1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/vmstat.h> 17 #include <linux/sched.h> 18 19 #ifdef CONFIG_VM_EVENT_COUNTERS 20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 21 EXPORT_PER_CPU_SYMBOL(vm_event_states); 22 23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) 24 { 25 int cpu; 26 int i; 27 28 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 29 30 for_each_cpu_mask_nr(cpu, *cpumask) { 31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 32 33 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 34 ret[i] += this->event[i]; 35 } 36 } 37 38 /* 39 * Accumulate the vm event counters across all CPUs. 40 * The result is unavoidably approximate - it can change 41 * during and after execution of this function. 42 */ 43 void all_vm_events(unsigned long *ret) 44 { 45 get_online_cpus(); 46 sum_vm_events(ret, cpu_online_mask); 47 put_online_cpus(); 48 } 49 EXPORT_SYMBOL_GPL(all_vm_events); 50 51 #ifdef CONFIG_HOTPLUG 52 /* 53 * Fold the foreign cpu events into our own. 54 * 55 * This is adding to the events on one processor 56 * but keeps the global counts constant. 57 */ 58 void vm_events_fold_cpu(int cpu) 59 { 60 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 61 int i; 62 63 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 64 count_vm_events(i, fold_state->event[i]); 65 fold_state->event[i] = 0; 66 } 67 } 68 #endif /* CONFIG_HOTPLUG */ 69 70 #endif /* CONFIG_VM_EVENT_COUNTERS */ 71 72 /* 73 * Manage combined zone based / global counters 74 * 75 * vm_stat contains the global counters 76 */ 77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 78 EXPORT_SYMBOL(vm_stat); 79 80 #ifdef CONFIG_SMP 81 82 static int calculate_threshold(struct zone *zone) 83 { 84 int threshold; 85 int mem; /* memory in 128 MB units */ 86 87 /* 88 * The threshold scales with the number of processors and the amount 89 * of memory per zone. More memory means that we can defer updates for 90 * longer, more processors could lead to more contention. 91 * fls() is used to have a cheap way of logarithmic scaling. 92 * 93 * Some sample thresholds: 94 * 95 * Threshold Processors (fls) Zonesize fls(mem+1) 96 * ------------------------------------------------------------------ 97 * 8 1 1 0.9-1 GB 4 98 * 16 2 2 0.9-1 GB 4 99 * 20 2 2 1-2 GB 5 100 * 24 2 2 2-4 GB 6 101 * 28 2 2 4-8 GB 7 102 * 32 2 2 8-16 GB 8 103 * 4 2 2 <128M 1 104 * 30 4 3 2-4 GB 5 105 * 48 4 3 8-16 GB 8 106 * 32 8 4 1-2 GB 4 107 * 32 8 4 0.9-1GB 4 108 * 10 16 5 <128M 1 109 * 40 16 5 900M 4 110 * 70 64 7 2-4 GB 5 111 * 84 64 7 4-8 GB 6 112 * 108 512 9 4-8 GB 6 113 * 125 1024 10 8-16 GB 8 114 * 125 1024 10 16-32 GB 9 115 */ 116 117 mem = zone->present_pages >> (27 - PAGE_SHIFT); 118 119 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 120 121 /* 122 * Maximum threshold is 125 123 */ 124 threshold = min(125, threshold); 125 126 return threshold; 127 } 128 129 /* 130 * Refresh the thresholds for each zone. 131 */ 132 static void refresh_zone_stat_thresholds(void) 133 { 134 struct zone *zone; 135 int cpu; 136 int threshold; 137 138 for_each_zone(zone) { 139 140 if (!zone->present_pages) 141 continue; 142 143 threshold = calculate_threshold(zone); 144 145 for_each_online_cpu(cpu) 146 zone_pcp(zone, cpu)->stat_threshold = threshold; 147 } 148 } 149 150 /* 151 * For use when we know that interrupts are disabled. 