xref: /openbmc/linux/mm/vmstat.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35 
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 	int item, cpu;
43 
44 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 		atomic_long_set(&zone->vm_numa_stat[item], 0);
46 		for_each_online_cpu(cpu)
47 			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 						= 0;
49 	}
50 }
51 
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
54 {
55 	struct zone *zone;
56 
57 	for_each_populated_zone(zone)
58 		zero_zone_numa_counters(zone);
59 }
60 
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
63 {
64 	int item;
65 
66 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 		atomic_long_set(&vm_numa_stat[item], 0);
68 }
69 
70 static void invalid_numa_statistics(void)
71 {
72 	zero_zones_numa_counters();
73 	zero_global_numa_counters();
74 }
75 
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77 
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 		void *buffer, size_t *length, loff_t *ppos)
80 {
81 	int ret, oldval;
82 
83 	mutex_lock(&vm_numa_stat_lock);
84 	if (write)
85 		oldval = sysctl_vm_numa_stat;
86 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 	if (ret || !write)
88 		goto out;
89 
90 	if (oldval == sysctl_vm_numa_stat)
91 		goto out;
92 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 		static_branch_enable(&vm_numa_stat_key);
94 		pr_info("enable numa statistics\n");
95 	} else {
96 		static_branch_disable(&vm_numa_stat_key);
97 		invalid_numa_statistics();
98 		pr_info("disable numa statistics, and clear numa counters\n");
99 	}
100 
101 out:
102 	mutex_unlock(&vm_numa_stat_lock);
103 	return ret;
104 }
105 #endif
106 
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 
111 static void sum_vm_events(unsigned long *ret)
112 {
113 	int cpu;
114 	int i;
115 
116 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 
118 	for_each_online_cpu(cpu) {
119 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 
121 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 			ret[i] += this->event[i];
123 	}
124 }
125 
126 /*
127  * Accumulate the vm event counters across all CPUs.
128  * The result is unavoidably approximate - it can change
129  * during and after execution of this function.
130 */
131 void all_vm_events(unsigned long *ret)
132 {
133 	get_online_cpus();
134 	sum_vm_events(ret);
135 	put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138 
139 /*
140  * Fold the foreign cpu events into our own.
141  *
142  * This is adding to the events on one processor
143  * but keeps the global counts constant.
144  */
145 void vm_events_fold_cpu(int cpu)
146 {
147 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 	int i;
149 
150 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 		count_vm_events(i, fold_state->event[i]);
152 		fold_state->event[i] = 0;
153 	}
154 }
155 
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157 
158 /*
159  * Manage combined zone based / global counters
160  *
161  * vm_stat contains the global counters
162  */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169 
170 #ifdef CONFIG_SMP
171 
172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 	int threshold;
175 	int watermark_distance;
176 
177 	/*
178 	 * As vmstats are not up to date, there is drift between the estimated
179 	 * and real values. For high thresholds and a high number of CPUs, it
180 	 * is possible for the min watermark to be breached while the estimated
181 	 * value looks fine. The pressure threshold is a reduced value such
182 	 * that even the maximum amount of drift will not accidentally breach
183 	 * the min watermark
184 	 */
185 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187 
188 	/*
189 	 * Maximum threshold is 125
190 	 */
191 	threshold = min(125, threshold);
192 
193 	return threshold;
194 }
195 
196 int calculate_normal_threshold(struct zone *zone)
197 {
198 	int threshold;
199 	int mem;	/* memory in 128 MB units */
200 
201 	/*
202 	 * The threshold scales with the number of processors and the amount
203 	 * of memory per zone. More memory means that we can defer updates for
204 	 * longer, more processors could lead to more contention.
205  	 * fls() is used to have a cheap way of logarithmic scaling.
206 	 *
207 	 * Some sample thresholds:
208 	 *
209 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
210 	 * ------------------------------------------------------------------
211 	 * 8		1		1	0.9-1 GB	4
212 	 * 16		2		2	0.9-1 GB	4
213 	 * 20 		2		2	1-2 GB		5
214 	 * 24		2		2	2-4 GB		6
215 	 * 28		2		2	4-8 GB		7
216 	 * 32		2		2	8-16 GB		8
217 	 * 4		2		2	<128M		1
218 	 * 30		4		3	2-4 GB		5
219 	 * 48		4		3	8-16 GB		8
220 	 * 32		8		4	1-2 GB		4
221 	 * 32		8		4	0.9-1GB		4
222 	 * 10		16		5	<128M		1
223 	 * 40		16		5	900M		4
224 	 * 70		64		7	2-4 GB		5
225 	 * 84		64		7	4-8 GB		6
226 	 * 108		512		9	4-8 GB		6
227 	 * 125		1024		10	8-16 GB		8
228 	 * 125		1024		10	16-32 GB	9
229 	 */
230 
231 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232 
233 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234 
235 	/*
236 	 * Maximum threshold is 125
237 	 */
238 	threshold = min(125, threshold);
239 
240 	return threshold;
241 }
242 
243 /*
244  * Refresh the thresholds for each zone.
245  */
246 void refresh_zone_stat_thresholds(void)
247 {
248 	struct pglist_data *pgdat;
249 	struct zone *zone;
250 	int cpu;
251 	int threshold;
252 
253 	/* Zero current pgdat thresholds */
254 	for_each_online_pgdat(pgdat) {
255 		for_each_online_cpu(cpu) {
256 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 		}
258 	}
259 
260 	for_each_populated_zone(zone) {
261 		struct pglist_data *pgdat = zone->zone_pgdat;
262 		unsigned long max_drift, tolerate_drift;
263 
264 		threshold = calculate_normal_threshold(zone);
265 
266 		for_each_online_cpu(cpu) {
267 			int pgdat_threshold;
268 
269 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 							= threshold;
271 
272 			/* Base nodestat threshold on the largest populated zone. */
273 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 				= max(threshold, pgdat_threshold);
276 		}
277 
278 		/*
279 		 * Only set percpu_drift_mark if there is a danger that
280 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 		 * the min watermark could be breached by an allocation
282 		 */
283 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 		max_drift = num_online_cpus() * threshold;
285 		if (max_drift > tolerate_drift)
286 			zone->percpu_drift_mark = high_wmark_pages(zone) +
287 					max_drift;
288 	}
289 }
290 
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 				int (*calculate_pressure)(struct zone *))
293 {
294 	struct zone *zone;
295 	int cpu;
296 	int threshold;
297 	int i;
298 
299 	for (i = 0; i < pgdat->nr_zones; i++) {
300 		zone = &pgdat->node_zones[i];
301 		if (!zone->percpu_drift_mark)
302 			continue;
303 
304 		threshold = (*calculate_pressure)(zone);
305 		for_each_online_cpu(cpu)
306 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 							= threshold;
308 	}
309 }
310 
311 /*
312  * For use when we know that interrupts are disabled,
313  * or when we know that preemption is disabled and that
314  * particular counter cannot be updated from interrupt context.
315  */
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 			   long delta)
318 {
319 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 	s8 __percpu *p = pcp->vm_stat_diff + item;
321 	long x;
322 	long t;
323 
324 	x = delta + __this_cpu_read(*p);
325 
326 	t = __this_cpu_read(pcp->stat_threshold);
327 
328 	if (unlikely(abs(x) > t)) {
329 		zone_page_state_add(x, zone, item);
330 		x = 0;
331 	}
332 	__this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335 
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 				long delta)
338 {
339 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 	long x;
342 	long t;
343 
344 	if (vmstat_item_in_bytes(item)) {
345 		/*
346 		 * Only cgroups use subpage accounting right now; at
347 		 * the global level, these items still change in
348 		 * multiples of whole pages. Store them as pages
349 		 * internally to keep the per-cpu counters compact.
350 		 */
351 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
352 		delta >>= PAGE_SHIFT;
353 	}
354 
355 	x = delta + __this_cpu_read(*p);
356 
357 	t = __this_cpu_read(pcp->stat_threshold);
358 
359 	if (unlikely(abs(x) > t)) {
360 		node_page_state_add(x, pgdat, item);
361 		x = 0;
362 	}
363 	__this_cpu_write(*p, x);
364 }
365 EXPORT_SYMBOL(__mod_node_page_state);
366 
367 /*
368  * Optimized increment and decrement functions.
