1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #ifdef CONFIG_VM_EVENT_COUNTERS 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 36 37 static void sum_vm_events(unsigned long *ret) 38 { 39 int cpu; 40 int i; 41 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 43 44 for_each_online_cpu(cpu) { 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 46 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 48 ret[i] += this->event[i]; 49 } 50 } 51 52 /* 53 * Accumulate the vm event counters across all CPUs. 54 * The result is unavoidably approximate - it can change 55 * during and after execution of this function. 56 */ 57 void all_vm_events(unsigned long *ret) 58 { 59 get_online_cpus(); 60 sum_vm_events(ret); 61 put_online_cpus(); 62 } 63 EXPORT_SYMBOL_GPL(all_vm_events); 64 65 /* 66 * Fold the foreign cpu events into our own. 67 * 68 * This is adding to the events on one processor 69 * but keeps the global counts constant. 70 */ 71 void vm_events_fold_cpu(int cpu) 72 { 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 74 int i; 75 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 77 count_vm_events(i, fold_state->event[i]); 78 fold_state->event[i] = 0; 79 } 80 } 81 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 83 84 /* 85 * Manage combined zone based / global counters 86 * 87 * vm_stat contains the global counters 88 */ 89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 90 EXPORT_SYMBOL(vm_stat); 91 92 #ifdef CONFIG_SMP 93 94 int calculate_pressure_threshold(struct zone *zone) 95 { 96 int threshold; 97 int watermark_distance; 98 99 /* 100 * As vmstats are not up to date, there is drift between the estimated 101 * and real values. For high thresholds and a high number of CPUs, it 102 * is possible for the min watermark to be breached while the estimated 103 * value looks fine. The pressure threshold is a reduced value such 104 * that even the maximum amount of drift will not accidentally breach 105 * the min watermark 106 */ 107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 108 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 109 110 /* 111 * Maximum threshold is 125 112 */ 113 threshold = min(125, threshold); 114 115 return threshold; 116 } 117 118 int calculate_normal_threshold(struct zone *zone) 119 { 120 int threshold; 121 int mem; /* memory in 128 MB units */ 122 123 /* 124 * The threshold scales with the number of processors and the amount 125 * of memory per zone. More memory means that we can defer updates for 126 * longer, more processors could lead to more contention. 127 * fls() is used to have a cheap way of logarithmic scaling. 128 * 129 * Some sample thresholds: 130 * 131 * Threshold Processors (fls) Zonesize fls(mem+1) 132 * ------------------------------------------------------------------ 133 * 8 1 1 0.9-1 GB 4 134 * 16 2 2 0.9-1 GB 4 135 * 20 2 2 1-2 GB 5 136 * 24 2 2 2-4 GB 6 137 * 28 2 2 4-8 GB 7 138 * 32 2 2 8-16 GB 8 139 * 4 2 2 <128M 1 140 * 30 4 3 2-4 GB 5 141 * 48 4 3 8-16 GB 8 142 * 32 8 4 1-2 GB 4 143 * 32 8 4 0.9-1GB 4 144 * 10 16 5 <128M 1 145 * 40 16 5 900M 4 146 * 70 64 7 2-4 GB 5 147 * 84 64 7 4-8 GB 6 148 * 108 512 9 4-8 GB 6 149 * 125 1024 10 8-16 GB 8 150 * 125 1024 10 16-32 GB 9 151 */ 152 153 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 154 155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 156 157 /* 158 * Maximum threshold is 125 159 */ 160 threshold = min(125, threshold); 161 162 return threshold; 163 } 164 165 /* 166 * Refresh the thresholds for each zone. 167 */ 168 void refresh_zone_stat_thresholds(void) 169 { 170 struct zone *zone; 171 int cpu; 172 int threshold; 173 174 for_each_populated_zone(zone) { 175 unsigned long max_drift, tolerate_drift; 176 177 threshold = calculate_normal_threshold(zone); 178 179 for_each_online_cpu(cpu) 180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 181 = threshold; 182 183 /* 184 * Only set percpu_drift_mark if there is a danger that 185 * NR_FREE_PAGES reports the low watermark is ok when in fact 186 * the min watermark could be breached by an allocation 187 */ 188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 189 max_drift = num_online_cpus() * threshold; 190 if (max_drift > tolerate_drift) 191 zone->percpu_drift_mark = high_wmark_pages(zone) + 192 max_drift; 193 } 194 } 195 196 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 197 int (*calculate_pressure)(struct zone *)) 198 { 199 struct zone *zone; 200 int cpu; 201 int threshold; 202 int i; 203 204 for (i = 0; i < pgdat->nr_zones; i++) { 205 zone = &pgdat->node_zones[i]; 206 if (!zone->percpu_drift_mark) 207 continue; 208 209 threshold = (*calculate_pressure)(zone); 210 for_each_online_cpu(cpu) 211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 212 = threshold; 213 } 214 } 215 216 /* 217 * For use when we know that interrupts are disabled, 218 * or when we know that preemption is disabled and that 219 * particular counter cannot be updated from interrupt context. 