xref: /openbmc/linux/mm/vmstat.c (revision 80ecbd24)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 /*
56  * Fold the foreign cpu events into our own.
57  *
58  * This is adding to the events on one processor
59  * but keeps the global counts constant.
60  */
61 void vm_events_fold_cpu(int cpu)
62 {
63 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64 	int i;
65 
66 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67 		count_vm_events(i, fold_state->event[i]);
68 		fold_state->event[i] = 0;
69 	}
70 }
71 
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73 
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81 
82 #ifdef CONFIG_SMP
83 
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86 	int threshold;
87 	int watermark_distance;
88 
89 	/*
90 	 * As vmstats are not up to date, there is drift between the estimated
91 	 * and real values. For high thresholds and a high number of CPUs, it
92 	 * is possible for the min watermark to be breached while the estimated
93 	 * value looks fine. The pressure threshold is a reduced value such
94 	 * that even the maximum amount of drift will not accidentally breach
95 	 * the min watermark
96 	 */
97 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99 
100 	/*
101 	 * Maximum threshold is 125
102 	 */
103 	threshold = min(125, threshold);
104 
105 	return threshold;
106 }
107 
108 int calculate_normal_threshold(struct zone *zone)
109 {
110 	int threshold;
111 	int mem;	/* memory in 128 MB units */
112 
113 	/*
114 	 * The threshold scales with the number of processors and the amount
115 	 * of memory per zone. More memory means that we can defer updates for
116 	 * longer, more processors could lead to more contention.
117  	 * fls() is used to have a cheap way of logarithmic scaling.
118 	 *
119 	 * Some sample thresholds:
120 	 *
121 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
122 	 * ------------------------------------------------------------------
123 	 * 8		1		1	0.9-1 GB	4
124 	 * 16		2		2	0.9-1 GB	4
125 	 * 20 		2		2	1-2 GB		5
126 	 * 24		2		2	2-4 GB		6
127 	 * 28		2		2	4-8 GB		7
128 	 * 32		2		2	8-16 GB		8
129 	 * 4		2		2	<128M		1
130 	 * 30		4		3	2-4 GB		5
131 	 * 48		4		3	8-16 GB		8
132 	 * 32		8		4	1-2 GB		4
133 	 * 32		8		4	0.9-1GB		4
134 	 * 10		16		5	<128M		1
135 	 * 40		16		5	900M		4
136 	 * 70		64		7	2-4 GB		5
137 	 * 84		64		7	4-8 GB		6
138 	 * 108		512		9	4-8 GB		6
139 	 * 125		1024		10	8-16 GB		8
140 	 * 125		1024		10	16-32 GB	9
141 	 */
142 
143 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144 
145 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146 
147 	/*
148 	 * Maximum threshold is 125
149 	 */
150 	threshold = min(125, threshold);
151 
152 	return threshold;
153 }
154 
155 /*
156  * Refresh the thresholds for each zone.
157  */
158 void refresh_zone_stat_thresholds(void)
159 {
160 	struct zone *zone;
161 	int cpu;
162 	int threshold;
163 
164 	for_each_populated_zone(zone) {
165 		unsigned long max_drift, tolerate_drift;
166 
167 		threshold = calculate_normal_threshold(zone);
168 
169 		for_each_online_cpu(cpu)
170 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171 							= threshold;
172 
173 		/*
174 		 * Only set percpu_drift_mark if there is a danger that
175 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 		 * the min watermark could be breached by an allocation
177 		 */
178 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179 		max_drift = num_online_cpus() * threshold;
180 		if (max_drift > tolerate_drift)
181 			zone->percpu_drift_mark = high_wmark_pages(zone) +
182 					max_drift;
183 	}
184 }
185 
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187 				int (*calculate_pressure)(struct zone *))
188 {
189 	struct zone *zone;
190 	int cpu;
191 	int threshold;
192 	int i;
193 
194 	for (i = 0; i < pgdat->nr_zones; i++) {
195 		zone = &pgdat->node_zones[i];
196 		if (!zone->percpu_drift_mark)
197 			continue;
198 
199 		threshold = (*calculate_pressure)(zone);
200 		for_each_possible_cpu(cpu)
201 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202 							= threshold;
203 	}
204 }
205 
206 /*
207  * For use when we know that interrupts are disabled.
208  */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210 				int delta)
211 {
212 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 	s8 __percpu *p = pcp->vm_stat_diff + item;
214 	long x;
215 	long t;
216 
217 	x = delta + __this_cpu_read(*p);
218 
219 	t = __this_cpu_read(pcp->stat_threshold);
220 
221 	if (unlikely(x > t || x < -t)) {
222 		zone_page_state_add(x, zone, item);
223 		x = 0;
224 	}
225 	__this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228 
229 /*
230  * Optimized increment and decrement functions.
231  *
232  * These are only for a single page and therefore can take a struct page *
233  * argument instead of struct zone *. This allows the inclusion of the code
234  * generated for page_zone(page) into the optimized functions.
235  *
236  * No overflow check is necessary and therefore the differential can be
237  * incremented or decremented in place which may allow the compilers to
238  * generate better code.
