1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 #include <linux/sched/isolation.h> 32 33 #include "internal.h" 34 35 #ifdef CONFIG_NUMA 36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 37 38 /* zero numa counters within a zone */ 39 static void zero_zone_numa_counters(struct zone *zone) 40 { 41 int item, cpu; 42 43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 44 atomic_long_set(&zone->vm_numa_event[item], 0); 45 for_each_online_cpu(cpu) { 46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 47 = 0; 48 } 49 } 50 } 51 52 /* zero numa counters of all the populated zones */ 53 static void zero_zones_numa_counters(void) 54 { 55 struct zone *zone; 56 57 for_each_populated_zone(zone) 58 zero_zone_numa_counters(zone); 59 } 60 61 /* zero global numa counters */ 62 static void zero_global_numa_counters(void) 63 { 64 int item; 65 66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 67 atomic_long_set(&vm_numa_event[item], 0); 68 } 69 70 static void invalid_numa_statistics(void) 71 { 72 zero_zones_numa_counters(); 73 zero_global_numa_counters(); 74 } 75 76 static DEFINE_MUTEX(vm_numa_stat_lock); 77 78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 79 void *buffer, size_t *length, loff_t *ppos) 80 { 81 int ret, oldval; 82 83 mutex_lock(&vm_numa_stat_lock); 84 if (write) 85 oldval = sysctl_vm_numa_stat; 86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 87 if (ret || !write) 88 goto out; 89 90 if (oldval == sysctl_vm_numa_stat) 91 goto out; 92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 93 static_branch_enable(&vm_numa_stat_key); 94 pr_info("enable numa statistics\n"); 95 } else { 96 static_branch_disable(&vm_numa_stat_key); 97 invalid_numa_statistics(); 98 pr_info("disable numa statistics, and clear numa counters\n"); 99 } 100 101 out: 102 mutex_unlock(&vm_numa_stat_lock); 103 return ret; 104 } 105 #endif 106 107 #ifdef CONFIG_VM_EVENT_COUNTERS 108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 109 EXPORT_PER_CPU_SYMBOL(vm_event_states); 110 111 static void sum_vm_events(unsigned long *ret) 112 { 113 int cpu; 114 int i; 115 116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 117 118 for_each_online_cpu(cpu) { 119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 120 121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 122 ret[i] += this->event[i]; 123 } 124 } 125 126 /* 127 * Accumulate the vm event counters across all CPUs. 128 * The result is unavoidably approximate - it can change 129 * during and after execution of this function. 130 */ 131 void all_vm_events(unsigned long *ret) 132 { 133 cpus_read_lock(); 134 sum_vm_events(ret); 135 cpus_read_unlock(); 136 } 137 EXPORT_SYMBOL_GPL(all_vm_events); 138 139 /* 140 * Fold the foreign cpu events into our own. 141 * 142 * This is adding to the events on one processor 143 * but keeps the global counts constant. 144 */ 145 void vm_events_fold_cpu(int cpu) 146 { 147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 148 int i; 149 150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 151 count_vm_events(i, fold_state->event[i]); 152 fold_state->event[i] = 0; 153 } 154 } 155 156 #endif /* CONFIG_VM_EVENT_COUNTERS */ 157 158 /* 159 * Manage combined zone based / global counters 160 * 161 * vm_stat contains the global counters 162 */ 163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 166 EXPORT_SYMBOL(vm_zone_stat); 167 EXPORT_SYMBOL(vm_node_stat); 168 169 #ifdef CONFIG_NUMA 170 static void fold_vm_zone_numa_events(struct zone *zone) 171 { 172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 173 int cpu; 174 enum numa_stat_item item; 175 176 for_each_online_cpu(cpu) { 177 struct per_cpu_zonestat *pzstats; 178 179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 182 } 183 184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 185 zone_numa_event_add(zone_numa_events[item], zone, item); 186 } 187 188 void fold_vm_numa_events(void) 189 { 190 struct zone *zone; 191 192 for_each_populated_zone(zone) 193 fold_vm_zone_numa_events(zone); 194 } 195 #endif 196 197 #ifdef CONFIG_SMP 198 199 int calculate_pressure_threshold(struct zone *zone) 200 { 201 int threshold; 202 int watermark_distance; 203 204 /* 205 * As vmstats are not up to date, there is drift between the estimated 206 * and real values. For high thresholds and a high number of CPUs, it 207 * is possible for the min watermark to be breached while the estimated 208 * value looks fine. The pressure threshold is a reduced value such 209 * that even the maximum amount of drift will not accidentally breach 210 * the min watermark 211 */ 212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 213 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 214 215 /* 216 * Maximum threshold is 125 217 */ 218 threshold = min(125, threshold); 219 220 return threshold; 221 } 222 223 int calculate_normal_threshold(struct zone *zone) 224 { 225 int threshold; 226 int mem; /* memory in 128 MB units */ 227 228 /* 229 * The threshold scales with the number of processors and the amount 230 * of memory per zone. More memory means that we can defer updates for 231 * longer, more processors could lead to more contention. 232 * fls() is used to have a cheap way of logarithmic scaling. 233 * 234 * Some sample thresholds: 235 * 236 * Threshold Processors (fls) Zonesize fls(mem)+1 237 * ------------------------------------------------------------------ 238 * 8 1 1 0.9-1 GB 4 239 * 16 2 2 0.9-1 GB 4 240 * 20 2 2 1-2 GB 5 241 * 24 2 2 2-4 GB 6 242 * 28 2 2 4-8 GB 7 243 * 32 2 2 8-16 GB 8 244 * 4 2 2 <128M 1 245 * 30 4 3 2-4 GB 5 246 * 48 4 3 8-16 GB 8 247 * 32 8 4 1-2 GB 4 248 * 32 8 4 0.9-1GB 4 249 * 10 16 5 <128M 1 250 * 40 16 5 900M 4 251 * 70 64 7 2-4 GB 5 252 * 84 64 7 4-8 GB 6 253 * 108 512 9 4-8 GB 6 254 * 125 1024 10 8-16 GB 8 255 * 125 1024 10 16-32 GB 9 256 */ 257 258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 259 260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 261 262 /* 263 * Maximum threshold is 125 264 */ 265 threshold = min(125, threshold); 266 267 return threshold; 268 } 269 270 /* 271 * Refresh the thresholds for each zone. 272 */ 273 void refresh_zone_stat_thresholds(void) 274 { 275 struct pglist_data *pgdat; 276 struct zone *zone; 277 int cpu; 278 int threshold; 279 280 /* Zero current pgdat thresholds */ 281 for_each_online_pgdat(pgdat) { 282 for_each_online_cpu(cpu) { 283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 284 } 285 } 286 287 for_each_populated_zone(zone) { 288 struct pglist_data *pgdat = zone->zone_pgdat; 289 unsigned long max_drift, tolerate_drift; 290 291 threshold = calculate_normal_threshold(zone); 292 293 for_each_online_cpu(cpu) { 294 int pgdat_threshold; 295 296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 297 = threshold; 298 299 /* Base nodestat threshold on the largest populated zone. */ 300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 302 = max(threshold, pgdat_threshold); 303 } 304 305 /* 306 * Only set percpu_drift_mark if there is a danger that 307 * NR_FREE_PAGES reports the low watermark is ok when in fact 308 * the min watermark could be breached by an allocation 309 */ 310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 311 max_drift = num_online_cpus() * threshold; 312 if (max_drift > tolerate_drift) 313 zone->percpu_drift_mark = high_wmark_pages(zone) + 314 max_drift; 315 } 316 } 317 318 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 319 int (*calculate_pressure)(struct zone *)) 320 { 321 struct zone *zone; 322 int cpu; 323 int threshold; 324 int i; 325 326 for (i = 0; i < pgdat->nr_zones; i++) { 327 zone = &pgdat->node_zones[i]; 328 if (!zone->percpu_drift_mark) 329 continue; 330 331 threshold = (*calculate_pressure)(zone); 332 for_each_online_cpu(cpu) 333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 334 = threshold; 335 } 336 } 337 338 /* 339 * For use when we know that interrupts are disabled, 340 * or when we know that preemption is disabled and that 341 * particular counter cannot be updated from interrupt context. 