152 */ 153 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 154 int delta) 155 { 156 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 157 s8 *p = pcp->vm_stat_diff + item; 158 long x; 159 160 x = delta + *p; 161 162 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) { 163 zone_page_state_add(x, zone, item); 164 x = 0; 165 } 166 *p = x; 167 } 168 EXPORT_SYMBOL(__mod_zone_page_state); 169 170 /* 171 * For an unknown interrupt state 172 */ 173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 174 int delta) 175 { 176 unsigned long flags; 177 178 local_irq_save(flags); 179 __mod_zone_page_state(zone, item, delta); 180 local_irq_restore(flags); 181 } 182 EXPORT_SYMBOL(mod_zone_page_state); 183 184 /* 185 * Optimized increment and decrement functions. 186 * 187 * These are only for a single page and therefore can take a struct page * 188 * argument instead of struct zone *. This allows the inclusion of the code 189 * generated for page_zone(page) into the optimized functions. 190 * 191 * No overflow check is necessary and therefore the differential can be 192 * incremented or decremented in place which may allow the compilers to 193 * generate better code. 194 * The increment or decrement is known and therefore one boundary check can 195 * be omitted. 196 * 197 * NOTE: These functions are very performance sensitive. Change only 198 * with care. 199 * 200 * Some processors have inc/dec instructions that are atomic vs an interrupt. 201 * However, the code must first determine the differential location in a zone 202 * based on the processor number and then inc/dec the counter. There is no 203 * guarantee without disabling preemption that the processor will not change 204 * in between and therefore the atomicity vs. interrupt cannot be exploited 205 * in a useful way here. 206 */ 207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 208 { 209 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 210 s8 *p = pcp->vm_stat_diff + item; 211 212 (*p)++; 213 214 if (unlikely(*p > pcp->stat_threshold)) { 215 int overstep = pcp->stat_threshold / 2; 216 217 zone_page_state_add(*p + overstep, zone, item); 218 *p = -overstep; 219 } 220 } 221 222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 223 { 224 __inc_zone_state(page_zone(page), item); 225 } 226 EXPORT_SYMBOL(__inc_zone_page_state); 227 228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 229 { 230 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 231 s8 *p = pcp->vm_stat_diff + item; 232 233 (*p)--; 234 235 if (unlikely(*p < - pcp->stat_threshold)) { 236 int overstep = pcp->stat_threshold / 2; 237 238 zone_page_state_add(*p - overstep, zone, item); 239 *p = overstep; 240 } 241 } 242 243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 244 { 245 __dec_zone_state(page_zone(page), item); 246 } 247 EXPORT_SYMBOL(__dec_zone_page_state); 248 249 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 250 { 251 unsigned long flags; 252 253 local_irq_save(flags); 254 __inc_zone_state(zone, item); 255 local_irq_restore(flags); 256 } 257 258 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 259 { 260 unsigned long flags; 261 struct zone *zone; 262 263 zone = page_zone(page); 264 local_irq_save(flags); 265 __inc_zone_state(zone, item); 266 local_irq_restore(flags); 267 } 268 EXPORT_SYMBOL(inc_zone_page_state); 269 270 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 271 { 272 unsigned long flags; 273 274 local_irq_save(flags); 275 __dec_zone_page_state(page, item); 276 local_irq_restore(flags); 277 } 278 EXPORT_SYMBOL(dec_zone_page_state); 279 280 /* 281 * Update the zone counters for one cpu. 282 * 283 * The cpu specified must be either the current cpu or a processor that 284 * is not online. If it is the current cpu then the execution thread must 285 * be pinned to the current cpu. 286 * 287 * Note that refresh_cpu_vm_stats strives to only access 288 * node local memory. The per cpu pagesets on remote zones are placed 289 * in the memory local to the processor using that pageset. So the 290 * loop over all zones will access a series of cachelines local to 291 * the processor. 