239  * The increment or decrement is known and therefore one boundary check can
240  * be omitted.
241  *
242  * NOTE: These functions are very performance sensitive. Change only
243  * with care.
244  *
245  * Some processors have inc/dec instructions that are atomic vs an interrupt.
246  * However, the code must first determine the differential location in a zone
247  * based on the processor number and then inc/dec the counter. There is no
248  * guarantee without disabling preemption that the processor will not change
249  * in between and therefore the atomicity vs. interrupt cannot be exploited
250  * in a useful way here.
251  */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
255 	s8 __percpu *p = pcp->vm_stat_diff + item;
256 	s8 v, t;
257 
258 	v = __this_cpu_inc_return(*p);
259 	t = __this_cpu_read(pcp->stat_threshold);
260 	if (unlikely(v > t)) {
261 		s8 overstep = t >> 1;
262 
263 		zone_page_state_add(v + overstep, zone, item);
264 		__this_cpu_write(*p, -overstep);
265 	}
266 }
267 
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270 	__inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273 
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
277 	s8 __percpu *p = pcp->vm_stat_diff + item;
278 	s8 v, t;
279 
280 	v = __this_cpu_dec_return(*p);
281 	t = __this_cpu_read(pcp->stat_threshold);
282 	if (unlikely(v < - t)) {
283 		s8 overstep = t >> 1;
284 
285 		zone_page_state_add(v - overstep, zone, item);
286 		__this_cpu_write(*p, overstep);
287 	}
288 }
289 
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292 	__dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295 
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298  * If we have cmpxchg_local support then we do not need to incur the overhead
299  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300  *
301  * mod_state() modifies the zone counter state through atomic per cpu
302  * operations.
303  *
304  * Overstep mode specifies how overstep should handled:
305  *     0       No overstepping
306  *     1       Overstepping half of threshold
307  *     -1      Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310        enum zone_stat_item item, int delta, int overstep_mode)
311 {
312 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
313 	s8 __percpu *p = pcp->vm_stat_diff + item;
314 	long o, n, t, z;
315 
316 	do {
317 		z = 0;  /* overflow to zone counters */
318 
319 		/*
320 		 * The fetching of the stat_threshold is racy. We may apply
321 		 * a counter threshold to the wrong the cpu if we get
322 		 * rescheduled while executing here. However, the next
323 		 * counter update will apply the threshold again and
324 		 * therefore bring the counter under the threshold again.
325 		 *
326 		 * Most of the time the thresholds are the same anyways
327 		 * for all cpus in a zone.
328 		 */
329 		t = this_cpu_read(pcp->stat_threshold);
330 
331 		o = this_cpu_read(*p);
332 		n = delta + o;
333 
334 		if (n > t || n < -t) {
335 			int os = overstep_mode * (t >> 1) ;
336 
337 			/* Overflow must be added to zone counters */
338 			z = n + os;
339 			n = -os;
340 		}
341 	} while (this_cpu_cmpxchg(*p, o, n) != o);
342 
343 	if (z)
344 		zone_page_state_add(z, zone, item);
345 }
346 
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348 					int delta)
349 {
350 	mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353 
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356 	mod_state(zone, item, 1, 1);
357 }
358 
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361 	mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364 
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367 	mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372  * Use interrupt disable to serialize counter updates
373  */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375 					int delta)
376 {
377 	unsigned long flags;
378 
379 	local_irq_save(flags);
380 	__mod_zone_page_state(zone, item, delta);
381 	local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384 
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387 	unsigned long flags;
388 
389 	local_irq_save(flags);
390 	__inc_zone_state(zone, item);
391 	local_irq_restore(flags);
392 }
393 
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396 	unsigned long flags;
397 	struct zone *zone;
398 
399 	zone = page_zone(page);
400 	local_irq_save(flags);
401 	__inc_zone_state(zone, item);
402 	local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405 
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 	unsigned long flags;
409 
410 	local_irq_save(flags);
411 	__dec_zone_page_state(page, item);
412 	local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416 
417 /*
418  * Update the zone counters for one cpu.
419  *
420  * The cpu specified must be either the current cpu or a processor that
421  * is not online. If it is the current cpu then the execution thread must
422  * be pinned to the current cpu.
423  *
424  * Note that refresh_cpu_vm_stats strives to only access
425  * node local memory. The per cpu pagesets on remote zones are placed
426  * in the memory local to the processor using that pageset. So the
427  * loop over all zones will access a series of cachelines local to
428  * the processor.
429  *
430  * The call to zone_page_state_add updates the cachelines with the
431  * statistics in the remote zone struct as well as the global cachelines
432  * with the global counters. These could cause remote node cache line
433  * bouncing and will have to be only done when necessary.
