1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #define NUMA_STATS_THRESHOLD (U16_MAX - 2) 34 35 #ifdef CONFIG_NUMA 36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 37 38 /* zero numa counters within a zone */ 39 static void zero_zone_numa_counters(struct zone *zone) 40 { 41 int item, cpu; 42 43 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 44 atomic_long_set(&zone->vm_numa_stat[item], 0); 45 for_each_online_cpu(cpu) 46 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 47 = 0; 48 } 49 } 50 51 /* zero numa counters of all the populated zones */ 52 static void zero_zones_numa_counters(void) 53 { 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58 } 59 60 /* zero global numa counters */ 61 static void zero_global_numa_counters(void) 62 { 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 66 atomic_long_set(&vm_numa_stat[item], 0); 67 } 68 69 static void invalid_numa_statistics(void) 70 { 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73 } 74 75 static DEFINE_MUTEX(vm_numa_stat_lock); 76 77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void __user *buffer, size_t *length, loff_t *ppos) 79 { 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100 out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103 } 104 #endif 105 106 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110 static void sum_vm_events(unsigned long *ret) 111 { 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123 } 124 125 /* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129 */ 130 void all_vm_events(unsigned long *ret) 131 { 132 get_online_cpus(); 133 sum_vm_events(ret); 134 put_online_cpus(); 135 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 137 138 /* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144 void vm_events_fold_cpu(int cpu) 145 { 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153 } 154 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157 /* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 165 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_numa_stat); 167 EXPORT_SYMBOL(vm_node_stat); 168 169 #ifdef CONFIG_SMP 170 171 int calculate_pressure_threshold(struct zone *zone) 172 { 173 int threshold; 174 int watermark_distance; 175 176 /* 177 * As vmstats are not up to date, there is drift between the estimated 178 * and real values. For high thresholds and a high number of CPUs, it 179 * is possible for the min watermark to be breached while the estimated 180 * value looks fine. The pressure threshold is a reduced value such 181 * that even the maximum amount of drift will not accidentally breach 182 * the min watermark 183 */ 184 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 185 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 186 187 /* 188 * Maximum threshold is 125 189 */ 190 threshold = min(125, threshold); 191 192 return threshold; 193 } 194 195 int calculate_normal_threshold(struct zone *zone) 196 { 197 int threshold; 198 int mem; /* memory in 128 MB units */ 199 200 /* 201 * The threshold scales with the number of processors and the amount 202 * of memory per zone. More memory means that we can defer updates for 203 * longer, more processors could lead to more contention. 204 * fls() is used to have a cheap way of logarithmic scaling. 205 * 206 * Some sample thresholds: 207 * 208 * Threshold Processors (fls) Zonesize fls(mem+1) 209 * ------------------------------------------------------------------ 210 * 8 1 1 0.9-1 GB 4 211 * 16 2 2 0.9-1 GB 4 212 * 20 2 2 1-2 GB 5 213 * 24 2 2 2-4 GB 6 214 * 28 2 2 4-8 GB 7 215 * 32 2 2 8-16 GB 8 216 * 4 2 2 <128M 1 217 * 30 4 3 2-4 GB 5 218 * 48 4 3 8-16 GB 8 219 * 32 8 4 1-2 GB 4 220 * 32 8 4 0.9-1GB 4 221 * 10 16 5 <128M 1 222 * 40 16 5 900M 4 223 * 70 64 7 2-4 GB 5 224 * 84 64 7 4-8 GB 6 225 * 108 512 9 4-8 GB 6 226 * 125 1024 10 8-16 GB 8 227 * 125 1024 10 16-32 GB 9 228 */ 229 230 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 231 232 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 233 234 /* 235 * Maximum threshold is 125 236 */ 237 threshold = min(125, threshold); 238 239 return threshold; 240 } 241 242 /* 243 * Refresh the thresholds for each zone. 244 */ 245 void refresh_zone_stat_thresholds(void) 246 { 247 struct pglist_data *pgdat; 248 struct zone *zone; 249 int cpu; 250 int threshold; 251 252 /* Zero current pgdat thresholds */ 253 for_each_online_pgdat(pgdat) { 254 for_each_online_cpu(cpu) { 255 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 256 } 257 } 258 259 for_each_populated_zone(zone) { 260 struct pglist_data *pgdat = zone->zone_pgdat; 261 unsigned long max_drift, tolerate_drift; 262 263 threshold = calculate_normal_threshold(zone); 264 265 for_each_online_cpu(cpu) { 266 int pgdat_threshold; 267 268 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 269 = threshold; 270 271 /* Base nodestat threshold on the largest populated zone. */ 272 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 273 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 274 = max(threshold, pgdat_threshold); 275 } 276 277 /* 278 * Only set percpu_drift_mark if there is a danger that 279 * NR_FREE_PAGES reports the low watermark is ok when in fact 280 * the min watermark could be breached by an allocation 281 */ 282 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 283 max_drift = num_online_cpus() * threshold; 284 if (max_drift > tolerate_drift) 285 zone->percpu_drift_mark = high_wmark_pages(zone) + 286 max_drift; 287 } 288 } 289 290 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 291 int (*calculate_pressure)(struct zone *)) 292 { 293 struct zone *zone; 294 int cpu; 295 int threshold; 296 int i; 297 298 for (i = 0; i < pgdat->nr_zones; i++) { 299 zone = &pgdat->node_zones[i]; 300 if (!zone->percpu_drift_mark) 301 continue; 302 303 threshold = (*calculate_pressure)(zone); 304 for_each_online_cpu(cpu) 305 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 306 = threshold; 307 } 308 } 309 310 /* 311 * For use when we know that interrupts are disabled, 312 * or when we know that preemption is disabled and that 313 * particular counter cannot be updated from interrupt context. 314 */ 315 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 316 long delta) 317 { 318 struct per_cpu_pageset __percpu *pcp = zone->pageset; 319 s8 __percpu *p = pcp->vm_stat_diff + item; 320 long x; 321 long t; 322 323 x = delta + __this_cpu_read(*p); 324 325 t = __this_cpu_read(pcp->stat_threshold); 326 327 if (unlikely(x > t || x < -t)) { 328 zone_page_state_add(x, zone, item); 329 x = 0; 330 } 331 __this_cpu_write(*p, x); 332 } 333 EXPORT_SYMBOL(__mod_zone_page_state); 334 335 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 336 long delta) 337 { 338 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 339 s8 __percpu *p = pcp->vm_node_stat_diff + item; 340 long x; 341 long t; 342 343 x = delta + __this_cpu_read(*p); 344 345 t = __this_cpu_read(pcp->stat_threshold); 346 347 if (unlikely(x > t || x < -t)) { 348 node_page_state_add(x, pgdat, item); 349 x = 0; 350 } 351 __this_cpu_write(*p, x); 352 } 353 EXPORT_SYMBOL(__mod_node_page_state); 354 355 /* 356 * Optimized increment and decrement functions. 