292 * 293 * The call to zone_page_state_add updates the cachelines with the 294 * statistics in the remote zone struct as well as the global cachelines 295 * with the global counters. These could cause remote node cache line 296 * bouncing and will have to be only done when necessary. 297 */ 298 void refresh_cpu_vm_stats(int cpu) 299 { 300 struct zone *zone; 301 int i; 302 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 303 304 for_each_zone(zone) { 305 struct per_cpu_pageset *p; 306 307 if (!populated_zone(zone)) 308 continue; 309 310 p = zone_pcp(zone, cpu); 311 312 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 313 if (p->vm_stat_diff[i]) { 314 unsigned long flags; 315 int v; 316 317 local_irq_save(flags); 318 v = p->vm_stat_diff[i]; 319 p->vm_stat_diff[i] = 0; 320 local_irq_restore(flags); 321 atomic_long_add(v, &zone->vm_stat[i]); 322 global_diff[i] += v; 323 #ifdef CONFIG_NUMA 324 /* 3 seconds idle till flush */ 325 p->expire = 3; 326 #endif 327 } 328 cond_resched(); 329 #ifdef CONFIG_NUMA 330 /* 331 * Deal with draining the remote pageset of this 332 * processor 333 * 334 * Check if there are pages remaining in this pageset 335 * if not then there is nothing to expire. 336 */ 337 if (!p->expire || !p->pcp.count) 338 continue; 339 340 /* 341 * We never drain zones local to this processor. 342 */ 343 if (zone_to_nid(zone) == numa_node_id()) { 344 p->expire = 0; 345 continue; 346 } 347 348 p->expire--; 349 if (p->expire) 350 continue; 351 352 if (p->pcp.count) 353 drain_zone_pages(zone, &p->pcp); 354 #endif 355 } 356 357 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 358 if (global_diff[i]) 359 atomic_long_add(global_diff[i], &vm_stat[i]); 360 } 361 362 #endif 363 364 #ifdef CONFIG_NUMA 365 /* 366 * zonelist = the list of zones passed to the allocator 367 * z = the zone from which the allocation occurred. 368 * 369 * Must be called with interrupts disabled. 370 */ 371 void zone_statistics(struct zone *preferred_zone, struct zone *z) 372 { 373 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 374 __inc_zone_state(z, NUMA_HIT); 375 } else { 376 __inc_zone_state(z, NUMA_MISS); 377 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 378 } 379 if (z->node == numa_node_id()) 380 __inc_zone_state(z, NUMA_LOCAL); 381 else 382 __inc_zone_state(z, NUMA_OTHER); 383 } 384 #endif 385 386 #ifdef CONFIG_PROC_FS 387 #include <linux/proc_fs.h> 388 #include <linux/seq_file.h> 389 390 static char * const migratetype_names[MIGRATE_TYPES] = { 391 "Unmovable", 392 "Reclaimable", 393 "Movable", 394 "Reserve", 395 "Isolate", 396 }; 397 398 static void *frag_start(struct seq_file *m, loff_t *pos) 399 { 400 pg_data_t *pgdat; 401 loff_t node = *pos; 402 for (pgdat = first_online_pgdat(); 403 pgdat && node; 404 pgdat = next_online_pgdat(pgdat)) 405 --node; 406 407 return pgdat; 408 } 409 410 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 411 { 412 pg_data_t *pgdat = (pg_data_t *)arg; 413 414 (*pos)++; 415 return next_online_pgdat(pgdat); 416 } 417 418 static void frag_stop(struct seq_file *m, void *arg) 419 { 420 } 421 422 /* Walk all the zones in a node and print using a callback */ 423 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 424 