xref: /openbmc/linux/mm/vmstat.c (revision 3932b9ca)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23 
24 #include "internal.h"
25 
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29 
30 static void sum_vm_events(unsigned long *ret)
31 {
32 	int cpu;
33 	int i;
34 
35 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36 
37 	for_each_online_cpu(cpu) {
38 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39 
40 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 			ret[i] += this->event[i];
42 	}
43 }
44 
45 /*
46  * Accumulate the vm event counters across all CPUs.
47  * The result is unavoidably approximate - it can change
48  * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 	get_online_cpus();
53 	sum_vm_events(ret);
54 	put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57 
58 /*
59  * Fold the foreign cpu events into our own.
60  *
61  * This is adding to the events on one processor
62  * but keeps the global counts constant.
63  */
64 void vm_events_fold_cpu(int cpu)
65 {
66 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 	int i;
68 
69 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 		count_vm_events(i, fold_state->event[i]);
71 		fold_state->event[i] = 0;
72 	}
73 }
74 
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76 
77 /*
78  * Manage combined zone based / global counters
79  *
80  * vm_stat contains the global counters
81  */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84 
85 #ifdef CONFIG_SMP
86 
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 	int threshold;
90 	int watermark_distance;
91 
92 	/*
93 	 * As vmstats are not up to date, there is drift between the estimated
94 	 * and real values. For high thresholds and a high number of CPUs, it
95 	 * is possible for the min watermark to be breached while the estimated
96 	 * value looks fine. The pressure threshold is a reduced value such
97 	 * that even the maximum amount of drift will not accidentally breach
98 	 * the min watermark
99 	 */
100 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102 
103 	/*
104 	 * Maximum threshold is 125
105 	 */
106 	threshold = min(125, threshold);
107 
108 	return threshold;
109 }
110 
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 	int threshold;
114 	int mem;	/* memory in 128 MB units */
115 
116 	/*
117 	 * The threshold scales with the number of processors and the amount
118 	 * of memory per zone. More memory means that we can defer updates for
119 	 * longer, more processors could lead to more contention.
120  	 * fls() is used to have a cheap way of logarithmic scaling.
121 	 *
122 	 * Some sample thresholds:
123 	 *
124 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
125 	 * ------------------------------------------------------------------
126 	 * 8		1		1	0.9-1 GB	4
127 	 * 16		2		2	0.9-1 GB	4
128 	 * 20 		2		2	1-2 GB		5
129 	 * 24		2		2	2-4 GB		6
130 	 * 28		2		2	4-8 GB		7
131 	 * 32		2		2	8-16 GB		8
132 	 * 4		2		2	<128M		1
133 	 * 30		4		3	2-4 GB		5
134 	 * 48		4		3	8-16 GB		8
135 	 * 32		8		4	1-2 GB		4
136 	 * 32		8		4	0.9-1GB		4
137 	 * 10		16		5	<128M		1
138 	 * 40		16		5	900M		4
139 	 * 70		64		7	2-4 GB		5
140 	 * 84		64		7	4-8 GB		6
141 	 * 108		512		9	4-8 GB		6
142 	 * 125		1024		10	8-16 GB		8
143 	 * 125		1024		10	16-32 GB	9
144 	 */
145 
146 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147 
148 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149 
150 	/*
151 	 * Maximum threshold is 125
152 	 */
153 	threshold = min(125, threshold);
154 
155 	return threshold;
156 }
157 
158 /*
159  * Refresh the thresholds for each zone.
160  */
161 void refresh_zone_stat_thresholds(void)
162 {
163 	struct zone *zone;
164 	int cpu;
165 	int threshold;
166 
167 	for_each_populated_zone(zone) {
168 		unsigned long max_drift, tolerate_drift;
169 
170 		threshold = calculate_normal_threshold(zone);
171 
172 		for_each_online_cpu(cpu)
173 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 							= threshold;
175 
176 		/*
177 		 * Only set percpu_drift_mark if there is a danger that
178 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 		 * the min watermark could be breached by an allocation
180 		 */
181 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 		max_drift = num_online_cpus() * threshold;
183 		if (max_drift > tolerate_drift)
184 			zone->percpu_drift_mark = high_wmark_pages(zone) +
185 					max_drift;
186 	}
187 }
188 
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 				int (*calculate_pressure)(struct zone *))
191 {
192 	struct zone *zone;
193 	int cpu;
194 	int threshold;
195 	int i;
196 
197 	for (i = 0; i < pgdat->nr_zones; i++) {
198 		zone = &pgdat->node_zones[i];
199 		if (!zone->percpu_drift_mark)
200 			continue;
201 
202 		threshold = (*calculate_pressure)(zone);
203 		for_each_online_cpu(cpu)
204 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 							= threshold;
206 	}
207 }
208 
209 /*
210  * For use when we know that interrupts are disabled,
211  * or when we know that preemption is disabled and that
212  * particular counter cannot be updated from interrupt context.
213  */
214 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215 				int delta)
216 {
217 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
218 	s8 __percpu *p = pcp->vm_stat_diff + item;
219 	long x;
220 	long t;
221 
222 	x = delta + __this_cpu_read(*p);
223 
224 	t = __this_cpu_read(pcp->stat_threshold);
225 
226 	if (unlikely(x > t || x < -t)) {
227 		zone_page_state_add(x, zone, item);
228 		x = 0;
229 	}
230 	__this_cpu_write(*p, x);
231 }
232 EXPORT_SYMBOL(__mod_zone_page_state);
233 
234 /*
235  * Optimized increment and decrement functions.