357 * 358 * These are only for a single page and therefore can take a struct page * 359 * argument instead of struct zone *. This allows the inclusion of the code 360 * generated for page_zone(page) into the optimized functions. 361 * 362 * No overflow check is necessary and therefore the differential can be 363 * incremented or decremented in place which may allow the compilers to 364 * generate better code. 365 * The increment or decrement is known and therefore one boundary check can 366 * be omitted. 367 * 368 * NOTE: These functions are very performance sensitive. Change only 369 * with care. 370 * 371 * Some processors have inc/dec instructions that are atomic vs an interrupt. 372 * However, the code must first determine the differential location in a zone 373 * based on the processor number and then inc/dec the counter. There is no 374 * guarantee without disabling preemption that the processor will not change 375 * in between and therefore the atomicity vs. interrupt cannot be exploited 376 * in a useful way here. 377 */ 378 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 379 { 380 struct per_cpu_pageset __percpu *pcp = zone->pageset; 381 s8 __percpu *p = pcp->vm_stat_diff + item; 382 s8 v, t; 383 384 v = __this_cpu_inc_return(*p); 385 t = __this_cpu_read(pcp->stat_threshold); 386 if (unlikely(v > t)) { 387 s8 overstep = t >> 1; 388 389 zone_page_state_add(v + overstep, zone, item); 390 __this_cpu_write(*p, -overstep); 391 } 392 } 393 394 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 395 { 396 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 397 s8 __percpu *p = pcp->vm_node_stat_diff + item; 398 s8 v, t; 399 400 v = __this_cpu_inc_return(*p); 401 t = __this_cpu_read(pcp->stat_threshold); 402 if (unlikely(v > t)) { 403 s8 overstep = t >> 1; 404 405 node_page_state_add(v + overstep, pgdat, item); 406 __this_cpu_write(*p, -overstep); 407 } 408 } 409 410 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 411 { 412 __inc_zone_state(page_zone(page), item); 413 } 414 EXPORT_SYMBOL(__inc_zone_page_state); 415 416 void __inc_node_page_state(struct page *page, enum node_stat_item item) 417 { 418 __inc_node_state(page_pgdat(page), item); 419 } 420 EXPORT_SYMBOL(__inc_node_page_state); 421 422 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 423 { 424 struct per_cpu_pageset __percpu *pcp = zone->pageset; 425 s8 __percpu *p = pcp->vm_stat_diff + item; 426 s8 v, t; 427 428 v = __this_cpu_dec_return(*p); 429 t = __this_cpu_read(pcp->stat_threshold); 430 if (unlikely(v < - t)) { 431 s8 overstep = t >> 1; 432 433 zone_page_state_add(v - overstep, zone, item); 434 __this_cpu_write(*p, overstep); 435 } 436 } 437 438 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 439 { 440 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 441 s8 __percpu *p = pcp->vm_node_stat_diff + item; 442 s8 v, t; 443 444 v = __this_cpu_dec_return(*p); 445 t = __this_cpu_read(pcp->stat_threshold); 446 if (unlikely(v < - t)) { 447 s8 overstep = t >> 1; 448 449 node_page_state_add(v - overstep, pgdat, item); 450 __this_cpu_write(*p, overstep); 451 } 452 } 453 454 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 455 { 456 __dec_zone_state(page_zone(page), item); 457 } 458 EXPORT_SYMBOL(__dec_zone_page_state); 459 460 void __dec_node_page_state(struct page *page, enum node_stat_item item) 461 { 462 __dec_node_state(page_pgdat(page), item); 463 } 464 EXPORT_SYMBOL(__dec_node_page_state); 465 466 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 467 /* 468 * If we have cmpxchg_local support then we do not need to incur the overhead 469 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 470 * 471 * mod_state() modifies the zone counter state through atomic per cpu 472 * operations. 473 * 474 * Overstep mode specifies how overstep should handled: 475 * 0 No overstepping 476 * 1 Overstepping half of threshold 477 * -1 Overstepping minus half of threshold 478 */ 479 static inline void mod_zone_state(struct zone *zone, 480 enum zone_stat_item item, long delta, int overstep_mode) 481 { 482 struct per_cpu_pageset __percpu *pcp = zone->pageset; 483 s8 __percpu *p = pcp->vm_stat_diff + item; 484 long o, n, t, z; 485 486 do { 487 z = 0; /* overflow to zone counters */ 488 489 /* 490 * The fetching of the stat_threshold is racy. We may apply 491 * a counter threshold to the wrong the cpu if we get 492 * rescheduled while executing here. However, the next 493 * counter update will apply the threshold again and 494 * therefore bring the counter under the threshold again. 495 * 496 * Most of the time the thresholds are the same anyways 497 * for all cpus in a zone. 498 */ 499 t = this_cpu_read(pcp->stat_threshold); 500 501 o = this_cpu_read(*p); 502 n = delta + o; 503 504 if (n > t || n < -t) { 505 int os = overstep_mode * (t >> 1) ; 506 507 /* Overflow must be added to zone counters */ 508 z = n + os; 509 n = -os; 510 } 511 } while (this_cpu_cmpxchg(*p, o, n) != o); 512 513 if (z) 514 zone_page_state_add(z, zone, item); 515 } 516 517 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 518 long delta) 519 { 520 mod_zone_state(zone, item, delta, 0); 521 } 522 EXPORT_SYMBOL(mod_zone_page_state); 523 524 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 525 { 526 mod_zone_state(page_zone(page), item, 1, 1); 527 } 528 EXPORT_SYMBOL(inc_zone_page_state); 529 530 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 531 { 532 mod_zone_state(page_zone(page), item, -1, -1); 533 } 534 EXPORT_SYMBOL(dec_zone_page_state); 535 536 static inline void mod_node_state(struct pglist_data *pgdat, 537 enum node_stat_item item, int delta, int overstep_mode) 538 { 539 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 540 s8 __percpu *p = pcp->vm_node_stat_diff + item; 541 long o, n, t, z; 542 543 do { 544 z = 0; /* overflow to node counters */ 545 546 /* 547 * The fetching of the stat_threshold is racy. We may apply 548 * a counter threshold to the wrong the cpu if we get 549 * rescheduled while executing here. However, the next 550 * counter update will apply the threshold again and 551 * therefore bring the counter under the threshold again. 552 * 553 * Most of the time the thresholds are the same anyways 554 * for all cpus in a node. 555 */ 556 t = this_cpu_read(pcp->stat_threshold); 557 558 o = this_cpu_read(*p); 559 n = delta + o; 560 561 if (n > t || n < -t) { 562 int os = overstep_mode * (t >> 1) ; 563 564 /* Overflow must be added to node counters */ 565 z = n + os; 566 n = -os; 567 } 568 } while (this_cpu_cmpxchg(*p, o, n) != o); 569 570 if (z) 571 node_page_state_add(z, pgdat, item); 572 } 573 574 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 575 long delta) 576 { 577 mod_node_state(pgdat, item, delta, 0); 578 } 579 EXPORT_SYMBOL(mod_node_page_state); 580 581 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 582 { 583 mod_node_state(pgdat, item, 1, 1); 584 } 585 586 void inc_node_page_state(struct page *page, enum node_stat_item item) 587 { 588 mod_node_state(page_pgdat(page), item, 1, 1); 589 } 590 EXPORT_SYMBOL(inc_node_page_state); 591 592 void dec_node_page_state(struct page *page, enum node_stat_item item) 593 { 594 mod_node_state(page_pgdat(page), item, -1, -1); 595 } 596 EXPORT_SYMBOL(dec_node_page_state); 597 #else 