434  */
435 void refresh_cpu_vm_stats(int cpu)
436 {
437 	struct zone *zone;
438 	int i;
439 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
440 
441 	for_each_populated_zone(zone) {
442 		struct per_cpu_pageset *p;
443 
444 		p = per_cpu_ptr(zone->pageset, cpu);
445 
446 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
447 			if (p->vm_stat_diff[i]) {
448 				unsigned long flags;
449 				int v;
450 
451 				local_irq_save(flags);
452 				v = p->vm_stat_diff[i];
453 				p->vm_stat_diff[i] = 0;
454 				local_irq_restore(flags);
455 				atomic_long_add(v, &zone->vm_stat[i]);
456 				global_diff[i] += v;
457 #ifdef CONFIG_NUMA
458 				/* 3 seconds idle till flush */
459 				p->expire = 3;
460 #endif
461 			}
462 		cond_resched();
463 #ifdef CONFIG_NUMA
464 		/*
465 		 * Deal with draining the remote pageset of this
466 		 * processor
467 		 *
468 		 * Check if there are pages remaining in this pageset
469 		 * if not then there is nothing to expire.
470 		 */
471 		if (!p->expire || !p->pcp.count)
472 			continue;
473 
474 		/*
475 		 * We never drain zones local to this processor.
476 		 */
477 		if (zone_to_nid(zone) == numa_node_id()) {
478 			p->expire = 0;
479 			continue;
480 		}
481 
482 		p->expire--;
483 		if (p->expire)
484 			continue;
485 
486 		if (p->pcp.count)
487 			drain_zone_pages(zone, &p->pcp);
488 #endif
489 	}
490 
491 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
492 		if (global_diff[i])
493 			atomic_long_add(global_diff[i], &vm_stat[i]);
494 }
495 
496 /*
497  * this is only called if !populated_zone(zone), which implies no other users of
498  * pset->vm_stat_diff[] exsist.
499  */
500 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
501 {
502 	int i;
503 
504 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
505 		if (pset->vm_stat_diff[i]) {
506 			int v = pset->vm_stat_diff[i];
507 			pset->vm_stat_diff[i] = 0;
508 			atomic_long_add(v, &zone->vm_stat[i]);
509 			atomic_long_add(v, &vm_stat[i]);
510 		}
511 }
512 #endif
513 
514 #ifdef CONFIG_NUMA
515 /*
516  * zonelist = the list of zones passed to the allocator
517  * z 	    = the zone from which the allocation occurred.
518  *
519  * Must be called with interrupts disabled.
520  *
521  * When __GFP_OTHER_NODE is set assume the node of the preferred
522  * zone is the local node. This is useful for daemons who allocate
523  * memory on behalf of other processes.
524  */
525 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
526 {
527 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
528 		__inc_zone_state(z, NUMA_HIT);
529 	} else {
530 		__inc_zone_state(z, NUMA_MISS);
531 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
532 	}
533 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
534 			preferred_zone->node : numa_node_id()))
535 		__inc_zone_state(z, NUMA_LOCAL);
536 	else
537 		__inc_zone_state(z, NUMA_OTHER);
538 }
539 #endif
540 
541 #ifdef CONFIG_COMPACTION
542 
543 struct contig_page_info {
544 	unsigned long free_pages;
545 	unsigned long free_blocks_total;
546 	unsigned long free_blocks_suitable;
547 };
548 
549 /*
550  * Calculate the number of free pages in a zone, how many contiguous
551  * pages are free and how many are large enough to satisfy an allocation of
552  * the target size. Note that this function makes no attempt to estimate
553  * how many suitable free blocks there *might* be if MOVABLE pages were
554  * migrated. Calculating that is possible, but expensive and can be
555  * figured out from userspace
556  */
557 static void fill_contig_page_info(struct zone *zone,
558 				unsigned int suitable_order,
559 				struct contig_page_info *info)
560 {
561 	unsigned int order;
562 
563 	info->free_pages = 0;
564 	info->free_blocks_total = 0;
565 	info->free_blocks_suitable = 0;
566 
567 	for (order = 0; order < MAX_ORDER; order++) {
568 		unsigned long blocks;
569 
570 		/* Count number of free blocks */
571 		blocks = zone->free_area[order].nr_free;
572 		info->free_blocks_total += blocks;
573 
574 		/* Count free base pages */
575 		info->free_pages += blocks << order;
576 
577 		/* Count the suitable free blocks */
578 		if (order >= suitable_order)
579 			info->free_blocks_suitable += blocks <<
580 						(order - suitable_order);
581 	}
582 }
583 
584 /*
585  * A fragmentation index only makes sense if an allocation of a requested
586  * size would fail. If that is true, the fragmentation index indicates
587  * whether external fragmentation or a lack of memory was the problem.
