xref: /openbmc/linux/mm/vmstat.c (revision 4a3fad70)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30 
31 #include "internal.h"
32 
33 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
34 
35 #ifdef CONFIG_NUMA
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 
38 /* zero numa counters within a zone */
39 static void zero_zone_numa_counters(struct zone *zone)
40 {
41 	int item, cpu;
42 
43 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
44 		atomic_long_set(&zone->vm_numa_stat[item], 0);
45 		for_each_online_cpu(cpu)
46 			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
47 						= 0;
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_stat[item], 0);
67 }
68 
69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void __user *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 	get_online_cpus();
133 	sum_vm_events(ret);
134 	put_online_cpus();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_numa_stat);
167 EXPORT_SYMBOL(vm_node_stat);
168 
169 #ifdef CONFIG_SMP
170 
171 int calculate_pressure_threshold(struct zone *zone)
172 {
173 	int threshold;
174 	int watermark_distance;
175 
176 	/*
177 	 * As vmstats are not up to date, there is drift between the estimated
178 	 * and real values. For high thresholds and a high number of CPUs, it
179 	 * is possible for the min watermark to be breached while the estimated
180 	 * value looks fine. The pressure threshold is a reduced value such
181 	 * that even the maximum amount of drift will not accidentally breach
182 	 * the min watermark
183 	 */
184 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
185 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
186 
187 	/*
188 	 * Maximum threshold is 125
189 	 */
190 	threshold = min(125, threshold);
191 
192 	return threshold;
193 }
194 
195 int calculate_normal_threshold(struct zone *zone)
196 {
197 	int threshold;
198 	int mem;	/* memory in 128 MB units */
199 
200 	/*
201 	 * The threshold scales with the number of processors and the amount
202 	 * of memory per zone. More memory means that we can defer updates for
203 	 * longer, more processors could lead to more contention.
204  	 * fls() is used to have a cheap way of logarithmic scaling.
205 	 *
206 	 * Some sample thresholds:
207 	 *
208 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
209 	 * ------------------------------------------------------------------
210 	 * 8		1		1	0.9-1 GB	4
211 	 * 16		2		2	0.9-1 GB	4
212 	 * 20 		2		2	1-2 GB		5
213 	 * 24		2		2	2-4 GB		6
214 	 * 28		2		2	4-8 GB		7
215 	 * 32		2		2	8-16 GB		8
216 	 * 4		2		2	<128M		1
217 	 * 30		4		3	2-4 GB		5
218 	 * 48		4		3	8-16 GB		8
219 	 * 32		8		4	1-2 GB		4
220 	 * 32		8		4	0.9-1GB		4
221 	 * 10		16		5	<128M		1
222 	 * 40		16		5	900M		4
223 	 * 70		64		7	2-4 GB		5
224 	 * 84		64		7	4-8 GB		6
225 	 * 108		512		9	4-8 GB		6
226 	 * 125		1024		10	8-16 GB		8
227 	 * 125		1024		10	16-32 GB	9
228 	 */
229 
230 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
231 
232 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
233 
234 	/*
235 	 * Maximum threshold is 125
236 	 */
237 	threshold = min(125, threshold);
238 
239 	return threshold;
240 }
241 
242 /*
243  * Refresh the thresholds for each zone.
244  */
245 void refresh_zone_stat_thresholds(void)
246 {
247 	struct pglist_data *pgdat;
248 	struct zone *zone;
249 	int cpu;
250 	int threshold;
251 
252 	/* Zero current pgdat thresholds */
253 	for_each_online_pgdat(pgdat) {
254 		for_each_online_cpu(cpu) {
255 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
256 		}
257 	}
258 
259 	for_each_populated_zone(zone) {
260 		struct pglist_data *pgdat = zone->zone_pgdat;
261 		unsigned long max_drift, tolerate_drift;
262 
263 		threshold = calculate_normal_threshold(zone);
264 
265 		for_each_online_cpu(cpu) {
266 			int pgdat_threshold;
267 
268 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
269 							= threshold;
270 
271 			/* Base nodestat threshold on the largest populated zone. */
272 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
273 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
274 				= max(threshold, pgdat_threshold);
275 		}
276 
277 		/*
278 		 * Only set percpu_drift_mark if there is a danger that
279 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
280 		 * the min watermark could be breached by an allocation
281 		 */
282 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
283 		max_drift = num_online_cpus() * threshold;
284 		if (max_drift > tolerate_drift)
285 			zone->percpu_drift_mark = high_wmark_pages(zone) +
286 					max_drift;
287 	}
288 }
289 
290 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
291 				int (*calculate_pressure)(struct zone *))
292 {
293 	struct zone *zone;
294 	int cpu;
295 	int threshold;
296 	int i;
297 
298 	for (i = 0; i < pgdat->nr_zones; i++) {
299 		zone = &pgdat->node_zones[i];
300 		if (!zone->percpu_drift_mark)
301 			continue;
302 
303 		threshold = (*calculate_pressure)(zone);
304 		for_each_online_cpu(cpu)
305 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
306 							= threshold;
307 	}
308 }
309 
310 /*
311  * For use when we know that interrupts are disabled,
312  * or when we know that preemption is disabled and that
313  * particular counter cannot be updated from interrupt context.
314  */
315 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
316 			   long delta)
317 {
318 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
319 	s8 __percpu *p = pcp->vm_stat_diff + item;
320 	long x;
321 	long t;
322 
323 	x = delta + __this_cpu_read(*p);
324 
325 	t = __this_cpu_read(pcp->stat_threshold);
326 
327 	if (unlikely(x > t || x < -t)) {
328 		zone_page_state_add(x, zone, item);
329 		x = 0;
330 	}
331 	__this_cpu_write(*p, x);
332 }
333 EXPORT_SYMBOL(__mod_zone_page_state);
334 
335 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
336 				long delta)
337 {
338 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
339 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
340 	long x;
341 	long t;
342 
343 	x = delta + __this_cpu_read(*p);
344 
345 	t = __this_cpu_read(pcp->stat_threshold);
346 
347 	if (unlikely(x > t || x < -t)) {
348 		node_page_state_add(x, pgdat, item);
349 		x = 0;
350 	}
351 	__this_cpu_write(*p, x);
352 }
353 EXPORT_SYMBOL(__mod_node_page_state);
354 
355 /*
356  * Optimized increment and decrement functions.
357  *
358  * These are only for a single page and therefore can take a struct page *
359  * argument instead of struct zone *. This allows the inclusion of the code
360  * generated for page_zone(page) into the optimized functions.
361  *
362  * No overflow check is necessary and therefore the differential can be
363  * incremented or decremented in place which may allow the compilers to
364  * generate better code.
365  * The increment or decrement is known and therefore one boundary check can
366  * be omitted.
367  *
368  * NOTE: These functions are very performance sensitive. Change only
369  * with care.
370  *
371  * Some processors have inc/dec instructions that are atomic vs an interrupt.
372  * However, the code must first determine the differential location in a zone
373  * based on the processor number and then inc/dec the counter. There is no
374  * guarantee without disabling preemption that the processor will not change
375  * in between and therefore the atomicity vs. interrupt cannot be exploited
376  * in a useful way here.