342 */ 343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 344 long delta) 345 { 346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 347 s8 __percpu *p = pcp->vm_stat_diff + item; 348 long x; 349 long t; 350 351 /* 352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 353 * atomicity is provided by IRQs being disabled -- either explicitly 354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 355 * CPU migrations and preemption potentially corrupts a counter so 356 * disable preemption. 357 */ 358 preempt_disable_nested(); 359 360 x = delta + __this_cpu_read(*p); 361 362 t = __this_cpu_read(pcp->stat_threshold); 363 364 if (unlikely(abs(x) > t)) { 365 zone_page_state_add(x, zone, item); 366 x = 0; 367 } 368 __this_cpu_write(*p, x); 369 370 preempt_enable_nested(); 371 } 372 EXPORT_SYMBOL(__mod_zone_page_state); 373 374 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 375 long delta) 376 { 377 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 378 s8 __percpu *p = pcp->vm_node_stat_diff + item; 379 long x; 380 long t; 381 382 if (vmstat_item_in_bytes(item)) { 383 /* 384 * Only cgroups use subpage accounting right now; at 385 * the global level, these items still change in 386 * multiples of whole pages. Store them as pages 387 * internally to keep the per-cpu counters compact. 388 */ 389 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 390 delta >>= PAGE_SHIFT; 391 } 392 393 /* See __mod_node_page_state */ 394 preempt_disable_nested(); 395 396 x = delta + __this_cpu_read(*p); 397 398 t = __this_cpu_read(pcp->stat_threshold); 399 400 if (unlikely(abs(x) > t)) { 401 node_page_state_add(x, pgdat, item); 402 x = 0; 403 } 404 __this_cpu_write(*p, x); 405 406 preempt_enable_nested(); 407 } 408 EXPORT_SYMBOL(__mod_node_page_state); 409 410 /* 411 * Optimized increment and decrement functions. 412 * 413 * These are only for a single page and therefore can take a struct page * 414 * argument instead of struct zone *. This allows the inclusion of the code 415 * generated for page_zone(page) into the optimized functions. 416 * 417 * No overflow check is necessary and therefore the differential can be 418 * incremented or decremented in place which may allow the compilers to 419 * generate better code. 420 * The increment or decrement is known and therefore one boundary check can 421 * be omitted. 422 * 423 * NOTE: These functions are very performance sensitive. Change only 424 * with care. 425 * 426 * Some processors have inc/dec instructions that are atomic vs an interrupt. 427 * However, the code must first determine the differential location in a zone 428 * based on the processor number and then inc/dec the counter. There is no 429 * guarantee without disabling preemption that the processor will not change 430 * in between and therefore the atomicity vs. interrupt cannot be exploited 431 * in a useful way here. 432 */ 433 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 434 { 435 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 436 s8 __percpu *p = pcp->vm_stat_diff + item; 437 s8 v, t; 438 439 /* See __mod_node_page_state */ 440 preempt_disable_nested(); 441 442 v = __this_cpu_inc_return(*p); 443 t = __this_cpu_read(pcp->stat_threshold); 444 if (unlikely(v > t)) { 445 s8 overstep = t >> 1; 446 447 zone_page_state_add(v + overstep, zone, item); 448 __this_cpu_write(*p, -overstep); 449 } 450 451 preempt_enable_nested(); 452 } 453 454 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 455 { 456 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 457 s8 __percpu *p = pcp->vm_node_stat_diff + item; 458 s8 v, t; 459 460 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 461 462 /* See __mod_node_page_state */ 463 preempt_disable_nested(); 464 465 v = __this_cpu_inc_return(*p); 466 t = __this_cpu_read(pcp->stat_threshold); 467 if (unlikely(v > t)) { 468 s8 overstep = t >> 1; 469 470 node_page_state_add(v + overstep, pgdat, item); 471 __this_cpu_write(*p, -overstep); 472 } 473 474 preempt_enable_nested(); 475 } 476 477 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 478 { 479 __inc_zone_state(page_zone(page), item); 480 } 481 EXPORT_SYMBOL(__inc_zone_page_state); 482 483 void __inc_node_page_state(struct page *page, enum node_stat_item item) 484 { 485 __inc_node_state(page_pgdat(page), item); 486 } 487 EXPORT_SYMBOL(__inc_node_page_state); 488 489 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 490 { 491 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 492 s8 __percpu *p = pcp->vm_stat_diff + item; 493 s8 v, t; 494 495 /* See __mod_node_page_state */ 496 preempt_disable_nested(); 497 498 v = __this_cpu_dec_return(*p); 499 t = __this_cpu_read(pcp->stat_threshold); 500 if (unlikely(v < - t)) { 501 s8 overstep = t >> 1; 502 503 zone_page_state_add(v - overstep, zone, item); 504 __this_cpu_write(*p, overstep); 505 } 506 507 preempt_enable_nested(); 508 } 509 510 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 511 { 512 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 513 s8 __percpu *p = pcp->vm_node_stat_diff + item; 514 s8 v, t; 515 516 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 517 518 /* See __mod_node_page_state */ 519 preempt_disable_nested(); 520 521 v = __this_cpu_dec_return(*p); 522 t = __this_cpu_read(pcp->stat_threshold); 523 if (unlikely(v < - t)) { 524 s8 overstep = t >> 1; 525 526 node_page_state_add(v - overstep, pgdat, item); 527 __this_cpu_write(*p, overstep); 528 } 529 530 preempt_enable_nested(); 531 } 532 533 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 534 { 535 __dec_zone_state(page_zone(page), item); 536 } 537 EXPORT_SYMBOL(__dec_zone_page_state); 538 539 void __dec_node_page_state(struct page *page, enum node_stat_item item) 540 { 541 __dec_node_state(page_pgdat(page), item); 542 } 543 EXPORT_SYMBOL(__dec_node_page_state); 544 545 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 546 /* 547 * If we have cmpxchg_local support then we do not need to incur the overhead 548 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 549 * 550 * mod_state() modifies the zone counter state through atomic per cpu 551 * operations. 552 * 553 * Overstep mode specifies how overstep should handled: 554 * 0 No overstepping 555 * 1 Overstepping half of threshold 556 * -1 Overstepping minus half of threshold 557 */ 558 static inline void mod_zone_state(struct zone *zone, 559 enum zone_stat_item item, long delta, int overstep_mode) 560 { 561 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 562 s8 __percpu *p = pcp->vm_stat_diff + item; 563 long o, n, t, z; 564 565 do { 566 z = 0; /* overflow to zone counters */ 567 568 /* 569 * The fetching of the stat_threshold is racy. We may apply 570 * a counter threshold to the wrong the cpu if we get 571 * rescheduled while executing here. However, the next 572 * counter update will apply the threshold again and 573 * therefore bring the counter under the threshold again. 