588  * The value can be used to determine if page reclaim or compaction
589  * should be used
590  */
591 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
592 {
593 	unsigned long requested = 1UL << order;
594 
595 	if (!info->free_blocks_total)
596 		return 0;
597 
598 	/* Fragmentation index only makes sense when a request would fail */
599 	if (info->free_blocks_suitable)
600 		return -1000;
601 
602 	/*
603 	 * Index is between 0 and 1 so return within 3 decimal places
604 	 *
605 	 * 0 => allocation would fail due to lack of memory
606 	 * 1 => allocation would fail due to fragmentation
607 	 */
608 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609 }
610 
611 /* Same as __fragmentation index but allocs contig_page_info on stack */
612 int fragmentation_index(struct zone *zone, unsigned int order)
613 {
614 	struct contig_page_info info;
615 
616 	fill_contig_page_info(zone, order, &info);
617 	return __fragmentation_index(order, &info);
618 }
619 #endif
620 
621 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
622 #include <linux/proc_fs.h>
623 #include <linux/seq_file.h>
624 
625 static char * const migratetype_names[MIGRATE_TYPES] = {
626 	"Unmovable",
627 	"Reclaimable",
628 	"Movable",
629 	"Reserve",
630 #ifdef CONFIG_CMA
631 	"CMA",
632 #endif
633 #ifdef CONFIG_MEMORY_ISOLATION
634 	"Isolate",
635 #endif
636 };
637 
638 static void *frag_start(struct seq_file *m, loff_t *pos)
639 {
640 	pg_data_t *pgdat;
641 	loff_t node = *pos;
642 	for (pgdat = first_online_pgdat();
643 	     pgdat && node;
644 	     pgdat = next_online_pgdat(pgdat))
645 		--node;
646 
647 	return pgdat;
648 }
649 
650 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
651 {
652 	pg_data_t *pgdat = (pg_data_t *)arg;
653 
654 	(*pos)++;
655 	return next_online_pgdat(pgdat);
656 }
657 
658 static void frag_stop(struct seq_file *m, void *arg)
659 {
660 }
661 
662 /* Walk all the zones in a node and print using a callback */
663 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
664 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
665 {
666 	struct zone *zone;
667 	struct zone *node_zones = pgdat->node_zones;
668 	unsigned long flags;
669 
670 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
671 		if (!populated_zone(zone))
672 			continue;
673 
674 		spin_lock_irqsave(&zone->lock, flags);
675 		print(m, pgdat, zone);
676 		spin_unlock_irqrestore(&zone->lock, flags);
677 	}
678 }
679 #endif
680 
681 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
682 #ifdef CONFIG_ZONE_DMA
683 #define TEXT_FOR_DMA(xx) xx "_dma",
684 #else
685 #define TEXT_FOR_DMA(xx)
686 #endif
687 
688 #ifdef CONFIG_ZONE_DMA32
689 #define TEXT_FOR_DMA32(xx) xx "_dma32",
690 #else
691 #define TEXT_FOR_DMA32(xx)
692 #endif
693 
694 #ifdef CONFIG_HIGHMEM
695 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
696 #else
697 #define TEXT_FOR_HIGHMEM(xx)
698 #endif
699 
700 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
701 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
702 
703 const char * const vmstat_text[] = {
704 	/* Zoned VM counters */
705 	"nr_free_pages",
706 	"nr_inactive_anon",
707 	"nr_active_anon",
708 	"nr_inactive_file",
709 	"nr_active_file",
710 	"nr_unevictable",
711 	"nr_mlock",
712 	"nr_anon_pages",
713 	"nr_mapped",
714 	"nr_file_pages",
715 	"nr_dirty",
716 	"nr_writeback",
717 	"nr_slab_reclaimable",
718 	"nr_slab_unreclaimable",
719 	"nr_page_table_pages",
720 	"nr_kernel_stack",
721 	"nr_unstable",
722 	"nr_bounce",
723 	"nr_vmscan_write",
724 	"nr_vmscan_immediate_reclaim",
725 	"nr_writeback_temp",
726 	"nr_isolated_anon",
727 	"nr_isolated_file",
728 	"nr_shmem",
729 	"nr_dirtied",
730 	"nr_written",
731 
732 #ifdef CONFIG_NUMA
733 	"numa_hit",
734 	"numa_miss",
735 	"numa_foreign",
736 	"numa_interleave",
737 	"numa_local",
738 	"numa_other",
739 #endif
740 	"nr_anon_transparent_hugepages",
741 	"nr_free_cma",
742 	"nr_dirty_threshold",
743 	"nr_dirty_background_threshold",
744 
745 #ifdef CONFIG_VM_EVENT_COUNTERS
746 	"pgpgin",
747 	"pgpgout",
748 	"pswpin",
749 	"pswpout",
750 
751 	TEXTS_FOR_ZONES("pgalloc")
752 
753 	"pgfree",
754 	"pgactivate",
755 	"pgdeactivate",
756 
757 	"pgfault",
758 	"pgmajfault",
759 
760 	TEXTS_FOR_ZONES("pgrefill")
761 	TEXTS_FOR_ZONES("pgsteal_kswapd")
762 	TEXTS_FOR_ZONES("pgsteal_direct")
763 	TEXTS_FOR_ZONES("pgscan_kswapd")
764 	TEXTS_FOR_ZONES("pgscan_direct")
765 	"pgscan_direct_throttle",
766 
767 #ifdef CONFIG_NUMA
768 	"zone_reclaim_failed",
769 #endif
770 	"pginodesteal",
771 	"slabs_scanned",
772 	"kswapd_inodesteal",
773 	"kswapd_low_wmark_hit_quickly",