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 425 { 426 struct zone *zone; 427 struct zone *node_zones = pgdat->node_zones; 428 unsigned long flags; 429 430 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 431 if (!populated_zone(zone)) 432 continue; 433 434 spin_lock_irqsave(&zone->lock, flags); 435 print(m, pgdat, zone); 436 spin_unlock_irqrestore(&zone->lock, flags); 437 } 438 } 439 440 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 441 struct zone *zone) 442 { 443 int order; 444 445 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 446 for (order = 0; order < MAX_ORDER; ++order) 447 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 448 seq_putc(m, '\n'); 449 } 450 451 /* 452 * This walks the free areas for each zone. 453 */ 454 static int frag_show(struct seq_file *m, void *arg) 455 { 456 pg_data_t *pgdat = (pg_data_t *)arg; 457 walk_zones_in_node(m, pgdat, frag_show_print); 458 return 0; 459 } 460 461 static void pagetypeinfo_showfree_print(struct seq_file *m, 462 pg_data_t *pgdat, struct zone *zone) 463 { 464 int order, mtype; 465 466 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 467 seq_printf(m, "Node %4d, zone %8s, type %12s ", 468 pgdat->node_id, 469 zone->name, 470 migratetype_names[mtype]); 471 for (order = 0; order < MAX_ORDER; ++order) { 472 unsigned long freecount = 0; 473 struct free_area *area; 474 struct list_head *curr; 475 476 area = &(zone->free_area[order]); 477 478 list_for_each(curr, &area->free_list[mtype]) 479 freecount++; 480 seq_printf(m, "%6lu ", freecount); 481 } 482 seq_putc(m, '\n'); 483 } 484 } 485 486 /* Print out the free pages at each order for each migatetype */ 487 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 488 { 489 int order; 490 pg_data_t *pgdat = (pg_data_t *)arg; 491 492 /* Print header */ 493 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 494 for (order = 0; order < MAX_ORDER; ++order) 495 seq_printf(m, "%6d ", order); 496 seq_putc(m, '\n'); 497 498 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 499 500 return 0; 501 } 502 503 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 504 pg_data_t *pgdat, struct zone *zone) 505 { 506 int mtype; 507 unsigned long pfn; 508 unsigned long start_pfn = zone->zone_start_pfn; 509 unsigned long end_pfn = start_pfn + zone->spanned_pages; 510 unsigned long count[MIGRATE_TYPES] = { 0, }; 511 512 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 513 struct page *page; 514 515 if (!pfn_valid(pfn)) 516 continue; 517 518 page = pfn_to_page(pfn); 519 #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES 520 /* 521 * Ordinarily, memory holes in flatmem still have a valid 522 * memmap for the PFN range. However, an architecture for 523 * embedded systems (e.g. ARM) can free up the memmap backing 524 * holes to save memory on the assumption the memmap is 525 * never used. The page_zone linkages are then broken even 526 * though pfn_valid() returns true. Skip the page if the 527 * linkages are broken. Even if this test passed, the impact 528 * is that the counters for the movable type are off but 529 * fragmentation monitoring is likely meaningless on small 530 * systems. 