574 * 575 * Most of the time the thresholds are the same anyways 576 * for all cpus in a zone. 577 */ 578 t = this_cpu_read(pcp->stat_threshold); 579 580 o = this_cpu_read(*p); 581 n = delta + o; 582 583 if (abs(n) > t) { 584 int os = overstep_mode * (t >> 1) ; 585 586 /* Overflow must be added to zone counters */ 587 z = n + os; 588 n = -os; 589 } 590 } while (this_cpu_cmpxchg(*p, o, n) != o); 591 592 if (z) 593 zone_page_state_add(z, zone, item); 594 } 595 596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 597 long delta) 598 { 599 mod_zone_state(zone, item, delta, 0); 600 } 601 EXPORT_SYMBOL(mod_zone_page_state); 602 603 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 604 { 605 mod_zone_state(page_zone(page), item, 1, 1); 606 } 607 EXPORT_SYMBOL(inc_zone_page_state); 608 609 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 610 { 611 mod_zone_state(page_zone(page), item, -1, -1); 612 } 613 EXPORT_SYMBOL(dec_zone_page_state); 614 615 static inline void mod_node_state(struct pglist_data *pgdat, 616 enum node_stat_item item, int delta, int overstep_mode) 617 { 618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 619 s8 __percpu *p = pcp->vm_node_stat_diff + item; 620 long o, n, t, z; 621 622 if (vmstat_item_in_bytes(item)) { 623 /* 624 * Only cgroups use subpage accounting right now; at 625 * the global level, these items still change in 626 * multiples of whole pages. Store them as pages 627 * internally to keep the per-cpu counters compact. 628 */ 629 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 630 delta >>= PAGE_SHIFT; 631 } 632 633 do { 634 z = 0; /* overflow to node counters */ 635 636 /* 637 * The fetching of the stat_threshold is racy. We may apply 638 * a counter threshold to the wrong the cpu if we get 639 * rescheduled while executing here. However, the next 640 * counter update will apply the threshold again and 641 * therefore bring the counter under the threshold again. 642 * 643 * Most of the time the thresholds are the same anyways 644 * for all cpus in a node. 645 */ 646 t = this_cpu_read(pcp->stat_threshold); 647 648 o = this_cpu_read(*p); 649 n = delta + o; 650 651 if (abs(n) > t) { 652 int os = overstep_mode * (t >> 1) ; 653 654 /* Overflow must be added to node counters */ 655 z = n + os; 656 n = -os; 657 } 658 } while (this_cpu_cmpxchg(*p, o, n) != o); 659 660 if (z) 661 node_page_state_add(z, pgdat, item); 662 } 663 664 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 665 long delta) 666 { 667 mod_node_state(pgdat, item, delta, 0); 668 } 669 EXPORT_SYMBOL(mod_node_page_state); 670 671 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 672 { 673 mod_node_state(pgdat, item, 1, 1); 674 } 675 676 void inc_node_page_state(struct page *page, enum node_stat_item item) 677 { 678 mod_node_state(page_pgdat(page), item, 1, 1); 679 } 680 EXPORT_SYMBOL(inc_node_page_state); 681 682 void dec_node_page_state(struct page *page, enum node_stat_item item) 683 { 684 mod_node_state(page_pgdat(page), item, -1, -1); 685 } 686 EXPORT_SYMBOL(dec_node_page_state); 687 #else 688 /* 689 * Use interrupt disable to serialize counter updates 690 */ 691 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 692 long delta) 693 { 694 unsigned long flags; 695 696 local_irq_save(flags); 697 __mod_zone_page_state(zone, item, delta); 698 local_irq_restore(flags); 699 } 700 EXPORT_SYMBOL(mod_zone_page_state); 701 702 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 703 { 704 unsigned long flags; 705 struct zone *zone; 706 707 zone = page_zone(page); 708 local_irq_save(flags); 709 __inc_zone_state(zone, item); 710 local_irq_restore(flags); 711 } 712 EXPORT_SYMBOL(inc_zone_page_state); 713 714 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 715 { 716 unsigned long flags; 717 718 local_irq_save(flags); 719 __dec_zone_page_state(page, item); 720 local_irq_restore(flags); 721 } 722 EXPORT_SYMBOL(dec_zone_page_state); 723 724 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 725 { 726 unsigned long flags; 727 728 local_irq_save(flags); 729 __inc_node_state(pgdat, item); 730 local_irq_restore(flags); 731 } 732 EXPORT_SYMBOL(inc_node_state); 733 734 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 735 long delta) 736 { 737 unsigned long flags; 738 739 local_irq_save(flags); 740 __mod_node_page_state(pgdat, item, delta); 741 local_irq_restore(flags); 742 } 743 EXPORT_SYMBOL(mod_node_page_state); 744 745 void inc_node_page_state(struct page *page, enum node_stat_item item) 746 { 747 unsigned long flags; 748 struct pglist_data *pgdat; 749 750 pgdat = page_pgdat(page); 751 local_irq_save(flags); 752 __inc_node_state(pgdat, item); 753 local_irq_restore(flags); 754 } 755 EXPORT_SYMBOL(inc_node_page_state); 756 757 void dec_node_page_state(struct page *page, enum node_stat_item item) 758 { 759 unsigned long flags; 760 761 local_irq_save(flags); 762 __dec_node_page_state(page, item); 763 local_irq_restore(flags); 764 } 765 EXPORT_SYMBOL(dec_node_page_state); 766 #endif 767 768 /* 769 * Fold a differential into the global counters. 770 * Returns the number of counters updated. 771 */ 772 static int fold_diff(int *zone_diff, int *node_diff) 773 { 774 int i; 775 int changes = 0; 776 777 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 778 if (zone_diff[i]) { 779 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 780 changes++; 781 } 782 783 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 784 if (node_diff[i]) { 785 atomic_long_add(node_diff[i], &vm_node_stat[i]); 786 changes++; 787 } 788 return changes; 789 } 790 791 /* 792 * Update the zone counters for the current cpu. 793 * 794 * Note that refresh_cpu_vm_stats strives to only access 795 * node local memory. The per cpu pagesets on remote zones are placed 796 * in the memory local to the processor using that pageset. So the 797 * loop over all zones will access a series of cachelines local to 798 * the processor. 799 * 800 * The call to zone_page_state_add updates the cachelines with the 801 * statistics in the remote zone struct as well as the global cachelines 802 * with the global counters. These could cause remote node cache line 803 * bouncing and will have to be only done when necessary. 804 * 805 * The function returns the number of global counters updated. 806 */ 807 static int refresh_cpu_vm_stats(bool do_pagesets) 808 { 809 struct pglist_data *pgdat; 810 struct zone *zone; 811 int i; 812 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 813 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 814 int changes = 0; 815 816 for_each_populated_zone(zone) { 817 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 818 #ifdef CONFIG_NUMA 819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 820 #endif 821 822 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 823 int v; 824 825 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 826 if (v) { 827 828 atomic_long_add(v, &zone->vm_stat[i]); 829 global_zone_diff[i] += v; 830 #ifdef CONFIG_NUMA 831 /* 3 seconds idle till flush */ 832 __this_cpu_write(pcp->expire, 3); 833 #endif 834 } 835 } 836 #ifdef CONFIG_NUMA 837 838 if (do_pagesets) { 839 cond_resched(); 840 /* 841 * Deal with draining the remote pageset of this 842 * processor 843 * 844 * Check if there are pages remaining in this pageset 845 * if not then there is nothing to expire. 846 */ 847 if (!__this_cpu_read(pcp->expire) || 848 !__this_cpu_read(pcp->count)) 849 continue; 850 851 /* 852 * We never drain zones local to this processor. 853 */ 854 if (zone_to_nid(zone) == numa_node_id()) { 855 __this_cpu_write(pcp->expire, 0); 856 continue; 857 } 858 859 if (__this_cpu_dec_return(pcp->expire)) 860 continue; 861 862 if (__this_cpu_read(pcp->count)) { 863 drain_zone_pages(zone, this_cpu_ptr(pcp)); 864 changes++; 865 } 866 } 867 #endif 868 } 869 870 for_each_online_pgdat(pgdat) { 871 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 872 873 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 874 int v; 875 876 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 877 if (v) { 878 atomic_long_add(v, &pgdat->vm_stat[i]); 879 global_node_diff[i] += v; 880 } 881 } 882 } 883 884 changes += fold_diff(global_zone_diff, global_node_diff); 885 return changes; 886 } 887 888 /* 889 * Fold the data for an offline cpu into the global array. 