xref: /openbmc/linux/mm/vmstat.c (revision 4e8cec269dd9e823804141f25ce37c23e72d3c12)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24 
25 static void sum_vm_events(unsigned long *ret)
26 {
27 	int cpu;
28 	int i;
29 
30 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31 
32 	for_each_online_cpu(cpu) {
33 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34 
35 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36 			ret[i] += this->event[i];
37 	}
38 }
39 
40 /*
41  * Accumulate the vm event counters across all CPUs.
42  * The result is unavoidably approximate - it can change
43  * during and after execution of this function.
44 */
45 void all_vm_events(unsigned long *ret)
46 {
47 	get_online_cpus();
48 	sum_vm_events(ret);
49 	put_online_cpus();
50 }
51 EXPORT_SYMBOL_GPL(all_vm_events);
52 
53 #ifdef CONFIG_HOTPLUG
54 /*
55  * Fold the foreign cpu events into our own.
56  *
57  * This is adding to the events on one processor
58  * but keeps the global counts constant.
59  */
60 void vm_events_fold_cpu(int cpu)
61 {
62 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63 	int i;
64 
65 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66 		count_vm_events(i, fold_state->event[i]);
67 		fold_state->event[i] = 0;
68 	}
69 }
70 #endif /* CONFIG_HOTPLUG */
71 
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73 
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
81 
82 #ifdef CONFIG_SMP
83 
84 static int calculate_threshold(struct zone *zone)
85 {
86 	int threshold;
87 	int mem;	/* memory in 128 MB units */
88 
89 	/*
90 	 * The threshold scales with the number of processors and the amount
91 	 * of memory per zone. More memory means that we can defer updates for
92 	 * longer, more processors could lead to more contention.
93  	 * fls() is used to have a cheap way of logarithmic scaling.
94 	 *
95 	 * Some sample thresholds:
96 	 *
97 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
98 	 * ------------------------------------------------------------------
99 	 * 8		1		1	0.9-1 GB	4
100 	 * 16		2		2	0.9-1 GB	4
101 	 * 20 		2		2	1-2 GB		5
102 	 * 24		2		2	2-4 GB		6
103 	 * 28		2		2	4-8 GB		7
104 	 * 32		2		2	8-16 GB		8
105 	 * 4		2		2	<128M		1
106 	 * 30		4		3	2-4 GB		5
107 	 * 48		4		3	8-16 GB		8
108 	 * 32		8		4	1-2 GB		4
109 	 * 32		8		4	0.9-1GB		4
110 	 * 10		16		5	<128M		1
111 	 * 40		16		5	900M		4
112 	 * 70		64		7	2-4 GB		5
113 	 * 84		64		7	4-8 GB		6
114 	 * 108		512		9	4-8 GB		6
115 	 * 125		1024		10	8-16 GB		8
116 	 * 125		1024		10	16-32 GB	9
117 	 */
118 
119 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
120 
121 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
122 
123 	/*
124 	 * Maximum threshold is 125
125 	 */
126 	threshold = min(125, threshold);
127 
128 	return threshold;
129 }
130 
131 /*
132  * Refresh the thresholds for each zone.
133  */
134 static void refresh_zone_stat_thresholds(void)
135 {
136 	struct zone *zone;
137 	int cpu;
138 	int threshold;
139 
140 	for_each_populated_zone(zone) {
141 		threshold = calculate_threshold(zone);
142 
143 		for_each_online_cpu(cpu)
144 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
145 							= threshold;
146 	}
147 }
148 
149 /*
150  * For use when we know that interrupts are disabled.
151  */
152 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
153 				int delta)
154 {
155 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
156 
157 	s8 *p = pcp->vm_stat_diff + item;
158 	long x;
159 
160 	x = delta + *p;
161 
162 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 		zone_page_state_add(x, zone, item);
164 		x = 0;
165 	}
166 	*p = x;
167 }
168 EXPORT_SYMBOL(__mod_zone_page_state);
169 
170 /*
171  * For an unknown interrupt state
172  */
173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
174 					int delta)
175 {
176 	unsigned long flags;
177 
178 	local_irq_save(flags);
179 	__mod_zone_page_state(zone, item, delta);
180 	local_irq_restore(flags);
181 }
182 EXPORT_SYMBOL(mod_zone_page_state);
183 
184 /*
185  * Optimized increment and decrement functions.
186  *
187  * These are only for a single page and therefore can take a struct page *
188  * argument instead of struct zone *. This allows the inclusion of the code
189  * generated for page_zone(page) into the optimized functions.