369  *
370  * These are only for a single page and therefore can take a struct page *
371  * argument instead of struct zone *. This allows the inclusion of the code
372  * generated for page_zone(page) into the optimized functions.
373  *
374  * No overflow check is necessary and therefore the differential can be
375  * incremented or decremented in place which may allow the compilers to
376  * generate better code.
377  * The increment or decrement is known and therefore one boundary check can
378  * be omitted.
379  *
380  * NOTE: These functions are very performance sensitive. Change only
381  * with care.
382  *
383  * Some processors have inc/dec instructions that are atomic vs an interrupt.
384  * However, the code must first determine the differential location in a zone
385  * based on the processor number and then inc/dec the counter. There is no
386  * guarantee without disabling preemption that the processor will not change
387  * in between and therefore the atomicity vs. interrupt cannot be exploited
388  * in a useful way here.
389  */
390 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
393 	s8 __percpu *p = pcp->vm_stat_diff + item;
394 	s8 v, t;
395 
396 	v = __this_cpu_inc_return(*p);
397 	t = __this_cpu_read(pcp->stat_threshold);
398 	if (unlikely(v > t)) {
399 		s8 overstep = t >> 1;
400 
401 		zone_page_state_add(v + overstep, zone, item);
402 		__this_cpu_write(*p, -overstep);
403 	}
404 }
405 
406 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
407 {
408 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
409 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
410 	s8 v, t;
411 
412 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
413 
414 	v = __this_cpu_inc_return(*p);
415 	t = __this_cpu_read(pcp->stat_threshold);
416 	if (unlikely(v > t)) {
417 		s8 overstep = t >> 1;
418 
419 		node_page_state_add(v + overstep, pgdat, item);
420 		__this_cpu_write(*p, -overstep);
421 	}
422 }
423 
424 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
425 {
426 	__inc_zone_state(page_zone(page), item);
427 }
428 EXPORT_SYMBOL(__inc_zone_page_state);
429 
430 void __inc_node_page_state(struct page *page, enum node_stat_item item)
431 {
432 	__inc_node_state(page_pgdat(page), item);
433 }
434 EXPORT_SYMBOL(__inc_node_page_state);
435 
436 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
437 {
438 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
439 	s8 __percpu *p = pcp->vm_stat_diff + item;
440 	s8 v, t;
441 
442 	v = __this_cpu_dec_return(*p);
443 	t = __this_cpu_read(pcp->stat_threshold);
444 	if (unlikely(v < - t)) {
445 		s8 overstep = t >> 1;
446 
447 		zone_page_state_add(v - overstep, zone, item);
448 		__this_cpu_write(*p, overstep);
449 	}
450 }
451 
452 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
453 {
454 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
455 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
456 	s8 v, t;
457 
458 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
459 
460 	v = __this_cpu_dec_return(*p);
461 	t = __this_cpu_read(pcp->stat_threshold);
462 	if (unlikely(v < - t)) {
463 		s8 overstep = t >> 1;
464 
465 		node_page_state_add(v - overstep, pgdat, item);
466 		__this_cpu_write(*p, overstep);
467 	}
468 }
469 
470 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
471 {
472 	__dec_zone_state(page_zone(page), item);
473 }
474 EXPORT_SYMBOL(__dec_zone_page_state);
475 
476 void __dec_node_page_state(struct page *page, enum node_stat_item item)
477 {
478 	__dec_node_state(page_pgdat(page), item);
479 }
480 EXPORT_SYMBOL(__dec_node_page_state);
481 
482 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
483 /*
484  * If we have cmpxchg_local support then we do not need to incur the overhead
485  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
486  *
487  * mod_state() modifies the zone counter state through atomic per cpu
488  * operations.
489  *
490  * Overstep mode specifies how overstep should handled:
491  *     0       No overstepping
492  *     1       Overstepping half of threshold
493  *     -1      Overstepping minus half of threshold
494 */
495 static inline void mod_zone_state(struct zone *zone,
496        enum zone_stat_item item, long delta, int overstep_mode)
497 {
498 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
499 	s8 __percpu *p = pcp->vm_stat_diff + item;
500 	long o, n, t, z;
501 
502 	do {
503 		z = 0;  /* overflow to zone counters */
504 
505 		/*
506 		 * The fetching of the stat_threshold is racy. We may apply
507 		 * a counter threshold to the wrong the cpu if we get
508 		 * rescheduled while executing here. However, the next
509 		 * counter update will apply the threshold again and
510 		 * therefore bring the counter under the threshold again.
511 		 *
512 		 * Most of the time the thresholds are the same anyways
513 		 * for all cpus in a zone.
514 		 */
515 		t = this_cpu_read(pcp->stat_threshold);
516 
517 		o = this_cpu_read(*p);
518 		n = delta + o;
519 
520 		if (abs(n) > t) {
521 			int os = overstep_mode * (t >> 1) ;
522 
523 			/* Overflow must be added to zone counters */
524 			z = n + os;
525 			n = -os;
526 		}
527 	} while (this_cpu_cmpxchg(*p, o, n) != o);
528 
529 	if (z)
530 		zone_page_state_add(z, zone, item);
531 }
532 
533 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
534 			 long delta)
535 {
536 	mod_zone_state(zone, item, delta, 0);
537 }
538 EXPORT_SYMBOL(mod_zone_page_state);
539 
540 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
541 {
542 	mod_zone_state(page_zone(page), item, 1, 1);
543 }
544 EXPORT_SYMBOL(inc_zone_page_state);
545 
546 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
547 {
548 	mod_zone_state(page_zone(page), item, -1, -1);
549 }
550 EXPORT_SYMBOL(dec_zone_page_state);
551 
552 static inline void mod_node_state(struct pglist_data *pgdat,
553        enum node_stat_item item, int delta, int overstep_mode)
554 {
555 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
556 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
557 	long o, n, t, z;
558 
559 	if (vmstat_item_in_bytes(item)) {
560 		/*
561 		 * Only cgroups use subpage accounting right now; at
562 		 * the global level, these items still change in
563 		 * multiples of whole pages. Store them as pages
564 		 * internally to keep the per-cpu counters compact.
565 		 */
566 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
567 		delta >>= PAGE_SHIFT;
568 	}
569 
570 	do {
571 		z = 0;  /* overflow to node counters */
572 
573 		/*
574 		 * The fetching of the stat_threshold is racy. We may apply
575 		 * a counter threshold to the wrong the cpu if we get
576 		 * rescheduled while executing here. However, the next
577 		 * counter update will apply the threshold again and
578 		 * therefore bring the counter under the threshold again.
579 		 *
580 		 * Most of the time the thresholds are the same anyways
581 		 * for all cpus in a node.