890 * There cannot be any access by the offline cpu and therefore 891 * synchronization is simplified. 892 */ 893 void cpu_vm_stats_fold(int cpu) 894 { 895 struct pglist_data *pgdat; 896 struct zone *zone; 897 int i; 898 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 899 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 900 901 for_each_populated_zone(zone) { 902 struct per_cpu_zonestat *pzstats; 903 904 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 905 906 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 907 if (pzstats->vm_stat_diff[i]) { 908 int v; 909 910 v = pzstats->vm_stat_diff[i]; 911 pzstats->vm_stat_diff[i] = 0; 912 atomic_long_add(v, &zone->vm_stat[i]); 913 global_zone_diff[i] += v; 914 } 915 } 916 #ifdef CONFIG_NUMA 917 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 918 if (pzstats->vm_numa_event[i]) { 919 unsigned long v; 920 921 v = pzstats->vm_numa_event[i]; 922 pzstats->vm_numa_event[i] = 0; 923 zone_numa_event_add(v, zone, i); 924 } 925 } 926 #endif 927 } 928 929 for_each_online_pgdat(pgdat) { 930 struct per_cpu_nodestat *p; 931 932 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 933 934 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 935 if (p->vm_node_stat_diff[i]) { 936 int v; 937 938 v = p->vm_node_stat_diff[i]; 939 p->vm_node_stat_diff[i] = 0; 940 atomic_long_add(v, &pgdat->vm_stat[i]); 941 global_node_diff[i] += v; 942 } 943 } 944 945 fold_diff(global_zone_diff, global_node_diff); 946 } 947 948 /* 949 * this is only called if !populated_zone(zone), which implies no other users of 950 * pset->vm_stat_diff[] exist. 951 */ 952 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 953 { 954 unsigned long v; 955 int i; 956 957 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 958 if (pzstats->vm_stat_diff[i]) { 959 v = pzstats->vm_stat_diff[i]; 960 pzstats->vm_stat_diff[i] = 0; 961 zone_page_state_add(v, zone, i); 962 } 963 } 964 965 #ifdef CONFIG_NUMA 966 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 967 if (pzstats->vm_numa_event[i]) { 968 v = pzstats->vm_numa_event[i]; 969 pzstats->vm_numa_event[i] = 0; 970 zone_numa_event_add(v, zone, i); 971 } 972 } 973 #endif 974 } 975 #endif 976 977 #ifdef CONFIG_NUMA 978 /* 979 * Determine the per node value of a stat item. This function 980 * is called frequently in a NUMA machine, so try to be as 981 * frugal as possible. 982 */ 983 unsigned long sum_zone_node_page_state(int node, 984 enum zone_stat_item item) 985 { 986 struct zone *zones = NODE_DATA(node)->node_zones; 987 int i; 988 unsigned long count = 0; 989 990 for (i = 0; i < MAX_NR_ZONES; i++) 991 count += zone_page_state(zones + i, item); 992 993 return count; 994 } 995 996 /* Determine the per node value of a numa stat item. */ 997 unsigned long sum_zone_numa_event_state(int node, 998 enum numa_stat_item item) 999 { 1000 struct zone *zones = NODE_DATA(node)->node_zones; 1001 unsigned long count = 0; 1002 int i; 1003 1004 for (i = 0; i < MAX_NR_ZONES; i++) 1005 count += zone_numa_event_state(zones + i, item); 1006 1007 return count; 1008 } 1009 1010 /* 1011 * Determine the per node value of a stat item. 1012 */ 1013 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1014 enum node_stat_item item) 1015 { 1016 long x = atomic_long_read(&pgdat->vm_stat[item]); 1017 #ifdef CONFIG_SMP 1018 if (x < 0) 1019 x = 0; 1020 #endif 1021 return x; 1022 } 1023 1024 unsigned long node_page_state(struct pglist_data *pgdat, 1025 enum node_stat_item item) 1026 { 1027 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1028 1029 return node_page_state_pages(pgdat, item); 1030 } 1031 #endif 1032 1033 #ifdef CONFIG_COMPACTION 1034 1035 struct contig_page_info { 1036 unsigned long free_pages; 1037 unsigned long free_blocks_total; 1038 unsigned long free_blocks_suitable; 1039 }; 1040 1041 /* 1042 * Calculate the number of free pages in a zone, how many contiguous 1043 * pages are free and how many are large enough to satisfy an allocation of 1044 * the target size. Note that this function makes no attempt to estimate 1045 * how many suitable free blocks there *might* be if MOVABLE pages were 1046 * migrated. Calculating that is possible, but expensive and can be 1047 * figured out from userspace 1048 */ 1049 static void fill_contig_page_info(struct zone *zone, 1050 unsigned int suitable_order, 1051 struct contig_page_info *info) 1052 { 1053 unsigned int order; 1054 1055 info->free_pages = 0; 1056 info->free_blocks_total = 0; 1057 info->free_blocks_suitable = 0; 1058 1059 for (order = 0; order <= MAX_ORDER; order++) { 1060 unsigned long blocks; 1061 1062 /* 1063 * Count number of free blocks. 1064 * 1065 * Access to nr_free is lockless as nr_free is used only for 1066 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1067 */ 1068 blocks = data_race(zone->free_area[order].nr_free); 1069 info->free_blocks_total += blocks; 1070 1071 /* Count free base pages */ 1072 info->free_pages += blocks << order; 1073 1074 /* Count the suitable free blocks */ 1075 if (order >= suitable_order) 1076 info->free_blocks_suitable += blocks << 1077 (order - suitable_order); 1078 } 1079 } 1080 1081 /* 1082 * A fragmentation index only makes sense if an allocation of a requested 1083 * size would fail. If that is true, the fragmentation index indicates 1084 * whether external fragmentation or a lack of memory was the problem. 1085 * The value can be used to determine if page reclaim or compaction 1086 * should be used 1087 */ 1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1089 { 1090 unsigned long requested = 1UL << order; 1091 1092 if (WARN_ON_ONCE(order > MAX_ORDER)) 1093 return 0; 1094 1095 if (!info->free_blocks_total) 1096 return 0; 1097 1098 /* Fragmentation index only makes sense when a request would fail */ 1099 if (info->free_blocks_suitable) 1100 return -1000; 1101 1102 /* 1103 * Index is between 0 and 1 so return within 3 decimal places 1104 * 1105 * 0 => allocation would fail due to lack of memory 1106 * 1 => allocation would fail due to fragmentation 1107 */ 1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1109 } 1110 1111 /* 1112 * Calculates external fragmentation within a zone wrt the given order. 1113 * It is defined as the percentage of pages found in blocks of size 1114 * less than 1 << order. It returns values in range [0, 100]. 