220 */ 221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 222 long delta) 223 { 224 struct per_cpu_pageset __percpu *pcp = zone->pageset; 225 s8 __percpu *p = pcp->vm_stat_diff + item; 226 long x; 227 long t; 228 229 x = delta + __this_cpu_read(*p); 230 231 t = __this_cpu_read(pcp->stat_threshold); 232 233 if (unlikely(x > t || x < -t)) { 234 zone_page_state_add(x, zone, item); 235 x = 0; 236 } 237 __this_cpu_write(*p, x); 238 } 239 EXPORT_SYMBOL(__mod_zone_page_state); 240 241 /* 242 * Optimized increment and decrement functions. 243 * 244 * These are only for a single page and therefore can take a struct page * 245 * argument instead of struct zone *. This allows the inclusion of the code 246 * generated for page_zone(page) into the optimized functions. 247 * 248 * No overflow check is necessary and therefore the differential can be 249 * incremented or decremented in place which may allow the compilers to 250 * generate better code. 251 * The increment or decrement is known and therefore one boundary check can 252 * be omitted. 253 * 254 * NOTE: These functions are very performance sensitive. Change only 255 * with care. 256 * 257 * Some processors have inc/dec instructions that are atomic vs an interrupt. 258 * However, the code must first determine the differential location in a zone 259 * based on the processor number and then inc/dec the counter. There is no 260 * guarantee without disabling preemption that the processor will not change 261 * in between and therefore the atomicity vs. interrupt cannot be exploited 262 * in a useful way here. 263 */ 264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 265 { 266 struct per_cpu_pageset __percpu *pcp = zone->pageset; 267 s8 __percpu *p = pcp->vm_stat_diff + item; 268 s8 v, t; 269 270 v = __this_cpu_inc_return(*p); 271 t = __this_cpu_read(pcp->stat_threshold); 272 if (unlikely(v > t)) { 273 s8 overstep = t >> 1; 274 275 zone_page_state_add(v + overstep, zone, item); 276 __this_cpu_write(*p, -overstep); 277 } 278 } 279 280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 281 { 282 __inc_zone_state(page_zone(page), item); 283 } 284 EXPORT_SYMBOL(__inc_zone_page_state); 285 286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 287 { 288 struct per_cpu_pageset __percpu *pcp = zone->pageset; 289 s8 __percpu *p = pcp->vm_stat_diff + item; 290 s8 v, t; 291 292 v = __this_cpu_dec_return(*p); 293 t = __this_cpu_read(pcp->stat_threshold); 294 if (unlikely(v < - t)) { 295 s8 overstep = t >> 1; 296 297 zone_page_state_add(v - overstep, zone, item); 298 __this_cpu_write(*p, overstep); 299 } 300 } 301 302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 303 { 304 __dec_zone_state(page_zone(page), item); 305 } 306 EXPORT_SYMBOL(__dec_zone_page_state); 307 308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 309 /* 310 * If we have cmpxchg_local support then we do not need to incur the overhead 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 312 * 313 * mod_state() modifies the zone counter state through atomic per cpu 314 * operations. 315 * 316 * Overstep mode specifies how overstep should handled: 317 * 0 No overstepping 318 * 1 Overstepping half of threshold 319 * -1 Overstepping minus half of threshold 320 */ 321 static inline void mod_state(struct zone *zone, enum zone_stat_item item, 322 long delta, int overstep_mode) 323 { 324 struct per_cpu_pageset __percpu *pcp = zone->pageset; 325 s8 __percpu *p = pcp->vm_stat_diff + item; 326 long o, n, t, z; 327 328 do { 329 z = 0; /* overflow to zone counters */ 330 331 /* 332 * The fetching of the stat_threshold is racy. We may apply 333 * a counter threshold to the wrong the cpu if we get 334 * rescheduled while executing here. However, the next 335 * counter update will apply the threshold again and 336 * therefore bring the counter under the threshold again. 337 * 338 * Most of the time the thresholds are the same anyways 339 * for all cpus in a zone. 340 */ 341 t = this_cpu_read(pcp->stat_threshold); 342 343 o = this_cpu_read(*p); 344 n = delta + o; 345 346 if (n > t || n < -t) { 347 int os = overstep_mode * (t >> 1) ; 348 349 /* Overflow must be added to zone counters */ 350 z = n + os; 351 n = -os; 352 } 353 } while (this_cpu_cmpxchg(*p, o, n) != o); 354 355 if (z) 356 zone_page_state_add(z, zone, item); 357 } 358 359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 360 long delta) 361 { 362 mod_state(zone, item, delta, 0); 363 } 364 EXPORT_SYMBOL(mod_zone_page_state); 365 366 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 367 { 368 mod_state(zone, item, 1, 1); 369 } 370 371 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 372 { 373 mod_state(page_zone(page), item, 1, 1); 374 } 375 EXPORT_SYMBOL(inc_zone_page_state); 376 377 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 378 { 379 mod_state(page_zone(page), item, -1, -1); 380 } 381 EXPORT_SYMBOL(dec_zone_page_state); 382 #else 