582 		 */
583 		t = this_cpu_read(pcp->stat_threshold);
584 
585 		o = this_cpu_read(*p);
586 		n = delta + o;
587 
588 		if (abs(n) > t) {
589 			int os = overstep_mode * (t >> 1) ;
590 
591 			/* Overflow must be added to node counters */
592 			z = n + os;
593 			n = -os;
594 		}
595 	} while (this_cpu_cmpxchg(*p, o, n) != o);
596 
597 	if (z)
598 		node_page_state_add(z, pgdat, item);
599 }
600 
601 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
602 					long delta)
603 {
604 	mod_node_state(pgdat, item, delta, 0);
605 }
606 EXPORT_SYMBOL(mod_node_page_state);
607 
608 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
609 {
610 	mod_node_state(pgdat, item, 1, 1);
611 }
612 
613 void inc_node_page_state(struct page *page, enum node_stat_item item)
614 {
615 	mod_node_state(page_pgdat(page), item, 1, 1);
616 }
617 EXPORT_SYMBOL(inc_node_page_state);
618 
619 void dec_node_page_state(struct page *page, enum node_stat_item item)
620 {
621 	mod_node_state(page_pgdat(page), item, -1, -1);
622 }
623 EXPORT_SYMBOL(dec_node_page_state);
624 #else
625 /*
626  * Use interrupt disable to serialize counter updates
627  */
628 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
629 			 long delta)
630 {
631 	unsigned long flags;
632 
633 	local_irq_save(flags);
634 	__mod_zone_page_state(zone, item, delta);
635 	local_irq_restore(flags);
636 }
637 EXPORT_SYMBOL(mod_zone_page_state);
638 
639 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
640 {
641 	unsigned long flags;
642 	struct zone *zone;
643 
644 	zone = page_zone(page);
645 	local_irq_save(flags);
646 	__inc_zone_state(zone, item);
647 	local_irq_restore(flags);
648 }
649 EXPORT_SYMBOL(inc_zone_page_state);
650 
651 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
652 {
653 	unsigned long flags;
654 
655 	local_irq_save(flags);
656 	__dec_zone_page_state(page, item);
657 	local_irq_restore(flags);
658 }
659 EXPORT_SYMBOL(dec_zone_page_state);
660 
661 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
662 {
663 	unsigned long flags;
664 
665 	local_irq_save(flags);
666 	__inc_node_state(pgdat, item);
667 	local_irq_restore(flags);
668 }
669 EXPORT_SYMBOL(inc_node_state);
670 
671 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
672 					long delta)
673 {
674 	unsigned long flags;
675 
676 	local_irq_save(flags);
677 	__mod_node_page_state(pgdat, item, delta);
678 	local_irq_restore(flags);
679 }
680 EXPORT_SYMBOL(mod_node_page_state);
681 
682 void inc_node_page_state(struct page *page, enum node_stat_item item)
683 {
684 	unsigned long flags;
685 	struct pglist_data *pgdat;
686 
687 	pgdat = page_pgdat(page);
688 	local_irq_save(flags);
689 	__inc_node_state(pgdat, item);
690 	local_irq_restore(flags);
691 }
692 EXPORT_SYMBOL(inc_node_page_state);
693 
694 void dec_node_page_state(struct page *page, enum node_stat_item item)
695 {
696 	unsigned long flags;
697 
698 	local_irq_save(flags);
699 	__dec_node_page_state(page, item);
700 	local_irq_restore(flags);
701 }
702 EXPORT_SYMBOL(dec_node_page_state);
703 #endif
704 
705 /*
706  * Fold a differential into the global counters.
707  * Returns the number of counters updated.
708  */
709 #ifdef CONFIG_NUMA
710 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
711 {
712 	int i;
713 	int changes = 0;
714 
715 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
716 		if (zone_diff[i]) {
717 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
718 			changes++;
719 	}
720 
721 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
722 		if (numa_diff[i]) {
723 			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
724 			changes++;
725 	}
726 
727 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
728 		if (node_diff[i]) {
729 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
730 			changes++;
731 	}
732 	return changes;
733 }
734 #else
735 static int fold_diff(int *zone_diff, int *node_diff)
736 {
737 	int i;
738 	int changes = 0;
739 
740 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
741 		if (zone_diff[i]) {
742 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
743 			changes++;
744 	}
745 
746 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
747 		if (node_diff[i]) {
748 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
749 			changes++;
750 	}
751 	return changes;
752 }
753 #endif /* CONFIG_NUMA */
754 
755 /*
756  * Update the zone counters for the current cpu.
757  *
758  * Note that refresh_cpu_vm_stats strives to only access
759  * node local memory. The per cpu pagesets on remote zones are placed
760  * in the memory local to the processor using that pageset. So the
761  * loop over all zones will access a series of cachelines local to
762  * the processor.
763  *
764  * The call to zone_page_state_add updates the cachelines with the
765  * statistics in the remote zone struct as well as the global cachelines
766  * with the global counters. These could cause remote node cache line
767  * bouncing and will have to be only done when necessary.
768  *
769  * The function returns the number of global counters updated.
770  */
771 static int refresh_cpu_vm_stats(bool do_pagesets)
772 {
773 	struct pglist_data *pgdat;
774 	struct zone *zone;
775 	int i;
776 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
777 #ifdef CONFIG_NUMA
778 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
779 #endif
780 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
781 	int changes = 0;
782 
783 	for_each_populated_zone(zone) {
784 		struct per_cpu_pageset __percpu *p = zone->pageset;
785 
786 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
787 			int v;
788 
789 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
790 			if (v) {
791 
792 				atomic_long_add(v, &zone->vm_stat[i]);
793 				global_zone_diff[i] += v;
794 #ifdef CONFIG_NUMA
795 				/* 3 seconds idle till flush */
796 				__this_cpu_write(p->expire, 3);
797 #endif
798 			}
799 		}
800 #ifdef CONFIG_NUMA
801 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
802 			int v;
803 
804 			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
805 			if (v) {
806 
807 				atomic_long_add(v, &zone->vm_numa_stat[i]);
808 				global_numa_diff[i] += v;
809 				__this_cpu_write(p->expire, 3);
810 			}
811 		}
812 
813 		if (do_pagesets) {
814 			cond_resched();
815 			/*
816 			 * Deal with draining the remote pageset of this
817 			 * processor
818 			 *
819 			 * Check if there are pages remaining in this pageset
820 			 * if not then there is nothing to expire.
821 			 */
822 			if (!__this_cpu_read(p->expire) ||
823 			       !__this_cpu_read(p->pcp.count))
824 				continue;
825 
826 			/*
827 			 * We never drain zones local to this processor.
828 			 */
829 			if (zone_to_nid(zone) == numa_node_id()) {
830 				__this_cpu_write(p->expire, 0);
831 				continue;
832 			}
833 
834 			if (__this_cpu_dec_return(p->expire))
835 				continue;
836 
837 			if (__this_cpu_read(p->pcp.count)) {
838 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
839 				changes++;
840 			}
841 		}
842 #endif
843 	}
844 
845 	for_each_online_pgdat(pgdat) {
846 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
847 
848 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
849 			int v;
850 
851 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
852 			if (v) {
853 				atomic_long_add(v, &pgdat->vm_stat[i]);
854 				global_node_diff[i] += v;
855 			}
856 		}
857 	}
858 
859 #ifdef CONFIG_NUMA
860 	changes += fold_diff(global_zone_diff, global_numa_diff,
861 			     global_node_diff);
862 #else
863 	changes += fold_diff(global_zone_diff, global_node_diff);
864 #endif
865 	return changes;
866 }
867 
868 /*
869  * Fold the data for an offline cpu into the global array.
870  * There cannot be any access by the offline cpu and therefore
871  * synchronization is simplified.
872  */
873 void cpu_vm_stats_fold(int cpu)
874 {
875 	struct pglist_data *pgdat;
876 	struct zone *zone;
877 	int i;
878 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
879 #ifdef CONFIG_NUMA
880 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
881 #endif
882 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
883 
884 	for_each_populated_zone(zone) {
885 		struct per_cpu_pageset *p;
886 
887 		p = per_cpu_ptr(zone->pageset, cpu);
888 
889 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
890 			if (p->vm_stat_diff[i]) {
891 				int v;
892 
893 				v = p->vm_stat_diff[i];
894 				p->vm_stat_diff[i] = 0;
895 				atomic_long_add(v, &zone->vm_stat[i]);
896 				global_zone_diff[i] += v;
897 			}
898 
899 #ifdef CONFIG_NUMA
900 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
901 			if (p->vm_numa_stat_diff[i]) {
902 				int v;
903 
904 				v = p->vm_numa_stat_diff[i];
905 				p->vm_numa_stat_diff[i] = 0;
906 				atomic_long_add(v, &zone->vm_numa_stat[i]);
907 				global_numa_diff[i] += v;
908 			}
909 #endif
910 	}
911 
912 	for_each_online_pgdat(pgdat) {
913 		struct per_cpu_nodestat *p;
914 
915 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
916 
917 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
918 			if (p->vm_node_stat_diff[i]) {
919 				int v;
920 
921 				v = p->vm_node_stat_diff[i];
922 				p->vm_node_stat_diff[i] = 0;
923 				atomic_long_add(v, &pgdat->vm_stat[i]);
924 				global_node_diff[i] += v;
925 			}
926 	}
927 
928 #ifdef CONFIG_NUMA
929 	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
930 #else
931 	fold_diff(global_zone_diff, global_node_diff);
932 #endif
933 }
934 
935 /*
936  * this is only called if !populated_zone(zone), which implies no other users of
937  * pset->vm_stat_diff[] exsist.