236  *
237  * These are only for a single page and therefore can take a struct page *
238  * argument instead of struct zone *. This allows the inclusion of the code
239  * generated for page_zone(page) into the optimized functions.
240  *
241  * No overflow check is necessary and therefore the differential can be
242  * incremented or decremented in place which may allow the compilers to
243  * generate better code.
244  * The increment or decrement is known and therefore one boundary check can
245  * be omitted.
246  *
247  * NOTE: These functions are very performance sensitive. Change only
248  * with care.
249  *
250  * Some processors have inc/dec instructions that are atomic vs an interrupt.
251  * However, the code must first determine the differential location in a zone
252  * based on the processor number and then inc/dec the counter. There is no
253  * guarantee without disabling preemption that the processor will not change
254  * in between and therefore the atomicity vs. interrupt cannot be exploited
255  * in a useful way here.
256  */
257 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258 {
259 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
260 	s8 __percpu *p = pcp->vm_stat_diff + item;
261 	s8 v, t;
262 
263 	v = __this_cpu_inc_return(*p);
264 	t = __this_cpu_read(pcp->stat_threshold);
265 	if (unlikely(v > t)) {
266 		s8 overstep = t >> 1;
267 
268 		zone_page_state_add(v + overstep, zone, item);
269 		__this_cpu_write(*p, -overstep);
270 	}
271 }
272 
273 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 	__inc_zone_state(page_zone(page), item);
276 }
277 EXPORT_SYMBOL(__inc_zone_page_state);
278 
279 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280 {
281 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
282 	s8 __percpu *p = pcp->vm_stat_diff + item;
283 	s8 v, t;
284 
285 	v = __this_cpu_dec_return(*p);
286 	t = __this_cpu_read(pcp->stat_threshold);
287 	if (unlikely(v < - t)) {
288 		s8 overstep = t >> 1;
289 
290 		zone_page_state_add(v - overstep, zone, item);
291 		__this_cpu_write(*p, overstep);
292 	}
293 }
294 
295 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296 {
297 	__dec_zone_state(page_zone(page), item);
298 }
299 EXPORT_SYMBOL(__dec_zone_page_state);
300 
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 /*
303  * If we have cmpxchg_local support then we do not need to incur the overhead
304  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305  *
306  * mod_state() modifies the zone counter state through atomic per cpu
307  * operations.
308  *
309  * Overstep mode specifies how overstep should handled:
310  *     0       No overstepping
311  *     1       Overstepping half of threshold
312  *     -1      Overstepping minus half of threshold
313 */
314 static inline void mod_state(struct zone *zone,
315        enum zone_stat_item item, int delta, int overstep_mode)
316 {
317 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long o, n, t, z;
320 
321 	do {
322 		z = 0;  /* overflow to zone counters */
323 
324 		/*
325 		 * The fetching of the stat_threshold is racy. We may apply
326 		 * a counter threshold to the wrong the cpu if we get
327 		 * rescheduled while executing here. However, the next
328 		 * counter update will apply the threshold again and
329 		 * therefore bring the counter under the threshold again.
330 		 *
331 		 * Most of the time the thresholds are the same anyways
332 		 * for all cpus in a zone.
333 		 */
334 		t = this_cpu_read(pcp->stat_threshold);
335 
336 		o = this_cpu_read(*p);
337 		n = delta + o;
338 
339 		if (n > t || n < -t) {
340 			int os = overstep_mode * (t >> 1) ;
341 
342 			/* Overflow must be added to zone counters */
343 			z = n + os;
344 			n = -os;
345 		}
346 	} while (this_cpu_cmpxchg(*p, o, n) != o);
347 
348 	if (z)
349 		zone_page_state_add(z, zone, item);
350 }
351 
352 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353 					int delta)
354 {
355 	mod_state(zone, item, delta, 0);
356 }
357 EXPORT_SYMBOL(mod_zone_page_state);
358 
359 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360 {
361 	mod_state(zone, item, 1, 1);
362 }
363 
364 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 	mod_state(page_zone(page), item, 1, 1);
367 }
368 EXPORT_SYMBOL(inc_zone_page_state);
369 
370 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371 {
372 	mod_state(page_zone(page), item, -1, -1);
373 }
374 EXPORT_SYMBOL(dec_zone_page_state);
375 #else
376 /*
377  * Use interrupt disable to serialize counter updates
378  */
379 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380 					int delta)
381 {
382 	unsigned long flags;
383 
384 	local_irq_save(flags);
385 	__mod_zone_page_state(zone, item, delta);
386 	local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL(mod_zone_page_state);
389 
390 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 	unsigned long flags;
393 
394 	local_irq_save(flags);
395 	__inc_zone_state(zone, item);
396 	local_irq_restore(flags);
397 }
398 
399 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400 {
401 	unsigned long flags;
402 	struct zone *zone;
403 
404 	zone = page_zone(page);
405 	local_irq_save(flags);
406 	__inc_zone_state(zone, item);
407 	local_irq_restore(flags);
408 }
409 EXPORT_SYMBOL(inc_zone_page_state);
410 
411 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 	unsigned long flags;
414 
415 	local_irq_save(flags);
416 	__dec_zone_page_state(page, item);
417 	local_irq_restore(flags);
418 }
419 EXPORT_SYMBOL(dec_zone_page_state);
420 #endif
421 
422 static inline void fold_diff(int *diff)
423 {
424 	int i;
425 
426 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427 		if (diff[i])
428 			atomic_long_add(diff[i], &vm_stat[i]);
429 }
430 
431 /*
432  * Update the zone counters for the current cpu.