190  *
191  * No overflow check is necessary and therefore the differential can be
192  * incremented or decremented in place which may allow the compilers to
193  * generate better code.
194  * The increment or decrement is known and therefore one boundary check can
195  * be omitted.
196  *
197  * NOTE: These functions are very performance sensitive. Change only
198  * with care.
199  *
200  * Some processors have inc/dec instructions that are atomic vs an interrupt.
201  * However, the code must first determine the differential location in a zone
202  * based on the processor number and then inc/dec the counter. There is no
203  * guarantee without disabling preemption that the processor will not change
204  * in between and therefore the atomicity vs. interrupt cannot be exploited
205  * in a useful way here.
206  */
207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 {
209 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
210 	s8 *p = pcp->vm_stat_diff + item;
211 
212 	(*p)++;
213 
214 	if (unlikely(*p > pcp->stat_threshold)) {
215 		int overstep = pcp->stat_threshold / 2;
216 
217 		zone_page_state_add(*p + overstep, zone, item);
218 		*p = -overstep;
219 	}
220 }
221 
222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 {
224 	__inc_zone_state(page_zone(page), item);
225 }
226 EXPORT_SYMBOL(__inc_zone_page_state);
227 
228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 {
230 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
231 	s8 *p = pcp->vm_stat_diff + item;
232 
233 	(*p)--;
234 
235 	if (unlikely(*p < - pcp->stat_threshold)) {
236 		int overstep = pcp->stat_threshold / 2;
237 
238 		zone_page_state_add(*p - overstep, zone, item);
239 		*p = overstep;
240 	}
241 }
242 
243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 {
245 	__dec_zone_state(page_zone(page), item);
246 }
247 EXPORT_SYMBOL(__dec_zone_page_state);
248 
249 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 {
251 	unsigned long flags;
252 
253 	local_irq_save(flags);
254 	__inc_zone_state(zone, item);
255 	local_irq_restore(flags);
256 }
257 
258 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 	unsigned long flags;
261 	struct zone *zone;
262 
263 	zone = page_zone(page);
264 	local_irq_save(flags);
265 	__inc_zone_state(zone, item);
266 	local_irq_restore(flags);
267 }
268 EXPORT_SYMBOL(inc_zone_page_state);
269 
270 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	unsigned long flags;
273 
274 	local_irq_save(flags);
275 	__dec_zone_page_state(page, item);
276 	local_irq_restore(flags);
277 }
278 EXPORT_SYMBOL(dec_zone_page_state);
279 
280 /*
281  * Update the zone counters for one cpu.
282  *
283  * The cpu specified must be either the current cpu or a processor that
284  * is not online. If it is the current cpu then the execution thread must
285  * be pinned to the current cpu.
286  *
287  * Note that refresh_cpu_vm_stats strives to only access
288  * node local memory. The per cpu pagesets on remote zones are placed
289  * in the memory local to the processor using that pageset. So the
290  * loop over all zones will access a series of cachelines local to
291  * the processor.
292  *
293  * The call to zone_page_state_add updates the cachelines with the
294  * statistics in the remote zone struct as well as the global cachelines
295  * with the global counters. These could cause remote node cache line
296  * bouncing and will have to be only done when necessary.
297  */
298 void refresh_cpu_vm_stats(int cpu)
299 {
300 	struct zone *zone;
301 	int i;
302 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303 
304 	for_each_populated_zone(zone) {
305 		struct per_cpu_pageset *p;
306 
307 		p = per_cpu_ptr(zone->pageset, cpu);
308 
309 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 			if (p->vm_stat_diff[i]) {
311 				unsigned long flags;
312 				int v;
313 
314 				local_irq_save(flags);
315 				v = p->vm_stat_diff[i];
316 				p->vm_stat_diff[i] = 0;
317 				local_irq_restore(flags);
318 				atomic_long_add(v, &zone->vm_stat[i]);
319 				global_diff[i] += v;
320 #ifdef CONFIG_NUMA
321 				/* 3 seconds idle till flush */
322 				p->expire = 3;
323 #endif
324 			}
325 		cond_resched();
326 #ifdef CONFIG_NUMA
327 		/*
328 		 * Deal with draining the remote pageset of this
329 		 * processor
330 		 *
331 		 * Check if there are pages remaining in this pageset
332 		 * if not then there is nothing to expire.
333 		 */
334 		if (!p->expire || !p->pcp.count)
335 			continue;
336 
337 		/*
338 		 * We never drain zones local to this processor.