1115 */ 1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1117 { 1118 struct contig_page_info info; 1119 1120 fill_contig_page_info(zone, order, &info); 1121 if (info.free_pages == 0) 1122 return 0; 1123 1124 return div_u64((info.free_pages - 1125 (info.free_blocks_suitable << order)) * 100, 1126 info.free_pages); 1127 } 1128 1129 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1130 int fragmentation_index(struct zone *zone, unsigned int order) 1131 { 1132 struct contig_page_info info; 1133 1134 fill_contig_page_info(zone, order, &info); 1135 return __fragmentation_index(order, &info); 1136 } 1137 #endif 1138 1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1141 #ifdef CONFIG_ZONE_DMA 1142 #define TEXT_FOR_DMA(xx) xx "_dma", 1143 #else 1144 #define TEXT_FOR_DMA(xx) 1145 #endif 1146 1147 #ifdef CONFIG_ZONE_DMA32 1148 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1149 #else 1150 #define TEXT_FOR_DMA32(xx) 1151 #endif 1152 1153 #ifdef CONFIG_HIGHMEM 1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1155 #else 1156 #define TEXT_FOR_HIGHMEM(xx) 1157 #endif 1158 1159 #ifdef CONFIG_ZONE_DEVICE 1160 #define TEXT_FOR_DEVICE(xx) xx "_device", 1161 #else 1162 #define TEXT_FOR_DEVICE(xx) 1163 #endif 1164 1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1166 TEXT_FOR_HIGHMEM(xx) xx "_movable", \ 1167 TEXT_FOR_DEVICE(xx) 1168 1169 const char * const vmstat_text[] = { 1170 /* enum zone_stat_item counters */ 1171 "nr_free_pages", 1172 "nr_zone_inactive_anon", 1173 "nr_zone_active_anon", 1174 "nr_zone_inactive_file", 1175 "nr_zone_active_file", 1176 "nr_zone_unevictable", 1177 "nr_zone_write_pending", 1178 "nr_mlock", 1179 "nr_bounce", 1180 #if IS_ENABLED(CONFIG_ZSMALLOC) 1181 "nr_zspages", 1182 #endif 1183 "nr_free_cma", 1184 1185 /* enum numa_stat_item counters */ 1186 #ifdef CONFIG_NUMA 1187 "numa_hit", 1188 "numa_miss", 1189 "numa_foreign", 1190 "numa_interleave", 1191 "numa_local", 1192 "numa_other", 1193 #endif 1194 1195 /* enum node_stat_item counters */ 1196 "nr_inactive_anon", 1197 "nr_active_anon", 1198 "nr_inactive_file", 1199 "nr_active_file", 1200 "nr_unevictable", 1201 "nr_slab_reclaimable", 1202 "nr_slab_unreclaimable", 1203 "nr_isolated_anon", 1204 "nr_isolated_file", 1205 "workingset_nodes", 1206 "workingset_refault_anon", 1207 "workingset_refault_file", 1208 "workingset_activate_anon", 1209 "workingset_activate_file", 1210 "workingset_restore_anon", 1211 "workingset_restore_file", 1212 "workingset_nodereclaim", 1213 "nr_anon_pages", 1214 "nr_mapped", 1215 "nr_file_pages", 1216 "nr_dirty", 1217 "nr_writeback", 1218 "nr_writeback_temp", 1219 "nr_shmem", 1220 "nr_shmem_hugepages", 1221 "nr_shmem_pmdmapped", 1222 "nr_file_hugepages", 1223 "nr_file_pmdmapped", 1224 "nr_anon_transparent_hugepages", 1225 "nr_vmscan_write", 1226 "nr_vmscan_immediate_reclaim", 1227 "nr_dirtied", 1228 "nr_written", 1229 "nr_throttled_written", 1230 "nr_kernel_misc_reclaimable", 1231 "nr_foll_pin_acquired", 1232 "nr_foll_pin_released", 1233 "nr_kernel_stack", 1234 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1235 "nr_shadow_call_stack", 1236 #endif 1237 "nr_page_table_pages", 1238 "nr_sec_page_table_pages", 1239 #ifdef CONFIG_SWAP 1240 "nr_swapcached", 1241 #endif 1242 #ifdef CONFIG_NUMA_BALANCING 1243 "pgpromote_success", 1244 "pgpromote_candidate", 1245 #endif 1246 1247 /* enum writeback_stat_item counters */ 1248 "nr_dirty_threshold", 1249 "nr_dirty_background_threshold", 1250 1251 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1252 /* enum vm_event_item counters */ 1253 "pgpgin", 1254 "pgpgout", 1255 "pswpin", 1256 "pswpout", 1257 1258 TEXTS_FOR_ZONES("pgalloc") 1259 TEXTS_FOR_ZONES("allocstall") 1260 TEXTS_FOR_ZONES("pgskip") 1261 1262 "pgfree", 1263 "pgactivate", 1264 "pgdeactivate", 1265 "pglazyfree", 1266 1267 "pgfault", 1268 "pgmajfault", 1269 "pglazyfreed", 1270 1271 "pgrefill", 1272 "pgreuse", 1273 "pgsteal_kswapd", 1274 "pgsteal_direct", 1275 "pgsteal_khugepaged", 1276 "pgdemote_kswapd", 1277 "pgdemote_direct", 1278 "pgdemote_khugepaged", 1279 "pgscan_kswapd", 1280 "pgscan_direct", 1281 "pgscan_khugepaged", 1282 "pgscan_direct_throttle", 1283 "pgscan_anon", 1284 "pgscan_file", 1285 "pgsteal_anon", 1286 "pgsteal_file", 1287 1288 #ifdef CONFIG_NUMA 1289 "zone_reclaim_failed", 1290 #endif 1291 "pginodesteal", 1292 "slabs_scanned", 1293 "kswapd_inodesteal", 1294 "kswapd_low_wmark_hit_quickly", 1295 "kswapd_high_wmark_hit_quickly", 1296 "pageoutrun", 1297 1298 "pgrotated", 1299 1300 "drop_pagecache", 1301 "drop_slab", 1302 "oom_kill", 1303 1304 #ifdef CONFIG_NUMA_BALANCING 1305 "numa_pte_updates", 1306 "numa_huge_pte_updates", 1307 "numa_hint_faults", 1308 "numa_hint_faults_local", 1309 "numa_pages_migrated", 1310 #endif 1311 #ifdef CONFIG_MIGRATION 1312 "pgmigrate_success", 1313 "pgmigrate_fail", 1314 "thp_migration_success", 1315 "thp_migration_fail", 1316 "thp_migration_split", 1317 #endif 1318 #ifdef CONFIG_COMPACTION 1319 "compact_migrate_scanned", 1320 "compact_free_scanned", 1321 "compact_isolated", 1322 "compact_stall", 1323 "compact_fail", 1324 "compact_success", 1325 "compact_daemon_wake", 1326 "compact_daemon_migrate_scanned", 1327 "compact_daemon_free_scanned", 1328 #endif 1329 1330 #ifdef CONFIG_HUGETLB_PAGE 1331 "htlb_buddy_alloc_success", 1332 "htlb_buddy_alloc_fail", 1333 #endif 1334 #ifdef CONFIG_CMA 1335 "cma_alloc_success", 1336 "cma_alloc_fail", 1337 #endif 1338 "unevictable_pgs_culled", 1339 "unevictable_pgs_scanned", 1340 "unevictable_pgs_rescued", 1341 "unevictable_pgs_mlocked", 1342 "unevictable_pgs_munlocked", 1343 "unevictable_pgs_cleared", 1344 "unevictable_pgs_stranded", 1345 1346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1347 "thp_fault_alloc", 1348 "thp_fault_fallback", 1349 "thp_fault_fallback_charge", 1350 "thp_collapse_alloc", 1351 "thp_collapse_alloc_failed", 1352 "thp_file_alloc", 1353 "thp_file_fallback", 1354 "thp_file_fallback_charge", 1355 "thp_file_mapped", 1356 "thp_split_page", 1357 "thp_split_page_failed", 1358 "thp_deferred_split_page", 1359 "thp_split_pmd", 1360 "thp_scan_exceed_none_pte", 1361 "thp_scan_exceed_swap_pte", 1362 "thp_scan_exceed_share_pte", 1363 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1364 "thp_split_pud", 1365 #endif 1366 "thp_zero_page_alloc", 1367 "thp_zero_page_alloc_failed", 1368 "thp_swpout", 1369 "thp_swpout_fallback", 1370 #endif 1371 #ifdef CONFIG_MEMORY_BALLOON 1372 "balloon_inflate", 1373 "balloon_deflate", 1374 #ifdef CONFIG_BALLOON_COMPACTION 1375 "balloon_migrate", 1376 #endif 1377 #endif /* CONFIG_MEMORY_BALLOON */ 1378 #ifdef CONFIG_DEBUG_TLBFLUSH 1379 "nr_tlb_remote_flush", 1380 "nr_tlb_remote_flush_received", 1381 "nr_tlb_local_flush_all", 1382 "nr_tlb_local_flush_one", 1383 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1384 1385 #ifdef CONFIG_SWAP 1386 "swap_ra", 1387 "swap_ra_hit", 1388 #ifdef CONFIG_KSM 1389 "ksm_swpin_copy", 1390 #endif 1391 #endif 1392 #ifdef CONFIG_KSM 1393 "cow_ksm", 1394 #endif 1395 #ifdef CONFIG_ZSWAP 1396 "zswpin", 1397 "zswpout", 1398 #endif 1399 #ifdef CONFIG_X86 1400 "direct_map_level2_splits", 1401 "direct_map_level3_splits", 1402 #endif 1403 #ifdef CONFIG_PER_VMA_LOCK_STATS 1404 "vma_lock_success", 1405 "vma_lock_abort", 1406 "vma_lock_retry", 1407 "vma_lock_miss", 1408 #endif 1409 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1410 }; 1411 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1412 1413 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1414 defined(CONFIG_PROC_FS) 1415 static void *frag_start(struct seq_file *m, loff_t *pos) 1416 { 1417 pg_data_t *pgdat; 1418 loff_t node = *pos; 1419 1420 for (pgdat = first_online_pgdat(); 1421 pgdat && node; 1422 pgdat = next_online_pgdat(pgdat)) 1423 --node; 1424 1425 return pgdat; 1426 } 1427 1428 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1429 { 1430 pg_data_t *pgdat = (pg_data_t *)arg; 1431 1432 (*pos)++; 1433 return next_online_pgdat(pgdat); 1434 } 1435 1436 static void frag_stop(struct seq_file *m, void *arg) 1437 { 1438 } 1439 1440 /* 1441 * Walk zones in a node and print using a callback. 1442 * If @assert_populated is true, only use callback for zones that are populated. 1443 */ 1444 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1445 bool assert_populated, bool nolock, 1446 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1447 { 1448 struct zone *zone; 1449 struct zone *node_zones = pgdat->node_zones; 1450 unsigned long flags; 1451 1452 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1453 if (assert_populated && !populated_zone(zone)) 1454 continue; 1455 1456 if (!nolock) 1457 spin_lock_irqsave(&zone->lock, flags); 1458 print(m, pgdat, zone); 1459 if (!nolock) 1460 spin_unlock_irqrestore(&zone->lock, flags); 1461 } 1462 } 1463 #endif 1464 1465 #ifdef CONFIG_PROC_FS 1466 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1467 struct zone *zone) 1468 { 1469 int order; 1470 1471 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1472 for (order = 0; order <= MAX_ORDER; ++order) 1473 /* 1474 * Access to nr_free is lockless as nr_free is used only for 1475 * printing purposes. Use data_race to avoid KCSAN warning. 