377  */
378 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
379 {
380 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
381 	s8 __percpu *p = pcp->vm_stat_diff + item;
382 	s8 v, t;
383 
384 	v = __this_cpu_inc_return(*p);
385 	t = __this_cpu_read(pcp->stat_threshold);
386 	if (unlikely(v > t)) {
387 		s8 overstep = t >> 1;
388 
389 		zone_page_state_add(v + overstep, zone, item);
390 		__this_cpu_write(*p, -overstep);
391 	}
392 }
393 
394 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
395 {
396 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
397 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
398 	s8 v, t;
399 
400 	v = __this_cpu_inc_return(*p);
401 	t = __this_cpu_read(pcp->stat_threshold);
402 	if (unlikely(v > t)) {
403 		s8 overstep = t >> 1;
404 
405 		node_page_state_add(v + overstep, pgdat, item);
406 		__this_cpu_write(*p, -overstep);
407 	}
408 }
409 
410 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
411 {
412 	__inc_zone_state(page_zone(page), item);
413 }
414 EXPORT_SYMBOL(__inc_zone_page_state);
415 
416 void __inc_node_page_state(struct page *page, enum node_stat_item item)
417 {
418 	__inc_node_state(page_pgdat(page), item);
419 }
420 EXPORT_SYMBOL(__inc_node_page_state);
421 
422 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
423 {
424 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
425 	s8 __percpu *p = pcp->vm_stat_diff + item;
426 	s8 v, t;
427 
428 	v = __this_cpu_dec_return(*p);
429 	t = __this_cpu_read(pcp->stat_threshold);
430 	if (unlikely(v < - t)) {
431 		s8 overstep = t >> 1;
432 
433 		zone_page_state_add(v - overstep, zone, item);
434 		__this_cpu_write(*p, overstep);
435 	}
436 }
437 
438 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
439 {
440 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
441 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
442 	s8 v, t;
443 
444 	v = __this_cpu_dec_return(*p);
445 	t = __this_cpu_read(pcp->stat_threshold);
446 	if (unlikely(v < - t)) {
447 		s8 overstep = t >> 1;
448 
449 		node_page_state_add(v - overstep, pgdat, item);
450 		__this_cpu_write(*p, overstep);
451 	}
452 }
453 
454 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
455 {
456 	__dec_zone_state(page_zone(page), item);
457 }
458 EXPORT_SYMBOL(__dec_zone_page_state);
459 
460 void __dec_node_page_state(struct page *page, enum node_stat_item item)
461 {
462 	__dec_node_state(page_pgdat(page), item);
463 }
464 EXPORT_SYMBOL(__dec_node_page_state);
465 
466 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
467 /*
468  * If we have cmpxchg_local support then we do not need to incur the overhead
469  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
470  *
471  * mod_state() modifies the zone counter state through atomic per cpu
472  * operations.
473  *
474  * Overstep mode specifies how overstep should handled:
475  *     0       No overstepping
476  *     1       Overstepping half of threshold
477  *     -1      Overstepping minus half of threshold
478 */
479 static inline void mod_zone_state(struct zone *zone,
480        enum zone_stat_item item, long delta, int overstep_mode)
481 {
482 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
483 	s8 __percpu *p = pcp->vm_stat_diff + item;
484 	long o, n, t, z;
485 
486 	do {
487 		z = 0;  /* overflow to zone counters */
488 
489 		/*
490 		 * The fetching of the stat_threshold is racy. We may apply
491 		 * a counter threshold to the wrong the cpu if we get
492 		 * rescheduled while executing here. However, the next
493 		 * counter update will apply the threshold again and
494 		 * therefore bring the counter under the threshold again.
495 		 *
496 		 * Most of the time the thresholds are the same anyways
497 		 * for all cpus in a zone.
498 		 */
499 		t = this_cpu_read(pcp->stat_threshold);
500 
501 		o = this_cpu_read(*p);
502 		n = delta + o;
503 
504 		if (n > t || n < -t) {
505 			int os = overstep_mode * (t >> 1) ;
506 
507 			/* Overflow must be added to zone counters */
508 			z = n + os;
509 			n = -os;
510 		}
511 	} while (this_cpu_cmpxchg(*p, o, n) != o);
512 
513 	if (z)
514 		zone_page_state_add(z, zone, item);
515 }
516 
517 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
518 			 long delta)
519 {
520 	mod_zone_state(zone, item, delta, 0);
521 }
522 EXPORT_SYMBOL(mod_zone_page_state);
523 
524 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
525 {
526 	mod_zone_state(page_zone(page), item, 1, 1);
527 }
528 EXPORT_SYMBOL(inc_zone_page_state);
529 
530 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
531 {
532 	mod_zone_state(page_zone(page), item, -1, -1);
533 }
534 EXPORT_SYMBOL(dec_zone_page_state);
535 
536 static inline void mod_node_state(struct pglist_data *pgdat,
537        enum node_stat_item item, int delta, int overstep_mode)
538 {
539 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
540 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
541 	long o, n, t, z;
542 
543 	do {
544 		z = 0;  /* overflow to node counters */
545 
546 		/*
547 		 * The fetching of the stat_threshold is racy. We may apply
548 		 * a counter threshold to the wrong the cpu if we get
549 		 * rescheduled while executing here. However, the next
550 		 * counter update will apply the threshold again and
551 		 * therefore bring the counter under the threshold again.
552 		 *
553 		 * Most of the time the thresholds are the same anyways
554 		 * for all cpus in a node.
555 		 */
556 		t = this_cpu_read(pcp->stat_threshold);
557 
558 		o = this_cpu_read(*p);
559 		n = delta + o;
560 
561 		if (n > t || n < -t) {
562 			int os = overstep_mode * (t >> 1) ;
563 
564 			/* Overflow must be added to node counters */
565 			z = n + os;
566 			n = -os;
567 		}
568 	} while (this_cpu_cmpxchg(*p, o, n) != o);
569 
570 	if (z)
571 		node_page_state_add(z, pgdat, item);
572 }
573 
574 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
575 					long delta)
576 {
577 	mod_node_state(pgdat, item, delta, 0);
578 }
579 EXPORT_SYMBOL(mod_node_page_state);
580 
581 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
582 {
583 	mod_node_state(pgdat, item, 1, 1);
584 }
585 
586 void inc_node_page_state(struct page *page, enum node_stat_item item)
587 {
588 	mod_node_state(page_pgdat(page), item, 1, 1);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591 
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594 	mod_node_state(page_pgdat(page), item, -1, -1);
595 }
596 EXPORT_SYMBOL(dec_node_page_state);
597 #else
598 /*
599  * Use interrupt disable to serialize counter updates
600  */
601 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
602 			 long delta)
603 {
604 	unsigned long flags;
605 
606 	local_irq_save(flags);
607 	__mod_zone_page_state(zone, item, delta);
608 	local_irq_restore(flags);
609 }
610 EXPORT_SYMBOL(mod_zone_page_state);
611 
612 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
613 {
614 	unsigned long flags;
615 	struct zone *zone;
616 
617 	zone = page_zone(page);
618 	local_irq_save(flags);
619 	__inc_zone_state(zone, item);
620 	local_irq_restore(flags);
621 }
622 EXPORT_SYMBOL(inc_zone_page_state);
623 
624 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
625 {
626 	unsigned long flags;
627 
628 	local_irq_save(flags);
629 	__dec_zone_page_state(page, item);
630 	local_irq_restore(flags);
631 }
632 EXPORT_SYMBOL(dec_zone_page_state);
633 
634 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
635 {
636 	unsigned long flags;
637 
638 	local_irq_save(flags);
639 	__inc_node_state(pgdat, item);
640 	local_irq_restore(flags);
641 }
642 EXPORT_SYMBOL(inc_node_state);
643 
644 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
645 					long delta)
646 {
647 	unsigned long flags;
648 
649 	local_irq_save(flags);
650 	__mod_node_page_state(pgdat, item, delta);
651 	local_irq_restore(flags);
652 }
653 EXPORT_SYMBOL(mod_node_page_state);
654 
655 void inc_node_page_state(struct page *page, enum node_stat_item item)
656 {
657 	unsigned long flags;
658 	struct pglist_data *pgdat;
659 
660 	pgdat = page_pgdat(page);
661 	local_irq_save(flags);
662 	__inc_node_state(pgdat, item);
663 	local_irq_restore(flags);
664 }
665 EXPORT_SYMBOL(inc_node_page_state);
666 
667 void dec_node_page_state(struct page *page, enum node_stat_item item)
668 {
669 	unsigned long flags;
670 
671 	local_irq_save(flags);
672 	__dec_node_page_state(page, item);
673 	local_irq_restore(flags);
674 }
675 EXPORT_SYMBOL(dec_node_page_state);
676 #endif
677 
678 /*
679  * Fold a differential into the global counters.