938  */
939 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
940 {
941 	int i;
942 
943 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
944 		if (pset->vm_stat_diff[i]) {
945 			int v = pset->vm_stat_diff[i];
946 			pset->vm_stat_diff[i] = 0;
947 			atomic_long_add(v, &zone->vm_stat[i]);
948 			atomic_long_add(v, &vm_zone_stat[i]);
949 		}
950 
951 #ifdef CONFIG_NUMA
952 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
953 		if (pset->vm_numa_stat_diff[i]) {
954 			int v = pset->vm_numa_stat_diff[i];
955 
956 			pset->vm_numa_stat_diff[i] = 0;
957 			atomic_long_add(v, &zone->vm_numa_stat[i]);
958 			atomic_long_add(v, &vm_numa_stat[i]);
959 		}
960 #endif
961 }
962 #endif
963 
964 #ifdef CONFIG_NUMA
965 void __inc_numa_state(struct zone *zone,
966 				 enum numa_stat_item item)
967 {
968 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
969 	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
970 	u16 v;
971 
972 	v = __this_cpu_inc_return(*p);
973 
974 	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
975 		zone_numa_state_add(v, zone, item);
976 		__this_cpu_write(*p, 0);
977 	}
978 }
979 
980 /*
981  * Determine the per node value of a stat item. This function
982  * is called frequently in a NUMA machine, so try to be as
983  * frugal as possible.
984  */
985 unsigned long sum_zone_node_page_state(int node,
986 				 enum zone_stat_item item)
987 {
988 	struct zone *zones = NODE_DATA(node)->node_zones;
989 	int i;
990 	unsigned long count = 0;
991 
992 	for (i = 0; i < MAX_NR_ZONES; i++)
993 		count += zone_page_state(zones + i, item);
994 
995 	return count;
996 }
997 
998 /*
999  * Determine the per node value of a numa stat item. To avoid deviation,
1000  * the per cpu stat number in vm_numa_stat_diff[] is also included.
1001  */
1002 unsigned long sum_zone_numa_state(int node,
1003 				 enum numa_stat_item item)
1004 {
1005 	struct zone *zones = NODE_DATA(node)->node_zones;
1006 	int i;
1007 	unsigned long count = 0;
1008 
1009 	for (i = 0; i < MAX_NR_ZONES; i++)
1010 		count += zone_numa_state_snapshot(zones + i, item);
1011 
1012 	return count;
1013 }
1014 
1015 /*
1016  * Determine the per node value of a stat item.
1017  */
1018 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1019 				    enum node_stat_item item)
1020 {
1021 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1022 #ifdef CONFIG_SMP
1023 	if (x < 0)
1024 		x = 0;
1025 #endif
1026 	return x;
1027 }
1028 
1029 unsigned long node_page_state(struct pglist_data *pgdat,
1030 			      enum node_stat_item item)
1031 {
1032 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1033 
1034 	return node_page_state_pages(pgdat, item);
1035 }
1036 #endif
1037 
1038 #ifdef CONFIG_COMPACTION
1039 
1040 struct contig_page_info {
1041 	unsigned long free_pages;
1042 	unsigned long free_blocks_total;
1043 	unsigned long free_blocks_suitable;
1044 };
1045 
1046 /*
1047  * Calculate the number of free pages in a zone, how many contiguous
1048  * pages are free and how many are large enough to satisfy an allocation of
1049  * the target size. Note that this function makes no attempt to estimate
1050  * how many suitable free blocks there *might* be if MOVABLE pages were
1051  * migrated. Calculating that is possible, but expensive and can be
1052  * figured out from userspace
1053  */
1054 static void fill_contig_page_info(struct zone *zone,
1055 				unsigned int suitable_order,
1056 				struct contig_page_info *info)
1057 {
1058 	unsigned int order;
1059 
1060 	info->free_pages = 0;
1061 	info->free_blocks_total = 0;
1062 	info->free_blocks_suitable = 0;
1063 
1064 	for (order = 0; order < MAX_ORDER; order++) {
1065 		unsigned long blocks;
1066 
1067 		/* Count number of free blocks */
1068 		blocks = zone->free_area[order].nr_free;
1069 		info->free_blocks_total += blocks;
1070 
1071 		/* Count free base pages */
1072 		info->free_pages += blocks << order;
1073 
1074 		/* Count the suitable free blocks */
1075 		if (order >= suitable_order)
1076 			info->free_blocks_suitable += blocks <<
1077 						(order - suitable_order);
1078 	}
1079 }
1080 
1081 /*
1082  * A fragmentation index only makes sense if an allocation of a requested
1083  * size would fail. If that is true, the fragmentation index indicates
1084  * whether external fragmentation or a lack of memory was the problem.
1085  * The value can be used to determine if page reclaim or compaction
1086  * should be used
1087  */
1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089 {
1090 	unsigned long requested = 1UL << order;
1091 
1092 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1093 		return 0;
1094 
1095 	if (!info->free_blocks_total)
1096 		return 0;
1097 
1098 	/* Fragmentation index only makes sense when a request would fail */
1099 	if (info->free_blocks_suitable)
1100 		return -1000;
1101 
1102 	/*
1103 	 * Index is between 0 and 1 so return within 3 decimal places
1104 	 *
1105 	 * 0 => allocation would fail due to lack of memory
1106 	 * 1 => allocation would fail due to fragmentation
1107 	 */
1108 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109 }
1110 
1111 /*
1112  * Calculates external fragmentation within a zone wrt the given order.
1113  * It is defined as the percentage of pages found in blocks of size
1114  * less than 1 << order. It returns values in range [0, 100].