1476 */ 1477 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1478 seq_putc(m, '\n'); 1479 } 1480 1481 /* 1482 * This walks the free areas for each zone. 1483 */ 1484 static int frag_show(struct seq_file *m, void *arg) 1485 { 1486 pg_data_t *pgdat = (pg_data_t *)arg; 1487 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1488 return 0; 1489 } 1490 1491 static void pagetypeinfo_showfree_print(struct seq_file *m, 1492 pg_data_t *pgdat, struct zone *zone) 1493 { 1494 int order, mtype; 1495 1496 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1497 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1498 pgdat->node_id, 1499 zone->name, 1500 migratetype_names[mtype]); 1501 for (order = 0; order <= MAX_ORDER; ++order) { 1502 unsigned long freecount = 0; 1503 struct free_area *area; 1504 struct list_head *curr; 1505 bool overflow = false; 1506 1507 area = &(zone->free_area[order]); 1508 1509 list_for_each(curr, &area->free_list[mtype]) { 1510 /* 1511 * Cap the free_list iteration because it might 1512 * be really large and we are under a spinlock 1513 * so a long time spent here could trigger a 1514 * hard lockup detector. Anyway this is a 1515 * debugging tool so knowing there is a handful 1516 * of pages of this order should be more than 1517 * sufficient. 1518 */ 1519 if (++freecount >= 100000) { 1520 overflow = true; 1521 break; 1522 } 1523 } 1524 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1525 spin_unlock_irq(&zone->lock); 1526 cond_resched(); 1527 spin_lock_irq(&zone->lock); 1528 } 1529 seq_putc(m, '\n'); 1530 } 1531 } 1532 1533 /* Print out the free pages at each order for each migatetype */ 1534 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1535 { 1536 int order; 1537 pg_data_t *pgdat = (pg_data_t *)arg; 1538 1539 /* Print header */ 1540 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1541 for (order = 0; order <= MAX_ORDER; ++order) 1542 seq_printf(m, "%6d ", order); 1543 seq_putc(m, '\n'); 1544 1545 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1546 } 1547 1548 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1549 pg_data_t *pgdat, struct zone *zone) 1550 { 1551 int mtype; 1552 unsigned long pfn; 1553 unsigned long start_pfn = zone->zone_start_pfn; 1554 unsigned long end_pfn = zone_end_pfn(zone); 1555 unsigned long count[MIGRATE_TYPES] = { 0, }; 1556 1557 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1558 struct page *page; 1559 1560 page = pfn_to_online_page(pfn); 1561 if (!page) 1562 continue; 1563 1564 if (page_zone(page) != zone) 1565 continue; 1566 1567 mtype = get_pageblock_migratetype(page); 1568 1569 if (mtype < MIGRATE_TYPES) 1570 count[mtype]++; 1571 } 1572 1573 /* Print counts */ 1574 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1575 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1576 seq_printf(m, "%12lu ", count[mtype]); 1577 seq_putc(m, '\n'); 1578 } 1579 1580 /* Print out the number of pageblocks for each migratetype */ 1581 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1582 { 1583 int mtype; 1584 pg_data_t *pgdat = (pg_data_t *)arg; 1585 1586 seq_printf(m, "\n%-23s", "Number of blocks type "); 1587 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1588 seq_printf(m, "%12s ", migratetype_names[mtype]); 1589 seq_putc(m, '\n'); 1590 walk_zones_in_node(m, pgdat, true, false, 1591 pagetypeinfo_showblockcount_print); 1592 } 1593 1594 /* 1595 * Print out the number of pageblocks for each migratetype that contain pages 1596 * of other types. This gives an indication of how well fallbacks are being 1597 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1598 * to determine what is going on 1599 */ 1600 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1601 { 1602 #ifdef CONFIG_PAGE_OWNER 1603 int mtype; 1604 1605 if (!static_branch_unlikely(&page_owner_inited)) 1606 return; 1607 1608 drain_all_pages(NULL); 1609 1610 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1611 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1612 seq_printf(m, "%12s ", migratetype_names[mtype]); 1613 seq_putc(m, '\n'); 1614 1615 walk_zones_in_node(m, pgdat, true, true, 1616 pagetypeinfo_showmixedcount_print); 1617 #endif /* CONFIG_PAGE_OWNER */ 1618 } 1619 1620 /* 1621 * This prints out statistics in relation to grouping pages by mobility. 1622 * It is expensive to collect so do not constantly read the file. 1623 */ 1624 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1625 { 1626 pg_data_t *pgdat = (pg_data_t *)arg; 1627 1628 /* check memoryless node */ 1629 if (!node_state(pgdat->node_id, N_MEMORY)) 1630 return 0; 1631 1632 seq_printf(m, "Page block order: %d\n", pageblock_order); 1633 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1634 seq_putc(m, '\n'); 1635 pagetypeinfo_showfree(m, pgdat); 1636 pagetypeinfo_showblockcount(m, pgdat); 1637 pagetypeinfo_showmixedcount(m, pgdat); 1638 1639 return 0; 1640 } 1641 1642 static const struct seq_operations fragmentation_op = { 1643 .start = frag_start, 1644 .next = frag_next, 1645 .stop = frag_stop, 1646 .show = frag_show, 1647 }; 1648 1649 static const struct seq_operations pagetypeinfo_op = { 1650 .start = frag_start, 1651 .next = frag_next, 1652 .stop = frag_stop, 1653 .show = pagetypeinfo_show, 1654 }; 1655 1656 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1657 { 1658 int zid; 1659 1660 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1661 struct zone *compare = &pgdat->node_zones[zid]; 1662 1663 if (populated_zone(compare)) 1664 return zone == compare; 1665 } 1666 1667 return false; 1668 } 1669 1670 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1671 struct zone *zone) 1672 { 1673 int i; 1674 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1675 if (is_zone_first_populated(pgdat, zone)) { 1676 seq_printf(m, "\n per-node stats"); 1677 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1678 unsigned long pages = node_page_state_pages(pgdat, i); 1679 1680 if (vmstat_item_print_in_thp(i)) 1681 pages /= HPAGE_PMD_NR; 1682 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1683 pages); 1684 } 1685 } 1686 seq_printf(m, 1687 "\n pages free %lu" 1688 "\n boost %lu" 1689 "\n min %lu" 1690 "\n low %lu" 1691 "\n high %lu" 1692 "\n spanned %lu" 1693 "\n present %lu" 1694 "\n managed %lu" 1695 "\n cma %lu", 1696 zone_page_state(zone, NR_FREE_PAGES), 1697 zone->watermark_boost, 1698 min_wmark_pages(zone), 1699 low_wmark_pages(zone), 1700 high_wmark_pages(zone), 1701 zone->spanned_pages, 1702 zone->present_pages, 1703 zone_managed_pages(zone), 1704 zone_cma_pages(zone)); 1705 1706 seq_printf(m, 1707 "\n protection: (%ld", 1708 zone->lowmem_reserve[0]); 1709 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1710 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1711 seq_putc(m, ')'); 1712 1713 /* If unpopulated, no other information is useful */ 1714 if (!populated_zone(zone)) { 1715 seq_putc(m, '\n'); 1716 return; 1717 } 1718 1719 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1720 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1721 zone_page_state(zone, i)); 1722 1723 #ifdef CONFIG_NUMA 1724 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1725 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1726 zone_numa_event_state(zone, i)); 1727 #endif 1728 1729 seq_printf(m, "\n pagesets"); 1730 for_each_online_cpu(i) { 1731 struct per_cpu_pages *pcp; 1732 struct