433  *
434  * Note that refresh_cpu_vm_stats strives to only access
435  * node local memory. The per cpu pagesets on remote zones are placed
436  * in the memory local to the processor using that pageset. So the
437  * loop over all zones will access a series of cachelines local to
438  * the processor.
439  *
440  * The call to zone_page_state_add updates the cachelines with the
441  * statistics in the remote zone struct as well as the global cachelines
442  * with the global counters. These could cause remote node cache line
443  * bouncing and will have to be only done when necessary.
444  */
445 static void refresh_cpu_vm_stats(void)
446 {
447 	struct zone *zone;
448 	int i;
449 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450 
451 	for_each_populated_zone(zone) {
452 		struct per_cpu_pageset __percpu *p = zone->pageset;
453 
454 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455 			int v;
456 
457 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458 			if (v) {
459 
460 				atomic_long_add(v, &zone->vm_stat[i]);
461 				global_diff[i] += v;
462 #ifdef CONFIG_NUMA
463 				/* 3 seconds idle till flush */
464 				__this_cpu_write(p->expire, 3);
465 #endif
466 			}
467 		}
468 		cond_resched();
469 #ifdef CONFIG_NUMA
470 		/*
471 		 * Deal with draining the remote pageset of this
472 		 * processor
473 		 *
474 		 * Check if there are pages remaining in this pageset
475 		 * if not then there is nothing to expire.
476 		 */
477 		if (!__this_cpu_read(p->expire) ||
478 			       !__this_cpu_read(p->pcp.count))
479 			continue;
480 
481 		/*
482 		 * We never drain zones local to this processor.
483 		 */
484 		if (zone_to_nid(zone) == numa_node_id()) {
485 			__this_cpu_write(p->expire, 0);
486 			continue;
487 		}
488 
489 
490 		if (__this_cpu_dec_return(p->expire))
491 			continue;
492 
493 		if (__this_cpu_read(p->pcp.count))
494 			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495 #endif
496 	}
497 	fold_diff(global_diff);
498 }
499 
500 /*
501  * Fold the data for an offline cpu into the global array.
502  * There cannot be any access by the offline cpu and therefore
503  * synchronization is simplified.
504  */
505 void cpu_vm_stats_fold(int cpu)
506 {
507 	struct zone *zone;
508 	int i;
509 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510 
511 	for_each_populated_zone(zone) {
512 		struct per_cpu_pageset *p;
513 
514 		p = per_cpu_ptr(zone->pageset, cpu);
515 
516 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517 			if (p->vm_stat_diff[i]) {
518 				int v;
519 
520 				v = p->vm_stat_diff[i];
521 				p->vm_stat_diff[i] = 0;
522 				atomic_long_add(v, &zone->vm_stat[i]);
523 				global_diff[i] += v;
524 			}
525 	}
526 
527 	fold_diff(global_diff);
528 }
529 
530 /*
531  * this is only called if !populated_zone(zone), which implies no other users of
532  * pset->vm_stat_diff[] exsist.
533  */
534 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535 {
536 	int i;
537 
538 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539 		if (pset->vm_stat_diff[i]) {
540 			int v = pset->vm_stat_diff[i];
541 			pset->vm_stat_diff[i] = 0;
542 			atomic_long_add(v, &zone->vm_stat[i]);
543 			atomic_long_add(v, &vm_stat[i]);
544 		}
545 }
546 #endif
547 
548 #ifdef CONFIG_NUMA
549 /*
550  * zonelist = the list of zones passed to the allocator
551  * z 	    = the zone from which the allocation occurred.
552  *
553  * Must be called with interrupts disabled.
554  *
555  * When __GFP_OTHER_NODE is set assume the node of the preferred
556  * zone is the local node. This is useful for daemons who allocate
557  * memory on behalf of other processes.
558  */
559 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560 {
561 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562 		__inc_zone_state(z, NUMA_HIT);
563 	} else {
564 		__inc_zone_state(z, NUMA_MISS);
565 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
566 	}
567 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
568 			preferred_zone->node : numa_node_id()))
569 		__inc_zone_state(z, NUMA_LOCAL);
570 	else
571 		__inc_zone_state(z, NUMA_OTHER);
572 }
573 #endif
574 
575 #ifdef CONFIG_COMPACTION
576 
577 struct contig_page_info {
578 	unsigned long free_pages;
579 	unsigned long free_blocks_total;
580 	unsigned long free_blocks_suitable;
581 };
582 
583 /*
584  * Calculate the number of free pages in a zone, how many contiguous
585  * pages are free and how many are large enough to satisfy an allocation of
586  * the target size. Note that this function makes no attempt to estimate
587  * how many suitable free blocks there *might* be if MOVABLE pages were
588  * migrated. Calculating that is possible, but expensive and can be
589  * figured out from userspace
590  */
591 static void fill_contig_page_info(struct zone *zone,
592 				unsigned int suitable_order,
593 				struct contig_page_info *info)
594 {
595 	unsigned int order;
596 
597 	info->free_pages = 0;
598 	info->free_blocks_total = 0;
599 	info->free_blocks_suitable = 0;
600 
601 	for (order = 0; order < MAX_ORDER; order++) {
602 		unsigned long blocks;
603 
604 		/* Count number of free blocks */
605 		blocks = zone->free_area[order].nr_free;
606 		info->free_blocks_total += blocks;
607 
608 		/* Count free base pages */
609 		info->free_pages += blocks << order;
610 
611 		/* Count the suitable free blocks */
612 		if (order >= suitable_order)
613 			info->free_blocks_suitable += blocks <<
614 						(order - suitable_order);
615 	}
616 }
617 
618 /*
619  * A fragmentation index only makes sense if an allocation of a requested
620  * size would fail. If that is true, the fragmentation index indicates
621  * whether external fragmentation or a lack of memory was the problem.