598 /* 599 * Use interrupt disable to serialize counter updates 600 */ 601 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 602 long delta) 603 { 604 unsigned long flags; 605 606 local_irq_save(flags); 607 __mod_zone_page_state(zone, item, delta); 608 local_irq_restore(flags); 609 } 610 EXPORT_SYMBOL(mod_zone_page_state); 611 612 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 613 { 614 unsigned long flags; 615 struct zone *zone; 616 617 zone = page_zone(page); 618 local_irq_save(flags); 619 __inc_zone_state(zone, item); 620 local_irq_restore(flags); 621 } 622 EXPORT_SYMBOL(inc_zone_page_state); 623 624 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 625 { 626 unsigned long flags; 627 628 local_irq_save(flags); 629 __dec_zone_page_state(page, item); 630 local_irq_restore(flags); 631 } 632 EXPORT_SYMBOL(dec_zone_page_state); 633 634 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 635 { 636 unsigned long flags; 637 638 local_irq_save(flags); 639 __inc_node_state(pgdat, item); 640 local_irq_restore(flags); 641 } 642 EXPORT_SYMBOL(inc_node_state); 643 644 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 645 long delta) 646 { 647 unsigned long flags; 648 649 local_irq_save(flags); 650 __mod_node_page_state(pgdat, item, delta); 651 local_irq_restore(flags); 652 } 653 EXPORT_SYMBOL(mod_node_page_state); 654 655 void inc_node_page_state(struct page *page, enum node_stat_item item) 656 { 657 unsigned long flags; 658 struct pglist_data *pgdat; 659 660 pgdat = page_pgdat(page); 661 local_irq_save(flags); 662 __inc_node_state(pgdat, item); 663 local_irq_restore(flags); 664 } 665 EXPORT_SYMBOL(inc_node_page_state); 666 667 void dec_node_page_state(struct page *page, enum node_stat_item item) 668 { 669 unsigned long flags; 670 671 local_irq_save(flags); 672 __dec_node_page_state(page, item); 673 local_irq_restore(flags); 674 } 675 EXPORT_SYMBOL(dec_node_page_state); 676 #endif 677 678 /* 679 * Fold a differential into the global counters. 680 * Returns the number of counters updated. 681 */ 682 #ifdef CONFIG_NUMA 683 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 684 { 685 int i; 686 int changes = 0; 687 688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 689 if (zone_diff[i]) { 690 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 691 changes++; 692 } 693 694 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 695 if (numa_diff[i]) { 696 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 697 changes++; 698 } 699 700 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 701 if (node_diff[i]) { 702 atomic_long_add(node_diff[i], &vm_node_stat[i]); 703 changes++; 704 } 705 return changes; 706 } 707 #else 708 static int fold_diff(int *zone_diff, int *node_diff) 709 { 710 int i; 711 int changes = 0; 712 713 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 714 if (zone_diff[i]) { 715 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 716 changes++; 717 } 718 719 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 720 if (node_diff[i]) { 721 atomic_long_add(node_diff[i], &vm_node_stat[i]); 722 changes++; 723 } 724 return changes; 725 } 726 #endif /* CONFIG_NUMA */ 727 728 /* 729 * Update the zone counters for the current cpu. 730 * 731 * Note that refresh_cpu_vm_stats strives to only access 732 * node local memory. The per cpu pagesets on remote zones are placed 733 * in the memory local to the processor using that pageset. So the 734 * loop over all zones will access a series of cachelines local to 735 * the processor. 736 * 737 * The call to zone_page_state_add updates the cachelines with the 738 * statistics in the remote zone struct as well as the global cachelines 739 * with the global counters. These could cause remote node cache line 740 * bouncing and will have to be only done when necessary. 741 * 742 * The function returns the number of global counters updated. 743 */ 744 static int refresh_cpu_vm_stats(bool do_pagesets) 745 { 746 struct pglist_data *pgdat; 747 struct zone *zone; 748 int i; 749 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 750 #ifdef CONFIG_NUMA 751 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 752 #endif 753 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 754 int changes = 0; 755 756 for_each_populated_zone(zone) { 757 struct per_cpu_pageset __percpu *p = zone->pageset; 758 759 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 760 int v; 761 762 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 763 if (v) { 764 765 atomic_long_add(v, &zone->vm_stat[i]); 766 global_zone_diff[i] += v; 767 #ifdef CONFIG_NUMA 768 /* 3 seconds idle till flush */ 769 __this_cpu_write(p->expire, 3); 770 #endif 771 } 772 } 773 #ifdef CONFIG_NUMA 774 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 775 int v; 776 777 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 778 if (v) { 779 780 atomic_long_add(v, &zone->vm_numa_stat[i]); 781 global_numa_diff[i] += v; 782 __this_cpu_write(p->expire, 3); 783 } 784 } 785 786 if (do_pagesets) { 787 cond_resched(); 788 /* 789 * Deal with draining the remote pageset of this 790 * processor 791 * 792 * Check if there are pages remaining in this pageset 793 * if not then there is nothing to expire. 794 */ 795 if (!__this_cpu_read(p->expire) || 796 !__this_cpu_read(p->pcp.count)) 797 continue; 798 799 /* 800 * We never drain zones local to this processor. 801 */ 802 if (zone_to_nid(zone) == numa_node_id()) { 803 __this_cpu_write(p->expire, 0); 804 continue; 805 } 806 807 if (__this_cpu_dec_return(p->expire)) 808 continue; 809 810 if (__this_cpu_read(p->pcp.count)) { 811 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 812 changes++; 813 } 814 } 815 #endif 816 } 817 818 for_each_online_pgdat(pgdat) { 819 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 820 821 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 822 int v; 823 824 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 825 if (v) { 826 atomic_long_add(v, &pgdat->vm_stat[i]); 827 global_node_diff[i] += v; 828 } 829 } 830 } 831 832 #ifdef CONFIG_NUMA 833 changes += fold_diff(global_zone_diff, global_numa_diff, 834 global_node_diff); 835 #else 836 changes += fold_diff(global_zone_diff, global_node_diff); 837 #endif 838 return changes; 839 } 840 841 /* 842 * Fold the data for an offline cpu into the global array. 843 * There cannot be any access by the offline cpu and therefore 844 * synchronization is simplified. 