per_cpu_zonestat __maybe_unused *pzstats; 1733 1734 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1735 seq_printf(m, 1736 "\n cpu: %i" 1737 "\n count: %i" 1738 "\n high: %i" 1739 "\n batch: %i", 1740 i, 1741 pcp->count, 1742 pcp->high, 1743 pcp->batch); 1744 #ifdef CONFIG_SMP 1745 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1746 seq_printf(m, "\n vm stats threshold: %d", 1747 pzstats->stat_threshold); 1748 #endif 1749 } 1750 seq_printf(m, 1751 "\n node_unreclaimable: %u" 1752 "\n start_pfn: %lu", 1753 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1754 zone->zone_start_pfn); 1755 seq_putc(m, '\n'); 1756 } 1757 1758 /* 1759 * Output information about zones in @pgdat. All zones are printed regardless 1760 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1761 * set of all zones and userspace would not be aware of such zones if they are 1762 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1763 */ 1764 static int zoneinfo_show(struct seq_file *m, void *arg) 1765 { 1766 pg_data_t *pgdat = (pg_data_t *)arg; 1767 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1768 return 0; 1769 } 1770 1771 static const struct seq_operations zoneinfo_op = { 1772 .start = frag_start, /* iterate over all zones. The same as in 1773 * fragmentation. */ 1774 .next = frag_next, 1775 .stop = frag_stop, 1776 .show = zoneinfo_show, 1777 }; 1778 1779 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1780 NR_VM_NUMA_EVENT_ITEMS + \ 1781 NR_VM_NODE_STAT_ITEMS + \ 1782 NR_VM_WRITEBACK_STAT_ITEMS + \ 1783 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1784 NR_VM_EVENT_ITEMS : 0)) 1785 1786 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1787 { 1788 unsigned long *v; 1789 int i; 1790 1791 if (*pos >= NR_VMSTAT_ITEMS) 1792 return NULL; 1793 1794 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1795 fold_vm_numa_events(); 1796 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1797 m->private = v; 1798 if (!v) 1799 return ERR_PTR(-ENOMEM); 1800 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1801 v[i] = global_zone_page_state(i); 1802 v += NR_VM_ZONE_STAT_ITEMS; 1803 1804 #ifdef CONFIG_NUMA 1805 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1806 v[i] = global_numa_event_state(i); 1807 v += NR_VM_NUMA_EVENT_ITEMS; 1808 #endif 1809 1810 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1811 v[i] = global_node_page_state_pages(i); 1812 if (vmstat_item_print_in_thp(i)) 1813 v[i] /= HPAGE_PMD_NR; 1814 } 1815 v += NR_VM_NODE_STAT_ITEMS; 1816 1817 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1818 v + NR_DIRTY_THRESHOLD); 1819 v += NR_VM_WRITEBACK_STAT_ITEMS; 1820 1821 #ifdef CONFIG_VM_EVENT_COUNTERS 1822 all_vm_events(v); 1823 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1824 v[PGPGOUT] /= 2; 1825 #endif 1826 return (unsigned long *)m->private + *pos; 1827 } 1828 1829 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1830 { 1831 (*pos)++; 1832 if (*pos >= NR_VMSTAT_ITEMS) 1833 return NULL; 1834 return (unsigned long *)m->private + *pos; 1835 } 1836 1837 static int vmstat_show(struct seq_file *m, void *arg) 1838 { 1839 unsigned long *l = arg; 1840 unsigned long off = l - (unsigned long *)m->private; 1841 1842 seq_puts(m, vmstat_text[off]); 1843 seq_put_decimal_ull(m, " ", *l); 1844 seq_putc(m, '\n'); 1845 1846 if (off == NR_VMSTAT_ITEMS - 1) { 1847 /* 1848 * We've come to the end - add any deprecated counters to avoid 1849 * breaking userspace which might depend on them being present. 1850 */ 1851 seq_puts(m, "nr_unstable 0\n"); 1852 } 1853 return 0; 1854 } 1855 1856 static void vmstat_stop(struct seq_file *m, void *arg) 1857 { 1858 kfree(m->private); 1859 m->private = NULL; 1860 } 1861 1862 static const struct seq_operations vmstat_op = { 1863 .start = vmstat_start, 1864 .next = vmstat_next, 1865 .stop = vmstat_stop, 1866 .show = vmstat_show, 1867 }; 1868 #endif /* CONFIG_PROC_FS */ 1869 1870 #ifdef CONFIG_SMP 1871 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1872 int sysctl_stat_interval __read_mostly = HZ; 1873 1874 #ifdef CONFIG_PROC_FS 1875 static void refresh_vm_stats(struct work_struct *work) 1876 { 1877 refresh_cpu_vm_stats(true); 1878 } 1879 1880 int vmstat_refresh(struct ctl_table *table, int write, 1881 void *buffer, size_t *lenp, loff_t *ppos) 1882 { 1883 long val; 1884 int err; 1885 int i; 1886 1887 /* 1888 * The regular update, every sysctl_stat_interval, may come later 1889 * than expected: leaving a significant amount in per_cpu buckets. 1890 * This is particularly misleading when checking a quantity of HUGE 1891 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1892 * which can equally be echo'ed to or cat'ted from (by root), 1893 * can be used to update the stats just before reading them. 1894 * 1895 * Oh, and since global_zone_page_state() etc. are so careful to hide 1896 * transiently negative values, report an error here if any of 1897 * the stats is negative, so we know to go looking for imbalance. 1898 */ 1899 err = schedule_on_each_cpu(refresh_vm_stats); 1900 if (err) 1901 return err; 1902 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1903 /* 1904 * Skip checking stats known to go negative occasionally. 1905 */ 1906 switch (i) { 1907 case NR_ZONE_WRITE_PENDING: 1908 case NR_FREE_CMA_PAGES: 1909 continue; 1910 } 1911 val = atomic_long_read(&vm_zone_stat[i]); 1912 if (val < 0) { 1913 pr_warn("%s: %s %ld\n", 1914 __func__, zone_stat_name(i), val); 1915 } 1916 } 1917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1918 /* 1919 * Skip checking stats known to go negative occasionally. 1920 */ 1921 switch (i) { 1922 case NR_WRITEBACK: 1923 continue; 1924 } 1925 val = atomic_long_read(&vm_node_stat[i]); 1926 if (val < 0) { 1927 pr_warn("%s: %s %ld\n", 1928 __func__, node_stat_name(i), val); 1929 } 1930 } 1931 if (write) 1932 *ppos += *lenp; 1933 else 1934 *lenp = 0; 1935 return 0; 1936 } 1937 #endif /* CONFIG_PROC_FS */ 1938 1939 static void vmstat_update(struct work_struct *w) 1940 { 1941 if (refresh_cpu_vm_stats(true)) { 1942 /* 1943 * Counters were updated so we expect more updates 1944 * to occur in the future. Keep on running the 1945 * update worker thread. 1946 */ 1947 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1948 this_cpu_ptr(&vmstat_work), 1949 round_jiffies_relative(sysctl_stat_interval)); 1950 } 1951 } 1952 1953 /* 1954 * Check if the diffs for a certain cpu indicate that 1955 * an update is needed. 1956 */ 1957 static bool need_update(int cpu) 1958 { 1959 pg_data_t *last_pgdat = NULL; 1960 struct zone *zone; 1961 1962 for_each_populated_zone(zone) { 1963 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 1964 struct per_cpu_nodestat *n; 1965 1966 /* 1967 * The fast way of checking if there are any vmstat diffs. 1968 */ 1969 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 1970 return true; 1971 1972 if (last_pgdat == zone->zone_pgdat) 1973 continue; 1974 last_pgdat = zone->zone_pgdat; 1975 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 1976 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 1977 return true; 1978 } 1979 return false; 1980 } 1981 1982 /* 1983 * Switch off vmstat processing and then fold all the remaining differentials 1984 * until the diffs stay at zero. The function is used by NOHZ and can only be 1985 * invoked when tick processing is not active. 