339 		 */
340 		if (zone_to_nid(zone) == numa_node_id()) {
341 			p->expire = 0;
342 			continue;
343 		}
344 
345 		p->expire--;
346 		if (p->expire)
347 			continue;
348 
349 		if (p->pcp.count)
350 			drain_zone_pages(zone, &p->pcp);
351 #endif
352 	}
353 
354 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
355 		if (global_diff[i])
356 			atomic_long_add(global_diff[i], &vm_stat[i]);
357 }
358 
359 #endif
360 
361 #ifdef CONFIG_NUMA
362 /*
363  * zonelist = the list of zones passed to the allocator
364  * z 	    = the zone from which the allocation occurred.
365  *
366  * Must be called with interrupts disabled.
367  */
368 void zone_statistics(struct zone *preferred_zone, struct zone *z)
369 {
370 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
371 		__inc_zone_state(z, NUMA_HIT);
372 	} else {
373 		__inc_zone_state(z, NUMA_MISS);
374 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
375 	}
376 	if (z->node == numa_node_id())
377 		__inc_zone_state(z, NUMA_LOCAL);
378 	else
379 		__inc_zone_state(z, NUMA_OTHER);
380 }
381 #endif
382 
383 #ifdef CONFIG_COMPACTION
384 struct contig_page_info {
385 	unsigned long free_pages;
386 	unsigned long free_blocks_total;
387 	unsigned long free_blocks_suitable;
388 };
389 
390 /*
391  * Calculate the number of free pages in a zone, how many contiguous
392  * pages are free and how many are large enough to satisfy an allocation of
393  * the target size. Note that this function makes no attempt to estimate
394  * how many suitable free blocks there *might* be if MOVABLE pages were
395  * migrated. Calculating that is possible, but expensive and can be
396  * figured out from userspace
397  */
398 static void fill_contig_page_info(struct zone *zone,
399 				unsigned int suitable_order,
400 				struct contig_page_info *info)
401 {
402 	unsigned int order;
403 
404 	info->free_pages = 0;
405 	info->free_blocks_total = 0;
406 	info->free_blocks_suitable = 0;
407 
408 	for (order = 0; order < MAX_ORDER; order++) {
409 		unsigned long blocks;
410 
411 		/* Count number of free blocks */
412 		blocks = zone->free_area[order].nr_free;
413 		info->free_blocks_total += blocks;
414 
415 		/* Count free base pages */
416 		info->free_pages += blocks << order;
417 
418 		/* Count the suitable free blocks */
419 		if (order >= suitable_order)
420 			info->free_blocks_suitable += blocks <<
421 						(order - suitable_order);
422 	}
423 }
424 
425 /*
426  * A fragmentation index only makes sense if an allocation of a requested
427  * size would fail. If that is true, the fragmentation index indicates
428  * whether external fragmentation or a lack of memory was the problem.
429  * The value can be used to determine if page reclaim or compaction
430  * should be used
431  */
432 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
433 {
434 	unsigned long requested = 1UL << order;
435 
436 	if (!info->free_blocks_total)
437 		return 0;
438 
439 	/* Fragmentation index only makes sense when a request would fail */
440 	if (info->free_blocks_suitable)
441 		return -1000;
442 
443 	/*
444 	 * Index is between 0 and 1 so return within 3 decimal places
445 	 *
446 	 * 0 => allocation would fail due to lack of memory
447 	 * 1 => allocation would fail due to fragmentation
448 	 */
449 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
450 }
451 
452 /* Same as __fragmentation index but allocs contig_page_info on stack */
453 int fragmentation_index(struct zone *zone, unsigned int order)
454 {
455 	struct contig_page_info info;
456 
457 	fill_contig_page_info(zone, order, &info);
458 	return __fragmentation_index(order, &info);
459 }
460 #endif
461 
462 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
463 #include <linux/proc_fs.h>
464 #include <linux/seq_file.h>
465 
466 static char * const migratetype_names[MIGRATE_TYPES] = {
467 	"Unmovable",
468 	"Reclaimable",
469 	"Movable",
470 	"Reserve",
471 	"Isolate",
472 };
473 
474 static void *frag_start(struct seq_file *m, loff_t *pos)
475 {
476 	pg_data_t *pgdat;
477 	loff_t node = *pos;
478 	for (pgdat = first_online_pgdat();
479 	     pgdat && node;
480 	     pgdat = next_online_pgdat(pgdat))
481 		--node;
482 
483 	return pgdat;
484 }
485 
486 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
487 {
488 	pg_data_t *pgdat = (pg_data_t *)arg;
489 
490 	(*pos)++;
491 	return next_online_pgdat(pgdat);
492 }
493 
494 static void frag_stop(struct seq_file *m, void *arg)
495 {
496 }
497 
498 /* Walk all the zones in a node and print using a callback */
499 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
500 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
501 {
502 	struct zone *zone;
503 	struct zone *node_zones = pgdat->node_zones;
504 	unsigned long flags;
505 
506 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
507 		if (!populated_zone(zone))
508 			continue;
509 
510 		spin_lock_irqsave(&zone->lock, flags);
511 		print(m, pgdat, zone);
512 		spin_unlock_irqrestore(&zone->lock, flags);
513 	}
514 }
515 #endif
516 
517 #ifdef CONFIG_PROC_FS
518 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
519 						struct zone *zone)
520 {
521 	int order;
522 
523 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
524 	for (order = 0; order < MAX_ORDER; ++order)
525 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
526 	seq_putc(m, '\n');
527 }
528 
529 /*
530  * This walks the free areas for each zone.