680  * Returns the number of counters updated.
681  */
682 #ifdef CONFIG_NUMA
683 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
684 {
685 	int i;
686 	int changes = 0;
687 
688 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
689 		if (zone_diff[i]) {
690 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
691 			changes++;
692 	}
693 
694 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
695 		if (numa_diff[i]) {
696 			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
697 			changes++;
698 	}
699 
700 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
701 		if (node_diff[i]) {
702 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
703 			changes++;
704 	}
705 	return changes;
706 }
707 #else
708 static int fold_diff(int *zone_diff, int *node_diff)
709 {
710 	int i;
711 	int changes = 0;
712 
713 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
714 		if (zone_diff[i]) {
715 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
716 			changes++;
717 	}
718 
719 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
720 		if (node_diff[i]) {
721 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
722 			changes++;
723 	}
724 	return changes;
725 }
726 #endif /* CONFIG_NUMA */
727 
728 /*
729  * Update the zone counters for the current cpu.
730  *
731  * Note that refresh_cpu_vm_stats strives to only access
732  * node local memory. The per cpu pagesets on remote zones are placed
733  * in the memory local to the processor using that pageset. So the
734  * loop over all zones will access a series of cachelines local to
735  * the processor.
736  *
737  * The call to zone_page_state_add updates the cachelines with the
738  * statistics in the remote zone struct as well as the global cachelines
739  * with the global counters. These could cause remote node cache line
740  * bouncing and will have to be only done when necessary.
741  *
742  * The function returns the number of global counters updated.
743  */
744 static int refresh_cpu_vm_stats(bool do_pagesets)
745 {
746 	struct pglist_data *pgdat;
747 	struct zone *zone;
748 	int i;
749 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
750 #ifdef CONFIG_NUMA
751 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
752 #endif
753 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
754 	int changes = 0;
755 
756 	for_each_populated_zone(zone) {
757 		struct per_cpu_pageset __percpu *p = zone->pageset;
758 
759 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
760 			int v;
761 
762 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
763 			if (v) {
764 
765 				atomic_long_add(v, &zone->vm_stat[i]);
766 				global_zone_diff[i] += v;
767 #ifdef CONFIG_NUMA
768 				/* 3 seconds idle till flush */
769 				__this_cpu_write(p->expire, 3);
770 #endif
771 			}
772 		}
773 #ifdef CONFIG_NUMA
774 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
775 			int v;
776 
777 			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
778 			if (v) {
779 
780 				atomic_long_add(v, &zone->vm_numa_stat[i]);
781 				global_numa_diff[i] += v;
782 				__this_cpu_write(p->expire, 3);
783 			}
784 		}
785 
786 		if (do_pagesets) {
787 			cond_resched();
788 			/*
789 			 * Deal with draining the remote pageset of this
790 			 * processor
791 			 *
792 			 * Check if there are pages remaining in this pageset
793 			 * if not then there is nothing to expire.
794 			 */
795 			if (!__this_cpu_read(p->expire) ||
796 			       !__this_cpu_read(p->pcp.count))
797 				continue;
798 
799 			/*
800 			 * We never drain zones local to this processor.
801 			 */
802 			if (zone_to_nid(zone) == numa_node_id()) {
803 				__this_cpu_write(p->expire, 0);
804 				continue;
805 			}
806 
807 			if (__this_cpu_dec_return(p->expire))
808 				continue;
809 
810 			if (__this_cpu_read(p->pcp.count)) {
811 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
812 				changes++;
813 			}
814 		}
815 #endif
816 	}
817 
818 	for_each_online_pgdat(pgdat) {
819 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
820 
821 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
822 			int v;
823 
824 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
825 			if (v) {
826 				atomic_long_add(v, &pgdat->vm_stat[i]);
827 				global_node_diff[i] += v;
828 			}
829 		}
830 	}
831 
832 #ifdef CONFIG_NUMA
833 	changes += fold_diff(global_zone_diff, global_numa_diff,
834 			     global_node_diff);
835 #else
836 	changes += fold_diff(global_zone_diff, global_node_diff);
837 #endif
838 	return changes;
839 }
840 
841 /*
842  * Fold the data for an offline cpu into the global array.
843  * There cannot be any access by the offline cpu and therefore
844  * synchronization is simplified.
845  */
846 void cpu_vm_stats_fold(int cpu)
847 {
848 	struct pglist_data *pgdat;
849 	struct zone *zone;
850 	int i;
851 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
852 #ifdef CONFIG_NUMA
853 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
854 #endif
855 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
856 
857 	for_each_populated_zone(zone) {
858 		struct per_cpu_pageset *p;
859 
860 		p = per_cpu_ptr(zone->pageset, cpu);
861 
862 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
863 			if (p->vm_stat_diff[i]) {
864 				int v;
865 
866 				v = p->vm_stat_diff[i];
867 				p->vm_stat_diff[i] = 0;
868 				atomic_long_add(v, &zone->vm_stat[i]);
869 				global_zone_diff[i] += v;
870 			}
871 
872 #ifdef CONFIG_NUMA
873 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
874 			if (p->vm_numa_stat_diff[i]) {
875 				int v;
876 
877 				v = p->vm_numa_stat_diff[i];
878 				p->vm_numa_stat_diff[i] = 0;
879 				atomic_long_add(v, &zone->vm_numa_stat[i]);
880 				global_numa_diff[i] += v;
881 			}
882 #endif
883 	}
884 
885 	for_each_online_pgdat(pgdat) {
886 		struct per_cpu_nodestat *p;
887 
888 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
889 
890 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
891 			if (p->vm_node_stat_diff[i]) {
892 				int v;
893 
894 				v = p->vm_node_stat_diff[i];
895 				p->vm_node_stat_diff[i] = 0;
896 				atomic_long_add(v, &pgdat->vm_stat[i]);
897 				global_node_diff[i] += v;
898 			}
899 	}
900 
901 #ifdef CONFIG_NUMA
902 	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
903 #else
904 	fold_diff(global_zone_diff, global_node_diff);
905 #endif
906 }
907 
908 /*
909  * this is only called if !populated_zone(zone), which implies no other users of
910  * pset->vm_stat_diff[] exsist.
911  */
912 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
913 {
914 	int i;
915 
916 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
917 		if (pset->vm_stat_diff[i]) {
918 			int v = pset->vm_stat_diff[i];
919 			pset->vm_stat_diff[i] = 0;
920 			atomic_long_add(v, &zone->vm_stat[i]);
921 			atomic_long_add(v, &vm_zone_stat[i]);
922 		}
923 
924 #ifdef CONFIG_NUMA
925 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
926 		if (pset->vm_numa_stat_diff[i]) {
927 			int v = pset->vm_numa_stat_diff[i];
928 
929 			pset->vm_numa_stat_diff[i] = 0;
930 			atomic_long_add(v, &zone->vm_numa_stat[i]);
931 			atomic_long_add(v, &vm_numa_stat[i]);
932 		}
933 #endif
934 }
935 #endif
936 
937 #ifdef CONFIG_NUMA
938 void __inc_numa_state(struct zone *zone,
939 				 enum numa_stat_item item)
940 {
941 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
942 	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
943 	u16 v;
944 
945 	v = __this_cpu_inc_return(*p);
946 
947 	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
948 		zone_numa_state_add(v, zone, item);
949 		__this_cpu_write(*p, 0);
950 	}
951 }
952 
953 /*
954  * Determine the per node value of a stat item. This function
955  * is called frequently in a NUMA machine, so try to be as
956  * frugal as possible.