622  * The value can be used to determine if page reclaim or compaction
623  * should be used
624  */
625 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 {
627 	unsigned long requested = 1UL << order;
628 
629 	if (!info->free_blocks_total)
630 		return 0;
631 
632 	/* Fragmentation index only makes sense when a request would fail */
633 	if (info->free_blocks_suitable)
634 		return -1000;
635 
636 	/*
637 	 * Index is between 0 and 1 so return within 3 decimal places
638 	 *
639 	 * 0 => allocation would fail due to lack of memory
640 	 * 1 => allocation would fail due to fragmentation
641 	 */
642 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643 }
644 
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone *zone, unsigned int order)
647 {
648 	struct contig_page_info info;
649 
650 	fill_contig_page_info(zone, order, &info);
651 	return __fragmentation_index(order, &info);
652 }
653 #endif
654 
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
658 
659 static char * const migratetype_names[MIGRATE_TYPES] = {
660 	"Unmovable",
661 	"Reclaimable",
662 	"Movable",
663 	"Reserve",
664 #ifdef CONFIG_CMA
665 	"CMA",
666 #endif
667 #ifdef CONFIG_MEMORY_ISOLATION
668 	"Isolate",
669 #endif
670 };
671 
672 static void *frag_start(struct seq_file *m, loff_t *pos)
673 {
674 	pg_data_t *pgdat;
675 	loff_t node = *pos;
676 	for (pgdat = first_online_pgdat();
677 	     pgdat && node;
678 	     pgdat = next_online_pgdat(pgdat))
679 		--node;
680 
681 	return pgdat;
682 }
683 
684 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685 {
686 	pg_data_t *pgdat = (pg_data_t *)arg;
687 
688 	(*pos)++;
689 	return next_online_pgdat(pgdat);
690 }
691 
692 static void frag_stop(struct seq_file *m, void *arg)
693 {
694 }
695 
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 {
700 	struct zone *zone;
701 	struct zone *node_zones = pgdat->node_zones;
702 	unsigned long flags;
703 
704 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705 		if (!populated_zone(zone))
706 			continue;
707 
708 		spin_lock_irqsave(&zone->lock, flags);
709 		print(m, pgdat, zone);
710 		spin_unlock_irqrestore(&zone->lock, flags);
711 	}
712 }
713 #endif
714 
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
718 #else
719 #define TEXT_FOR_DMA(xx)
720 #endif
721 
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
724 #else
725 #define TEXT_FOR_DMA32(xx)
726 #endif
727 
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
730 #else
731 #define TEXT_FOR_HIGHMEM(xx)
732 #endif
733 
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
736 
737 const char * const vmstat_text[] = {
738 	/* Zoned VM counters */
739 	"nr_free_pages",
740 	"nr_alloc_batch",
741 	"nr_inactive_anon",
742 	"nr_active_anon",
743 	"nr_inactive_file",
744 	"nr_active_file",
745 	"nr_unevictable",
746 	"nr_mlock",
747 	"nr_anon_pages",
748 	"nr_mapped",
749 	"nr_file_pages",
750 	"nr_dirty",
751 	"nr_writeback",
752 	"nr_slab_reclaimable",
753 	"nr_slab_unreclaimable",
754 	"nr_page_table_pages",
755 	"nr_kernel_stack",
756 	"nr_unstable",
757 	"nr_bounce",
758 	"nr_vmscan_write",
759 	"nr_vmscan_immediate_reclaim",
760 	"nr_writeback_temp",
761 	"nr_isolated_anon",
762 	"nr_isolated_file",
763 	"nr_shmem",
764 	"nr_dirtied",
765 	"nr_written",
766 	"nr_pages_scanned",
767 
768 #ifdef CONFIG_NUMA
769 	"numa_hit",
770 	"numa_miss",
771 	"numa_foreign",
772 	"numa_interleave",
773 	"numa_local",
774 	"numa_other",
775 #endif
776 	"workingset_refault",
777 	"workingset_activate",
778 	"workingset_nodereclaim",
779 	"nr_anon_transparent_hugepages",
780 	"nr_free_cma",
781 	"nr_dirty_threshold",
782 	"nr_dirty_background_threshold",
783 
784 #ifdef CONFIG_VM_EVENT_COUNTERS
785 	"pgpgin",
786 	"pgpgout",
787 	"pswpin",
788 	"pswpout",
789 
790 	TEXTS_FOR_ZONES("pgalloc")
791 
792 	"pgfree",
793 	"pgactivate",
794 	"pgdeactivate",
795 
796 	"pgfault",
797 	"pgmajfault",
798 
799 	TEXTS_FOR_ZONES("pgrefill")
800 	TEXTS_FOR_ZONES("pgsteal_kswapd")
801 	TEXTS_FOR_ZONES("pgsteal_direct")
802 	TEXTS_FOR_ZONES("pgscan_kswapd")
803 	TEXTS_FOR_ZONES("pgscan_direct")
804 	"pgscan_direct_throttle",
805 
806 #ifdef CONFIG_NUMA
807 	"zone_reclaim_failed",
808 #endif
809 	"pginodesteal",
810 	"slabs_scanned",
811 	"kswapd_inodesteal",
812 	"kswapd_low_wmark_hit_quickly",
813 	"kswapd_high_wmark_hit_quickly",
814 	"pageoutrun",
815 	"allocstall",
816 
817 	"pgrotated",
818 
819 	"drop_pagecache",
820 	"drop_slab",
821 
822 #ifdef CONFIG_NUMA_BALANCING
823 	"numa_pte_updates",
824 	"numa_huge_pte_updates",
825 	"numa_hint_faults",
826 	"numa_hint_faults_local",
827 	"numa_pages_migrated",
828 #endif
829 #ifdef CONFIG_MIGRATION