531  */
532 static int frag_show(struct seq_file *m, void *arg)
533 {
534 	pg_data_t *pgdat = (pg_data_t *)arg;
535 	walk_zones_in_node(m, pgdat, frag_show_print);
536 	return 0;
537 }
538 
539 static void pagetypeinfo_showfree_print(struct seq_file *m,
540 					pg_data_t *pgdat, struct zone *zone)
541 {
542 	int order, mtype;
543 
544 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
545 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
546 					pgdat->node_id,
547 					zone->name,
548 					migratetype_names[mtype]);
549 		for (order = 0; order < MAX_ORDER; ++order) {
550 			unsigned long freecount = 0;
551 			struct free_area *area;
552 			struct list_head *curr;
553 
554 			area = &(zone->free_area[order]);
555 
556 			list_for_each(curr, &area->free_list[mtype])
557 				freecount++;
558 			seq_printf(m, "%6lu ", freecount);
559 		}
560 		seq_putc(m, '\n');
561 	}
562 }
563 
564 /* Print out the free pages at each order for each migatetype */
565 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
566 {
567 	int order;
568 	pg_data_t *pgdat = (pg_data_t *)arg;
569 
570 	/* Print header */
571 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
572 	for (order = 0; order < MAX_ORDER; ++order)
573 		seq_printf(m, "%6d ", order);
574 	seq_putc(m, '\n');
575 
576 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
577 
578 	return 0;
579 }
580 
581 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
582 					pg_data_t *pgdat, struct zone *zone)
583 {
584 	int mtype;
585 	unsigned long pfn;
586 	unsigned long start_pfn = zone->zone_start_pfn;
587 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
588 	unsigned long count[MIGRATE_TYPES] = { 0, };
589 
590 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
591 		struct page *page;
592 
593 		if (!pfn_valid(pfn))
594 			continue;
595 
596 		page = pfn_to_page(pfn);
597 
598 		/* Watch for unexpected holes punched in the memmap */
599 		if (!memmap_valid_within(pfn, page, zone))
600 			continue;
601 
602 		mtype = get_pageblock_migratetype(page);
603 
604 		if (mtype < MIGRATE_TYPES)
605 			count[mtype]++;
606 	}
607 
608 	/* Print counts */
609 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
610 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
611 		seq_printf(m, "%12lu ", count[mtype]);
612 	seq_putc(m, '\n');
613 }
614 
615 /* Print out the free pages at each order for each migratetype */
616 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
617 {
618 	int mtype;
619 	pg_data_t *pgdat = (pg_data_t *)arg;
620 
621 	seq_printf(m, "\n%-23s", "Number of blocks type ");
622 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
623 		seq_printf(m, "%12s ", migratetype_names[mtype]);
624 	seq_putc(m, '\n');
625 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
626 
627 	return 0;
628 }
629 
630 /*
631  * This prints out statistics in relation to grouping pages by mobility.
632  * It is expensive to collect so do not constantly read the file.