957  */
958 unsigned long sum_zone_node_page_state(int node,
959 				 enum zone_stat_item item)
960 {
961 	struct zone *zones = NODE_DATA(node)->node_zones;
962 	int i;
963 	unsigned long count = 0;
964 
965 	for (i = 0; i < MAX_NR_ZONES; i++)
966 		count += zone_page_state(zones + i, item);
967 
968 	return count;
969 }
970 
971 /*
972  * Determine the per node value of a numa stat item. To avoid deviation,
973  * the per cpu stat number in vm_numa_stat_diff[] is also included.
974  */
975 unsigned long sum_zone_numa_state(int node,
976 				 enum numa_stat_item item)
977 {
978 	struct zone *zones = NODE_DATA(node)->node_zones;
979 	int i;
980 	unsigned long count = 0;
981 
982 	for (i = 0; i < MAX_NR_ZONES; i++)
983 		count += zone_numa_state_snapshot(zones + i, item);
984 
985 	return count;
986 }
987 
988 /*
989  * Determine the per node value of a stat item.
990  */
991 unsigned long node_page_state(struct pglist_data *pgdat,
992 				enum node_stat_item item)
993 {
994 	long x = atomic_long_read(&pgdat->vm_stat[item]);
995 #ifdef CONFIG_SMP
996 	if (x < 0)
997 		x = 0;
998 #endif
999 	return x;
1000 }
1001 #endif
1002 
1003 #ifdef CONFIG_COMPACTION
1004 
1005 struct contig_page_info {
1006 	unsigned long free_pages;
1007 	unsigned long free_blocks_total;
1008 	unsigned long free_blocks_suitable;
1009 };
1010 
1011 /*
1012  * Calculate the number of free pages in a zone, how many contiguous
1013  * pages are free and how many are large enough to satisfy an allocation of
1014  * the target size. Note that this function makes no attempt to estimate
1015  * how many suitable free blocks there *might* be if MOVABLE pages were
1016  * migrated. Calculating that is possible, but expensive and can be
1017  * figured out from userspace
1018  */
1019 static void fill_contig_page_info(struct zone *zone,
1020 				unsigned int suitable_order,
1021 				struct contig_page_info *info)
1022 {
1023 	unsigned int order;
1024 
1025 	info->free_pages = 0;
1026 	info->free_blocks_total = 0;
1027 	info->free_blocks_suitable = 0;
1028 
1029 	for (order = 0; order < MAX_ORDER; order++) {
1030 		unsigned long blocks;
1031 
1032 		/* Count number of free blocks */
1033 		blocks = zone->free_area[order].nr_free;
1034 		info->free_blocks_total += blocks;
1035 
1036 		/* Count free base pages */
1037 		info->free_pages += blocks << order;
1038 
1039 		/* Count the suitable free blocks */
1040 		if (order >= suitable_order)
1041 			info->free_blocks_suitable += blocks <<
1042 						(order - suitable_order);
1043 	}
1044 }
1045 
1046 /*
1047  * A fragmentation index only makes sense if an allocation of a requested
1048  * size would fail. If that is true, the fragmentation index indicates
1049  * whether external fragmentation or a lack of memory was the problem.
1050  * The value can be used to determine if page reclaim or compaction
1051  * should be used
1052  */
1053 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1054 {
1055 	unsigned long requested = 1UL << order;
1056 
1057 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1058 		return 0;
1059 
1060 	if (!info->free_blocks_total)
1061 		return 0;
1062 
1063 	/* Fragmentation index only makes sense when a request would fail */
1064 	if (info->free_blocks_suitable)
1065 		return -1000;
1066 
1067 	/*
1068 	 * Index is between 0 and 1 so return within 3 decimal places
1069 	 *
1070 	 * 0 => allocation would fail due to lack of memory
1071 	 * 1 => allocation would fail due to fragmentation
1072 	 */
1073 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1074 }
1075 
1076 /* Same as __fragmentation index but allocs contig_page_info on stack */
1077 int fragmentation_index(struct zone *zone, unsigned int order)
1078 {
1079 	struct contig_page_info info;
1080 
1081 	fill_contig_page_info(zone, order, &info);
1082 	return __fragmentation_index(order, &info);
1083 }
1084 #endif
1085 
1086 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1087 #ifdef CONFIG_ZONE_DMA
1088 #define TEXT_FOR_DMA(xx) xx "_dma",
1089 #else
1090 #define TEXT_FOR_DMA(xx)
1091 #endif
1092 
1093 #ifdef CONFIG_ZONE_DMA32
1094 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1095 #else
1096 #define TEXT_FOR_DMA32(xx)
1097 #endif
1098 
1099 #ifdef CONFIG_HIGHMEM
1100 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1101 #else
1102 #define TEXT_FOR_HIGHMEM(xx)
1103 #endif
1104 
1105 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1106 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1107 
1108 const char * const vmstat_text[] = {
1109 	/* enum zone_stat_item countes */
1110 	"nr_free_pages",
1111 	"nr_zone_inactive_anon",
1112 	"nr_zone_active_anon",
1113 	"nr_zone_inactive_file",
1114 	"nr_zone_active_file",
1115 	"nr_zone_unevictable",
1116 	"nr_zone_write_pending",
1117 	"nr_mlock",
1118 	"nr_page_table_pages",
1119 	"nr_kernel_stack",
1120 	"nr_bounce",
1121 #if IS_ENABLED(CONFIG_ZSMALLOC)
1122 	"nr_zspages",
1123 #endif
1124 	"nr_free_cma",
1125 
1126 	/* enum numa_stat_item counters */
1127 #ifdef CONFIG_NUMA
1128 	"numa_hit",
1129 	"numa_miss",
1130 	"numa_foreign",
1131 	"numa_interleave",
1132 	"numa_local",
1133 	"numa_other",
1134 #endif
1135 
1136 	/* Node-based counters */
1137 	"nr_inactive_anon",
1138 	"nr_active_anon",
1139 	"nr_inactive_file",
1140 	"nr_active_file",
1141 	"nr_unevictable",
1142 	"nr_slab_reclaimable",
1143 	"nr_slab_unreclaimable",
1144 	"nr_isolated_anon",
1145 	"nr_isolated_file",
1146 	"workingset_refault",
1147 	"workingset_activate",
1148 	"workingset_nodereclaim",
1149 	"nr_anon_pages",
1150 	"nr_mapped",
1151 	"nr_file_pages",
1152 	"nr_dirty",
1153 	"nr_writeback",
1154 	"nr_writeback_temp",
1155 	"nr_shmem",
1156 	"nr_shmem_hugepages",
1157 	"nr_shmem_pmdmapped",
1158 	"nr_anon_transparent_hugepages",
1159 	"nr_unstable",
1160 	"nr_vmscan_write",
1161 	"nr_vmscan_immediate_reclaim",
1162 	"nr_dirtied",
1163 	"nr_written",
1164 
1165 	/* enum writeback_stat_item counters */
1166 	"nr_dirty_threshold",
1167 	"nr_dirty_background_threshold",
1168 
1169 #ifdef CONFIG_VM_EVENT_COUNTERS
1170 	/* enum vm_event_item counters */
1171 	"pgpgin",
1172 	"pgpgout",
1173 	"pswpin",
1174 	"pswpout",
1175 
1176 	TEXTS_FOR_ZONES("pgalloc")
1177 	TEXTS_FOR_ZONES("allocstall")
1178 	TEXTS_FOR_ZONES("pgskip")
1179 
1180 	"pgfree",
1181 	"pgactivate",
1182 	"pgdeactivate",
1183 	"pglazyfree",
1184 
1185 	"pgfault",
1186 	"pgmajfault",
1187 	"pglazyfreed",
1188 
1189 	"pgrefill",
1190 	"pgsteal_kswapd",
1191 	"pgsteal_direct",
1192 	"pgscan_kswapd",
1193 	"pgscan_direct",
1194 	"pgscan_direct_throttle",
1195 
1196 #ifdef CONFIG_NUMA
1197 	"zone_reclaim_failed",
1198 #endif
1199 	"pginodesteal",
1200 	"slabs_scanned",
1201 	"kswapd_inodesteal",
1202 	"kswapd_low_wmark_hit_quickly",
1203 	"kswapd_high_wmark_hit_quickly",
1204 	"pageoutrun",
1205 
1206 	"pgrotated",
1207 
1208 	"drop_pagecache",
1209 	"drop_slab",
1210 	"oom_kill",
1211 
1212 #ifdef CONFIG_NUMA_BALANCING
1213 	"numa_pte_updates",
1214 	"numa_huge_pte_updates",
1215 	"numa_hint_faults",
1216 	"numa_hint_faults_local",
1217 	"numa_pages_migrated",
1218 #endif
1219 #ifdef CONFIG_MIGRATION
1220 	"pgmigrate_success",
1221 	"pgmigrate_fail",
1222 #endif
1223 #ifdef CONFIG_COMPACTION
1224 	"compact_migrate_scanned",
1225 	"compact_free_scanned",
1226 	"compact_isolated",
1227 	"compact_stall",
1228 	"compact_fail",
1229 	"compact_success",
1230 	"compact_daemon_wake",
1231 	"compact_daemon_migrate_scanned",
1232 	"compact_daemon_free_scanned",