531 */ 532 if (page_zone(page) != zone) 533 continue; 534 #endif 535 mtype = get_pageblock_migratetype(page); 536 537 if (mtype < MIGRATE_TYPES) 538 count[mtype]++; 539 } 540 541 /* Print counts */ 542 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 543 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 544 seq_printf(m, "%12lu ", count[mtype]); 545 seq_putc(m, '\n'); 546 } 547 548 /* Print out the free pages at each order for each migratetype */ 549 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 550 { 551 int mtype; 552 pg_data_t *pgdat = (pg_data_t *)arg; 553 554 seq_printf(m, "\n%-23s", "Number of blocks type "); 555 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 556 seq_printf(m, "%12s ", migratetype_names[mtype]); 557 seq_putc(m, '\n'); 558 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 559 560 return 0; 561 } 562 563 /* 564 * This prints out statistics in relation to grouping pages by mobility. 565 * It is expensive to collect so do not constantly read the file. 566 */ 567 static int pagetypeinfo_show(struct seq_file *m, void *arg) 568 { 569 pg_data_t *pgdat = (pg_data_t *)arg; 570 571 /* check memoryless node */ 572 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 573 return 0; 574 575 seq_printf(m, "Page block order: %d\n", pageblock_order); 576 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 577 seq_putc(m, '\n'); 578 pagetypeinfo_showfree(m, pgdat); 579 pagetypeinfo_showblockcount(m, pgdat); 580 581 return 0; 582 } 583 584 static const struct seq_operations fragmentation_op = { 585 .start = frag_start, 586 .next = frag_next, 587 .stop = frag_stop, 588 .show = frag_show, 589 }; 590 591 static int fragmentation_open(struct inode *inode, struct file *file) 592 { 593 return seq_open(file, &fragmentation_op); 594 } 595 596 static const struct file_operations fragmentation_file_operations = { 597 .open = fragmentation_open, 598 .read = seq_read, 599 .llseek = seq_lseek, 600 .release = seq_release, 601 }; 602 603 static const struct seq_operations pagetypeinfo_op = { 604 .start = frag_start, 605 .next = frag_next, 606 .stop = frag_stop, 607 .show = pagetypeinfo_show, 608 }; 609 610 static int pagetypeinfo_open(struct inode *inode, struct file *file) 611 { 612 return seq_open(file, &pagetypeinfo_op); 613 } 614 615 static const struct file_operations pagetypeinfo_file_ops = { 616 .open = pagetypeinfo_open, 617 .read = seq_read, 618 .llseek = seq_lseek, 619 .release = seq_release, 620 }; 621 622 #ifdef CONFIG_ZONE_DMA 623 #define TEXT_FOR_DMA(xx) xx "_dma", 624 #else 625 #define TEXT_FOR_DMA(xx) 626 #endif 627 628 #ifdef CONFIG_ZONE_DMA32 629 #define TEXT_FOR_DMA32(xx) xx "_dma32", 630 #else 631 #define TEXT_FOR_DMA32(xx) 632 #endif 633 634 #ifdef CONFIG_HIGHMEM 635 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 636 #else 637 #define TEXT_FOR_HIGHMEM(xx) 638 #endif 639 640 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 641 TEXT_FOR_HIGHMEM(xx) xx "_movable", 642 643 static const char * const vmstat_text[] = { 644 /* Zoned VM counters */ 645 "nr_free_pages", 646 "nr_inactive_anon", 647 "nr_active_anon", 648 "nr_inactive_file", 649 "nr_active_file", 650 #ifdef CONFIG_UNEVICTABLE_LRU 651 "nr_unevictable", 652 "nr_mlock", 653 #endif 654 "nr_anon_pages", 655 "nr_mapped", 656 "nr_file_pages", 657 "nr_dirty", 658 "nr_writeback", 659 "nr_slab_reclaimable", 660 "nr_slab_unreclaimable", 661 "nr_page_table_pages", 662 "nr_unstable", 663 "nr_bounce", 664 "nr_vmscan_write", 665 "nr_writeback_temp", 666 667 #ifdef CONFIG_NUMA 668 "numa_hit", 669 "numa_miss", 670 "numa_foreign", 671 "numa_interleave", 672 "numa_local", 673 "numa_other", 674 #endif 675 676 #ifdef CONFIG_VM_EVENT_COUNTERS 677 "pgpgin", 678 "pgpgout", 679 "pswpin", 680 "pswpout", 681 682 TEXTS_FOR_ZONES("pgalloc") 683 684 "pgfree", 685 "pgactivate", 686 "pgdeactivate", 687 688 "pgfault", 689 "pgmajfault", 690 691 TEXTS_FOR_ZONES("pgrefill") 692 TEXTS_FOR_ZONES("pgsteal") 693 