633  */
634 static int pagetypeinfo_show(struct seq_file *m, void *arg)
635 {
636 	pg_data_t *pgdat = (pg_data_t *)arg;
637 
638 	/* check memoryless node */
639 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
640 		return 0;
641 
642 	seq_printf(m, "Page block order: %d\n", pageblock_order);
643 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
644 	seq_putc(m, '\n');
645 	pagetypeinfo_showfree(m, pgdat);
646 	pagetypeinfo_showblockcount(m, pgdat);
647 
648 	return 0;
649 }
650 
651 static const struct seq_operations fragmentation_op = {
652 	.start	= frag_start,
653 	.next	= frag_next,
654 	.stop	= frag_stop,
655 	.show	= frag_show,
656 };
657 
658 static int fragmentation_open(struct inode *inode, struct file *file)
659 {
660 	return seq_open(file, &fragmentation_op);
661 }
662 
663 static const struct file_operations fragmentation_file_operations = {
664 	.open		= fragmentation_open,
665 	.read		= seq_read,
666 	.llseek		= seq_lseek,
667 	.release	= seq_release,
668 };
669 
670 static const struct seq_operations pagetypeinfo_op = {
671 	.start	= frag_start,
672 	.next	= frag_next,
673 	.stop	= frag_stop,
674 	.show	= pagetypeinfo_show,
675 };
676 
677 static int pagetypeinfo_open(struct inode *inode, struct file *file)
678 {
679 	return seq_open(file, &pagetypeinfo_op);
680 }
681 
682 static const struct file_operations pagetypeinfo_file_ops = {
683 	.open		= pagetypeinfo_open,
684 	.read		= seq_read,
685 	.llseek		= seq_lseek,
686 	.release	= seq_release,
687 };
688 
689 #ifdef CONFIG_ZONE_DMA
690 #define TEXT_FOR_DMA(xx) xx "_dma",
691 #else
692 #define TEXT_FOR_DMA(xx)
693 #endif
694 
695 #ifdef CONFIG_ZONE_DMA32
696 #define TEXT_FOR_DMA32(xx) xx "_dma32",
697 #else
698 #define TEXT_FOR_DMA32(xx)
699 #endif
700 
701 #ifdef CONFIG_HIGHMEM
702 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
703 #else
704 #define TEXT_FOR_HIGHMEM(xx)
705 #endif
706 
707 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
708 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
709 
710 static const char * const vmstat_text[] = {
711 	/* Zoned VM counters */
712 	"nr_free_pages",
713 	"nr_inactive_anon",
714 	"nr_active_anon",
715 	"nr_inactive_file",
716 	"nr_active_file",
717 	"nr_unevictable",
718 	"nr_mlock",
719 	"nr_anon_pages",
720 	"nr_mapped",
721 	"nr_file_pages",
722 	"nr_dirty",
723 	"nr_writeback",
724 	"nr_slab_reclaimable",
725 	"nr_slab_unreclaimable",
726 	"nr_page_table_pages",
727 	"nr_kernel_stack",
728 	"nr_unstable",
729 	"nr_bounce",
730 	"nr_vmscan_write",
731 	"nr_writeback_temp",
732 	"nr_isolated_anon",
733 	"nr_isolated_file",
734 	"nr_shmem",
735 #ifdef CONFIG_NUMA
736 	"numa_hit",
737 	"numa_miss",
738 	"numa_foreign",
739 	"numa_interleave",
740 	"numa_local",
741 	"numa_other",
742 #endif
743 
744 #ifdef CONFIG_VM_EVENT_COUNTERS
745 	"pgpgin",
746 	"pgpgout",
747 	"pswpin",
748 	"pswpout",
749 
750 	TEXTS_FOR_ZONES("pgalloc")
751 
752 	"pgfree",
753 	"pgactivate",
754 	"pgdeactivate",
755 
756 	"pgfault",
757 	"pgmajfault",
758 
759 	TEXTS_FOR_ZONES("pgrefill")
760 	TEXTS_FOR_ZONES("pgsteal")
761 	TEXTS_FOR_ZONES("pgscan_kswapd")
762 	TEXTS_FOR_ZONES("pgscan_direct")
763 
764 #ifdef CONFIG_NUMA
765 	"zone_reclaim_failed",
766 #endif
767 	"pginodesteal",
768 	"slabs_scanned",
769 	"kswapd_steal",
770 	"kswapd_inodesteal",
771 	"kswapd_low_wmark_hit_quickly",
772 	"kswapd_high_wmark_hit_quickly",
773 	"kswapd_skip_congestion_wait",
774 	"pageoutrun",
775 	"allocstall",
776 
777 	"pgrotated",
778 
779 #ifdef CONFIG_COMPACTION
780 	"compact_blocks_moved",
781 	"compact_pages_moved",
782 	"compact_pagemigrate_failed",
783 	"compact_stall",
784 	"compact_fail",
785 	"compact_success",
786 #endif
787 
788 #ifdef CONFIG_HUGETLB_PAGE
789 	"htlb_buddy_alloc_success",
790 	"htlb_buddy_alloc_fail",
791 #endif
792 	"unevictable_pgs_culled",
793 	"unevictable_pgs_scanned",