845 */ 846 void cpu_vm_stats_fold(int cpu) 847 { 848 struct pglist_data *pgdat; 849 struct zone *zone; 850 int i; 851 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 852 #ifdef CONFIG_NUMA 853 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 854 #endif 855 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 856 857 for_each_populated_zone(zone) { 858 struct per_cpu_pageset *p; 859 860 p = per_cpu_ptr(zone->pageset, cpu); 861 862 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 863 if (p->vm_stat_diff[i]) { 864 int v; 865 866 v = p->vm_stat_diff[i]; 867 p->vm_stat_diff[i] = 0; 868 atomic_long_add(v, &zone->vm_stat[i]); 869 global_zone_diff[i] += v; 870 } 871 872 #ifdef CONFIG_NUMA 873 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 874 if (p->vm_numa_stat_diff[i]) { 875 int v; 876 877 v = p->vm_numa_stat_diff[i]; 878 p->vm_numa_stat_diff[i] = 0; 879 atomic_long_add(v, &zone->vm_numa_stat[i]); 880 global_numa_diff[i] += v; 881 } 882 #endif 883 } 884 885 for_each_online_pgdat(pgdat) { 886 struct per_cpu_nodestat *p; 887 888 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 889 890 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 891 if (p->vm_node_stat_diff[i]) { 892 int v; 893 894 v = p->vm_node_stat_diff[i]; 895 p->vm_node_stat_diff[i] = 0; 896 atomic_long_add(v, &pgdat->vm_stat[i]); 897 global_node_diff[i] += v; 898 } 899 } 900 901 #ifdef CONFIG_NUMA 902 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 903 #else 904 fold_diff(global_zone_diff, global_node_diff); 905 #endif 906 } 907 908 /* 909 * this is only called if !populated_zone(zone), which implies no other users of 910 * pset->vm_stat_diff[] exsist. 911 */ 912 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 913 { 914 int i; 915 916 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 917 if (pset->vm_stat_diff[i]) { 918 int v = pset->vm_stat_diff[i]; 919 pset->vm_stat_diff[i] = 0; 920 atomic_long_add(v, &zone->vm_stat[i]); 921 atomic_long_add(v, &vm_zone_stat[i]); 922 } 923 924 #ifdef CONFIG_NUMA 925 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 926 if (pset->vm_numa_stat_diff[i]) { 927 int v = pset->vm_numa_stat_diff[i]; 928 929 pset->vm_numa_stat_diff[i] = 0; 930 atomic_long_add(v, &zone->vm_numa_stat[i]); 931 atomic_long_add(v, &vm_numa_stat[i]); 932 } 933 #endif 934 } 935 #endif 936 937 #ifdef CONFIG_NUMA 938 void __inc_numa_state(struct zone *zone, 939 enum numa_stat_item item) 940 { 941 struct per_cpu_pageset __percpu *pcp = zone->pageset; 942 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 943 u16 v; 944 945 v = __this_cpu_inc_return(*p); 946 947 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 948 zone_numa_state_add(v, zone, item); 949 __this_cpu_write(*p, 0); 950 } 951 } 952 953 /* 954 * Determine the per node value of a stat item. This function 955 * is called frequently in a NUMA machine, so try to be as 956 * frugal as possible. 957 */ 958 unsigned long sum_zone_node_page_state(int node, 959 enum zone_stat_item item) 960 { 961 struct zone *zones = NODE_DATA(node)->node_zones; 962 int i; 963 unsigned long count = 0; 964 965 for (i = 0; i < MAX_NR_ZONES; i++) 966 count += zone_page_state(zones + i, item); 967 968 return count; 969 } 970 971 /* 972 * Determine the per node value of a numa stat item. To avoid deviation, 973 * the per cpu stat number in vm_numa_stat_diff[] is also included. 974 */ 975 unsigned long sum_zone_numa_state(int node, 976 enum numa_stat_item item) 977 { 978 struct zone *zones = NODE_DATA(node)->node_zones; 979 int i; 980 unsigned long count = 0; 981 982 for (i = 0; i < MAX_NR_ZONES; i++) 983 count += zone_numa_state_snapshot(zones + i, item); 984 985 return count; 986 } 987 988 /* 989 * Determine the per node value of a stat item. 990 */ 991 unsigned long node_page_state(struct pglist_data *pgdat, 992 enum node_stat_item item) 993 { 994 long x = atomic_long_read(&pgdat->vm_stat[item]); 995 #ifdef CONFIG_SMP 996 if (x < 0) 997 x = 0; 998 #endif 999 return x; 1000 } 1001 #endif 1002 1003 #ifdef CONFIG_COMPACTION 1004 1005 struct contig_page_info { 1006 unsigned long free_pages; 1007 unsigned long free_blocks_total; 1008 unsigned long free_blocks_suitable; 1009 }; 1010 1011 /* 1012 * Calculate the number of free pages in a zone, how many contiguous 1013 * pages are free and how many are large enough to satisfy an allocation of 1014 * the target size. Note that this function makes no attempt to estimate 1015 * how many suitable free blocks there *might* be if MOVABLE pages were 1016 * migrated. Calculating that is possible, but expensive and can be 1017 * figured out from userspace 1018 */ 1019 static void fill_contig_page_info(struct zone *zone, 1020 unsigned int suitable_order, 1021 struct contig_page_info *info) 1022 { 1023 unsigned int order; 1024 1025 info->free_pages = 0; 1026 info->free_blocks_total = 0; 1027 info->free_blocks_suitable = 0; 1028 1029 for (order = 0; order < MAX_ORDER; order++) { 1030 unsigned long blocks; 1031 1032 /* Count number of free blocks */ 1033 blocks = zone->free_area[order].nr_free; 1034 info->free_blocks_total += blocks; 1035 1036 /* Count free base pages */ 1037 info->free_pages += blocks << order; 1038 1039 /* Count the suitable free blocks */ 1040 if (order >= suitable_order) 1041 info->free_blocks_suitable += blocks << 1042 (order - suitable_order); 1043 } 1044 } 1045 1046 /* 1047 * A fragmentation index only makes sense if an allocation of a requested 1048 * size would fail. If that is true, the fragmentation index indicates 1049 * whether external fragmentation or a lack of memory was the problem. 1050 * The value can be used to determine if page reclaim or compaction 1051 * should be used 1052 */ 1053 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1054 { 1055 unsigned long requested = 1UL << order; 1056 1057 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1058 return 0; 1059 1060 if (!info->free_blocks_total) 1061 return 0; 1062 1063 /* Fragmentation index only makes sense when a request would fail */ 1064 if (info->free_blocks_suitable) 1065 return -1000; 1066 1067 /* 1068 * Index is between 0 and 1 so return within 3 decimal places 1069 * 1070 * 0 => allocation would fail due to lack of memory 1071 * 1 => allocation would fail due to fragmentation 1072 */ 1073 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1074 } 1075 1076 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1077 int fragmentation_index(struct zone *zone, unsigned int order) 1078 { 1079 struct contig_page_info info; 1080 1081 fill_contig_page_info(zone, order, &info); 1082 return __fragmentation_index(order, &info); 1083 } 1084 #endif 1085 1086 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 1087 #ifdef CONFIG_ZONE_DMA 1088 #define TEXT_FOR_DMA(xx) xx "_dma", 1089 #else 1090 #define TEXT_FOR_DMA(xx) 1091 #endif 1092 1093 #ifdef CONFIG_ZONE_DMA32 1094 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1095 #else 1096 #define TEXT_FOR_DMA32(xx) 1097 #endif 1098 1099 #ifdef CONFIG_HIGHMEM 1100 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1101 #else 1102 #define TEXT_FOR_HIGHMEM(xx) 1103 #endif 1104 1105 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1106 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1107 1108 const char * const vmstat_text[] = { 1109 /* enum zone_stat_item countes */ 1110 "nr_free_pages", 1111 "nr_zone_inactive_anon", 1112 "nr_zone_active_anon", 1113 "nr_zone_inactive_file", 1114 "nr_zone_active_file", 1115 "nr_zone_unevictable", 1116 "nr_zone_write_pending", 1117 "nr_mlock", 1118 "nr_page_table_pages", 1119 "nr_kernel_stack", 1120 "nr_bounce", 1121 #if IS_ENABLED(CONFIG_ZSMALLOC) 1122 "nr_zspages", 1123 #endif 1124 "nr_free_cma", 1125 1126 /* enum numa_stat_item counters */ 1127 #ifdef CONFIG_NUMA 1128 "numa_hit", 1129 "numa_miss", 1130 "numa_foreign", 1131 "numa_interleave", 1132 "numa_local", 1133 "numa_other", 1134 #endif 1135 1136 /* Node-based counters */ 1137 "nr_inactive_anon", 1138 "nr_active_anon", 1139 "nr_inactive_file", 1140 "nr_active_file", 1141 "nr_unevictable", 1142 "nr_slab_reclaimable", 1143 "nr_slab_unreclaimable", 1144 "nr_isolated_anon", 1145 "nr_isolated_file", 1146 "workingset_refault", 1147 "workingset_activate", 1148 "workingset_nodereclaim", 1149 "nr_anon_pages", 1150 "nr_mapped", 1151 "nr_file_pages", 1152 "nr_dirty", 1153 "nr_writeback", 1154 "nr_writeback_temp", 1155 "nr_shmem", 1156 "nr_shmem_hugepages", 1157 "nr_shmem_pmdmapped", 1158 "nr_anon_transparent_hugepages", 1159 "nr_unstable", 1160 "nr_vmscan_write", 1161 "nr_vmscan_immediate_reclaim", 1162 "nr_dirtied", 1163 "nr_written", 1164 "nr_indirectly_reclaimable", 1165 1166 /* enum writeback_stat_item counters */ 1167 "nr_dirty_threshold", 1168 "nr_dirty_background_threshold", 1169 1170 #ifdef CONFIG_VM_EVENT_COUNTERS 1171 /* enum vm_event_item counters */ 1172 "pgpgin", 1173 "pgpgout", 1174 "pswpin", 1175 "pswpout", 1176 1177 TEXTS_FOR_ZONES("pgalloc") 1178 TEXTS_FOR_ZONES("allocstall") 1179 TEXTS_FOR_ZONES("pgskip") 1180 1181 "pgfree", 1182 "pgactivate", 1183 "pgdeactivate", 1184 "pglazyfree", 1185 1186 "pgfault", 1187 "pgmajfault", 1188 "pglazyfreed", 1189 1190 "pgrefill", 1191 "pgsteal_kswapd", 1192 "pgsteal_direct", 1193 "pgscan_kswapd", 1194 "pgscan_direct", 1195 "pgscan_direct_throttle", 1196 1197 #ifdef CONFIG_NUMA 1198 "zone_reclaim_failed", 1199 #endif 1200 "pginodesteal", 1201 "slabs_scanned", 1202 "kswapd_inodesteal", 1203 "kswapd_low_wmark_hit_quickly", 1204 "kswapd_high_wmark_hit_quickly", 1205 "pageoutrun", 1206 1207 "pgrotated", 1208 1209 "drop_pagecache", 1210 "drop_slab", 1211 "oom_kill", 1212 1213 #ifdef CONFIG_NUMA_BALANCING 1214 "numa_pte_updates", 1215 "numa_huge_pte_updates", 1216 "numa_hint_faults", 1217 "numa_hint_faults_local", 1218 "numa_pages_migrated", 1219 #endif 1220 #ifdef CONFIG_MIGRATION 1221 "pgmigrate_success", 1222 "pgmigrate_fail", 1223 #endif 1224 #ifdef CONFIG_COMPACTION 1225 "compact_migrate_scanned", 1226 "compact_free_scanned", 1227 "compact_isolated", 1228 "compact_stall", 1229 "compact_fail", 1230 "compact_success", 1231 "compact_daemon_wake", 1232 "compact_daemon_migrate_scanned", 1233 "compact_daemon_free_scanned", 1234 #endif 1235 1236 #ifdef CONFIG_HUGETLB_PAGE 1237 "htlb_buddy_alloc_success", 1238 "htlb_buddy_alloc_fail", 1239 #endif 1240 "unevictable_pgs_culled", 1241 "unevictable_pgs_scanned", 1242 "unevictable_pgs_rescued", 1243 "unevictable_pgs_mlocked", 1244 "unevictable_pgs_munlocked", 1245 "unevictable_pgs_cleared", 1246 "unevictable_pgs_stranded", 1247 1248 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1249 "thp_fault_alloc", 1250 "thp_fault_fallback", 1251 "thp_collapse_alloc", 1252 "thp_collapse_alloc_failed", 1253 "thp_file_alloc", 1254 "thp_file_mapped", 1255 "thp_split_page", 1256 "thp_split_page_failed", 1257 "thp_deferred_split_page", 1258 "thp_split_pmd", 1259 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1260 "thp_split_pud", 1261 #endif 1262 "thp_zero_page_alloc", 1263 "thp_zero_page_alloc_failed", 1264 "thp_swpout", 1265 "thp_swpout_fallback", 1266 #endif 1267 #ifdef CONFIG_MEMORY_BALLOON 1268 "balloon_inflate", 1269 "balloon_deflate", 1270 #ifdef CONFIG_BALLOON_COMPACTION 1271 "balloon_migrate", 1272 #endif 1273 #endif /* CONFIG_MEMORY_BALLOON */ 1274 #ifdef CONFIG_DEBUG_TLBFLUSH 1275 #ifdef CONFIG_SMP 1276 "nr_tlb_remote_flush", 1277 "nr_tlb_remote_flush_received", 1278 #endif /* CONFIG_SMP */ 1279 "nr_tlb_local_flush_all", 1280 "nr_tlb_local_flush_one", 1281 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1282 1283 #ifdef CONFIG_DEBUG_VM_VMACACHE 1284 "vmacache_find_calls", 1285 "vmacache_find_hits", 1286 "vmacache_full_flushes", 1287 #endif 1288 #ifdef CONFIG_SWAP 1289 "swap_ra", 1290 "swap_ra_hit", 1291 #endif 1292 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 1293 }; 1294 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 1295 1296 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1297 defined(CONFIG_PROC_FS) 1298 static void *frag_start(struct seq_file *m, loff_t *pos) 1299 { 1300 pg_data_t *pgdat; 1301 loff_t node = *pos; 1302 1303 for (pgdat = first_online_pgdat(); 1304 pgdat && node; 1305 pgdat = next_online_pgdat(pgdat)) 1306 --node; 1307 1308 return pgdat; 1309 } 1310 1311 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1312 { 1313 pg_data_t *pgdat = (pg_data_t *)arg; 1314 1315 (*pos)++; 1316 return next_online_pgdat(pgdat); 1317 } 1318 1319 static void frag_stop(struct seq_file *m, void *arg) 1320 { 1321 } 1322 1323 /* 1324 * Walk zones in a node and print using a callback. 1325 * If @assert_populated is true, only use callback for zones that are populated. 1326 */ 1327 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1328 bool assert_populated, bool nolock, 1329 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1330 { 1331 struct zone *zone; 1332 struct zone *node_zones = pgdat->node_zones; 1333 unsigned long flags; 1334 1335 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1336 if (assert_populated && !populated_zone(zone)) 1337 continue; 1338 1339 if (!nolock) 1340 spin_lock_irqsave(&zone->lock, flags); 1341 print(m, pgdat, zone); 1342 if (!nolock) 1343 spin_unlock_irqrestore(&zone->lock, flags); 1344 } 1345 } 1346 #endif 1347 1348 #ifdef CONFIG_PROC_FS 1349 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1350 struct zone *zone) 1351 { 1352 int order; 1353 1354 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1355 for (order = 0; order < MAX_ORDER; ++order) 1356 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1357 seq_putc(m, '\n'); 1358 } 1359 1360 /* 1361 * This walks the free areas for each zone. 1362 */ 1363 static int frag_show(struct seq_file *m, void *arg) 1364 { 1365 pg_data_t *pgdat = (pg_data_t *)arg; 1366 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1367 return 0; 1368 } 1369 1370 static void pagetypeinfo_showfree_print(struct seq_file *m, 1371 pg_data_t *pgdat, struct zone *zone) 1372 { 1373 int order, mtype; 1374 1375 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1376 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1377 pgdat->node_id, 1378 zone->name, 1379 migratetype_names[mtype]); 1380 for (order = 0; order < MAX_ORDER; ++order) { 1381 unsigned long freecount = 0; 1382 struct free_area *area; 1383 struct list_head *curr; 1384 1385 area = &(zone->free_area[order]); 1386 1387 list_for_each(curr, &area->free_list[mtype]) 1388 freecount++; 1389 seq_printf(m, "%6lu ", freecount); 1390 } 1391 seq_putc(m, '\n'); 1392 } 1393 } 1394 1395 /* Print out the free pages at each order for each migatetype */ 1396 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1397 { 1398 int order; 1399 pg_data_t *pgdat = (pg_data_t *)arg; 1400 1401 /* Print header */ 1402 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1403 for (order = 0; order < MAX_ORDER; ++order) 1404 seq_printf(m, "%6d ", order); 1405 seq_putc(m, '\n'); 1406 1407 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1408 1409 return 0; 1410 } 1411 1412 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1413 pg_data_t *pgdat, struct zone *zone) 1414 { 1415 int mtype; 1416 unsigned long pfn; 1417 unsigned long start_pfn = zone->zone_start_pfn; 1418 unsigned long end_pfn = zone_end_pfn(zone); 1419 unsigned