1115  */
1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117 {
1118 	struct contig_page_info info;
1119 
1120 	fill_contig_page_info(zone, order, &info);
1121 	if (info.free_pages == 0)
1122 		return 0;
1123 
1124 	return div_u64((info.free_pages -
1125 			(info.free_blocks_suitable << order)) * 100,
1126 			info.free_pages);
1127 }
1128 
1129 /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 int fragmentation_index(struct zone *zone, unsigned int order)
1131 {
1132 	struct contig_page_info info;
1133 
1134 	fill_contig_page_info(zone, order, &info);
1135 	return __fragmentation_index(order, &info);
1136 }
1137 #endif
1138 
1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 #ifdef CONFIG_ZONE_DMA
1142 #define TEXT_FOR_DMA(xx) xx "_dma",
1143 #else
1144 #define TEXT_FOR_DMA(xx)
1145 #endif
1146 
1147 #ifdef CONFIG_ZONE_DMA32
1148 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1149 #else
1150 #define TEXT_FOR_DMA32(xx)
1151 #endif
1152 
1153 #ifdef CONFIG_HIGHMEM
1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155 #else
1156 #define TEXT_FOR_HIGHMEM(xx)
1157 #endif
1158 
1159 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1160 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1161 
1162 const char * const vmstat_text[] = {
1163 	/* enum zone_stat_item counters */
1164 	"nr_free_pages",
1165 	"nr_zone_inactive_anon",
1166 	"nr_zone_active_anon",
1167 	"nr_zone_inactive_file",
1168 	"nr_zone_active_file",
1169 	"nr_zone_unevictable",
1170 	"nr_zone_write_pending",
1171 	"nr_mlock",
1172 	"nr_bounce",
1173 #if IS_ENABLED(CONFIG_ZSMALLOC)
1174 	"nr_zspages",
1175 #endif
1176 	"nr_free_cma",
1177 
1178 	/* enum numa_stat_item counters */
1179 #ifdef CONFIG_NUMA
1180 	"numa_hit",
1181 	"numa_miss",
1182 	"numa_foreign",
1183 	"numa_interleave",
1184 	"numa_local",
1185 	"numa_other",
1186 #endif
1187 
1188 	/* enum node_stat_item counters */
1189 	"nr_inactive_anon",
1190 	"nr_active_anon",
1191 	"nr_inactive_file",
1192 	"nr_active_file",
1193 	"nr_unevictable",
1194 	"nr_slab_reclaimable",
1195 	"nr_slab_unreclaimable",
1196 	"nr_isolated_anon",
1197 	"nr_isolated_file",
1198 	"workingset_nodes",
1199 	"workingset_refault_anon",
1200 	"workingset_refault_file",
1201 	"workingset_activate_anon",
1202 	"workingset_activate_file",
1203 	"workingset_restore_anon",
1204 	"workingset_restore_file",
1205 	"workingset_nodereclaim",
1206 	"nr_anon_pages",
1207 	"nr_mapped",
1208 	"nr_file_pages",
1209 	"nr_dirty",
1210 	"nr_writeback",
1211 	"nr_writeback_temp",
1212 	"nr_shmem",
1213 	"nr_shmem_hugepages",
1214 	"nr_shmem_pmdmapped",
1215 	"nr_file_hugepages",
1216 	"nr_file_pmdmapped",
1217 	"nr_anon_transparent_hugepages",
1218 	"nr_vmscan_write",
1219 	"nr_vmscan_immediate_reclaim",
1220 	"nr_dirtied",
1221 	"nr_written",
1222 	"nr_kernel_misc_reclaimable",
1223 	"nr_foll_pin_acquired",
1224 	"nr_foll_pin_released",
1225 	"nr_kernel_stack",
1226 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1227 	"nr_shadow_call_stack",
1228 #endif
1229 	"nr_page_table_pages",
1230 #ifdef CONFIG_SWAP
1231 	"nr_swapcached",
1232 #endif
1233 
1234 	/* enum writeback_stat_item counters */
1235 	"nr_dirty_threshold",
1236 	"nr_dirty_background_threshold",
1237 
1238 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1239 	/* enum vm_event_item counters */
1240 	"pgpgin",
1241 	"pgpgout",
1242 	"pswpin",
1243 	"pswpout",
1244 
1245 	TEXTS_FOR_ZONES("pgalloc")
1246 	TEXTS_FOR_ZONES("allocstall")
1247 	TEXTS_FOR_ZONES("pgskip")
1248 
1249 	"pgfree",
1250 	"pgactivate",
1251 	"pgdeactivate",
1252 	"pglazyfree",
1253 
1254 	"pgfault",
1255 	"pgmajfault",
1256 	"pglazyfreed",
1257 
1258 	"pgrefill",
1259 	"pgreuse",
1260 	"pgsteal_kswapd",
1261 	"pgsteal_direct",
1262 	"pgscan_kswapd",
1263 	"pgscan_direct",
1264 	"pgscan_direct_throttle",
1265 	"pgscan_anon",
1266 	"pgscan_file",
1267 	"pgsteal_anon",
1268 	"pgsteal_file",
1269 
1270 #ifdef CONFIG_NUMA
1271 	"zone_reclaim_failed",
1272 #endif
1273 	"pginodesteal",
1274 	"slabs_scanned",
1275 	"kswapd_inodesteal",
1276 	"kswapd_low_wmark_hit_quickly",
1277 	"kswapd_high_wmark_hit_quickly",
1278 	"pageoutrun",
1279 
1280 	"pgrotated",
1281 
1282 	"drop_pagecache",
1283 	"drop_slab",
1284 	"oom_kill",
1285 
1286 #ifdef CONFIG_NUMA_BALANCING
1287 	"numa_pte_updates",
1288 	"numa_huge_pte_updates",
1289 	"numa_hint_faults",
1290 	"numa_hint_faults_local",
1291 	"numa_pages_migrated",
1292 #endif
1293 #ifdef CONFIG_MIGRATION
1294 	"pgmigrate_success",
1295 	"pgmigrate_fail",
1296 	"thp_migration_success",
1297 	"thp_migration_fail",
1298 	"thp_migration_split",
1299 #endif
1300 #ifdef CONFIG_COMPACTION
1301 	"compact_migrate_scanned",
1302 	"compact_free_scanned",
1303 	"compact_isolated",
1304 	"compact_stall",
1305 	"compact_fail",
1306 	"compact_success",
1307 	"compact_daemon_wake",
1308 	"compact_daemon_migrate_scanned",
1309 	"compact_daemon_free_scanned",
1310 #endif
1311 
1312 #ifdef CONFIG_HUGETLB_PAGE
1313 	"htlb_buddy_alloc_success",
1314 	"htlb_buddy_alloc_fail",
1315 #endif
1316 	"unevictable_pgs_culled",
1317 	"unevictable_pgs_scanned",
1318 	"unevictable_pgs_rescued",
1319 	"unevictable_pgs_mlocked",
1320 	"unevictable_pgs_munlocked",
1321 	"unevictable_pgs_cleared",
1322 	"unevictable_pgs_stranded",
1323 
1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 	"thp_fault_alloc",
1326 	"thp_fault_fallback",
1327 	"thp_fault_fallback_charge",
1328 	"thp_collapse_alloc",
1329 	"thp_collapse_alloc_failed",
1330 	"thp_file_alloc",
1331 	"thp_file_fallback",
1332 	"thp_file_fallback_charge",
1333 	"thp_file_mapped",
1334 	"thp_split_page",
1335 	"thp_split_page_failed",
1336 	"thp_deferred_split_page",
1337 	"thp_split_pmd",
1338 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1339 	"thp_split_pud",
1340 #endif
1341 	"thp_zero_page_alloc",
1342 	"thp_zero_page_alloc_failed",
1343 	"thp_swpout",
1344 	"thp_swpout_fallback",
1345 #endif
1346 #ifdef CONFIG_MEMORY_BALLOON
1347 	"balloon_inflate",
1348 	"balloon_deflate",
1349 #ifdef CONFIG_BALLOON_COMPACTION
1350 	"balloon_migrate",
1351 #endif
1352 #endif /* CONFIG_MEMORY_BALLOON */
1353 #ifdef CONFIG_DEBUG_TLBFLUSH
1354 	"nr_tlb_remote_flush",
1355 	"nr_tlb_remote_flush_received",
1356 	"nr_tlb_local_flush_all",
1357 	"nr_tlb_local_flush_one",
1358 #endif /* CONFIG_DEBUG_TLBFLUSH */
1359 
1360 #ifdef CONFIG_DEBUG_VM_VMACACHE
1361 	"vmacache_find_calls",
1362 	"vmacache_find_hits",
1363 #endif
1364 #ifdef CONFIG_SWAP
1365 	"swap_ra",
1366 	"swap_ra_hit",
1367 #endif
1368 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1369 };
1370 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1371 
1372 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1373      defined(CONFIG_PROC_FS)
1374 static void *frag_start(struct seq_file *m, loff_t *pos)
1375 {
1376 	pg_data_t *pgdat;
1377 	loff_t node = *pos;
1378 
1379 	for (pgdat = first_online_pgdat();
1380 	     pgdat && node;
1381 	     pgdat = next_online_pgdat(pgdat))
1382 		--node;
1383 
1384 	return pgdat;
1385 }
1386 
1387 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1388 {
1389 	pg_data_t *pgdat = (pg_data_t *)arg;
1390 
1391 	(*pos)++;
1392 	return next_online_pgdat(pgdat);
1393 }
1394 
1395 static void frag_stop(struct seq_file *m, void *arg)
1396 {
1397 }
1398 
1399 /*
1400  * Walk zones in a node and print using a callback.
1401  * If @assert_populated is true, only use callback for zones that are populated.
1402  */
1403 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1404 		bool assert_populated, bool nolock,
1405 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1406 {
1407 	struct zone *zone;
1408 	struct zone *node_zones = pgdat->node_zones;
1409 	unsigned long flags;
1410 
1411 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1412 		if (assert_populated && !populated_zone(zone))
1413 			continue;
1414 
1415 		if (!nolock)
1416 			spin_lock_irqsave(&zone->lock, flags);
1417 		print(m, pgdat, zone);
1418 		if (!nolock)
1419 			spin_unlock_irqrestore(&zone->lock, flags);
1420 	}
1421 }
1422 #endif
1423 
1424 #ifdef CONFIG_PROC_FS
1425 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1426 						struct zone *zone)
1427 {
1428 	int order;
1429 
1430 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1431 	for (order = 0; order < MAX_ORDER; ++order)
1432 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1433 	seq_putc(m, '\n');
1434 }
1435 
1436 /*
1437  * This walks the free areas for each zone.