794 	"unevictable_pgs_rescued",
795 	"unevictable_pgs_mlocked",
796 	"unevictable_pgs_munlocked",
797 	"unevictable_pgs_cleared",
798 	"unevictable_pgs_stranded",
799 	"unevictable_pgs_mlockfreed",
800 #endif
801 };
802 
803 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
804 							struct zone *zone)
805 {
806 	int i;
807 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
808 	seq_printf(m,
809 		   "\n  pages free     %lu"
810 		   "\n        min      %lu"
811 		   "\n        low      %lu"
812 		   "\n        high     %lu"
813 		   "\n        scanned  %lu"
814 		   "\n        spanned  %lu"
815 		   "\n        present  %lu",
816 		   zone_page_state(zone, NR_FREE_PAGES),
817 		   min_wmark_pages(zone),
818 		   low_wmark_pages(zone),
819 		   high_wmark_pages(zone),
820 		   zone->pages_scanned,
821 		   zone->spanned_pages,
822 		   zone->present_pages);
823 
824 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
825 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
826 				zone_page_state(zone, i));
827 
828 	seq_printf(m,
829 		   "\n        protection: (%lu",
830 		   zone->lowmem_reserve[0]);
831 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
832 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
833 	seq_printf(m,
834 		   ")"
835 		   "\n  pagesets");
836 	for_each_online_cpu(i) {
837 		struct per_cpu_pageset *pageset;
838 
839 		pageset = per_cpu_ptr(zone->pageset, i);
840 		seq_printf(m,
841 			   "\n    cpu: %i"
842 			   "\n              count: %i"
843 			   "\n              high:  %i"
844 			   "\n              batch: %i",
845 			   i,
846 			   pageset->pcp.count,
847 			   pageset->pcp.high,
848 			   pageset->pcp.batch);
849 #ifdef CONFIG_SMP
850 		seq_printf(m, "\n  vm stats threshold: %d",
851 				pageset->stat_threshold);
852 #endif
853 	}
854 	seq_printf(m,
855 		   "\n  all_unreclaimable: %u"
856 		   "\n  start_pfn:         %lu"
857 		   "\n  inactive_ratio:    %u",
858 		   zone->all_unreclaimable,
859 		   zone->zone_start_pfn,
860 		   zone->inactive_ratio);
861 	seq_putc(m, '\n');
862 }
863 
864 /*
865  * Output information about zones in @pgdat.
866  */
867 static int zoneinfo_show(struct seq_file *m, void *arg)
868 {
869 	pg_data_t *pgdat = (pg_data_t *)arg;
870 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
871 	return 0;
872 }
873 
874 static const struct seq_operations zoneinfo_op = {
875 	.start	= frag_start, /* iterate over all zones. The same as in
876 			       * fragmentation. */
877 	.next	= frag_next,
878 	.stop	= frag_stop,
879 	.show	= zoneinfo_show,
880 };
881 
882 static int zoneinfo_open(struct inode *inode, struct file *file)
883 {
884 	return seq_open(file, &zoneinfo_op);
885 }
886 
887 static const struct file_operations proc_zoneinfo_file_operations = {
888 	.open		= zoneinfo_open,
889 	.read		= seq_read,
890 	.llseek		= seq_lseek,
891 	.release	= seq_release,
892 };
893 
894 static void *vmstat_start(struct seq_file *m, loff_t *pos)
895 {
896 	unsigned long *v;
897 #ifdef CONFIG_VM_EVENT_COUNTERS
898 	unsigned long *e;
899 #endif
900 	int i;
901 
902 	if (*pos >= ARRAY_SIZE(vmstat_text))
903 		return NULL;
904 
905 #ifdef CONFIG_VM_EVENT_COUNTERS
906 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
907 			+ sizeof(struct vm_event_state), GFP_KERNEL);
908 #else
909 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
910 			GFP_KERNEL);
911 #endif
912 	m->private = v;
913 	if (!v)
914 		return ERR_PTR(-ENOMEM);
915 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
916 		v[i] = global_page_state(i);
917 #ifdef CONFIG_VM_EVENT_COUNTERS
918 	e = v + NR_VM_ZONE_STAT_ITEMS;
919 	all_vm_events(e);
920 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
921 	e[PGPGOUT] /= 2;
922 #endif
923 	return v + *pos;
924 }
925 
926 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
927 {
928 	(*pos)++;