774 	"kswapd_high_wmark_hit_quickly",
775 	"pageoutrun",
776 	"allocstall",
777 
778 	"pgrotated",
779 
780 #ifdef CONFIG_NUMA_BALANCING
781 	"numa_pte_updates",
782 	"numa_hint_faults",
783 	"numa_hint_faults_local",
784 	"numa_pages_migrated",
785 #endif
786 #ifdef CONFIG_MIGRATION
787 	"pgmigrate_success",
788 	"pgmigrate_fail",
789 #endif
790 #ifdef CONFIG_COMPACTION
791 	"compact_migrate_scanned",
792 	"compact_free_scanned",
793 	"compact_isolated",
794 	"compact_stall",
795 	"compact_fail",
796 	"compact_success",
797 #endif
798 
799 #ifdef CONFIG_HUGETLB_PAGE
800 	"htlb_buddy_alloc_success",
801 	"htlb_buddy_alloc_fail",
802 #endif
803 	"unevictable_pgs_culled",
804 	"unevictable_pgs_scanned",
805 	"unevictable_pgs_rescued",
806 	"unevictable_pgs_mlocked",
807 	"unevictable_pgs_munlocked",
808 	"unevictable_pgs_cleared",
809 	"unevictable_pgs_stranded",
810 
811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
812 	"thp_fault_alloc",
813 	"thp_fault_fallback",
814 	"thp_collapse_alloc",
815 	"thp_collapse_alloc_failed",
816 	"thp_split",
817 	"thp_zero_page_alloc",
818 	"thp_zero_page_alloc_failed",
819 #endif
820 
821 #endif /* CONFIG_VM_EVENTS_COUNTERS */
822 };
823 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
824 
825 
826 #ifdef CONFIG_PROC_FS
827 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
828 						struct zone *zone)
829 {
830 	int order;
831 
832 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
833 	for (order = 0; order < MAX_ORDER; ++order)
834 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
835 	seq_putc(m, '\n');
836 }
837 
838 /*
839  * This walks the free areas for each zone.
840  */
841 static int frag_show(struct seq_file *m, void *arg)
842 {
843 	pg_data_t *pgdat = (pg_data_t *)arg;
844 	walk_zones_in_node(m, pgdat, frag_show_print);
845 	return 0;
846 }
847 
848 static void pagetypeinfo_showfree_print(struct seq_file *m,
849 					pg_data_t *pgdat, struct zone *zone)
850 {
851 	int order, mtype;
852 
853 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
854 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
855 					pgdat->node_id,
856 					zone->name,
857 					migratetype_names[mtype]);
858 		for (order = 0; order < MAX_ORDER; ++order) {
859 			unsigned long freecount = 0;
860 			struct free_area *area;
861 			struct list_head *curr;
862 
863 			area = &(zone->free_area[order]);
864 
865 			list_for_each(curr, &area->free_list[mtype])
866 				freecount++;
867 			seq_printf(m, "%6lu ", freecount);
868 		}
869 		seq_putc(m, '\n');
870 	}
871 }
872 
873 /* Print out the free pages at each order for each migatetype */
874 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
875 {
876 	int order;
877 	pg_data_t *pgdat = (pg_data_t *)arg;
878 
879 	/* Print header */
880 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
881 	for (order = 0; order < MAX_ORDER; ++order)
882 		seq_printf(m, "%6d ", order);
883 	seq_putc(m, '\n');
884 
885 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
886 
887 	return 0;
888 }
889 
890 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
891 					pg_data_t *pgdat, struct zone *zone)
892 {
893 	int mtype;
894 	unsigned long pfn;
895 	unsigned long start_pfn = zone->zone_start_pfn;
896 	unsigned long end_pfn = zone_end_pfn(zone);
897 	unsigned long count[MIGRATE_TYPES] = { 0, };
898 
899 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
900 		struct page *page;
901 
902 		if (!pfn_valid(pfn))
903 			continue;
904 
905 		page = pfn_to_page(pfn);
906 
907 		/* Watch for unexpected holes punched in the memmap */
908 		if (!memmap_valid_within(pfn, page, zone))
909 			continue;
910 
911 		mtype = get_pageblock_migratetype(page);
912 
913 		if (mtype < MIGRATE_TYPES)
914 			count[mtype]++;
915 	}
916 
917 	/* Print counts */
918 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
919 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
920 		seq_printf(m, "%12lu ", count[mtype]);
921 	seq_putc(m, '\n');
922 }
923 
924 /* Print out the free pages at each order for each migratetype */
925 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
926 {
927 	int mtype;
928 	pg_data_t *pgdat = (pg_data_t *)arg;
929 
930 	seq_printf(m, "\n%-23s", "Number of blocks type ");
931 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
932 		seq_printf(m, "%12s ", migratetype_names[mtype]);
933 	seq_putc(m, '\n');
934 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
935 
936 	return 0;
937 }
938 
939 /*
940  * This prints out statistics in relation to grouping pages by mobility.
941  * It is expensive to collect so do not constantly read the file.