1438  */
1439 static int frag_show(struct seq_file *m, void *arg)
1440 {
1441 	pg_data_t *pgdat = (pg_data_t *)arg;
1442 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1443 	return 0;
1444 }
1445 
1446 static void pagetypeinfo_showfree_print(struct seq_file *m,
1447 					pg_data_t *pgdat, struct zone *zone)
1448 {
1449 	int order, mtype;
1450 
1451 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1452 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1453 					pgdat->node_id,
1454 					zone->name,
1455 					migratetype_names[mtype]);
1456 		for (order = 0; order < MAX_ORDER; ++order) {
1457 			unsigned long freecount = 0;
1458 			struct free_area *area;
1459 			struct list_head *curr;
1460 			bool overflow = false;
1461 
1462 			area = &(zone->free_area[order]);
1463 
1464 			list_for_each(curr, &area->free_list[mtype]) {
1465 				/*
1466 				 * Cap the free_list iteration because it might
1467 				 * be really large and we are under a spinlock
1468 				 * so a long time spent here could trigger a
1469 				 * hard lockup detector. Anyway this is a
1470 				 * debugging tool so knowing there is a handful
1471 				 * of pages of this order should be more than
1472 				 * sufficient.
1473 				 */
1474 				if (++freecount >= 100000) {
1475 					overflow = true;
1476 					break;
1477 				}
1478 			}
1479 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1480 			spin_unlock_irq(&zone->lock);
1481 			cond_resched();
1482 			spin_lock_irq(&zone->lock);
1483 		}
1484 		seq_putc(m, '\n');
1485 	}
1486 }
1487 
1488 /* Print out the free pages at each order for each migatetype */
1489 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1490 {
1491 	int order;
1492 	pg_data_t *pgdat = (pg_data_t *)arg;
1493 
1494 	/* Print header */
1495 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1496 	for (order = 0; order < MAX_ORDER; ++order)
1497 		seq_printf(m, "%6d ", order);
1498 	seq_putc(m, '\n');
1499 
1500 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1501 
1502 	return 0;
1503 }
1504 
1505 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1506 					pg_data_t *pgdat, struct zone *zone)
1507 {
1508 	int mtype;
1509 	unsigned long pfn;
1510 	unsigned long start_pfn = zone->zone_start_pfn;
1511 	unsigned long end_pfn = zone_end_pfn(zone);
1512 	unsigned long count[MIGRATE_TYPES] = { 0, };
1513 
1514 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1515 		struct page *page;
1516 
1517 		page = pfn_to_online_page(pfn);
1518 		if (!page)
1519 			continue;
1520 
1521 		if (page_zone(page) != zone)
1522 			continue;
1523 
1524 		mtype = get_pageblock_migratetype(page);
1525 
1526 		if (mtype < MIGRATE_TYPES)
1527 			count[mtype]++;
1528 	}
1529 
1530 	/* Print counts */
1531 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1532 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1533 		seq_printf(m, "%12lu ", count[mtype]);
1534 	seq_putc(m, '\n');
1535 }
1536 
1537 /* Print out the number of pageblocks for each migratetype */
1538 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1539 {
1540 	int mtype;
1541 	pg_data_t *pgdat = (pg_data_t *)arg;
1542 
1543 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1544 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1545 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1546 	seq_putc(m, '\n');
1547 	walk_zones_in_node(m, pgdat, true, false,
1548 		pagetypeinfo_showblockcount_print);
1549 
1550 	return 0;
1551 }
1552 
1553 /*
1554  * Print out the number of pageblocks for each migratetype that contain pages
1555  * of other types. This gives an indication of how well fallbacks are being
1556  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1557  * to determine what is going on
1558  */
1559 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1560 {
1561 #ifdef CONFIG_PAGE_OWNER
1562 	int mtype;
1563 
1564 	if (!static_branch_unlikely(&page_owner_inited))
1565 		return;
1566 
1567 	drain_all_pages(NULL);
1568 
1569 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1570 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1571 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1572 	seq_putc(m, '\n');
1573 
1574 	walk_zones_in_node(m, pgdat, true, true,
1575 		pagetypeinfo_showmixedcount_print);
1576 #endif /* CONFIG_PAGE_OWNER */
1577 }
1578 
1579 /*
1580  * This prints out statistics in relation to grouping pages by mobility.
1581  * It is expensive to collect so do not constantly read the file.
1582  */
1583 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1584 {
1585 	pg_data_t *pgdat = (pg_data_t *)arg;
1586 
1587 	/* check memoryless node */
1588 	if (!node_state(pgdat->node_id, N_MEMORY))
1589 		return 0;
1590 
1591 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1592 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1593 	seq_putc(m, '\n');
1594 	pagetypeinfo_showfree(m, pgdat);
1595 	pagetypeinfo_showblockcount(m, pgdat);
1596 	pagetypeinfo_showmixedcount(m, pgdat);
1597 
1598 	return 0;
1599 }
1600 
1601 static const struct seq_operations fragmentation_op = {
1602 	.start	= frag_start,
1603 	.next	= frag_next,
1604 	.stop	= frag_stop,
1605 	.show	= frag_show,
1606 };
1607 
1608 static const struct seq_operations pagetypeinfo_op = {
1609 	.start	= frag_start,
1610 	.next	= frag_next,
1611 	.stop	= frag_stop,
1612 	.show	= pagetypeinfo_show,
1613 };
1614 
1615 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1616 {
1617 	int zid;
1618 
1619 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 		struct zone *compare = &pgdat->node_zones[zid];
1621 
1622 		if (populated_zone(compare))
1623 			return zone == compare;
1624 	}
1625 
1626 	return false;
1627 }
1628 
1629 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1630 							struct zone *zone)
1631 {
1632 	int i;
1633 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1634 	if (is_zone_first_populated(pgdat, zone)) {
1635 		seq_printf(m, "\n  per-node stats");
1636 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1637 			unsigned long pages = node_page_state_pages(pgdat, i);
1638 
1639 			if (vmstat_item_print_in_thp(i))
1640 				pages /= HPAGE_PMD_NR;
1641 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1642 				   pages);
1643 		}
1644 	}
1645 	seq_printf(m,
1646 		   "\n  pages free     %lu"
1647 		   "\n        min      %lu"
1648 		   "\n        low      %lu"
1649 		   "\n        high     %lu"
1650 		   "\n        spanned  %lu"
1651 		   "\n        present  %lu"
1652 		   "\n        managed  %lu"
1653 		   "\n        cma      %lu",
1654 		   zone_page_state(zone, NR_FREE_PAGES),
1655 		   min_wmark_pages(zone),
1656 		   low_wmark_pages(zone),
1657 		   high_wmark_pages(zone),
1658 		   zone->spanned_pages,
1659 		   zone->present_pages,
1660 		   zone_managed_pages(zone),
1661 		   zone_cma_pages(zone));
1662 
1663 	seq_printf(m,
1664 		   "\n        protection: (%ld",
1665 		   zone->lowmem_reserve[0]);
1666 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1667 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1668 	seq_putc(m, ')');
1669 
1670 	/* If unpopulated, no other information is useful */
1671 	if (!populated_zone(zone)) {
1672 		seq_putc(m, '\n');
1673 		return;
1674 	}
1675 
1676 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1677 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1678 			   zone_page_state(zone, i));
1679 
1680 #ifdef CONFIG_NUMA
1681 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1682 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1683 			   zone_numa_state_snapshot(zone, i));
1684 #endif
1685 
1686 	seq_printf(m, "\n  pagesets");
1687 	for_each_online_cpu(i) {
1688 		struct per_cpu_pageset *pageset;
1689 
1690 		pageset = per_cpu_ptr(zone->pageset, i);
1691 		seq_printf(m,
1692 			   "\n    cpu: %i"
