_t *)arg; 914 915 seq_printf(m, "\n%-23s", "Number of blocks type "); 916 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 917 seq_printf(m, "%12s ", migratetype_names[mtype]); 918 seq_putc(m, '\n'); 919 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 920 921 return 0; 922 } 923 924 /* 925 * This prints out statistics in relation to grouping pages by mobility. 926 * It is expensive to collect so do not constantly read the file. 927 */ 928 static int pagetypeinfo_show(struct seq_file *m, void *arg) 929 { 930 pg_data_t *pgdat = (pg_data_t *)arg; 931 932 /* check memoryless node */ 933 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 934 return 0; 935 936 seq_printf(m, "Page block order: %d\n", pageblock_order); 937 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 938 seq_putc(m, '\n'); 939 pagetypeinfo_showfree(m, pgdat); 940 pagetypeinfo_showblockcount(m, pgdat); 941 942 return 0; 943 } 944 945 static const struct seq_operations fragmentation_op = { 946 .start = frag_start, 947 .next = frag_next, 948 .stop = frag_stop, 949 .show = frag_show, 950 }; 951 952 static int fragmentation_open(struct inode *inode, struct file *file) 953 { 954 return seq_open(file, &fragmentation_op); 955 } 956 957 static const struct file_operations fragmentation_file_operations = { 958 .open = fragmentation_open, 959 .read = seq_read, 960 .llseek = seq_lseek, 961 .release = seq_release, 962 }; 963 964 static const struct seq_operations pagetypeinfo_op = { 965 .start = frag_start, 966 .next = frag_next, 967 .stop = frag_stop, 968 .show = pagetypeinfo_show, 969 }; 970 971 static int pagetypeinfo_open(struct inode *inode, struct file *file) 972 { 973 return seq_open(file, &pagetypeinfo_op); 974 } 975 976 static const struct file_operations pagetypeinfo_file_ops = { 977 .open = pagetypeinfo_open, 978 .read = seq_read, 979 .llseek = seq_lseek, 980 .release = seq_release, 981 }; 982 983 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 984 struct zone *zone) 985 { 986 int i; 987 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 988 seq_printf(m, 989 "\n pages free %lu" 990 "\n min %lu" 991 "\n low %lu" 992 "\n high %lu" 993 "\n scanned %lu" 994 "\n spanned %lu" 995 "\n present %lu", 996 zone_page_state(zone, NR_FREE_PAGES), 997 min_wmark_pages(zone), 998 low_wmark_pages(zone), 999 high_wmark_pages(zone), 1000 zone->pages_scanned, 1001 zone->spanned_pages, 1002 zone->present_pages); 1003 1004 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1005 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1006 zone_page_state(zone, i)); 1007 1008 seq_printf(m, 1009 "\n protection: (%lu", 1010 zone->lowmem_reserve[0]); 1011 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1012 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 1013 seq_printf(m, 1014 ")" 1015 "\n pagesets"); 1016 for_each_online_cpu(i) { 1017 struct per_cpu_pageset *pageset; 1018 1019 pageset = per_cpu_ptr(zone->pageset, i); 1020 seq_printf(m, 1021 "\n cpu: %i" 1022 "\n count: %i" 1023 "\n high: %i" 1024 "\n batch: %i", 1025 i, 1026 pageset->pcp.count, 1027 pageset->pcp.high, 1028 pageset->pcp.batch); 1029 #ifdef CONFIG_SMP 1030 seq_printf(m, "\n vm stats threshold: %d", 1031 pageset->stat_threshold); 1032 #endif 1033 } 1034 seq_printf(m, 1035 "\n all_unreclaimable: %u" 1036 "\n start_pfn: %lu" 1037 "\n inactive_ratio: %u", 1038 zone->all_unreclaimable, 1039 zone->zone_start_pfn, 1040 zone->inactive_ratio); 1041 seq_putc(m, '\n'); 1042 } 1043 1044 /* 1045 * Output information about zones in @pgdat. 1046 */ 1047 static int zoneinfo_show(struct seq_file *m, void *arg) 1048 { 1049 pg_data_t *pgdat = (pg_data_t *)arg; 1050 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1051 return 0; 1052 } 1053 1054 static const struct seq_operations zoneinfo_op = { 1055 .start = frag_start, /* iterate over all zones. The same as in 1056 * fragmentation. */ 1057 .next = frag_next, 1058 .stop = frag_stop, 1059 .show = zoneinfo_show, 1060 }; 1061 1062 static int zoneinfo_open(struct inode *inode, struct file *file) 1063 { 1064 return seq_open(file, &zoneinfo_op); 1065 } 1066 1067 static const struct file_operations proc_zoneinfo_file_operations = { 1068 .open = zoneinfo_open, 1069 .read = seq_read, 1070 .llseek = seq_lseek, 1071 .release = seq_release, 1072 }; 1073 1074 enum writeback_stat_item { 1075 NR_DIRTY_THRESHOLD, 1076 NR_DIRTY_BG_THRESHOLD, 1077 