942  */
943 static int pagetypeinfo_show(struct seq_file *m, void *arg)
944 {
945 	pg_data_t *pgdat = (pg_data_t *)arg;
946 
947 	/* check memoryless node */
948 	if (!node_state(pgdat->node_id, N_MEMORY))
949 		return 0;
950 
951 	seq_printf(m, "Page block order: %d\n", pageblock_order);
952 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
953 	seq_putc(m, '\n');
954 	pagetypeinfo_showfree(m, pgdat);
955 	pagetypeinfo_showblockcount(m, pgdat);
956 
957 	return 0;
958 }
959 
960 static const struct seq_operations fragmentation_op = {
961 	.start	= frag_start,
962 	.next	= frag_next,
963 	.stop	= frag_stop,
964 	.show	= frag_show,
965 };
966 
967 static int fragmentation_open(struct inode *inode, struct file *file)
968 {
969 	return seq_open(file, &fragmentation_op);
970 }
971 
972 static const struct file_operations fragmentation_file_operations = {
973 	.open		= fragmentation_open,
974 	.read		= seq_read,
975 	.llseek		= seq_lseek,
976 	.release	= seq_release,
977 };
978 
979 static const struct seq_operations pagetypeinfo_op = {
980 	.start	= frag_start,
981 	.next	= frag_next,
982 	.stop	= frag_stop,
983 	.show	= pagetypeinfo_show,
984 };
985 
986 static int pagetypeinfo_open(struct inode *inode, struct file *file)
987 {
988 	return seq_open(file, &pagetypeinfo_op);
989 }
990 
991 static const struct file_operations pagetypeinfo_file_ops = {
992 	.open		= pagetypeinfo_open,
993 	.read		= seq_read,
994 	.llseek		= seq_lseek,
995 	.release	= seq_release,
996 };
997 
998 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
999 							struct zone *zone)
1000 {
1001 	int i;
1002 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1003 	seq_printf(m,
1004 		   "\n  pages free     %lu"
1005 		   "\n        min      %lu"
1006 		   "\n        low      %lu"
1007 		   "\n        high     %lu"
1008 		   "\n        scanned  %lu"
1009 		   "\n        spanned  %lu"
1010 		   "\n        present  %lu"
1011 		   "\n        managed  %lu",
1012 		   zone_page_state(zone, NR_FREE_PAGES),
1013 		   min_wmark_pages(zone),
1014 		   low_wmark_pages(zone),
1015 		   high_wmark_pages(zone),
1016 		   zone->pages_scanned,
1017 		   zone->spanned_pages,
1018 		   zone->present_pages,
1019 		   zone->managed_pages);
1020 
1021 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1022 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1023 				zone_page_state(zone, i));
1024 
1025 	seq_printf(m,
1026 		   "\n        protection: (%lu",
1027 		   zone->lowmem_reserve[0]);
1028 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1029 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1030 	seq_printf(m,
1031 		   ")"
1032 		   "\n  pagesets");
1033 	for_each_online_cpu(i) {
1034 		struct per_cpu_pageset *pageset;
1035 
1036 		pageset = per_cpu_ptr(zone->pageset, i);
1037 		seq_printf(m,
1038 			   "\n    cpu: %i"
1039 			   "\n              count: %i"
1040 			   "\n              high:  %i"
1041 			   "\n              batch: %i",
1042 			   i,
1043 			   pageset->pcp.count,
1044 			   pageset->pcp.high,
1045 			   pageset->pcp.batch);
1046 #ifdef CONFIG_SMP
1047 		seq_printf(m, "\n  vm stats threshold: %d",
1048 				pageset->stat_threshold);
1049 #endif
1050 	}
1051 	seq_printf(m,
1052 		   "\n  all_unreclaimable: %u"
1053 		   "\n  start_pfn:         %lu"
1054 		   "\n  inactive_ratio:    %u",
1055 		   zone->all_unreclaimable,
1056 		   zone->zone_start_pfn,
1057 		   zone->inactive_ratio);
1058 	seq_putc(m, '\n');
1059 }
1060 
1061 /*
1062  * Output information about zones in @pgdat.