1693 			   "\n              count: %i"
1694 			   "\n              high:  %i"
1695 			   "\n              batch: %i",
1696 			   i,
1697 			   pageset->pcp.count,
1698 			   pageset->pcp.high,
1699 			   pageset->pcp.batch);
1700 #ifdef CONFIG_SMP
1701 		seq_printf(m, "\n  vm stats threshold: %d",
1702 				pageset->stat_threshold);
1703 #endif
1704 	}
1705 	seq_printf(m,
1706 		   "\n  node_unreclaimable:  %u"
1707 		   "\n  start_pfn:           %lu",
1708 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1709 		   zone->zone_start_pfn);
1710 	seq_putc(m, '\n');
1711 }
1712 
1713 /*
1714  * Output information about zones in @pgdat.  All zones are printed regardless
1715  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1716  * set of all zones and userspace would not be aware of such zones if they are
1717  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1718  */
1719 static int zoneinfo_show(struct seq_file *m, void *arg)
1720 {
1721 	pg_data_t *pgdat = (pg_data_t *)arg;
1722 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1723 	return 0;
1724 }
1725 
1726 static const struct seq_operations zoneinfo_op = {
1727 	.start	= frag_start, /* iterate over all zones. The same as in
1728 			       * fragmentation. */
1729 	.next	= frag_next,
1730 	.stop	= frag_stop,
1731 	.show	= zoneinfo_show,
1732 };
1733 
1734 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1735 			 NR_VM_NUMA_STAT_ITEMS + \
1736 			 NR_VM_NODE_STAT_ITEMS + \
1737 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1738 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1739 			  NR_VM_EVENT_ITEMS : 0))
1740 
1741 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1742 {
1743 	unsigned long *v;
1744 	int i;
1745 
1746 	if (*pos >= NR_VMSTAT_ITEMS)
1747 		return NULL;
1748 
1749 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1750 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1751 	m->private = v;
1752 	if (!v)
1753 		return ERR_PTR(-ENOMEM);
1754 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1755 		v[i] = global_zone_page_state(i);
1756 	v += NR_VM_ZONE_STAT_ITEMS;
1757 
1758 #ifdef CONFIG_NUMA
1759 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1760 		v[i] = global_numa_state(i);
1761 	v += NR_VM_NUMA_STAT_ITEMS;
1762 #endif
1763 
1764 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1765 		v[i] = global_node_page_state_pages(i);
1766 		if (vmstat_item_print_in_thp(i))
1767 			v[i] /= HPAGE_PMD_NR;
1768 	}
1769 	v += NR_VM_NODE_STAT_ITEMS;
1770 
1771 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1772 			    v + NR_DIRTY_THRESHOLD);
1773 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1774 
1775 #ifdef CONFIG_VM_EVENT_COUNTERS
1776 	all_vm_events(v);
1777 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1778 	v[PGPGOUT] /= 2;
1779 #endif
1780 	return (unsigned long *)m->private + *pos;
1781 }
1782 
1783 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1784 {
1785 	(*pos)++;
1786 	if (*pos >= NR_VMSTAT_ITEMS)
1787 		return NULL;
1788 	return (unsigned long *)m->private + *pos;
1789 }
1790 
1791 static int vmstat_show(struct seq_file *m, void *arg)
1792 {
1793 	unsigned long *l = arg;
1794 	unsigned long off = l - (unsigned long *)m->private;
1795 
1796 	seq_puts(m, vmstat_text[off]);
1797 	seq_put_decimal_ull(m, " ", *l);
1798 	seq_putc(m, '\n');
1799 
1800 	if (off == NR_VMSTAT_ITEMS - 1) {
1801 		/*
1802 		 * We've come to the end - add any deprecated counters to avoid
1803 		 * breaking userspace which might depend on them being present.
1804 		 */
1805 		seq_puts(m, "nr_unstable 0\n");
1806 	}
1807 	return 0;
1808 }
1809 
1810 static void vmstat_stop(struct seq_file *m, void *arg)
1811 {
1812 	kfree(m->private);
1813 	m->private = NULL;
1814 }
1815 
1816 static const struct seq_operations vmstat_op = {
1817 	.start	= vmstat_start,
1818 	.next	= vmstat_next,
1819 	.stop	= vmstat_stop,
1820 	.show	= vmstat_show,
1821 };
1822 #endif /* CONFIG_PROC_FS */
1823 
1824 #ifdef CONFIG_SMP
1825 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1826 int sysctl_stat_interval __read_mostly = HZ;
1827 
1828 #ifdef CONFIG_PROC_FS
1829 static void refresh_vm_stats(struct work_struct *work)
1830 {
1831 	refresh_cpu_vm_stats(true);
1832 }
1833 
1834 int vmstat_refresh(struct ctl_table *table, int write,
1835 		   void *buffer, size_t *lenp, loff_t *ppos)
1836 {
1837 	long val;
1838 	int err;
1839 	int i;
1840 
1841 	/*
1842 	 * The regular update, every sysctl_stat_interval, may come later
1843 	 * than expected: leaving a significant amount in per_cpu buckets.
1844 	 * This is particularly misleading when checking a quantity of HUGE
1845 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1846 	 * which can equally be echo'ed to or cat'ted from (by root),
1847 	 * can be used to update the stats just before reading them.
1848 	 *
1849 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1850 	 * transiently negative values, report an error here if any of
1851 	 * the stats is negative, so we know to go looking for imbalance.
1852 	 */
1853 	err = schedule_on_each_cpu(refresh_vm_stats);
1854 	if (err)
1855 		return err;
1856 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1857 		val = atomic_long_read(&vm_zone_stat[i]);
1858 		if (val < 0) {
1859 			pr_warn("%s: %s %ld\n",
1860 				__func__, zone_stat_name(i), val);
1861 			err = -EINVAL;
1862 		}
1863 	}
1864 #ifdef CONFIG_NUMA
1865 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1866 		val = atomic_long_read(&vm_numa_stat[i]);
1867 		if (val < 0) {
1868 			pr_warn("%s: %s %ld\n",
1869 				__func__, numa_stat_name(i), val);
1870 			err = -EINVAL;
1871 		}
1872 	}
1873 #endif
1874 	if (err)
1875 		return err;
1876 	if (write)
1877 		*ppos += *lenp;
1878 	else
1879 		*lenp = 0;
1880 	return 0;
1881 }
1882 #endif /* CONFIG_PROC_FS */
1883 
1884 static void vmstat_update(struct work_struct *w)
1885 {
1886 	if (refresh_cpu_vm_stats(true)) {
1887 		/*
1888 		 * Counters were updated so we expect more updates
1889 		 * to occur in the future. Keep on running the
1890 		 * update worker thread.
1891 		 */
1892 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1893 				this_cpu_ptr(&vmstat_work),
1894 				round_jiffies_relative(sysctl_stat_interval));
1895 	}
1896 }
1897 
1898 /*
1899  * Switch off vmstat processing and then fold all the remaining differentials
1900  * until the diffs stay at zero. The function is used by NOHZ and can only be
1901  * invoked when tick processing is not active.
1902  */
1903 /*
1904  * Check if the diffs for a certain cpu indicate that
1905  * an update is needed.
1906  */
1907 static bool need_update(int cpu)
1908 {
1909 	pg_data_t *last_pgdat = NULL;
1910 	struct zone *zone;
1911 
1912 	for_each_populated_zone(zone) {
1913 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1914 		struct per_cpu_nodestat *n;
1915 		/*
1916 		 * The fast way of checking if there are any vmstat diffs.
1917 		 */
1918 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1919 			       sizeof(p->vm_stat_diff[0])))
1920 			return true;
1921 #ifdef CONFIG_NUMA
1922 		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1923 			       sizeof(p->vm_numa_stat_diff[0])))
1924 			return true;
1925 #endif
1926 		if (last_pgdat == zone->zone_pgdat)
1927 			continue;
1928 		last_pgdat = zone->zone_pgdat;
1929 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1930 		if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS *
1931 			       sizeof(n->vm_node_stat_diff[0])))
1932 		    return true;
1933 	}
1934 	return false;
1935 }
1936 
1937 /*
1938  * Switch off vmstat processing and then fold all the remaining differentials
1939  * until the diffs stay at zero. The function is used by NOHZ and can only be
1940  * invoked when tick processing is not active.