830 	"pgmigrate_success",
831 	"pgmigrate_fail",
832 #endif
833 #ifdef CONFIG_COMPACTION
834 	"compact_migrate_scanned",
835 	"compact_free_scanned",
836 	"compact_isolated",
837 	"compact_stall",
838 	"compact_fail",
839 	"compact_success",
840 #endif
841 
842 #ifdef CONFIG_HUGETLB_PAGE
843 	"htlb_buddy_alloc_success",
844 	"htlb_buddy_alloc_fail",
845 #endif
846 	"unevictable_pgs_culled",
847 	"unevictable_pgs_scanned",
848 	"unevictable_pgs_rescued",
849 	"unevictable_pgs_mlocked",
850 	"unevictable_pgs_munlocked",
851 	"unevictable_pgs_cleared",
852 	"unevictable_pgs_stranded",
853 
854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 	"thp_fault_alloc",
856 	"thp_fault_fallback",
857 	"thp_collapse_alloc",
858 	"thp_collapse_alloc_failed",
859 	"thp_split",
860 	"thp_zero_page_alloc",
861 	"thp_zero_page_alloc_failed",
862 #endif
863 #ifdef CONFIG_DEBUG_TLBFLUSH
864 #ifdef CONFIG_SMP
865 	"nr_tlb_remote_flush",
866 	"nr_tlb_remote_flush_received",
867 #endif /* CONFIG_SMP */
868 	"nr_tlb_local_flush_all",
869 	"nr_tlb_local_flush_one",
870 #endif /* CONFIG_DEBUG_TLBFLUSH */
871 
872 #ifdef CONFIG_DEBUG_VM_VMACACHE
873 	"vmacache_find_calls",
874 	"vmacache_find_hits",
875 #endif
876 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 };
878 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
879 
880 
881 #ifdef CONFIG_PROC_FS
882 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
883 						struct zone *zone)
884 {
885 	int order;
886 
887 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
888 	for (order = 0; order < MAX_ORDER; ++order)
889 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
890 	seq_putc(m, '\n');
891 }
892 
893 /*
894  * This walks the free areas for each zone.
895  */
896 static int frag_show(struct seq_file *m, void *arg)
897 {
898 	pg_data_t *pgdat = (pg_data_t *)arg;
899 	walk_zones_in_node(m, pgdat, frag_show_print);
900 	return 0;
901 }
902 
903 static void pagetypeinfo_showfree_print(struct seq_file *m,
904 					pg_data_t *pgdat, struct zone *zone)
905 {
906 	int order, mtype;
907 
908 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
909 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
910 					pgdat->node_id,
911 					zone->name,
912 					migratetype_names[mtype]);
913 		for (order = 0; order < MAX_ORDER; ++order) {
914 			unsigned long freecount = 0;
915 			struct free_area *area;
916 			struct list_head *curr;
917 
918 			area = &(zone->free_area[order]);
919 
920 			list_for_each(curr, &area->free_list[mtype])
921 				freecount++;
922 			seq_printf(m, "%6lu ", freecount);
923 		}
924 		seq_putc(m, '\n');
925 	}
926 }
927 
928 /* Print out the free pages at each order for each migatetype */
929 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
930 {
931 	int order;
932 	pg_data_t *pgdat = (pg_data_t *)arg;
933 
934 	/* Print header */
935 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
936 	for (order = 0; order < MAX_ORDER; ++order)
937 		seq_printf(m, "%6d ", order);
938 	seq_putc(m, '\n');
939 
940 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
941 
942 	return 0;
943 }
944 
945 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
946 					pg_data_t *pgdat, struct zone *zone)
947 {
948 	int mtype;
949 	unsigned long pfn;
950 	unsigned long start_pfn = zone->zone_start_pfn;
951 	unsigned long end_pfn = zone_end_pfn(zone);
952 	unsigned long count[MIGRATE_TYPES] = { 0, };
953 
954 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
955 		struct page *page;
956 
957 		if (!pfn_valid(pfn))
958 			continue;
959 
960 		page = pfn_to_page(pfn);
961 
962 		/* Watch for unexpected holes punched in the memmap */
963 		if (!memmap_valid_within(pfn, page, zone))
964 			continue;
965 
966 		mtype = get_pageblock_migratetype(page);
967 
968 		if (mtype < MIGRATE_TYPES)
969 			count[mtype]++;
970 	}
971 
972 	/* Print counts */
973 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
974 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
975 		seq_printf(m, "%12lu ", count[mtype]);
976 	seq_putc(m, '\n');
977 }
978 
979 /* Print out the free pages at each order for each migratetype */
980 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
981 {
982 	int mtype;
983 	pg_data_t *pgdat = (pg_data_t *)arg;
984 
985 	seq_printf(m, "\n%-23s", "Number of blocks type ");
986 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
987 		seq_printf(m, "%12s ", migratetype_names[mtype]);
988 	seq_putc(m, '\n');
989 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
990 
991 	return 0;
992 }
993 
994 /*
995  * This prints out statistics in relation to grouping pages by mobility.