TEXTS_FOR_ZONES("pgscan_kswapd") 694 TEXTS_FOR_ZONES("pgscan_direct") 695 696 "pginodesteal", 697 "slabs_scanned", 698 "kswapd_steal", 699 "kswapd_inodesteal", 700 "pageoutrun", 701 "allocstall", 702 703 "pgrotated", 704 #ifdef CONFIG_HUGETLB_PAGE 705 "htlb_buddy_alloc_success", 706 "htlb_buddy_alloc_fail", 707 #endif 708 #ifdef CONFIG_UNEVICTABLE_LRU 709 "unevictable_pgs_culled", 710 "unevictable_pgs_scanned", 711 "unevictable_pgs_rescued", 712 "unevictable_pgs_mlocked", 713 "unevictable_pgs_munlocked", 714 "unevictable_pgs_cleared", 715 "unevictable_pgs_stranded", 716 "unevictable_pgs_mlockfreed", 717 #endif 718 #endif 719 }; 720 721 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 722 struct zone *zone) 723 { 724 int i; 725 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 726 seq_printf(m, 727 "\n pages free %lu" 728 "\n min %lu" 729 "\n low %lu" 730 "\n high %lu" 731 "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)" 732 "\n spanned %lu" 733 "\n present %lu", 734 zone_page_state(zone, NR_FREE_PAGES), 735 zone->pages_min, 736 zone->pages_low, 737 zone->pages_high, 738 zone->pages_scanned, 739 zone->lru[LRU_ACTIVE_ANON].nr_scan, 740 zone->lru[LRU_INACTIVE_ANON].nr_scan, 741 zone->lru[LRU_ACTIVE_FILE].nr_scan, 742 zone->lru[LRU_INACTIVE_FILE].nr_scan, 743 zone->spanned_pages, 744 zone->present_pages); 745 746 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 747 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 748 zone_page_state(zone, i)); 749 750 seq_printf(m, 751 "\n protection: (%lu", 752 zone->lowmem_reserve[0]); 753 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 754 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 755 seq_printf(m, 756 ")" 757 "\n pagesets"); 758 for_each_online_cpu(i) { 759 struct per_cpu_pageset *pageset; 760 761 pageset = zone_pcp(zone, i); 762 seq_printf(m, 763 "\n cpu: %i" 764 "\n count: %i" 765 "\n high: %i" 766 "\n batch: %i", 767 i, 768 pageset->pcp.count, 769 pageset->pcp.high, 770 pageset->pcp.batch); 771 #ifdef CONFIG_SMP 772 seq_printf(m, "\n vm stats threshold: %d", 773 pageset->stat_threshold); 774 #endif 775 } 776 seq_printf(m, 777 "\n all_unreclaimable: %u" 778 "\n prev_priority: %i" 779 "\n start_pfn: %lu" 780 "\n inactive_ratio: %u", 781 zone_is_all_unreclaimable(zone), 782 zone->prev_priority, 783 zone->zone_start_pfn, 784 zone->inactive_ratio); 785 seq_putc(m, '\n'); 786 } 787 788 /* 789 * Output information about zones in @pgdat. 790 */ 791 static int zoneinfo_show(struct seq_file *m, void *arg) 792 { 793 pg_data_t *pgdat = (pg_data_t *)arg; 794 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 795 return 0; 796 } 797 798 static const struct seq_operations zoneinfo_op = { 799 .start = frag_start, /* iterate over all zones. The same as in 800 * fragmentation. */ 801 .next = frag_next, 802 .stop = frag_stop, 803 .show = zoneinfo_show, 804 }; 805 806 static int zoneinfo_open(struct inode *inode, struct file *file) 807 { 808 return seq_open(file, &zoneinfo_op); 809 } 810 811 static const struct file_operations proc_zoneinfo_file_operations = { 812 .open = zoneinfo_open, 813 .read = seq_read, 814 .llseek = seq_lseek, 815 .release = seq_release, 816 }; 817 818 static void *vmstat_start(struct seq_file *m, loff_t *pos) 819 { 820 unsigned long *v; 821 #ifdef CONFIG_VM_EVENT_COUNTERS 822 unsigned long *e; 823 #endif 824 int i; 825 826 if (*pos >= ARRAY_SIZE(vmstat_text)) 827 return NULL; 828 829 #ifdef CONFIG_VM_EVENT_COUNTERS 830 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) 831 + sizeof(struct vm_event_state), GFP_KERNEL); 