1941  */
1942 void quiet_vmstat(void)
1943 {
1944 	if (system_state != SYSTEM_RUNNING)
1945 		return;
1946 
1947 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1948 		return;
1949 
1950 	if (!need_update(smp_processor_id()))
1951 		return;
1952 
1953 	/*
1954 	 * Just refresh counters and do not care about the pending delayed
1955 	 * vmstat_update. It doesn't fire that often to matter and canceling
1956 	 * it would be too expensive from this path.
1957 	 * vmstat_shepherd will take care about that for us.
1958 	 */
1959 	refresh_cpu_vm_stats(false);
1960 }
1961 
1962 /*
1963  * Shepherd worker thread that checks the
1964  * differentials of processors that have their worker
1965  * threads for vm statistics updates disabled because of
1966  * inactivity.
1967  */
1968 static void vmstat_shepherd(struct work_struct *w);
1969 
1970 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1971 
1972 static void vmstat_shepherd(struct work_struct *w)
1973 {
1974 	int cpu;
1975 
1976 	get_online_cpus();
1977 	/* Check processors whose vmstat worker threads have been disabled */
1978 	for_each_online_cpu(cpu) {
1979 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1980 
1981 		if (!delayed_work_pending(dw) && need_update(cpu))
1982 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1983 
1984 		cond_resched();
1985 	}
1986 	put_online_cpus();
1987 
1988 	schedule_delayed_work(&shepherd,
1989 		round_jiffies_relative(sysctl_stat_interval));
1990 }
1991 
1992 static void __init start_shepherd_timer(void)
1993 {
1994 	int cpu;
1995 
1996 	for_each_possible_cpu(cpu)
1997 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1998 			vmstat_update);
1999 
2000 	schedule_delayed_work(&shepherd,
2001 		round_jiffies_relative(sysctl_stat_interval));
2002 }
2003 
2004 static void __init init_cpu_node_state(void)
2005 {
2006 	int node;
2007 
2008 	for_each_online_node(node) {
2009 		if (cpumask_weight(cpumask_of_node(node)) > 0)
2010 			node_set_state(node, N_CPU);
2011 	}
2012 }
2013 
2014 static int vmstat_cpu_online(unsigned int cpu)
2015 {
2016 	refresh_zone_stat_thresholds();
2017 	node_set_state(cpu_to_node(cpu), N_CPU);
2018 	return 0;
2019 }
2020 
2021 static int vmstat_cpu_down_prep(unsigned int cpu)
2022 {
2023 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2024 	return 0;
2025 }
2026 
2027 static int vmstat_cpu_dead(unsigned int cpu)
2028 {
2029 	const struct cpumask *node_cpus;
2030 	int node;
2031 
2032 	node = cpu_to_node(cpu);
2033 
2034 	refresh_zone_stat_thresholds();
2035 	node_cpus = cpumask_of_node(node);
2036 	if (cpumask_weight(node_cpus) > 0)
2037 		return 0;
2038 
2039 	node_clear_state(node, N_CPU);
2040 	return 0;
2041 }
2042 
2043 #endif
2044 
2045 struct workqueue_struct *mm_percpu_wq;
2046 
2047 void __init init_mm_internals(void)
2048 {
2049 	int ret __maybe_unused;
2050 
2051 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2052 
2053 #ifdef CONFIG_SMP
2054 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2055 					NULL, vmstat_cpu_dead);
2056 	if (ret < 0)
2057 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2058 
2059 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2060 					vmstat_cpu_online,
2061 					vmstat_cpu_down_prep);
2062 	if (ret < 0)
2063 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2064 
2065 	get_online_cpus();
2066 	init_cpu_node_state();
2067 	put_online_cpus();
2068 
2069 	start_shepherd_timer();
2070 #endif
2071 #ifdef CONFIG_PROC_FS
2072 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2073 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2074 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2075 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2076 #endif
2077 }
2078 
2079 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2080 
2081 /*
2082  * Return an index indicating how much of the available free memory is
2083  * unusable for an allocation of the requested size.
2084  */
2085 static int unusable_free_index(unsigned int order,
2086 				struct contig_page_info *info)
2087 {
2088 	/* No free memory is interpreted as all free memory is unusable */
2089 	if (info->free_pages == 0)
2090 		return 1000;
2091 
2092 	/*
2093 	 * Index should be a value between 0 and 1. Return a value to 3
2094 	 * decimal places.
2095 	 *
2096 	 * 0 => no fragmentation
2097 	 * 1 => high fragmentation
2098 	 */
2099 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2100 
2101 }
2102 
2103 static void unusable_show_print(struct seq_file *m,
2104 					pg_data_t *pgdat, struct zone *zone)
2105 {
2106 	unsigned int order;
2107 	int index;
2108 	struct contig_page_info info;
2109 
2110 	seq_printf(m, "Node %d, zone %8s ",
2111 				pgdat->node_id,
2112 				zone->name);
2113 	for (order = 0; order < MAX_ORDER; ++order) {
2114 		fill_contig_page_info(zone, order, &info);
2115 		index = unusable_free_index(order, &info);
2116 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2117 	}
2118 
2119 	seq_putc(m, '\n');
2120 }
2121 
2122 /*
2123  * Display unusable free space index
2124  *
2125  * The unusable free space index measures how much of the available free
2126  * memory cannot be used to satisfy an allocation of a given size and is a
2127  * value between 0 and 1. The higher the value, the more of free memory is
2128  * unusable and by implication, the worse the external fragmentation is. This
2129  * can be expressed as a percentage by multiplying by 100.
2130  */
2131 static int unusable_show(struct seq_file *m, void *arg)
2132 {
2133 	pg_data_t *pgdat = (pg_data_t *)arg;
2134 
2135 	/* check memoryless node */
2136 	if (!node_state(pgdat->node_id, N_MEMORY))
2137 		return 0;
2138 
2139 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2140 
2141 	return 0;
2142 }
2143 
2144 static const struct seq_operations unusable_sops = {
2145 	.start	= frag_start,
2146 	.next	= frag_next,
2147 	.stop	= frag_stop,
2148 	.show	= unusable_show,
2149 };
2150 
2151 DEFINE_SEQ_ATTRIBUTE(unusable);
2152 
2153 static void extfrag_show_print(struct seq_file *m,
2154 					pg_data_t *pgdat, struct zone *zone)
2155 {
2156 	unsigned int order;
2157 	int index;
2158 
2159 	/* Alloc on stack as interrupts are disabled for zone walk */
2160 	struct contig_page_info info;
2161 
2162 	seq_printf(m, "Node %d, zone %8s ",
2163 				pgdat->node_id,
2164 				zone->name);
2165 	for (order = 0; order < MAX_ORDER; ++order) {
2166 		fill_contig_page_info(zone, order, &info);
2167 		index = __fragmentation_index(order, &info);
2168 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2169 	}
2170 
2171 	seq_putc(m, '\n');
2172 }
2173 
2174 /*
2175  * Display fragmentation index for orders that allocations would fail for
2176  */
2177 static int extfrag_show(struct seq_file *m, void *arg)
2178 {
2179 	pg_data_t *pgdat = (pg_data_t *)arg;
2180 
2181 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2182 
2183 	return 0;
2184 }
2185 
2186 static const struct seq_operations extfrag_sops = {
2187 	.start	= frag_start,
2188 	.next	= frag_next,
2189 	.stop	= frag_stop,
2190 	.show	= extfrag_show,
2191 };
2192 
2193 DEFINE_SEQ_ATTRIBUTE(extfrag);
2194 
2195 static int __init extfrag_debug_init(void)
2196 {
2197 	struct dentry *extfrag_debug_root;
2198 
2199 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2200 
2201 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2202 			    &unusable_fops);
2203 
2204 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2205 			    &extfrag_fops);
2206 
2207 	return 0;
2208 }
2209 
2210 module_init(extfrag_debug_init);
2211 #endif
2212