996  * It is expensive to collect so do not constantly read the file.
997  */
998 static int pagetypeinfo_show(struct seq_file *m, void *arg)
999 {
1000 	pg_data_t *pgdat = (pg_data_t *)arg;
1001 
1002 	/* check memoryless node */
1003 	if (!node_state(pgdat->node_id, N_MEMORY))
1004 		return 0;
1005 
1006 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1007 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1008 	seq_putc(m, '\n');
1009 	pagetypeinfo_showfree(m, pgdat);
1010 	pagetypeinfo_showblockcount(m, pgdat);
1011 
1012 	return 0;
1013 }
1014 
1015 static const struct seq_operations fragmentation_op = {
1016 	.start	= frag_start,
1017 	.next	= frag_next,
1018 	.stop	= frag_stop,
1019 	.show	= frag_show,
1020 };
1021 
1022 static int fragmentation_open(struct inode *inode, struct file *file)
1023 {
1024 	return seq_open(file, &fragmentation_op);
1025 }
1026 
1027 static const struct file_operations fragmentation_file_operations = {
1028 	.open		= fragmentation_open,
1029 	.read		= seq_read,
1030 	.llseek		= seq_lseek,
1031 	.release	= seq_release,
1032 };
1033 
1034 static const struct seq_operations pagetypeinfo_op = {
1035 	.start	= frag_start,
1036 	.next	= frag_next,
1037 	.stop	= frag_stop,
1038 	.show	= pagetypeinfo_show,
1039 };
1040 
1041 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1042 {
1043 	return seq_open(file, &pagetypeinfo_op);
1044 }
1045 
1046 static const struct file_operations pagetypeinfo_file_ops = {
1047 	.open		= pagetypeinfo_open,
1048 	.read		= seq_read,
1049 	.llseek		= seq_lseek,
1050 	.release	= seq_release,
1051 };
1052 
1053 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1054 							struct zone *zone)
1055 {
1056 	int i;
1057 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1058 	seq_printf(m,
1059 		   "\n  pages free     %lu"
1060 		   "\n        min      %lu"
1061 		   "\n        low      %lu"
1062 		   "\n        high     %lu"
1063 		   "\n        scanned  %lu"
1064 		   "\n        spanned  %lu"
1065 		   "\n        present  %lu"
1066 		   "\n        managed  %lu",
1067 		   zone_page_state(zone, NR_FREE_PAGES),
1068 		   min_wmark_pages(zone),
1069 		   low_wmark_pages(zone),
1070 		   high_wmark_pages(zone),
1071 		   zone_page_state(zone, NR_PAGES_SCANNED),
1072 		   zone->spanned_pages,
1073 		   zone->present_pages,
1074 		   zone->managed_pages);
1075 
1076 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1077 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1078 				zone_page_state(zone, i));
1079 
1080 	seq_printf(m,
1081 		   "\n        protection: (%ld",
1082 		   zone->lowmem_reserve[0]);
1083 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1084 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1085 	seq_printf(m,
1086 		   ")"
1087 		   "\n  pagesets");
1088 	for_each_online_cpu(i) {
1089 		struct per_cpu_pageset *pageset;
1090 
1091 		pageset = per_cpu_ptr(zone->pageset, i);
1092 		seq_printf(m,
1093 			   "\n    cpu: %i"
1094 			   "\n              count: %i"
1095 			   "\n              high:  %i"
1096 			   "\n              batch: %i",
1097 			   i,
1098 			   pageset->pcp.count,
1099 			   pageset->pcp.high,
1100 			   pageset->pcp.batch);
1101 #ifdef CONFIG_SMP
1102 		seq_printf(m, "\n  vm stats threshold: %d",
1103 				pageset->stat_threshold);
1104 #endif
1105 	}
1106 	seq_printf(m,
1107 		   "\n  all_unreclaimable: %u"
1108 		   "\n  start_pfn:         %lu"
1109 		   "\n  inactive_ratio:    %u",
1110 		   !zone_reclaimable(zone),
1111 		   zone->zone_start_pfn,
1112 		   zone->inactive_ratio);
1113 	seq_putc(m, '\n');
1114 }
1115 
1116 /*
1117  * Output information about zones in @pgdat.