1986 */ 1987 void quiet_vmstat(void) 1988 { 1989 if (system_state != SYSTEM_RUNNING) 1990 return; 1991 1992 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1993 return; 1994 1995 if (!need_update(smp_processor_id())) 1996 return; 1997 1998 /* 1999 * Just refresh counters and do not care about the pending delayed 2000 * vmstat_update. It doesn't fire that often to matter and canceling 2001 * it would be too expensive from this path. 2002 * vmstat_shepherd will take care about that for us. 2003 */ 2004 refresh_cpu_vm_stats(false); 2005 } 2006 2007 /* 2008 * Shepherd worker thread that checks the 2009 * differentials of processors that have their worker 2010 * threads for vm statistics updates disabled because of 2011 * inactivity. 2012 */ 2013 static void vmstat_shepherd(struct work_struct *w); 2014 2015 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2016 2017 static void vmstat_shepherd(struct work_struct *w) 2018 { 2019 int cpu; 2020 2021 cpus_read_lock(); 2022 /* Check processors whose vmstat worker threads have been disabled */ 2023 for_each_online_cpu(cpu) { 2024 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2025 2026 /* 2027 * In kernel users of vmstat counters either require the precise value and 2028 * they are using zone_page_state_snapshot interface or they can live with 2029 * an imprecision as the regular flushing can happen at arbitrary time and 2030 * cumulative error can grow (see calculate_normal_threshold). 2031 * 2032 * From that POV the regular flushing can be postponed for CPUs that have 2033 * been isolated from the kernel interference without critical 2034 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd 2035 * for all isolated CPUs to avoid interference with the isolated workload. 2036 */ 2037 if (cpu_is_isolated(cpu)) 2038 continue; 2039 2040 if (!delayed_work_pending(dw) && need_update(cpu)) 2041 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2042 2043 cond_resched(); 2044 } 2045 cpus_read_unlock(); 2046 2047 schedule_delayed_work(&shepherd, 2048 round_jiffies_relative(sysctl_stat_interval)); 2049 } 2050 2051 static void __init start_shepherd_timer(void) 2052 { 2053 int cpu; 2054 2055 for_each_possible_cpu(cpu) 2056 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2057 vmstat_update); 2058 2059 schedule_delayed_work(&shepherd, 2060 round_jiffies_relative(sysctl_stat_interval)); 2061 } 2062 2063 static void __init init_cpu_node_state(void) 2064 { 2065 int node; 2066 2067 for_each_online_node(node) { 2068 if (!cpumask_empty(cpumask_of_node(node))) 2069 node_set_state(node, N_CPU); 2070 } 2071 } 2072 2073 static int vmstat_cpu_online(unsigned int cpu) 2074 { 2075 refresh_zone_stat_thresholds(); 2076 2077 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2078 node_set_state(cpu_to_node(cpu), N_CPU); 2079 } 2080 2081 return 0; 2082 } 2083 2084 static int vmstat_cpu_down_prep(unsigned int cpu) 2085 { 2086 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2087 return 0; 2088 } 2089 2090 static int vmstat_cpu_dead(unsigned int cpu) 2091 { 2092 const struct cpumask *node_cpus; 2093 int node; 2094 2095 node = cpu_to_node(cpu); 2096 2097 refresh_zone_stat_thresholds(); 2098 node_cpus = cpumask_of_node(node); 2099 if (!cpumask_empty(node_cpus)) 2100 return 0; 2101 2102 node_clear_state(node, N_CPU); 2103 2104 return 0; 2105 } 2106 2107 #endif 2108 2109 struct workqueue_struct *mm_percpu_wq; 2110 2111 void __init init_mm_internals(void) 2112 { 2113 int ret __maybe_unused; 2114 2115 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2116 2117 #ifdef CONFIG_SMP 2118 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2119 NULL, vmstat_cpu_dead); 2120 if (ret < 0) 2121 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2122 2123 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2124 vmstat_cpu_online, 2125 vmstat_cpu_down_prep); 2126 if (ret < 0) 2127 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2128 2129 cpus_read_lock(); 2130 init_cpu_node_state(); 2131 cpus_read_unlock(); 2132 2133 start_shepherd_timer(); 2134 #endif 2135 #ifdef CONFIG_PROC_FS 2136 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2137 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2138 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2139 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2140 #endif 2141 } 2142 2143 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2144 2145 /* 2146 * Return an index indicating how much of the available free memory is 2147 * unusable for an allocation of the requested size. 2148 */ 2149 static int unusable_free_index(unsigned int order, 2150 struct contig_page_info *info) 2151 { 2152 /* No free memory is interpreted as all free memory is unusable */ 2153 if (info->free_pages == 0) 2154 return 1000; 2155 2156 /* 2157 * Index should be a value between 0 and 1. Return a value to 3 2158 * decimal places. 2159 * 2160 * 0 => no fragmentation 2161 * 1 => high fragmentation 2162 */ 2163 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2164 2165 } 2166 2167 static void unusable_show_print(struct seq_file *m, 2168 pg_data_t *pgdat, struct zone *zone) 2169 { 2170 unsigned int order; 2171 int index; 2172 struct contig_page_info info; 2173 2174 seq_printf(m, "Node %d, zone %8s ", 2175 pgdat->node_id, 2176 zone->name); 2177 for (order = 0; order <= MAX_ORDER; ++order) { 2178 fill_contig_page_info(zone, order, &info); 2179 index = unusable_free_index(order, &info); 2180 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2181 } 2182 2183 seq_putc(m, '\n'); 2184 } 2185 2186 /* 2187 * Display unusable free space index 2188 * 2189 * The unusable free space index measures how much of the available free 2190 * memory cannot be used to satisfy an allocation of a given size and is a 2191 * value between 0 and 1. The higher the value, the more of free memory is 2192 * unusable and by implication, the worse the external fragmentation is. This 2193 * can be expressed as a percentage by multiplying by 100. 2194 */ 2195 static int unusable_show(struct seq_file *m, void *arg) 2196 { 2197 pg_data_t *pgdat = (pg_data_t *)arg; 2198 2199 /* check memoryless node */ 2200 if (!node_state(pgdat->node_id, N_MEMORY)) 2201 return 0; 2202 2203 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2204 2205 return 0; 2206 } 2207 2208 static const struct seq_operations unusable_sops = { 2209 .start = frag_start, 2210 .next = frag_next, 2211 .stop = frag_stop, 2212 .show = unusable_show, 2213 }; 2214 2215 DEFINE_SEQ_ATTRIBUTE(unusable); 2216 2217 static void extfrag_show_print(struct seq_file *m, 2218 pg_data_t *pgdat, struct zone *zone) 2219 { 2220 unsigned int order; 2221 int index; 2222 2223 /* Alloc on stack as interrupts are disabled for zone walk */ 2224 struct contig_page_info info; 2225 2226 seq_printf(m, "Node %d, zone %8s ", 2227 pgdat->node_id, 2228 zone->name); 2229 for (order = 0; order <= MAX_ORDER; ++order) { 2230 fill_contig_page_info(zone, order, &info); 2231 index = __fragmentation_index(order, &info); 2232 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2233 } 2234 2235 seq_putc(m, '\n'); 2236 } 2237 2238 /* 2239 * Display fragmentation index for orders that allocations would fail for 2240 */ 2241 static int extfrag_show(struct seq_file *m, void *arg) 2242 { 2243 pg_data_t *pgdat = (pg_data_t *)arg; 2244 2245 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2246 2247 return 0; 2248 } 2249 2250 static const struct seq_operations extfrag_sops = { 2251 .start = frag_start, 2252 .next = frag_next, 2253 .stop = frag_stop, 2254 .show = extfrag_show, 2255 }; 2256 2257 DEFINE_SEQ_ATTRIBUTE(extfrag); 2258 2259 static int __init extfrag_debug_init(void) 2260 { 2261 struct dentry *extfrag_debug_root; 2262 2263 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2264 2265 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2266 &unusable_fops); 2267 2268 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2269 &extfrag_fops); 2270 2271 return 0; 2272 } 2273 2274 module_init(extfrag_debug_init); 2275 #endif 2276