long count[MIGRATE_TYPES] = { 0, }; 1420 1421 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1422 struct page *page; 1423 1424 page = pfn_to_online_page(pfn); 1425 if (!page) 1426 continue; 1427 1428 /* Watch for unexpected holes punched in the memmap */ 1429 if (!memmap_valid_within(pfn, page, zone)) 1430 continue; 1431 1432 if (page_zone(page) != zone) 1433 continue; 1434 1435 mtype = get_pageblock_migratetype(page); 1436 1437 if (mtype < MIGRATE_TYPES) 1438 count[mtype]++; 1439 } 1440 1441 /* Print counts */ 1442 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1443 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1444 seq_printf(m, "%12lu ", count[mtype]); 1445 seq_putc(m, '\n'); 1446 } 1447 1448 /* Print out the number of pageblocks for each migratetype */ 1449 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1450 { 1451 int mtype; 1452 pg_data_t *pgdat = (pg_data_t *)arg; 1453 1454 seq_printf(m, "\n%-23s", "Number of blocks type "); 1455 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1456 seq_printf(m, "%12s ", migratetype_names[mtype]); 1457 seq_putc(m, '\n'); 1458 walk_zones_in_node(m, pgdat, true, false, 1459 pagetypeinfo_showblockcount_print); 1460 1461 return 0; 1462 } 1463 1464 /* 1465 * Print out the number of pageblocks for each migratetype that contain pages 1466 * of other types. This gives an indication of how well fallbacks are being 1467 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1468 * to determine what is going on 1469 */ 1470 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1471 { 1472 #ifdef CONFIG_PAGE_OWNER 1473 int mtype; 1474 1475 if (!static_branch_unlikely(&page_owner_inited)) 1476 return; 1477 1478 drain_all_pages(NULL); 1479 1480 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1481 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1482 seq_printf(m, "%12s ", migratetype_names[mtype]); 1483 seq_putc(m, '\n'); 1484 1485 walk_zones_in_node(m, pgdat, true, true, 1486 pagetypeinfo_showmixedcount_print); 1487 #endif /* CONFIG_PAGE_OWNER */ 1488 } 1489 1490 /* 1491 * This prints out statistics in relation to grouping pages by mobility. 1492 * It is expensive to collect so do not constantly read the file. 1493 */ 1494 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1495 { 1496 pg_data_t *pgdat = (pg_data_t *)arg; 1497 1498 /* check memoryless node */ 1499 if (!node_state(pgdat->node_id, N_MEMORY)) 1500 return 0; 1501 1502 seq_printf(m, "Page block order: %d\n", pageblock_order); 1503 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1504 seq_putc(m, '\n'); 1505 pagetypeinfo_showfree(m, pgdat); 1506 pagetypeinfo_showblockcount(m, pgdat); 1507 pagetypeinfo_showmixedcount(m, pgdat); 1508 1509 return 0; 1510 } 1511 1512 static const struct seq_operations fragmentation_op = { 1513 .start = frag_start, 1514 .next = frag_next, 1515 .stop = frag_stop, 1516 .show = frag_show, 1517 }; 1518 1519 static int fragmentation_open(struct inode *inode, struct file *file) 1520 { 1521 return seq_open(file, &fragmentation_op); 1522 } 1523 1524 static const struct file_operations buddyinfo_file_operations = { 1525 .open = fragmentation_open, 1526 .read = seq_read, 1527 .llseek = seq_lseek, 1528 .release = seq_release, 1529 }; 1530 1531 static const struct seq_operations pagetypeinfo_op = { 1532 .start = frag_start, 1533 .next = frag_next, 1534 .stop = frag_stop, 1535 .show = pagetypeinfo_show, 1536 }; 1537 1538 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1539 { 1540 return seq_open(file, &pagetypeinfo_op); 1541 } 1542 1543 static const struct file_operations pagetypeinfo_file_operations = { 1544 .open = pagetypeinfo_open, 1545 .read = seq_read, 1546 .llseek = seq_lseek, 1547 .release = seq_release, 1548 }; 1549 1550 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1551 { 1552 int zid; 1553 1554 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1555 struct zone *compare = &pgdat->node_zones[zid]; 1556 1557 if (populated_zone(compare)) 1558 return zone == compare; 1559 } 1560 1561 return false; 1562 } 1563 1564 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1565 struct zone *zone) 1566 { 1567 int i; 1568 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1569 if (is_zone_first_populated(pgdat, zone)) { 1570 seq_printf(m, "\n per-node stats"); 1571 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1572 seq_printf(m, "\n %-12s %lu", 1573 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + 1574 NR_VM_NUMA_STAT_ITEMS], 1575 node_page_state(pgdat, i)); 1576 } 1577 } 1578 seq_printf(m, 1579 "\n pages free %lu" 1580 "\n min %lu" 1581 "\n low %lu" 1582 "\n high %lu" 1583 "\n spanned %lu" 1584 "\n present %lu" 1585 "\n managed %lu", 1586 zone_page_state(zone, NR_FREE_PAGES), 1587 min_wmark_pages(zone), 1588 low_wmark_pages(zone), 1589 high_wmark_pages(zone), 1590 zone->spanned_pages, 1591 zone->present_pages, 1592 zone->managed_pages); 1593 1594 seq_printf(m, 1595 "\n protection: (%ld", 1596 zone->lowmem_reserve[0]); 1597 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1598 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1599 seq_putc(m, ')'); 1600 1601 /* If unpopulated, no other information is useful */ 1602 if (!populated_zone(zone)) { 1603 seq_putc(m, '\n'); 1604 return; 1605 } 1606 1607 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1608 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1609 zone_page_state(zone, i)); 1610 1611 #ifdef CONFIG_NUMA 1612 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1613 seq_printf(m, "\n %-12s %lu", 1614 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1615 zone_numa_state_snapshot(zone, i)); 1616 #endif 1617 1618 seq_printf(m, "\n pagesets"); 1619 for_each_online_cpu(i) { 1620 struct per_cpu_pageset *pageset; 1621 1622 pageset = per_cpu_ptr(zone->pageset, i); 1623 seq_printf(m, 1624 "\n cpu: %i" 1625 "\n count: %i" 1626 "\n high: %i" 1627 "\n batch: %i", 1628 i, 1629 pageset->pcp.count, 1630 pageset->pcp.high, 1631 pageset->pcp.batch); 1632 #ifdef CONFIG_SMP 1633 seq_printf(m, "\n vm stats threshold: %d", 1634 pageset->stat_threshold); 1635 #endif 1636 } 1637 seq_printf(m, 1638 "\n node_unreclaimable: %u" 1639 "\n start_pfn: %lu", 1640 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1641 zone->zone_start_pfn); 1642 seq_putc(m, '\n'); 1643 } 1644 1645 /* 1646 * Output information about zones in @pgdat. All zones are printed regardless 1647 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1648 * set of all zones and userspace would not be aware of such zones if they are 1649 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1650 */ 1651 static int zoneinfo_show(struct seq_file *m, void *arg) 1652 { 1653 pg_data_t *pgdat = (pg_data_t *)arg; 1654 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1655 return 0; 1656 } 1657 1658 static const struct seq_operations zoneinfo_op = { 1659 .start = frag_start, /* iterate over all zones. The same as in 1660 * fragmentation. */ 1661 .next = frag_next, 1662 .stop = frag_stop, 1663 .show = zoneinfo_show, 1664 }; 1665 1666 static int zoneinfo_open(struct inode *inode, struct file *file) 1667 { 1668 return seq_open(file, &zoneinfo_op); 1669 } 1670 1671 static const struct file_operations