1118  */
1119 static int zoneinfo_show(struct seq_file *m, void *arg)
1120 {
1121 	pg_data_t *pgdat = (pg_data_t *)arg;
1122 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1123 	return 0;
1124 }
1125 
1126 static const struct seq_operations zoneinfo_op = {
1127 	.start	= frag_start, /* iterate over all zones. The same as in
1128 			       * fragmentation. */
1129 	.next	= frag_next,
1130 	.stop	= frag_stop,
1131 	.show	= zoneinfo_show,
1132 };
1133 
1134 static int zoneinfo_open(struct inode *inode, struct file *file)
1135 {
1136 	return seq_open(file, &zoneinfo_op);
1137 }
1138 
1139 static const struct file_operations proc_zoneinfo_file_operations = {
1140 	.open		= zoneinfo_open,
1141 	.read		= seq_read,
1142 	.llseek		= seq_lseek,
1143 	.release	= seq_release,
1144 };
1145 
1146 enum writeback_stat_item {
1147 	NR_DIRTY_THRESHOLD,
1148 	NR_DIRTY_BG_THRESHOLD,
1149 	NR_VM_WRITEBACK_STAT_ITEMS,
1150 };
1151 
1152 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1153 {
1154 	unsigned long *v;
1155 	int i, stat_items_size;
1156 
1157 	if (*pos >= ARRAY_SIZE(vmstat_text))
1158 		return NULL;
1159 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1160 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1161 
1162 #ifdef CONFIG_VM_EVENT_COUNTERS
1163 	stat_items_size += sizeof(struct vm_event_state);
1164 #endif
1165 
1166 	v = kmalloc(stat_items_size, GFP_KERNEL);
1167 	m->private = v;
1168 	if (!v)
1169 		return ERR_PTR(-ENOMEM);
1170 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1171 		v[i] = global_page_state(i);
1172 	v += NR_VM_ZONE_STAT_ITEMS;
1173 
1174 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1175 			    v + NR_DIRTY_THRESHOLD);
1176 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1177 
1178 #ifdef CONFIG_VM_EVENT_COUNTERS
1179 	all_vm_events(v);
1180 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1181 	v[PGPGOUT] /= 2;
1182 #endif
1183 	return (unsigned long *)m->private + *pos;
1184 }
1185 
1186 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1187 {
1188 	(*pos)++;
1189 	if (*pos >= ARRAY_SIZE(vmstat_text))
1190 		return NULL;
1191 	return (unsigned long *)m->private + *pos;
1192 }
1193 
1194 static int vmstat_show(struct seq_file *m, void *arg)
1195 {
1196 	unsigned long *l = arg;
1197 	unsigned long off = l - (unsigned long *)m->private;
1198 
1199 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1200 	return 0;
1201 }
1202 
1203 static void vmstat_stop(struct seq_file *m, void *arg)
1204 {
1205 	kfree(m->private);
1206 	m->private = NULL;
1207 }
1208 
1209 static const struct seq_operations vmstat_op = {
1210 	.start	= vmstat_start,
1211 	.next	= vmstat_next,
1212 	.stop	= vmstat_stop,
1213 	.show	= vmstat_show,
1214 };
1215 
1216 static int vmstat_open(struct inode *inode, struct file *file)
1217 {
1218 	return seq_open(file, &vmstat_op);
1219 }
1220 
1221 static const struct file_operations proc_vmstat_file_operations = {
1222 	.open		= vmstat_open,
1223 	.read		= seq_read,
1224 	.llseek		= seq_lseek,
1225 	.release	= seq_release,
1226 };
1227 #endif /* CONFIG_PROC_FS */
1228 
1229 #ifdef CONFIG_SMP
1230 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1231 int sysctl_stat_interval __read_mostly = HZ;
1232 
1233 static void vmstat_update(struct work_struct *w)
1234 {
1235 	refresh_cpu_vm_stats();
1236 	schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1237 		round_jiffies_relative(sysctl_stat_interval));
1238 }
1239 
1240 static void start_cpu_timer(int cpu)
1241 {
1242 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1243 
1244 	INIT_DEFERRABLE_WORK(work, vmstat_update);
1245 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1246 }
1247 
1248 static void vmstat_cpu_dead(int node)
1249 {
1250 	int cpu;
1251 
1252 	get_online_cpus();
1253 	for_each_online_cpu(cpu)
1254 		if (cpu_to_node(cpu) == node)
1255 			goto end;
1256 
1257 	node_clear_state(node, N_CPU);
1258 end:
1259 	put_online_cpus();
1260 }
1261 
1262 /*
1263  * Use the cpu notifier to insure that the thresholds are recalculated
1264  * when necessary.
1265  */
1266 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1267 		unsigned long action,
1268 		void *hcpu)
1269 {
1270 	long cpu = (long)hcpu;
1271 
1272 	switch (action) {
1273 	case CPU_ONLINE:
1274 	case CPU_ONLINE_FROZEN:
1275 		refresh_zone_stat_thresholds();
1276 		start_cpu_timer(cpu);
1277 		node_set_state(cpu_to_node(cpu), N_CPU);
1278 		break;
1279 	case CPU_DOWN_PREPARE:
1280 	case CPU_DOWN_PREPARE_FROZEN:
1281 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1282 		per_cpu(vmstat_work, cpu).work.func = NULL;
1283 		break;
1284 	case CPU_DOWN_FAILED:
1285 	case CPU_DOWN_FAILED_FROZEN:
1286 		start_cpu_timer(cpu);
1287 		break;
1288 	case CPU_DEAD:
1289 	case CPU_DEAD_FROZEN:
1290 		refresh_zone_stat_thresholds();
1291 		vmstat_cpu_dead(cpu_to_node(cpu));
1292 		break;
1293 	default:
1294 		break;
1295 	}
1296 	return NOTIFY_OK;
1297 }
1298 
1299 static struct notifier_block vmstat_notifier =
1300 	{ &vmstat_cpuup_callback, NULL, 0 };
1301 #endif
1302 
1303 static int __init setup_vmstat(void)
1304 {
1305 #ifdef CONFIG_SMP
1306 	int cpu;
1307 
1308 	cpu_notifier_register_begin();
1309 	__register_cpu_notifier(&vmstat_notifier);
1310 
1311 	for_each_online_cpu(cpu) {
1312 		start_cpu_timer(cpu);
1313 		node_set_state(cpu_to_node(cpu), N_CPU);
1314 	}
1315 	cpu_notifier_register_done();
1316 #endif
1317 #ifdef CONFIG_PROC_FS
1318 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1319 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1320 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1321 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1322 #endif
1323 	return 0;
1324 }
1325 module_init(setup_vmstat)
1326 
1327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1328 #include <linux/debugfs.h>
1329 
1330 
1331 /*
1332  * Return an index indicating how much of the available free memory is
1333  * unusable for an allocation of the requested size.