NR_VM_WRITEBACK_STAT_ITEMS, 1078 }; 1079 1080 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1081 { 1082 unsigned long *v; 1083 int i, stat_items_size; 1084 1085 if (*pos >= ARRAY_SIZE(vmstat_text)) 1086 return NULL; 1087 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1088 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1089 1090 #ifdef CONFIG_VM_EVENT_COUNTERS 1091 stat_items_size += sizeof(struct vm_event_state); 1092 #endif 1093 1094 v = kmalloc(stat_items_size, GFP_KERNEL); 1095 m->private = v; 1096 if (!v) 1097 return ERR_PTR(-ENOMEM); 1098 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1099 v[i] = global_page_state(i); 1100 v += NR_VM_ZONE_STAT_ITEMS; 1101 1102 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1103 v + NR_DIRTY_THRESHOLD); 1104 v += NR_VM_WRITEBACK_STAT_ITEMS; 1105 1106 #ifdef CONFIG_VM_EVENT_COUNTERS 1107 all_vm_events(v); 1108 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1109 v[PGPGOUT] /= 2; 1110 #endif 1111 return (unsigned long *)m->private + *pos; 1112 } 1113 1114 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1115 { 1116 (*pos)++; 1117 if (*pos >= ARRAY_SIZE(vmstat_text)) 1118 return NULL; 1119 return (unsigned long *)m->private + *pos; 1120 } 1121 1122 static int vmstat_show(struct seq_file *m, void *arg) 1123 { 1124 unsigned long *l = arg; 1125 unsigned long off = l - (unsigned long *)m->private; 1126 1127 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1128 return 0; 1129 } 1130 1131 static void vmstat_stop(struct seq_file *m, void *arg) 1132 { 1133 kfree(m->private); 1134 m->private = NULL; 1135 } 1136 1137 static const struct seq_operations vmstat_op = { 1138 .start = vmstat_start, 1139 .next = vmstat_next, 1140 .stop = vmstat_stop, 1141 .show = vmstat_show, 1142 }; 1143 1144 static int vmstat_open(struct inode *inode, struct file *file) 1145 { 1146 return seq_open(file, &vmstat_op); 1147 } 1148 1149 static const struct file_operations proc_vmstat_file_operations = { 1150 .open = vmstat_open, 1151 .read = seq_read, 1152 .llseek = seq_lseek, 1153 .release = seq_release, 1154 }; 1155 #endif /* CONFIG_PROC_FS */ 1156 1157 #ifdef CONFIG_SMP 1158 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1159 int sysctl_stat_interval __read_mostly = HZ; 1160 1161 static void vmstat_update(struct work_struct *w) 1162 { 1163 refresh_cpu_vm_stats(smp_processor_id()); 1164 schedule_delayed_work(&__get_cpu_var(vmstat_work), 1165 round_jiffies_relative(sysctl_stat_interval)); 1166 } 1167 1168 static void __cpuinit start_cpu_timer(int cpu) 1169 { 1170 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 1171 1172 INIT_DEFERRABLE_WORK(work, vmstat_update); 1173 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 1174 } 1175 1176 /* 1177 * Use the cpu notifier to insure that the thresholds are recalculated 1178 * when necessary. 1179 */ 1180 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 1181 unsigned long action, 1182 void *hcpu) 1183 { 1184 long cpu = (long)hcpu; 1185 1186 switch (action) { 1187 case CPU_ONLINE: 1188 case CPU_ONLINE_FROZEN: 1189 refresh_zone_stat_thresholds(); 1190 start_cpu_timer(cpu); 1191 node_set_state(cpu_to_node(cpu), N_CPU); 1192 break; 1193 case CPU_DOWN_PREPARE: 1194 case CPU_DOWN_PREPARE_FROZEN: 1195 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1196 per_cpu(vmstat_work, cpu).work.func = NULL; 1197 break; 1198 case CPU_DOWN_FAILED: 1199 case CPU_DOWN_FAILED_FROZEN: 1200 start_cpu_timer(cpu); 1201 break; 1202 case CPU_DEAD: 1203 case CPU_DEAD_FROZEN: 1204 refresh_zone_stat_thresholds(); 1205 break; 1206 default: 1207 break; 1208 } 1209 return NOTIFY_OK; 1210 } 1211 1212 static struct notifier_block __cpuinitdata vmstat_notifier = 1213 { &vmstat_cpuup_callback, NULL, 0 }; 1214 #endif 1215 1216 static int __init setup_vmstat(void) 1217 { 1218 #ifdef CONFIG_SMP 1219 int cpu; 1220 1221 register_cpu_notifier(&vmstat_notifier); 1222 1223 for_each_online_cpu(cpu) 1224 start_cpu_timer(cpu); 1225 #endif 1226 #ifdef CONFIG_PROC_FS 1227 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1228 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1229 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1230 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1231 #endif 1232 return 0; 1233 } 1234 module_init(setup_vmstat) 1235 1236 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1237 #include <linux/debugfs.h> 1238 1239 1240 /* 1241 * Return an index indicating how much of the available free memory is 1242 * unusable for an allocation of the requested size. 1243 */ 1244 static int unusable_free_index(unsigned int order, 1245 struct contig_page_info *info) 1246 { 1247 /* No free memory is interpreted as all free memory is unusable */ 1248 if (info->free_pages == 0) 1249 return 1000; 1250 1251 /* 1252 * Index should be a value between 0 and 1. Return a value to 3 1253 * decimal places. 