1063  */
1064 static int zoneinfo_show(struct seq_file *m, void *arg)
1065 {
1066 	pg_data_t *pgdat = (pg_data_t *)arg;
1067 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1068 	return 0;
1069 }
1070 
1071 static const struct seq_operations zoneinfo_op = {
1072 	.start	= frag_start, /* iterate over all zones. The same as in
1073 			       * fragmentation. */
1074 	.next	= frag_next,
1075 	.stop	= frag_stop,
1076 	.show	= zoneinfo_show,
1077 };
1078 
1079 static int zoneinfo_open(struct inode *inode, struct file *file)
1080 {
1081 	return seq_open(file, &zoneinfo_op);
1082 }
1083 
1084 static const struct file_operations proc_zoneinfo_file_operations = {
1085 	.open		= zoneinfo_open,
1086 	.read		= seq_read,
1087 	.llseek		= seq_lseek,
1088 	.release	= seq_release,
1089 };
1090 
1091 enum writeback_stat_item {
1092 	NR_DIRTY_THRESHOLD,
1093 	NR_DIRTY_BG_THRESHOLD,
1094 	NR_VM_WRITEBACK_STAT_ITEMS,
1095 };
1096 
1097 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1098 {
1099 	unsigned long *v;
1100 	int i, stat_items_size;
1101 
1102 	if (*pos >= ARRAY_SIZE(vmstat_text))
1103 		return NULL;
1104 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1105 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1106 
1107 #ifdef CONFIG_VM_EVENT_COUNTERS
1108 	stat_items_size += sizeof(struct vm_event_state);
1109 #endif
1110 
1111 	v = kmalloc(stat_items_size, GFP_KERNEL);
1112 	m->private = v;
1113 	if (!v)
1114 		return ERR_PTR(-ENOMEM);
1115 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1116 		v[i] = global_page_state(i);
1117 	v += NR_VM_ZONE_STAT_ITEMS;
1118 
1119 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1120 			    v + NR_DIRTY_THRESHOLD);
1121 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1122 
1123 #ifdef CONFIG_VM_EVENT_COUNTERS
1124 	all_vm_events(v);
1125 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1126 	v[PGPGOUT] /= 2;
1127 #endif
1128 	return (unsigned long *)m->private + *pos;
1129 }
1130 
1131 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1132 {
1133 	(*pos)++;
1134 	if (*pos >= ARRAY_SIZE(vmstat_text))
1135 		return NULL;
1136 	return (unsigned long *)m->private + *pos;
1137 }
1138 
1139 static int vmstat_show(struct seq_file *m, void *arg)
1140 {
1141 	unsigned long *l = arg;
1142 	unsigned long off = l - (unsigned long *)m->private;
1143 
1144 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1145 	return 0;
1146 }
1147 
1148 static void vmstat_stop(struct seq_file *m, void *arg)
1149 {
1150 	kfree(m->private);
1151 	m->private = NULL;
1152 }
1153 
1154 static const struct seq_operations vmstat_op = {
1155 	.start	= vmstat_start,
1156 	.next	= vmstat_next,
1157 	.stop	= vmstat_stop,
1158 	.show	= vmstat_show,
1159 };
1160 
1161 static int vmstat_open(struct inode *inode, struct file *file)
1162 {
1163 	return seq_open(file, &vmstat_op);
1164 }
1165 
1166 static const struct file_operations proc_vmstat_file_operations = {
1167 	.open		= vmstat_open,
1168 	.read		= seq_read,
1169 	.llseek		= seq_lseek,
1170 	.release	= seq_release,
1171 };
1172 #endif /* CONFIG_PROC_FS */
1173 
1174 #ifdef CONFIG_SMP
1175 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1176 int sysctl_stat_interval __read_mostly = HZ;
1177 
1178 static void vmstat_update(struct work_struct *w)
1179 {
1180 	refresh_cpu_vm_stats(smp_processor_id());
1181 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1182 		round_jiffies_relative(sysctl_stat_interval));
1183 }
1184 
1185 static void start_cpu_timer(int cpu)
1186 {
1187 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1188 
1189 	INIT_DEFERRABLE_WORK(work, vmstat_update);
1190 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1191 }
1192 
1193 /*
1194  * Use the cpu notifier to insure that the thresholds are recalculated
1195  * when necessary.
1196  */
1197 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1198 		unsigned long action,
1199 		void *hcpu)
1200 {
1201 	long cpu = (long)hcpu;
1202 
1203 	switch (action) {
1204 	case CPU_ONLINE:
1205 	case CPU_ONLINE_FROZEN:
1206 		refresh_zone_stat_thresholds();
1207 		start_cpu_timer(cpu);
1208 		node_set_state(cpu_to_node(cpu), N_CPU);
1209 		break;
1210 	case CPU_DOWN_PREPARE:
1211 	case CPU_DOWN_PREPARE_FROZEN:
1212 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1213 		per_cpu(vmstat_work, cpu).work.func = NULL;
1214 		break;
1215 	case CPU_DOWN_FAILED:
1216 	case CPU_DOWN_FAILED_FROZEN:
1217 		start_cpu_timer(cpu);
1218 		break;
1219 	case CPU_DEAD:
1220 	case CPU_DEAD_FROZEN:
1221 		refresh_zone_stat_thresholds();
1222 		break;
1223 	default:
1224 		break;
1225 	}
1226 	return NOTIFY_OK;
1227 }
1228 
1229 static struct notifier_block vmstat_notifier =
1230 	{ &vmstat_cpuup_callback, NULL, 0 };
1231 #endif
1232 
1233 static int __init setup_vmstat(void)
1234 {
1235 #ifdef CONFIG_SMP
1236 	int cpu;
1237 
1238 	register_cpu_notifier(&vmstat_notifier);
1239 
1240 	for_each_online_cpu(cpu)
1241 		start_cpu_timer(cpu);
1242 #endif
1243 #ifdef CONFIG_PROC_FS
1244 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1245 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1246 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1247 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1248 #endif
1249 	return 0;
1250 }
1251 module_init(setup_vmstat)
1252 
1253 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1254 #include <linux/debugfs.h>
1255 
1256 
1257 /*
1258  * Return an index indicating how much of the available free memory is
1259  * unusable for an allocation of the requested size.