zoneinfo_file_operations = { 1672 .open = zoneinfo_open, 1673 .read = seq_read, 1674 .llseek = seq_lseek, 1675 .release = seq_release, 1676 }; 1677 1678 enum writeback_stat_item { 1679 NR_DIRTY_THRESHOLD, 1680 NR_DIRTY_BG_THRESHOLD, 1681 NR_VM_WRITEBACK_STAT_ITEMS, 1682 }; 1683 1684 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1685 { 1686 unsigned long *v; 1687 int i, stat_items_size; 1688 1689 if (*pos >= ARRAY_SIZE(vmstat_text)) 1690 return NULL; 1691 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1692 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + 1693 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + 1694 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1695 1696 #ifdef CONFIG_VM_EVENT_COUNTERS 1697 stat_items_size += sizeof(struct vm_event_state); 1698 #endif 1699 1700 v = kmalloc(stat_items_size, GFP_KERNEL); 1701 m->private = v; 1702 if (!v) 1703 return ERR_PTR(-ENOMEM); 1704 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1705 v[i] = global_zone_page_state(i); 1706 v += NR_VM_ZONE_STAT_ITEMS; 1707 1708 #ifdef CONFIG_NUMA 1709 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1710 v[i] = global_numa_state(i); 1711 v += NR_VM_NUMA_STAT_ITEMS; 1712 #endif 1713 1714 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1715 v[i] = global_node_page_state(i); 1716 v += NR_VM_NODE_STAT_ITEMS; 1717 1718 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1719 v + NR_DIRTY_THRESHOLD); 1720 v += NR_VM_WRITEBACK_STAT_ITEMS; 1721 1722 #ifdef CONFIG_VM_EVENT_COUNTERS 1723 all_vm_events(v); 1724 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1725 v[PGPGOUT] /= 2; 1726 #endif 1727 return (unsigned long *)m->private + *pos; 1728 } 1729 1730 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1731 { 1732 (*pos)++; 1733 if (*pos >= ARRAY_SIZE(vmstat_text)) 1734 return NULL; 1735 return (unsigned long *)m->private + *pos; 1736 } 1737 1738 static int vmstat_show(struct seq_file *m, void *arg) 1739 { 1740 unsigned long *l = arg; 1741 unsigned long off = l - (unsigned long *)m->private; 1742 1743 seq_puts(m, vmstat_text[off]); 1744 seq_put_decimal_ull(m, " ", *l); 1745 seq_putc(m, '\n'); 1746 return 0; 1747 } 1748 1749 static void vmstat_stop(struct seq_file *m, void *arg) 1750 { 1751 kfree(m->private); 1752 m->private = NULL; 1753 } 1754 1755 static const struct seq_operations vmstat_op = { 1756 .start = vmstat_start, 1757 .next = vmstat_next, 1758 .stop = vmstat_stop, 1759 .show = vmstat_show, 1760 }; 1761 1762 static int vmstat_open(struct inode *inode, struct file *file) 1763 { 1764 return seq_open(file, &vmstat_op); 1765 } 1766 1767 static const struct file_operations vmstat_file_operations = { 1768 .open = vmstat_open, 1769 .read = seq_read, 1770 .llseek = seq_lseek, 1771 .release = seq_release, 1772 }; 1773 #endif /* CONFIG_PROC_FS */ 1774 1775 #ifdef CONFIG_SMP 1776 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1777 int sysctl_stat_interval __read_mostly = HZ; 1778 1779 #ifdef CONFIG_PROC_FS 1780 static void refresh_vm_stats(struct work_struct *work) 1781 { 1782 refresh_cpu_vm_stats(true); 1783 } 1784 1785 int vmstat_refresh(struct ctl_table *table, int write, 1786 void __user *buffer, size_t *lenp, loff_t *ppos) 1787 { 1788 long val; 1789 int err; 1790 int i; 1791 1792 /* 1793 * The regular update, every sysctl_stat_interval, may come later 1794 * than expected: leaving a significant amount in per_cpu buckets. 1795 * This is particularly misleading when checking a quantity of HUGE 1796 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1797 * which can equally be echo'ed to or cat'ted from (by root), 1798 * can be used to update the stats just before reading them. 1799 * 1800 * Oh, and since global_zone_page_state() etc. are so careful to hide 1801 * transiently negative values, report an error here if any of 1802 * the stats is negative, so we know to go looking for imbalance. 1803 */ 1804 err = schedule_on_each_cpu(refresh_vm_stats); 1805 if (err) 1806 return err; 1807 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1808 val = atomic_long_read(&vm_zone_stat[i]); 1809 if (val < 0) { 1810 pr_warn("%s: %s %ld\n", 1811 __func__, vmstat_text[i], val); 1812 err = -EINVAL; 1813 } 1814 } 1815 #ifdef CONFIG_NUMA 1816 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1817 val = atomic_long_read(&vm_numa_stat[i]); 1818 if (val < 0) { 1819 pr_warn("%s: %s %ld\n", 1820 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); 1821 err = -EINVAL; 1822 } 1823 } 1824 #endif 1825 if (err) 1826 return err; 1827 if (write) 1828 *ppos += *lenp; 1829 else 1830 *lenp = 0; 1831 return 0; 1832 } 1833 #endif /* CONFIG_PROC_FS */ 1834 1835 static void vmstat_update(struct work_struct *w) 1836 { 1837 if (refresh_cpu_vm_stats(true)) { 1838 /* 1839 * Counters were updated so we expect more updates 1840 * to occur in the future. Keep on running the 1841 * update worker thread. 1842 */ 1843 preempt_disable(); 1844 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1845 this_cpu_ptr(&vmstat_work), 1846 round_jiffies_relative(sysctl_stat_interval)); 1847 preempt_enable(); 1848 } 1849 } 1850 1851 /* 1852 * Switch off vmstat processing and then fold all the remaining differentials 1853 * until the diffs stay at zero. The function is used by NOHZ and can only be 1854 * invoked when tick processing is not active. 1855 */ 1856 /* 1857 * Check if the diffs for a certain cpu indicate that 1858 * an update is needed. 1859 */ 1860 static bool need_update(int cpu) 1861 { 1862 struct zone *zone; 1863 1864 for_each_populated_zone(zone) { 1865 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1866 1867 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1868 #ifdef CONFIG_NUMA 1869 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1870 #endif 1871 1872 /* 1873 * The fast way of checking if there are any vmstat diffs. 1874 * This works because the diffs are byte sized items. 1875 */ 1876 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1877 return true; 1878 #ifdef CONFIG_NUMA 1879 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS)) 1880 return true; 1881 #endif 1882 } 1883 return false; 1884 } 1885 1886 /* 1887 * Switch off vmstat processing and then fold all the remaining differentials 1888 * until the diffs stay at zero. The function is used by NOHZ and can only be 1889 * invoked when tick processing is not active. 1890 */ 1891 void quiet_vmstat(void) 1892 { 1893 if (system_state != SYSTEM_RUNNING) 1894 return; 1895 1896 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1897 return; 1898 1899 if (!need_update(smp_processor_id())) 1900 return; 1901 1902 /* 1903 * Just refresh counters and do not care about the pending delayed 1904 * vmstat_update. It doesn't fire that often to matter and canceling 1905 * it would be too expensive from this path. 1906 * vmstat_shepherd will take care about that for us. 1907 */ 1908 refresh_cpu_vm_stats(false); 1909 } 1910 1911 /* 1912 * Shepherd worker thread that checks the 1913 * differentials of processors that have their worker 1914 * threads for vm statistics updates disabled because of 1915 * inactivity. 