1254 * 1255 * 0 => no fragmentation 1256 * 1 => high fragmentation 1257 */ 1258 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1259 1260 } 1261 1262 static void unusable_show_print(struct seq_file *m, 1263 pg_data_t *pgdat, struct zone *zone) 1264 { 1265 unsigned int order; 1266 int index; 1267 struct contig_page_info info; 1268 1269 seq_printf(m, "Node %d, zone %8s ", 1270 pgdat->node_id, 1271 zone->name); 1272 for (order = 0; order < MAX_ORDER; ++order) { 1273 fill_contig_page_info(zone, order, &info); 1274 index = unusable_free_index(order, &info); 1275 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1276 } 1277 1278 seq_putc(m, '\n'); 1279 } 1280 1281 /* 1282 * Display unusable free space index 1283 * 1284 * The unusable free space index measures how much of the available free 1285 * memory cannot be used to satisfy an allocation of a given size and is a 1286 * value between 0 and 1. The higher the value, the more of free memory is 1287 * unusable and by implication, the worse the external fragmentation is. This 1288 * can be expressed as a percentage by multiplying by 100. 1289 */ 1290 static int unusable_show(struct seq_file *m, void *arg) 1291 { 1292 pg_data_t *pgdat = (pg_data_t *)arg; 1293 1294 /* check memoryless node */ 1295 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 1296 return 0; 1297 1298 walk_zones_in_node(m, pgdat, unusable_show_print); 1299 1300 return 0; 1301 } 1302 1303 static const struct seq_operations unusable_op = { 1304 .start = frag_start, 1305 .next = frag_next, 1306 .stop = frag_stop, 1307 .show = unusable_show, 1308 }; 1309 1310 static int unusable_open(struct inode *inode, struct file *file) 1311 { 1312 return seq_open(file, &unusable_op); 1313 } 1314 1315 static const struct file_operations unusable_file_ops = { 1316 .open = unusable_open, 1317 .read = seq_read, 1318 .llseek = seq_lseek, 1319 .release = seq_release, 1320 }; 1321 1322 static void extfrag_show_print(struct seq_file *m, 1323 pg_data_t *pgdat, struct zone *zone) 1324 { 1325 unsigned int order; 1326 int index; 1327 1328 /* Alloc on stack as interrupts are disabled for zone walk */ 1329 struct contig_page_info info; 1330 1331 seq_printf(m, "Node %d, zone %8s ", 1332 pgdat->node_id, 1333 zone->name); 1334 for (order = 0; order < MAX_ORDER; ++order) { 1335 fill_contig_page_info(zone, order, &info); 1336 index = __fragmentation_index(order, &info); 1337 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1338 } 1339 1340 seq_putc(m, '\n'); 1341 } 1342 1343 /* 1344 * Display fragmentation index for orders that allocations would fail for 1345 */ 1346 static int extfrag_show(struct seq_file *m, void *arg) 1347 { 1348 pg_data_t *pgdat = (pg_data_t *)arg; 1349 1350 walk_zones_in_node(m, pgdat, extfrag_show_print); 1351 1352 return 0; 1353 } 1354 1355 static const struct seq_operations extfrag_op = { 1356 .start = frag_start, 1357 .next = frag_next, 1358 .stop = frag_stop, 1359 .show = extfrag_show, 1360 }; 1361 1362 static int extfrag_open(struct inode *inode, struct file *file) 1363 { 1364 return seq_open(file, &extfrag_op); 1365 } 1366 1367 static const struct file_operations extfrag_file_ops = { 1368 .open = extfrag_open, 1369 .read = seq_read, 1370 .llseek = seq_lseek, 1371 .release = seq_release, 1372 }; 1373 1374 static int __init extfrag_debug_init(void) 1375 { 1376 struct dentry *extfrag_debug_root; 1377 1378 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1379 if (!extfrag_debug_root) 1380 return -ENOMEM; 1381 1382 if (!debugfs_create_file("unusable_index", 0444, 1383 extfrag_debug_root, NULL, &unusable_file_ops)) 1384 goto fail; 1385 1386 if (!debugfs_create_file("extfrag_index", 0444, 1387 extfrag_debug_root, NULL, &extfrag_file_ops)) 1388 goto fail; 1389 1390 return 0; 1391 fail: 1392 debugfs_remove_recursive(extfrag_debug_root); 1393 return -ENOMEM; 1394 } 1395 1396 module_init(extfrag_debug_init); 1397 #endif 1398