1260  */
1261 static int unusable_free_index(unsigned int order,
1262 				struct contig_page_info *info)
1263 {
1264 	/* No free memory is interpreted as all free memory is unusable */
1265 	if (info->free_pages == 0)
1266 		return 1000;
1267 
1268 	/*
1269 	 * Index should be a value between 0 and 1. Return a value to 3
1270 	 * decimal places.
1271 	 *
1272 	 * 0 => no fragmentation
1273 	 * 1 => high fragmentation
1274 	 */
1275 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1276 
1277 }
1278 
1279 static void unusable_show_print(struct seq_file *m,
1280 					pg_data_t *pgdat, struct zone *zone)
1281 {
1282 	unsigned int order;
1283 	int index;
1284 	struct contig_page_info info;
1285 
1286 	seq_printf(m, "Node %d, zone %8s ",
1287 				pgdat->node_id,
1288 				zone->name);
1289 	for (order = 0; order < MAX_ORDER; ++order) {
1290 		fill_contig_page_info(zone, order, &info);
1291 		index = unusable_free_index(order, &info);
1292 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1293 	}
1294 
1295 	seq_putc(m, '\n');
1296 }
1297 
1298 /*
1299  * Display unusable free space index
1300  *
1301  * The unusable free space index measures how much of the available free
1302  * memory cannot be used to satisfy an allocation of a given size and is a
1303  * value between 0 and 1. The higher the value, the more of free memory is
1304  * unusable and by implication, the worse the external fragmentation is. This
1305  * can be expressed as a percentage by multiplying by 100.
1306  */
1307 static int unusable_show(struct seq_file *m, void *arg)
1308 {
1309 	pg_data_t *pgdat = (pg_data_t *)arg;
1310 
1311 	/* check memoryless node */
1312 	if (!node_state(pgdat->node_id, N_MEMORY))
1313 		return 0;
1314 
1315 	walk_zones_in_node(m, pgdat, unusable_show_print);
1316 
1317 	return 0;
1318 }
1319 
1320 static const struct seq_operations unusable_op = {
1321 	.start	= frag_start,
1322 	.next	= frag_next,
1323 	.stop	= frag_stop,
1324 	.show	= unusable_show,
1325 };
1326 
1327 static int unusable_open(struct inode *inode, struct file *file)
1328 {
1329 	return seq_open(file, &unusable_op);
1330 }
1331 
1332 static const struct file_operations unusable_file_ops = {
1333 	.open		= unusable_open,
1334 	.read		= seq_read,
1335 	.llseek		= seq_lseek,
1336 	.release	= seq_release,
1337 };
1338 
1339 static void extfrag_show_print(struct seq_file *m,
1340 					pg_data_t *pgdat, struct zone *zone)
1341 {
1342 	unsigned int order;
1343 	int index;
1344 
1345 	/* Alloc on stack as interrupts are disabled for zone walk */
1346 	struct contig_page_info info;
1347 
1348 	seq_printf(m, "Node %d, zone %8s ",
1349 				pgdat->node_id,
1350 				zone->name);
1351 	for (order = 0; order < MAX_ORDER; ++order) {
1352 		fill_contig_page_info(zone, order, &info);
1353 		index = __fragmentation_index(order, &info);
1354 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1355 	}
1356 
1357 	seq_putc(m, '\n');
1358 }
1359 
1360 /*
1361  * Display fragmentation index for orders that allocations would fail for
1362  */
1363 static int extfrag_show(struct seq_file *m, void *arg)
1364 {
1365 	pg_data_t *pgdat = (pg_data_t *)arg;
1366 
1367 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1368 
1369 	return 0;
1370 }
1371 
1372 static const struct seq_operations extfrag_op = {
1373 	.start	= frag_start,
1374 	.next	= frag_next,
1375 	.stop	= frag_stop,
1376 	.show	= extfrag_show,
1377 };
1378 
1379 static int extfrag_open(struct inode *inode, struct file *file)
1380 {
1381 	return seq_open(file, &extfrag_op);
1382 }
1383 
1384 static const struct file_operations extfrag_file_ops = {
1385 	.open		= extfrag_open,
1386 	.read		= seq_read,
1387 	.llseek		= seq_lseek,
1388 	.release	= seq_release,
1389 };
1390 
1391 static int __init extfrag_debug_init(void)
1392 {
1393 	struct dentry *extfrag_debug_root;
1394 
1395 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1396 	if (!extfrag_debug_root)
1397 		return -ENOMEM;
1398 
1399 	if (!debugfs_create_file("unusable_index", 0444,
1400 			extfrag_debug_root, NULL, &unusable_file_ops))
1401 		goto fail;
1402 
1403 	if (!debugfs_create_file("extfrag_index", 0444,
1404 			extfrag_debug_root, NULL, &extfrag_file_ops))
1405 		goto fail;
1406 
1407 	return 0;
1408 fail:
1409 	debugfs_remove_recursive(extfrag_debug_root);
1410 	return -ENOMEM;
1411 }
1412 
1413 module_init(extfrag_debug_init);
1414 #endif
1415