1916 */ 1917 static void vmstat_shepherd(struct work_struct *w); 1918 1919 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1920 1921 static void vmstat_shepherd(struct work_struct *w) 1922 { 1923 int cpu; 1924 1925 get_online_cpus(); 1926 /* Check processors whose vmstat worker threads have been disabled */ 1927 for_each_online_cpu(cpu) { 1928 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1929 1930 if (!delayed_work_pending(dw) && need_update(cpu)) 1931 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1932 } 1933 put_online_cpus(); 1934 1935 schedule_delayed_work(&shepherd, 1936 round_jiffies_relative(sysctl_stat_interval)); 1937 } 1938 1939 static void __init start_shepherd_timer(void) 1940 { 1941 int cpu; 1942 1943 for_each_possible_cpu(cpu) 1944 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1945 vmstat_update); 1946 1947 schedule_delayed_work(&shepherd, 1948 round_jiffies_relative(sysctl_stat_interval)); 1949 } 1950 1951 static void __init init_cpu_node_state(void) 1952 { 1953 int node; 1954 1955 for_each_online_node(node) { 1956 if (cpumask_weight(cpumask_of_node(node)) > 0) 1957 node_set_state(node, N_CPU); 1958 } 1959 } 1960 1961 static int vmstat_cpu_online(unsigned int cpu) 1962 { 1963 refresh_zone_stat_thresholds(); 1964 node_set_state(cpu_to_node(cpu), N_CPU); 1965 return 0; 1966 } 1967 1968 static int vmstat_cpu_down_prep(unsigned int cpu) 1969 { 1970 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1971 return 0; 1972 } 1973 1974 static int vmstat_cpu_dead(unsigned int cpu) 1975 { 1976 const struct cpumask *node_cpus; 1977 int node; 1978 1979 node = cpu_to_node(cpu); 1980 1981 refresh_zone_stat_thresholds(); 1982 node_cpus = cpumask_of_node(node); 1983 if (cpumask_weight(node_cpus) > 0) 1984 return 0; 1985 1986 node_clear_state(node, N_CPU); 1987 return 0; 1988 } 1989 1990 #endif 1991 1992 struct workqueue_struct *mm_percpu_wq; 1993 1994 void __init init_mm_internals(void) 1995 { 1996 int ret __maybe_unused; 1997 1998 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 1999 2000 #ifdef CONFIG_SMP 2001 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2002 NULL, vmstat_cpu_dead); 2003 if (ret < 0) 2004 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2005 2006 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2007 vmstat_cpu_online, 2008 vmstat_cpu_down_prep); 2009 if (ret < 0) 2010 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2011 2012 get_online_cpus(); 2013 init_cpu_node_state(); 2014 put_online_cpus(); 2015 2016 start_shepherd_timer(); 2017 #endif 2018 #ifdef CONFIG_PROC_FS 2019 proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations); 2020 proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations); 2021 proc_create("vmstat", 0444, NULL, &vmstat_file_operations); 2022 proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations); 2023 #endif 2024 } 2025 2026 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2027 2028 /* 2029 * Return an index indicating how much of the available free memory is 2030 * unusable for an allocation of the requested size. 2031 */ 2032 static int unusable_free_index(unsigned int order, 2033 struct contig_page_info *info) 2034 { 2035 /* No free memory is interpreted as all free memory is unusable */ 2036 if (info->free_pages == 0) 2037 return 1000; 2038 2039 /* 2040 * Index should be a value between 0 and 1. Return a value to 3 2041 * decimal places. 2042 * 2043 * 0 => no fragmentation 2044 * 1 => high fragmentation 2045 */ 2046 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2047 2048 } 2049 2050 static void unusable_show_print(struct seq_file *m, 2051 pg_data_t *pgdat, struct zone *zone) 2052 { 2053 unsigned int order; 2054 int index; 2055 struct contig_page_info info; 2056 2057 seq_printf(m, "Node %d, zone %8s ", 2058 pgdat->node_id, 2059 zone->name); 2060 for (order = 0; order < MAX_ORDER; ++order) { 2061 fill_contig_page_info(zone, order, &info); 2062 index = unusable_free_index(order, &info); 2063 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2064 } 2065 2066 seq_putc(m, '\n'); 2067 } 2068 2069 /* 2070 * Display unusable free space index 2071 * 2072 * The unusable free space index measures how much of the available free 2073 * memory cannot be used to satisfy an allocation of a given size and is a 2074 * value between 0 and 1. The higher the value, the more of free memory is 2075 * unusable and by implication, the worse the external fragmentation is. This 2076 * can be expressed as a percentage by multiplying by 100. 2077 */ 2078 static int unusable_show(struct seq_file *m, void *arg) 2079 { 2080 pg_data_t *pgdat = (pg_data_t *)arg; 2081 2082 /* check memoryless node */ 2083 if (!node_state(pgdat->node_id, N_MEMORY)) 2084 return 0; 2085 2086 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2087 2088 return 0; 2089 } 2090 2091 static const struct seq_operations unusable_op = { 2092 .start = frag_start, 2093 .next = frag_next, 2094 .stop = frag_stop, 2095 .show = unusable_show, 2096 }; 2097 2098 static int unusable_open(struct inode *inode, struct file *file) 2099 { 2100 return seq_open(file, &unusable_op); 2101 } 2102 2103 static const struct file_operations unusable_file_ops = { 2104 .open = unusable_open, 2105 .read = seq_read, 2106 .llseek = seq_lseek, 2107 .release = seq_release, 2108 }; 2109 2110 static void extfrag_show_print(struct seq_file *m, 2111 pg_data_t *pgdat, struct zone *zone) 2112 { 2113 unsigned int order; 2114 int index; 2115 2116 /* Alloc on stack as interrupts are disabled for zone walk */ 2117 struct contig_page_info info; 2118 2119 seq_printf(m, "Node %d, zone %8s ", 2120 pgdat->node_id, 2121 zone->name); 2122 for (order = 0; order < MAX_ORDER; ++order) { 2123 fill_contig_page_info(zone, order, &info); 2124 index = __fragmentation_index(order, &info); 2125 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2126 } 2127 2128 seq_putc(m, '\n'); 2129 } 2130 2131 /* 2132 * Display fragmentation index for orders that allocations would fail for 2133 */ 2134 static int extfrag_show(struct seq_file *m, void *arg) 2135 { 2136 pg_data_t *pgdat = (pg_data_t *)arg; 2137 2138 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2139 2140 return 0; 2141 } 2142 2143 static const struct seq_operations extfrag_op = { 2144 .start = frag_start, 2145 .next = frag_next, 2146 .stop = frag_stop, 2147 .show = extfrag_show, 2148 }; 2149 2150 static int extfrag_open(struct inode *inode, struct file *file) 2151 { 2152 return seq_open(file, &extfrag_op); 2153 } 2154 2155 static const struct file_operations extfrag_file_ops = { 2156 .open = extfrag_open, 2157 .read = seq_read, 2158 .llseek = seq_lseek, 2159 .release = seq_release, 2160 }; 2161 2162 static int __init extfrag_debug_init(void) 2163 { 2164 struct dentry *extfrag_debug_root; 2165 2166 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2167 if (!extfrag_debug_root) 2168 return -ENOMEM; 2169 2170 if (!debugfs_create_file("unusable_index", 0444, 2171 extfrag_debug_root, NULL, &unusable_file_ops)) 2172 goto fail; 2173 2174 if (!debugfs_create_file("extfrag_index", 0444, 2175 extfrag_debug_root, NULL, &extfrag_file_ops)) 2176 goto fail; 2177 2178 return 0; 2179 fail: 2180 debugfs_remove_recursive(extfrag_debug_root); 2181 return -ENOMEM; 2182 } 2183 2184 module_init(extfrag_debug_init); 2185 #endif 2186