1334  */
1335 static int unusable_free_index(unsigned int order,
1336 				struct contig_page_info *info)
1337 {
1338 	/* No free memory is interpreted as all free memory is unusable */
1339 	if (info->free_pages == 0)
1340 		return 1000;
1341 
1342 	/*
1343 	 * Index should be a value between 0 and 1. Return a value to 3
1344 	 * decimal places.
1345 	 *
1346 	 * 0 => no fragmentation
1347 	 * 1 => high fragmentation
1348 	 */
1349 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1350 
1351 }
1352 
1353 static void unusable_show_print(struct seq_file *m,
1354 					pg_data_t *pgdat, struct zone *zone)
1355 {
1356 	unsigned int order;
1357 	int index;
1358 	struct contig_page_info info;
1359 
1360 	seq_printf(m, "Node %d, zone %8s ",
1361 				pgdat->node_id,
1362 				zone->name);
1363 	for (order = 0; order < MAX_ORDER; ++order) {
1364 		fill_contig_page_info(zone, order, &info);
1365 		index = unusable_free_index(order, &info);
1366 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1367 	}
1368 
1369 	seq_putc(m, '\n');
1370 }
1371 
1372 /*
1373  * Display unusable free space index
1374  *
1375  * The unusable free space index measures how much of the available free
1376  * memory cannot be used to satisfy an allocation of a given size and is a
1377  * value between 0 and 1. The higher the value, the more of free memory is
1378  * unusable and by implication, the worse the external fragmentation is. This
1379  * can be expressed as a percentage by multiplying by 100.
1380  */
1381 static int unusable_show(struct seq_file *m, void *arg)
1382 {
1383 	pg_data_t *pgdat = (pg_data_t *)arg;
1384 
1385 	/* check memoryless node */
1386 	if (!node_state(pgdat->node_id, N_MEMORY))
1387 		return 0;
1388 
1389 	walk_zones_in_node(m, pgdat, unusable_show_print);
1390 
1391 	return 0;
1392 }
1393 
1394 static const struct seq_operations unusable_op = {
1395 	.start	= frag_start,
1396 	.next	= frag_next,
1397 	.stop	= frag_stop,
1398 	.show	= unusable_show,
1399 };
1400 
1401 static int unusable_open(struct inode *inode, struct file *file)
1402 {
1403 	return seq_open(file, &unusable_op);
1404 }
1405 
1406 static const struct file_operations unusable_file_ops = {
1407 	.open		= unusable_open,
1408 	.read		= seq_read,
1409 	.llseek		= seq_lseek,
1410 	.release	= seq_release,
1411 };
1412 
1413 static void extfrag_show_print(struct seq_file *m,
1414 					pg_data_t *pgdat, struct zone *zone)
1415 {
1416 	unsigned int order;
1417 	int index;
1418 
1419 	/* Alloc on stack as interrupts are disabled for zone walk */
1420 	struct contig_page_info info;
1421 
1422 	seq_printf(m, "Node %d, zone %8s ",
1423 				pgdat->node_id,
1424 				zone->name);
1425 	for (order = 0; order < MAX_ORDER; ++order) {
1426 		fill_contig_page_info(zone, order, &info);
1427 		index = __fragmentation_index(order, &info);
1428 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1429 	}
1430 
1431 	seq_putc(m, '\n');
1432 }
1433 
1434 /*
1435  * Display fragmentation index for orders that allocations would fail for
1436  */
1437 static int extfrag_show(struct seq_file *m, void *arg)
1438 {
1439 	pg_data_t *pgdat = (pg_data_t *)arg;
1440 
1441 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1442 
1443 	return 0;
1444 }
1445 
1446 static const struct seq_operations extfrag_op = {
1447 	.start	= frag_start,
1448 	.next	= frag_next,
1449 	.stop	= frag_stop,
1450 	.show	= extfrag_show,
1451 };
1452 
1453 static int extfrag_open(struct inode *inode, struct file *file)
1454 {
1455 	return seq_open(file, &extfrag_op);
1456 }
1457 
1458 static const struct file_operations extfrag_file_ops = {
1459 	.open		= extfrag_open,
1460 	.read		= seq_read,
1461 	.llseek		= seq_lseek,
1462 	.release	= seq_release,
1463 };
1464 
1465 static int __init extfrag_debug_init(void)
1466 {
1467 	struct dentry *extfrag_debug_root;
1468 
1469 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1470 	if (!extfrag_debug_root)
1471 		return -ENOMEM;
1472 
1473 	if (!debugfs_create_file("unusable_index", 0444,
1474 			extfrag_debug_root, NULL, &unusable_file_ops))
1475 		goto fail;
1476 
1477 	if (!debugfs_create_file("extfrag_index", 0444,
1478 			extfrag_debug_root, NULL, &extfrag_file_ops))
1479 		goto fail;
1480 
1481 	return 0;
1482 fail:
1483 	debugfs_remove_recursive(extfrag_debug_root);
1484 	return -ENOMEM;
1485 }
1486 
1487 module_init(extfrag_debug_init);
1488 #endif
1489