1233 #endif
1234 
1235 #ifdef CONFIG_HUGETLB_PAGE
1236 	"htlb_buddy_alloc_success",
1237 	"htlb_buddy_alloc_fail",
1238 #endif
1239 	"unevictable_pgs_culled",
1240 	"unevictable_pgs_scanned",
1241 	"unevictable_pgs_rescued",
1242 	"unevictable_pgs_mlocked",
1243 	"unevictable_pgs_munlocked",
1244 	"unevictable_pgs_cleared",
1245 	"unevictable_pgs_stranded",
1246 
1247 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1248 	"thp_fault_alloc",
1249 	"thp_fault_fallback",
1250 	"thp_collapse_alloc",
1251 	"thp_collapse_alloc_failed",
1252 	"thp_file_alloc",
1253 	"thp_file_mapped",
1254 	"thp_split_page",
1255 	"thp_split_page_failed",
1256 	"thp_deferred_split_page",
1257 	"thp_split_pmd",
1258 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1259 	"thp_split_pud",
1260 #endif
1261 	"thp_zero_page_alloc",
1262 	"thp_zero_page_alloc_failed",
1263 	"thp_swpout",
1264 	"thp_swpout_fallback",
1265 #endif
1266 #ifdef CONFIG_MEMORY_BALLOON
1267 	"balloon_inflate",
1268 	"balloon_deflate",
1269 #ifdef CONFIG_BALLOON_COMPACTION
1270 	"balloon_migrate",
1271 #endif
1272 #endif /* CONFIG_MEMORY_BALLOON */
1273 #ifdef CONFIG_DEBUG_TLBFLUSH
1274 #ifdef CONFIG_SMP
1275 	"nr_tlb_remote_flush",
1276 	"nr_tlb_remote_flush_received",
1277 #endif /* CONFIG_SMP */
1278 	"nr_tlb_local_flush_all",
1279 	"nr_tlb_local_flush_one",
1280 #endif /* CONFIG_DEBUG_TLBFLUSH */
1281 
1282 #ifdef CONFIG_DEBUG_VM_VMACACHE
1283 	"vmacache_find_calls",
1284 	"vmacache_find_hits",
1285 	"vmacache_full_flushes",
1286 #endif
1287 #ifdef CONFIG_SWAP
1288 	"swap_ra",
1289 	"swap_ra_hit",
1290 #endif
1291 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1292 };
1293 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1294 
1295 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1296      defined(CONFIG_PROC_FS)
1297 static void *frag_start(struct seq_file *m, loff_t *pos)
1298 {
1299 	pg_data_t *pgdat;
1300 	loff_t node = *pos;
1301 
1302 	for (pgdat = first_online_pgdat();
1303 	     pgdat && node;
1304 	     pgdat = next_online_pgdat(pgdat))
1305 		--node;
1306 
1307 	return pgdat;
1308 }
1309 
1310 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1311 {
1312 	pg_data_t *pgdat = (pg_data_t *)arg;
1313 
1314 	(*pos)++;
1315 	return next_online_pgdat(pgdat);
1316 }
1317 
1318 static void frag_stop(struct seq_file *m, void *arg)
1319 {
1320 }
1321 
1322 /*
1323  * Walk zones in a node and print using a callback.
1324  * If @assert_populated is true, only use callback for zones that are populated.
1325  */
1326 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1327 		bool assert_populated, bool nolock,
1328 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1329 {
1330 	struct zone *zone;
1331 	struct zone *node_zones = pgdat->node_zones;
1332 	unsigned long flags;
1333 
1334 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1335 		if (assert_populated && !populated_zone(zone))
1336 			continue;
1337 
1338 		if (!nolock)
1339 			spin_lock_irqsave(&zone->lock, flags);
1340 		print(m, pgdat, zone);
1341 		if (!nolock)
1342 			spin_unlock_irqrestore(&zone->lock, flags);
1343 	}
1344 }
1345 #endif
1346 
1347 #ifdef CONFIG_PROC_FS
1348 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1349 						struct zone *zone)
1350 {
1351 	int order;
1352 
1353 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1354 	for (order = 0; order < MAX_ORDER; ++order)
1355 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1356 	seq_putc(m, '\n');
1357 }
1358 
1359 /*
1360  * This walks the free areas for each zone.
1361  */
1362 static int frag_show(struct seq_file *m, void *arg)
1363 {
1364 	pg_data_t *pgdat = (pg_data_t *)arg;
1365 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1366 	return 0;
1367 }
1368 
1369 static void pagetypeinfo_showfree_print(struct seq_file *m,
1370 					pg_data_t *pgdat, struct zone *zone)
1371 {
1372 	int order, mtype;
1373 
1374 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1375 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1376 					pgdat->node_id,
1377 					zone->name,
1378 					migratetype_names[mtype]);
1379 		for (order = 0; order < MAX_ORDER; ++order) {
1380 			unsigned long freecount = 0;
1381 			struct free_area *area;
1382 			struct list_head *curr;
1383 
1384 			area = &(zone->free_area[order]);
1385 
1386 			list_for_each(curr, &area->free_list[mtype])
1387 				freecount++;
1388 			seq_printf(m, "%6lu ", freecount);
1389 		}
1390 		seq_putc(m, '\n');
1391 	}
1392 }
1393 
1394 /* Print out the free pages at each order for each migatetype */
1395 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1396 {
1397 	int order;
1398 	pg_data_t *pgdat = (pg_data_t *)arg;
1399 
1400 	/* Print header */
1401 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1402 	for (order = 0; order < MAX_ORDER; ++order)
1403 		seq_printf(m, "%6d ", order);
1404 	seq_putc(m, '\n');
1405 
1406 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1407 
1408 	return 0;
1409 }
1410 
1411 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1412 					pg_data_t *pgdat, struct zone *zone)
1413 {
1414 	int mtype;
1415 	unsigned long pfn;
1416 	unsigned long start_pfn = zone->zone_start_pfn;
1417 	unsigned long end_pfn = zone_end_pfn(zone);
1418 	unsigned long count[MIGRATE_TYPES] = { 0, };
1419 
1420 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1421 		struct page *page;
1422 
1423 		page = pfn_to_online_page(pfn);
1424 		if (!page)
1425 			continue;
1426 
1427 		/* Watch for unexpected holes punched in the memmap */
1428 		if (!memmap_valid_within(pfn, page, zone))
1429 			continue;
1430 
1431 		if (page_zone(page) != zone)
1432 			continue;
1433 
1434 		mtype = get_pageblock_migratetype(page);
1435 
1436 		if (mtype < MIGRATE_TYPES)
1437 			count[mtype]++;
1438 	}
1439 
1440 	/* Print counts */
1441 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1442 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1443 		seq_printf(m, "%12lu ", count[mtype]);
1444 	seq_putc(m, '\n');
1445 }
1446 
1447 /* Print out the number of pageblocks for each migratetype */
1448 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1449 {
1450 	int mtype;
1451 	pg_data_t *pgdat = (pg_data_t *)arg;
1452 
1453 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1454 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1455 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1456 	seq_putc(m, '\n');
1457 	walk_zones_in_node(m, pgdat, true, false,
1458 		pagetypeinfo_showblockcount_print);
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Print out the number of pageblocks for each migratetype that contain pages
1465  * of other types. This gives an indication of how well fallbacks are being
1466  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1467  * to determine what is going on
1468  */
1469 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1470 {
1471 #ifdef CONFIG_PAGE_OWNER
1472 	int mtype;
1473 
1474 	if (!static_branch_unlikely(&page_owner_inited))
1475 		return;
1476 
1477 	drain_all_pages(NULL);
1478 
1479 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1480 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1481 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1482 	seq_putc(m, '\n');
1483 
1484 	walk_zones_in_node(m, pgdat, true, true,
1485 		pagetypeinfo_showmixedcount_print);
1486 #endif /* CONFIG_PAGE_OWNER */
1487 }
1488 
1489 /*
1490  * This prints out statistics in relation to grouping pages by mobility.