929 	if (*pos >= ARRAY_SIZE(vmstat_text))
930 		return NULL;
931 	return (unsigned long *)m->private + *pos;
932 }
933 
934 static int vmstat_show(struct seq_file *m, void *arg)
935 {
936 	unsigned long *l = arg;
937 	unsigned long off = l - (unsigned long *)m->private;
938 
939 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
940 	return 0;
941 }
942 
943 static void vmstat_stop(struct seq_file *m, void *arg)
944 {
945 	kfree(m->private);
946 	m->private = NULL;
947 }
948 
949 static const struct seq_operations vmstat_op = {
950 	.start	= vmstat_start,
951 	.next	= vmstat_next,
952 	.stop	= vmstat_stop,
953 	.show	= vmstat_show,
954 };
955 
956 static int vmstat_open(struct inode *inode, struct file *file)
957 {
958 	return seq_open(file, &vmstat_op);
959 }
960 
961 static const struct file_operations proc_vmstat_file_operations = {
962 	.open		= vmstat_open,
963 	.read		= seq_read,
964 	.llseek		= seq_lseek,
965 	.release	= seq_release,
966 };
967 #endif /* CONFIG_PROC_FS */
968 
969 #ifdef CONFIG_SMP
970 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
971 int sysctl_stat_interval __read_mostly = HZ;
972 
973 static void vmstat_update(struct work_struct *w)
974 {
975 	refresh_cpu_vm_stats(smp_processor_id());
976 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
977 		round_jiffies_relative(sysctl_stat_interval));
978 }
979 
980 static void __cpuinit start_cpu_timer(int cpu)
981 {
982 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
983 
984 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
985 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
986 }
987 
988 /*
989  * Use the cpu notifier to insure that the thresholds are recalculated
990  * when necessary.
991  */
992 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
993 		unsigned long action,
994 		void *hcpu)
995 {
996 	long cpu = (long)hcpu;
997 
998 	switch (action) {
999 	case CPU_ONLINE:
1000 	case CPU_ONLINE_FROZEN:
1001 		start_cpu_timer(cpu);
1002 		node_set_state(cpu_to_node(cpu), N_CPU);
1003 		break;
1004 	case CPU_DOWN_PREPARE:
1005 	case CPU_DOWN_PREPARE_FROZEN:
1006 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1007 		per_cpu(vmstat_work, cpu).work.func = NULL;
1008 		break;
1009 	case CPU_DOWN_FAILED:
1010 	case CPU_DOWN_FAILED_FROZEN:
1011 		start_cpu_timer(cpu);
1012 		break;
1013 	case CPU_DEAD:
1014 	case CPU_DEAD_FROZEN:
1015 		refresh_zone_stat_thresholds();
1016 		break;
1017 	default:
1018 		break;
1019 	}
1020 	return NOTIFY_OK;
1021 }
1022 
1023 static struct notifier_block __cpuinitdata vmstat_notifier =
1024 	{ &vmstat_cpuup_callback, NULL, 0 };
1025 #endif
1026 
1027 static int __init setup_vmstat(void)
1028 {
1029 #ifdef CONFIG_SMP
1030 	int cpu;
1031 
1032 	refresh_zone_stat_thresholds();
1033 	register_cpu_notifier(&vmstat_notifier);
1034 
1035 	for_each_online_cpu(cpu)
1036 		start_cpu_timer(cpu);
1037 #endif
1038 #ifdef CONFIG_PROC_FS
1039 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1040 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1041 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1042 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1043 #endif
1044 	return 0;
1045 }
1046 module_init(setup_vmstat)
1047 
1048 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1049 #include <linux/debugfs.h>
1050 
1051 static struct dentry *extfrag_debug_root;
1052 
1053 /*
1054  * Return an index indicating how much of the available free memory is
1055  * unusable for an allocation of the requested size.
1056  */
1057 static int unusable_free_index(unsigned int order,
1058 				struct contig_page_info *info)
1059 {
1060 	/* No free memory is interpreted as all free memory is unusable */
1061 	if (info->free_pages == 0)
1062 		return 1000;
1063 
1064 	/*
1065 	 * Index should be a value between 0 and 1. Return a value to 3
1066 	 * decimal places.