832 #else 833 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), 834 GFP_KERNEL); 835 #endif 836 m->private = v; 837 if (!v) 838 return ERR_PTR(-ENOMEM); 839 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 840 v[i] = global_page_state(i); 841 #ifdef CONFIG_VM_EVENT_COUNTERS 842 e = v + NR_VM_ZONE_STAT_ITEMS; 843 all_vm_events(e); 844 e[PGPGIN] /= 2; /* sectors -> kbytes */ 845 e[PGPGOUT] /= 2; 846 #endif 847 return v + *pos; 848 } 849 850 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 851 { 852 (*pos)++; 853 if (*pos >= ARRAY_SIZE(vmstat_text)) 854 return NULL; 855 return (unsigned long *)m->private + *pos; 856 } 857 858 static int vmstat_show(struct seq_file *m, void *arg) 859 { 860 unsigned long *l = arg; 861 unsigned long off = l - (unsigned long *)m->private; 862 863 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 864 return 0; 865 } 866 867 static void vmstat_stop(struct seq_file *m, void *arg) 868 { 869 kfree(m->private); 870 m->private = NULL; 871 } 872 873 static const struct seq_operations vmstat_op = { 874 .start = vmstat_start, 875 .next = vmstat_next, 876 .stop = vmstat_stop, 877 .show = vmstat_show, 878 }; 879 880 static int vmstat_open(struct inode *inode, struct file *file) 881 { 882 return seq_open(file, &vmstat_op); 883 } 884 885 static const struct file_operations proc_vmstat_file_operations = { 886 .open = vmstat_open, 887 .read = seq_read, 888 .llseek = seq_lseek, 889 .release = seq_release, 890 }; 891 #endif /* CONFIG_PROC_FS */ 892 893 #ifdef CONFIG_SMP 894 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 895 int sysctl_stat_interval __read_mostly = HZ; 896 897 static void vmstat_update(struct work_struct *w) 898 { 899 refresh_cpu_vm_stats(smp_processor_id()); 900 schedule_delayed_work(&__get_cpu_var(vmstat_work), 901 sysctl_stat_interval); 902 } 903 904 static void __cpuinit start_cpu_timer(int cpu) 905 { 906 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); 907 908 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); 909 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu); 910 } 911 912 /* 913 * Use the cpu notifier to insure that the thresholds are recalculated 914 * when necessary. 915 */ 916 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 917 unsigned long action, 918 void *hcpu) 919 { 920 long cpu = (long)hcpu; 921 922 switch (action) { 923 case CPU_ONLINE: 924 case CPU_ONLINE_FROZEN: 925 start_cpu_timer(cpu); 926 break; 927 case CPU_DOWN_PREPARE: 928 case CPU_DOWN_PREPARE_FROZEN: 929 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu)); 930 per_cpu(vmstat_work, cpu).work.func = NULL; 931 break; 932 case CPU_DOWN_FAILED: 933 case CPU_DOWN_FAILED_FROZEN: 934 start_cpu_timer(cpu); 935 break; 936 case CPU_DEAD: 937 case CPU_DEAD_FROZEN: 938 refresh_zone_stat_thresholds(); 939 break; 940 default: 941 break; 942 } 943 return NOTIFY_OK; 944 } 945 946 static struct notifier_block __cpuinitdata vmstat_notifier = 947 { &vmstat_cpuup_callback, NULL, 0 }; 948 #endif 949 950 static int __init setup_vmstat(void) 951 { 952 #ifdef CONFIG_SMP 953 int cpu; 954 955 refresh_zone_stat_thresholds(); 956 register_cpu_notifier(&vmstat_notifier); 957 958 for_each_online_cpu(cpu) 959 start_cpu_timer(cpu); 960 #endif 961 #ifdef CONFIG_PROC_FS 962 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 963 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 964 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 965 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 966 #endif 967 return 0; 968 } 969 module_init(setup_vmstat) 970