1491  * It is expensive to collect so do not constantly read the file.
1492  */
1493 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1494 {
1495 	pg_data_t *pgdat = (pg_data_t *)arg;
1496 
1497 	/* check memoryless node */
1498 	if (!node_state(pgdat->node_id, N_MEMORY))
1499 		return 0;
1500 
1501 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1502 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1503 	seq_putc(m, '\n');
1504 	pagetypeinfo_showfree(m, pgdat);
1505 	pagetypeinfo_showblockcount(m, pgdat);
1506 	pagetypeinfo_showmixedcount(m, pgdat);
1507 
1508 	return 0;
1509 }
1510 
1511 static const struct seq_operations fragmentation_op = {
1512 	.start	= frag_start,
1513 	.next	= frag_next,
1514 	.stop	= frag_stop,
1515 	.show	= frag_show,
1516 };
1517 
1518 static int fragmentation_open(struct inode *inode, struct file *file)
1519 {
1520 	return seq_open(file, &fragmentation_op);
1521 }
1522 
1523 static const struct file_operations buddyinfo_file_operations = {
1524 	.open		= fragmentation_open,
1525 	.read		= seq_read,
1526 	.llseek		= seq_lseek,
1527 	.release	= seq_release,
1528 };
1529 
1530 static const struct seq_operations pagetypeinfo_op = {
1531 	.start	= frag_start,
1532 	.next	= frag_next,
1533 	.stop	= frag_stop,
1534 	.show	= pagetypeinfo_show,
1535 };
1536 
1537 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1538 {
1539 	return seq_open(file, &pagetypeinfo_op);
1540 }
1541 
1542 static const struct file_operations pagetypeinfo_file_operations = {
1543 	.open		= pagetypeinfo_open,
1544 	.read		= seq_read,
1545 	.llseek		= seq_lseek,
1546 	.release	= seq_release,
1547 };
1548 
1549 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1550 {
1551 	int zid;
1552 
1553 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1554 		struct zone *compare = &pgdat->node_zones[zid];
1555 
1556 		if (populated_zone(compare))
1557 			return zone == compare;
1558 	}
1559 
1560 	return false;
1561 }
1562 
1563 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1564 							struct zone *zone)
1565 {
1566 	int i;
1567 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1568 	if (is_zone_first_populated(pgdat, zone)) {
1569 		seq_printf(m, "\n  per-node stats");
1570 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1571 			seq_printf(m, "\n      %-12s %lu",
1572 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1573 				NR_VM_NUMA_STAT_ITEMS],
1574 				node_page_state(pgdat, i));
1575 		}
1576 	}
1577 	seq_printf(m,
1578 		   "\n  pages free     %lu"
1579 		   "\n        min      %lu"
1580 		   "\n        low      %lu"
1581 		   "\n        high     %lu"
1582 		   "\n        spanned  %lu"
1583 		   "\n        present  %lu"
1584 		   "\n        managed  %lu",
1585 		   zone_page_state(zone, NR_FREE_PAGES),
1586 		   min_wmark_pages(zone),
1587 		   low_wmark_pages(zone),
1588 		   high_wmark_pages(zone),
1589 		   zone->spanned_pages,
1590 		   zone->present_pages,
1591 		   zone->managed_pages);
1592 
1593 	seq_printf(m,
1594 		   "\n        protection: (%ld",
1595 		   zone->lowmem_reserve[0]);
1596 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1597 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1598 	seq_putc(m, ')');
1599 
1600 	/* If unpopulated, no other information is useful */
1601 	if (!populated_zone(zone)) {
1602 		seq_putc(m, '\n');
1603 		return;
1604 	}
1605 
1606 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1607 		seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1608 				zone_page_state(zone, i));
1609 
1610 #ifdef CONFIG_NUMA
1611 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1612 		seq_printf(m, "\n      %-12s %lu",
1613 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1614 				zone_numa_state_snapshot(zone, i));
1615 #endif
1616 
1617 	seq_printf(m, "\n  pagesets");
1618 	for_each_online_cpu(i) {
1619 		struct per_cpu_pageset *pageset;
1620 
1621 		pageset = per_cpu_ptr(zone->pageset, i);
1622 		seq_printf(m,
1623 			   "\n    cpu: %i"
1624 			   "\n              count: %i"
1625 			   "\n              high:  %i"
1626 			   "\n              batch: %i",
1627 			   i,
1628 			   pageset->pcp.count,
1629 			   pageset->pcp.high,
1630 			   pageset->pcp.batch);
1631 #ifdef CONFIG_SMP
1632 		seq_printf(m, "\n  vm stats threshold: %d",
1633 				pageset->stat_threshold);
1634 #endif
1635 	}
1636 	seq_printf(m,
1637 		   "\n  node_unreclaimable:  %u"
1638 		   "\n  start_pfn:           %lu",
1639 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1640 		   zone->zone_start_pfn);
1641 	seq_putc(m, '\n');
1642 }
1643 
1644 /*
1645  * Output information about zones in @pgdat.  All zones are printed regardless
1646  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1647  * set of all zones and userspace would not be aware of such zones if they are
1648  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1649  */
1650 static int zoneinfo_show(struct seq_file *m, void *arg)
1651 {
1652 	pg_data_t *pgdat = (pg_data_t *)arg;
1653 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1654 	return 0;
1655 }
1656 
1657 static const struct seq_operations zoneinfo_op = {
1658 	.start	= frag_start, /* iterate over all zones. The same as in
1659 			       * fragmentation. */
1660 	.next	= frag_next,
1661 	.stop	= frag_stop,
1662 	.show	= zoneinfo_show,
1663 };
1664 
1665 static int zoneinfo_open(struct inode *inode, struct file *file)
1666 {
1667 	return seq_open(file, &zoneinfo_op);
1668 }
1669 
1670 static const struct file_operations zoneinfo_file_operations = {
1671 	.open		= zoneinfo_open,
1672 	.read		= seq_read,
1673 	.llseek		= seq_lseek,
1674 	.release	= seq_release,
1675 };
1676 
1677 enum writeback_stat_item {
1678 	NR_DIRTY_THRESHOLD,
1679 	NR_DIRTY_BG_THRESHOLD,
1680 	NR_VM_WRITEBACK_STAT_ITEMS,
1681 };
1682 
1683 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1684 {
1685 	unsigned long *v;
1686 	int i, stat_items_size;
1687 
1688 	if (*pos >= ARRAY_SIZE(vmstat_text))
1689 		return NULL;
1690 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1691 			  NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1692 			  NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1693 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1694 
1695 #ifdef CONFIG_VM_EVENT_COUNTERS
1696 	stat_items_size += sizeof(struct vm_event_state);
1697 #endif
1698 
1699 	v = kmalloc(stat_items_size, GFP_KERNEL);
1700 	m->private = v;