1067 	 *
1068 	 * 0 => no fragmentation
1069 	 * 1 => high fragmentation
1070 	 */
1071 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1072 
1073 }
1074 
1075 static void unusable_show_print(struct seq_file *m,
1076 					pg_data_t *pgdat, struct zone *zone)
1077 {
1078 	unsigned int order;
1079 	int index;
1080 	struct contig_page_info info;
1081 
1082 	seq_printf(m, "Node %d, zone %8s ",
1083 				pgdat->node_id,
1084 				zone->name);
1085 	for (order = 0; order < MAX_ORDER; ++order) {
1086 		fill_contig_page_info(zone, order, &info);
1087 		index = unusable_free_index(order, &info);
1088 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1089 	}
1090 
1091 	seq_putc(m, '\n');
1092 }
1093 
1094 /*
1095  * Display unusable free space index
1096  *
1097  * The unusable free space index measures how much of the available free
1098  * memory cannot be used to satisfy an allocation of a given size and is a
1099  * value between 0 and 1. The higher the value, the more of free memory is
1100  * unusable and by implication, the worse the external fragmentation is. This
1101  * can be expressed as a percentage by multiplying by 100.
1102  */
1103 static int unusable_show(struct seq_file *m, void *arg)
1104 {
1105 	pg_data_t *pgdat = (pg_data_t *)arg;
1106 
1107 	/* check memoryless node */
1108 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1109 		return 0;
1110 
1111 	walk_zones_in_node(m, pgdat, unusable_show_print);
1112 
1113 	return 0;
1114 }
1115 
1116 static const struct seq_operations unusable_op = {
1117 	.start	= frag_start,
1118 	.next	= frag_next,
1119 	.stop	= frag_stop,
1120 	.show	= unusable_show,
1121 };
1122 
1123 static int unusable_open(struct inode *inode, struct file *file)
1124 {
1125 	return seq_open(file, &unusable_op);
1126 }
1127 
1128 static const struct file_operations unusable_file_ops = {
1129 	.open		= unusable_open,
1130 	.read		= seq_read,
1131 	.llseek		= seq_lseek,
1132 	.release	= seq_release,
1133 };
1134 
1135 static void extfrag_show_print(struct seq_file *m,
1136 					pg_data_t *pgdat, struct zone *zone)
1137 {
1138 	unsigned int order;
1139 	int index;
1140 
1141 	/* Alloc on stack as interrupts are disabled for zone walk */
1142 	struct contig_page_info info;
1143 
1144 	seq_printf(m, "Node %d, zone %8s ",
1145 				pgdat->node_id,
1146 				zone->name);
1147 	for (order = 0; order < MAX_ORDER; ++order) {
1148 		fill_contig_page_info(zone, order, &info);
1149 		index = __fragmentation_index(order, &info);
1150 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1151 	}
1152 
1153 	seq_putc(m, '\n');
1154 }
1155 
1156 /*
1157  * Display fragmentation index for orders that allocations would fail for
1158  */
1159 static int extfrag_show(struct seq_file *m, void *arg)
1160 {
1161 	pg_data_t *pgdat = (pg_data_t *)arg;
1162 
1163 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1164 
1165 	return 0;
1166 }
1167 
1168 static const struct seq_operations extfrag_op = {
1169 	.start	= frag_start,
1170 	.next	= frag_next,
1171 	.stop	= frag_stop,
1172 	.show	= extfrag_show,
1173 };
1174 
1175 static int extfrag_open(struct inode *inode, struct file *file)
1176 {
1177 	return seq_open(file, &extfrag_op);
1178 }
1179 
1180 static const struct file_operations extfrag_file_ops = {
1181 	.open		= extfrag_open,
1182 	.read		= seq_read,
1183 	.llseek		= seq_lseek,
1184 	.release	= seq_release,
1185 };
1186 
1187 static int __init extfrag_debug_init(void)
1188 {
1189 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1190 	if (!extfrag_debug_root)
1191 		return -ENOMEM;
1192 
1193 	if (!debugfs_create_file("unusable_index", 0444,
1194 			extfrag_debug_root, NULL, &unusable_file_ops))
1195 		return -ENOMEM;
1196 
1197 	if (!debugfs_create_file("extfrag_index", 0444,
1198 			extfrag_debug_root, NULL, &extfrag_file_ops))
1199 		return -ENOMEM;
1200 
1201 	return 0;
1202 }
1203 
1204 module_init(extfrag_debug_init);
1205 #endif
1206