1701 	if (!v)
1702 		return ERR_PTR(-ENOMEM);
1703 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1704 		v[i] = global_zone_page_state(i);
1705 	v += NR_VM_ZONE_STAT_ITEMS;
1706 
1707 #ifdef CONFIG_NUMA
1708 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1709 		v[i] = global_numa_state(i);
1710 	v += NR_VM_NUMA_STAT_ITEMS;
1711 #endif
1712 
1713 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1714 		v[i] = global_node_page_state(i);
1715 	v += NR_VM_NODE_STAT_ITEMS;
1716 
1717 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1718 			    v + NR_DIRTY_THRESHOLD);
1719 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1720 
1721 #ifdef CONFIG_VM_EVENT_COUNTERS
1722 	all_vm_events(v);
1723 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1724 	v[PGPGOUT] /= 2;
1725 #endif
1726 	return (unsigned long *)m->private + *pos;
1727 }
1728 
1729 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1730 {
1731 	(*pos)++;
1732 	if (*pos >= ARRAY_SIZE(vmstat_text))
1733 		return NULL;
1734 	return (unsigned long *)m->private + *pos;
1735 }
1736 
1737 static int vmstat_show(struct seq_file *m, void *arg)
1738 {
1739 	unsigned long *l = arg;
1740 	unsigned long off = l - (unsigned long *)m->private;
1741 
1742 	seq_puts(m, vmstat_text[off]);
1743 	seq_put_decimal_ull(m, " ", *l);
1744 	seq_putc(m, '\n');
1745 	return 0;
1746 }
1747 
1748 static void vmstat_stop(struct seq_file *m, void *arg)
1749 {
1750 	kfree(m->private);
1751 	m->private = NULL;
1752 }
1753 
1754 static const struct seq_operations vmstat_op = {
1755 	.start	= vmstat_start,
1756 	.next	= vmstat_next,
1757 	.stop	= vmstat_stop,
1758 	.show	= vmstat_show,
1759 };
1760 
1761 static int vmstat_open(struct inode *inode, struct file *file)
1762 {
1763 	return seq_open(file, &vmstat_op);
1764 }
1765 
1766 static const struct file_operations vmstat_file_operations = {
1767 	.open		= vmstat_open,
1768 	.read		= seq_read,
1769 	.llseek		= seq_lseek,
1770 	.release	= seq_release,
1771 };
1772 #endif /* CONFIG_PROC_FS */
1773 
1774 #ifdef CONFIG_SMP
1775 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1776 int sysctl_stat_interval __read_mostly = HZ;
1777 
1778 #ifdef CONFIG_PROC_FS
1779 static void refresh_vm_stats(struct work_struct *work)
1780 {
1781 	refresh_cpu_vm_stats(true);
1782 }
1783 
1784 int vmstat_refresh(struct ctl_table *table, int write,
1785 		   void __user *buffer, size_t *lenp, loff_t *ppos)
1786 {
1787 	long val;
1788 	int err;
1789 	int i;
1790 
1791 	/*
1792 	 * The regular update, every sysctl_stat_interval, may come later
1793 	 * than expected: leaving a significant amount in per_cpu buckets.
1794 	 * This is particularly misleading when checking a quantity of HUGE
1795 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1796 	 * which can equally be echo'ed to or cat'ted from (by root),
1797 	 * can be used to update the stats just before reading them.
1798 	 *
1799 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1800 	 * transiently negative values, report an error here if any of
1801 	 * the stats is negative, so we know to go looking for imbalance.
1802 	 */
1803 	err = schedule_on_each_cpu(refresh_vm_stats);
1804 	if (err)
1805 		return err;
1806 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1807 		val = atomic_long_read(&vm_zone_stat[i]);
1808 		if (val < 0) {
1809 			pr_warn("%s: %s %ld\n",
1810 				__func__, vmstat_text[i], val);
1811 			err = -EINVAL;
1812 		}
1813 	}
1814 #ifdef CONFIG_NUMA
1815 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1816 		val = atomic_long_read(&vm_numa_stat[i]);
1817 		if (val < 0) {
1818 			pr_warn("%s: %s %ld\n",
1819 				__func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1820 			err = -EINVAL;
1821 		}
1822 	}
1823 #endif
1824 	if (err)
1825 		return err;
1826 	if (write)
1827 		*ppos += *lenp;
1828 	else
1829 		*lenp = 0;
1830 	return 0;
1831 }
1832 #endif /* CONFIG_PROC_FS */
1833 
1834 static void vmstat_update(struct work_struct *w)
1835 {
1836 	if (refresh_cpu_vm_stats(true)) {
1837 		/*
1838 		 * Counters were updated so we expect more updates
1839 		 * to occur in the future. Keep on running the
1840 		 * update worker thread.
1841 		 */
1842 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1843 				this_cpu_ptr(&vmstat_work),
1844 				round_jiffies_relative(sysctl_stat_interval));
1845 	}
1846 }
1847 
1848 /*
1849  * Switch off vmstat processing and then fold all the remaining differentials
1850  * until the diffs stay at zero. The function is used by NOHZ and can only be
1851  * invoked when tick processing is not active.
1852  */
1853 /*
1854  * Check if the diffs for a certain cpu indicate that
1855  * an update is needed.
1856  */
1857 static bool need_update(int cpu)
1858 {
1859 	struct zone *zone;
1860 
1861 	for_each_populated_zone(zone) {
1862 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1863 
1864 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1865 #ifdef CONFIG_NUMA
1866 		BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1867 #endif
1868 
1869 		/*
1870 		 * The fast way of checking if there are any vmstat diffs.
1871 		 * This works because the diffs are byte sized items.
1872 		 */
1873 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1874 			return true;
1875 #ifdef CONFIG_NUMA
1876 		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS))
1877 			return true;
1878 #endif
1879 	}
1880 	return false;
1881 }
1882 
1883 /*
1884  * Switch off vmstat processing and then fold all the remaining differentials
1885  * until the diffs stay at zero. The function is used by NOHZ and can only be
1886  * invoked when tick processing is not active.
1887  */
1888 void quiet_vmstat(void)
1889 {
1890 	if (system_state != SYSTEM_RUNNING)
1891 		return;
1892 
1893 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1894 		return;
1895 
1896 	if (!need_update(smp_processor_id()))
1897 		return;
1898 
1899 	/*
1900 	 * Just refresh counters and do not care about the pending delayed
1901 	 * vmstat_update. It doesn't fire that often to matter and canceling
1902 	 * it would be too expensive from this path.
1903 	 * vmstat_shepherd will take care about that for us.
1904 	 */
1905 	refresh_cpu_vm_stats(false);
1906 }
1907 
1908 /*
1909  * Shepherd worker thread that checks the
1910  * differentials of processors that have their worker
1911  * threads for vm statistics updates disabled because of
1912  * inactivity.
1913  */
1914 static void vmstat_shepherd(struct work_struct *w);
1915 
1916 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1917 
1918 static void vmstat_shepherd(struct work_struct *w)
1919 {
1920 	int cpu;
1921 
1922 	get_online_cpus();
1923 	/* Check processors whose vmstat worker threads have been disabled */
1924 	for_each_online_cpu(cpu) {
1925 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1926 
1927 		if (!delayed_work_pending(dw) && need_update(cpu))
1928 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1929 	}
1930 	put_online_cpus();
1931 
1932 	schedule_delayed_work(&shepherd,
1933 		round_jiffies_relative(sysctl_stat_interval));
1934 }
1935 
1936 static void __init start_shepherd_timer(void)
1937 {
1938 	int cpu;
1939 
1940 	for_each_possible_cpu(cpu)
1941 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1942 			vmstat_update);
1943 
1944 	schedule_delayed_work(&shepherd,
1945 		round_jiffies_relative(sysctl_stat_interval));
1946 }
1947 
1948 static void __init init_cpu_node_state(void)
1949 {
1950 	int node;
1951 
1952 	for_each_online_node(node) {
1953 		if (cpumask_weight(cpumask_of_node(node)) > 0)
1954 			node_set_state(node, N_CPU);
1955 	}
1956 }
1957 
1958 static int vmstat_cpu_online(unsigned int cpu)
1959 {
1960 	refresh_zone_stat_thresholds();
1961 	node_set_state(cpu_to_node(cpu), N_CPU);
1962 	return 0;
1963 }
1964 
1965 static int vmstat_cpu_down_prep(unsigned int cpu)
1966 {
1967 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1968 	return 0;
1969 }
1970 
1971 static int vmstat_cpu_dead(unsigned int cpu)
1972 {
1973 	const struct cpumask *node_cpus;
1974 	int node;
1975 
1976 	node = cpu_to_node(cpu);
1977 
1978 	refresh_zone_stat_thresholds();
1979 	node_cpus = cpumask_of_node(node);
1980 	if (cpumask_weight(node_cpus) > 0)
1981 		return 0;
1982 
1983 	node_clear_state(node, N_CPU);
1984 	return 0;
1985 }
1986 
1987 #endif
1988 
1989 struct workqueue_struct *mm_percpu_wq;
1990 
1991 void __init init_mm_internals(void)
1992 {
1993 	int ret __maybe_unused;
1994 
1995 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1996 
1997 #ifdef CONFIG_SMP
1998 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1999 					NULL, vmstat_cpu_dead);
2000 	if (ret < 0)
2001 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2002 
2003 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2004 					vmstat_cpu_online,
2005 					vmstat_cpu_down_prep);
2006 	if (ret < 0)
2007 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2008 
2009 	get_online_cpus();
2010 	init_cpu_node_state();
2011 	put_online_cpus();
2012 
2013 	start_shepherd_timer();
2014 #endif
2015 #ifdef CONFIG_PROC_FS
2016 	proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
2017 	proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
2018 	proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
2019 	proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
2020 #endif
2021 }
2022 
2023 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2024 
2025 /*
2026  * Return an index indicating how much of the available free memory is
2027  * unusable for an allocation of the requested size.
2028  */
2029 static int unusable_free_index(unsigned int order,
2030 				struct contig_page_info *info)
2031 {
2032 	/* No free memory is interpreted as all free memory is unusable */
2033 	if (info->free_pages == 0)
2034 		return 1000;
2035 
2036 	/*
2037 	 * Index should be a value between 0 and 1. Return a value to 3
2038 	 * decimal places.
2039 	 *
2040 	 * 0 => no fragmentation
2041 	 * 1 => high fragmentation
2042 	 */
2043 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2044 
2045 }
2046 
2047 static void unusable_show_print(struct seq_file *m,
2048 					pg_data_t *pgdat, struct zone *zone)
2049 {
2050 	unsigned int order;
2051 	int index;
2052 	struct contig_page_info info;
2053 
2054 	seq_printf(m, "Node %d, zone %8s ",
2055 				pgdat->node_id,
2056 				zone->name);
2057 	for (order = 0; order < MAX_ORDER; ++order) {
2058 		fill_contig_page_info(zone, order, &info);
2059 		index = unusable_free_index(order, &info);
2060 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2061 	}
2062 
2063 	seq_putc(m, '\n');
2064 }
2065 
2066 /*
2067  * Display unusable free space index
2068  *
2069  * The unusable free space index measures how much of the available free
2070  * memory cannot be used to satisfy an allocation of a given size and is a
2071  * value between 0 and 1. The higher the value, the more of free memory is
2072  * unusable and by implication, the worse the external fragmentation is. This
2073  * can be expressed as a percentage by multiplying by 100.
2074  */
2075 static int unusable_show(struct seq_file *m, void *arg)
2076 {
2077 	pg_data_t *pgdat = (pg_data_t *)arg;
2078 
2079 	/* check memoryless node */
2080 	if (!node_state(pgdat->node_id, N_MEMORY))
2081 		return 0;
2082 
2083 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2084 
2085 	return 0;
2086 }
2087 
2088 static const struct seq_operations unusable_op = {
2089 	.start	= frag_start,
2090 	.next	= frag_next,
2091 	.stop	= frag_stop,
2092 	.show	= unusable_show,
2093 };
2094 
2095 static int unusable_open(struct inode *inode, struct file *file)
2096 {
2097 	return seq_open(file, &unusable_op);
2098 }
2099 
2100 static const struct file_operations unusable_file_ops = {
2101 	.open		= unusable_open,
2102 	.read		= seq_read,
2103 	.llseek		= seq_lseek,
2104 	.release	= seq_release,
2105 };
2106 
2107 static void extfrag_show_print(struct seq_file *m,
2108 					pg_data_t *pgdat, struct zone *zone)
2109 {
2110 	unsigned int order;
2111 	int index;
2112 
2113 	/* Alloc on stack as interrupts are disabled for zone walk */
2114 	struct contig_page_info info;
2115 
2116 	seq_printf(m, "Node %d, zone %8s ",
2117 				pgdat->node_id,
2118 				zone->name);
2119 	for (order = 0; order < MAX_ORDER; ++order) {
2120 		fill_contig_page_info(zone, order, &info);
2121 		index = __fragmentation_index(order, &info);
2122 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2123 	}
2124 
2125 	seq_putc(m, '\n');
2126 }
2127 
2128 /*
2129  * Display fragmentation index for orders that allocations would fail for
2130  */
2131 static int extfrag_show(struct seq_file *m, void *arg)
2132 {
2133 	pg_data_t *pgdat = (pg_data_t *)arg;
2134 
2135 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2136 
2137 	return 0;
2138 }
2139 
2140 static const struct seq_operations extfrag_op = {
2141 	.start	= frag_start,
2142 	.next	= frag_next,
2143 	.stop	= frag_stop,
2144 	.show	= extfrag_show,
2145 };
2146 
2147 static int extfrag_open(struct inode *inode, struct file *file)
2148 {
2149 	return seq_open(file, &extfrag_op);
2150 }
2151 
2152 static const struct file_operations extfrag_file_ops = {
2153 	.open		= extfrag_open,
2154 	.read		= seq_read,
2155 	.llseek		= seq_lseek,
2156 	.release	= seq_release,
2157 };
2158 
2159 static int __init extfrag_debug_init(void)
2160 {
2161 	struct dentry *extfrag_debug_root;
2162 
2163 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2164 	if (!extfrag_debug_root)
2165 		return -ENOMEM;
2166 
2167 	if (!debugfs_create_file("unusable_index", 0444,
2168 			extfrag_debug_root, NULL, &unusable_file_ops))
2169 		goto fail;
2170 
2171 	if (!debugfs_create_file("extfrag_index", 0444,
2172 			extfrag_debug_root, NULL, &extfrag_file_ops))
2173 		goto fail;
2174 
2175 	return 0;
2176 fail:
2177 	debugfs_remove_recursive(extfrag_debug_root);
2178 	return -ENOMEM;
2179 }
2180 
2181 module_init(extfrag_debug_init);
2182 #endif
2183