383 /* 384 * Use interrupt disable to serialize counter updates 385 */ 386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 387 long delta) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __mod_zone_page_state(zone, item, delta); 393 local_irq_restore(flags); 394 } 395 EXPORT_SYMBOL(mod_zone_page_state); 396 397 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 398 { 399 unsigned long flags; 400 401 local_irq_save(flags); 402 __inc_zone_state(zone, item); 403 local_irq_restore(flags); 404 } 405 406 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 407 { 408 unsigned long flags; 409 struct zone *zone; 410 411 zone = page_zone(page); 412 local_irq_save(flags); 413 __inc_zone_state(zone, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(inc_zone_page_state); 417 418 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 __dec_zone_page_state(page, item); 424 local_irq_restore(flags); 425 } 426 EXPORT_SYMBOL(dec_zone_page_state); 427 #endif 428 429 430 /* 431 * Fold a differential into the global counters. 432 * Returns the number of counters updated. 433 */ 434 static int fold_diff(int *diff) 435 { 436 int i; 437 int changes = 0; 438 439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 440 if (diff[i]) { 441 atomic_long_add(diff[i], &vm_stat[i]); 442 changes++; 443 } 444 return changes; 445 } 446 447 /* 448 * Update the zone counters for the current cpu. 449 * 450 * Note that refresh_cpu_vm_stats strives to only access 451 * node local memory. The per cpu pagesets on remote zones are placed 452 * in the memory local to the processor using that pageset. So the 453 * loop over all zones will access a series of cachelines local to 454 * the processor. 455 * 456 * The call to zone_page_state_add updates the cachelines with the 457 * statistics in the remote zone struct as well as the global cachelines 458 * with the global counters. These could cause remote node cache line 459 * bouncing and will have to be only done when necessary. 460 * 461 * The function returns the number of global counters updated. 462 */ 463 static int refresh_cpu_vm_stats(bool do_pagesets) 464 { 465 struct zone *zone; 466 int i; 467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 468 int changes = 0; 469 470 for_each_populated_zone(zone) { 471 struct per_cpu_pageset __percpu *p = zone->pageset; 472 473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 474 int v; 475 476 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 477 if (v) { 478 479 atomic_long_add(v, &zone->vm_stat[i]); 480 global_diff[i] += v; 481 #ifdef CONFIG_NUMA 482 /* 3 seconds idle till flush */ 483 __this_cpu_write(p->expire, 3); 484 #endif 485 } 486 } 487 #ifdef CONFIG_NUMA 488 if (do_pagesets) { 489 cond_resched(); 490 /* 491 * Deal with draining the remote pageset of this 492 * processor 493 * 494 * Check if there are pages remaining in this pageset 495 * if not then there is nothing to expire. 496 */ 497 if (!__this_cpu_read(p->expire) || 498 !__this_cpu_read(p->pcp.count)) 499 continue; 500 501 /* 502 * We never drain zones local to this processor. 503 */ 504 if (zone_to_nid(zone) == numa_node_id()) { 505 __this_cpu_write(p->expire, 0); 506 continue; 507 } 508 509 if (__this_cpu_dec_return(p->expire)) 510 continue; 511 512 if (__this_cpu_read(p->pcp.count)) { 513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 514 changes++; 515 } 516 } 517 #endif 518 } 519 changes += fold_diff(global_diff); 520 return changes; 521 } 522 523 /* 524 * Fold the data for an offline cpu into the global array. 525 * There cannot be any access by the offline cpu and therefore 526 * synchronization is simplified. 527 */ 528 void cpu_vm_stats_fold(int cpu) 529 { 530 struct zone *zone; 531 int i; 532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 533 534 for_each_populated_zone(zone) { 535 struct per_cpu_pageset *p; 536 537 p = per_cpu_ptr(zone->pageset, cpu); 538 539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 540 if (p->vm_stat_diff[i]) { 541 int v; 542 543 v = p->vm_stat_diff[i]; 544 p->vm_stat_diff[i] = 0; 545 atomic_long_add(v, &zone->vm_stat[i]); 546 global_diff[i] += v; 547 } 548 } 549 550 fold_diff(global_diff); 551 } 552 553 /* 554 * this is only called if !populated_zone(zone), which implies no other users of 555 * pset->vm_stat_diff[] exsist. 556 */ 557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 558 { 559 int i; 560 561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 562 if (pset->vm_stat_diff[i]) { 563 int v = pset->vm_stat_diff[i]; 564 pset->vm_stat_diff[i] = 0; 565 atomic_long_add(v, &zone->vm_stat[i]); 566 atomic_long_add(v, &vm_stat[i]); 567 } 568 } 569 #endif 570 571 #ifdef CONFIG_NUMA 572 /* 573 * Determine the per node value of a stat item. 574 */ 575 unsigned long node_page_state(int node, enum zone_stat_item item) 576 { 577 struct zone *zones = NODE_DATA(node)->node_zones; 578 int i; 579 unsigned long count = 0; 580 581 for (i = 0; i < MAX_NR_ZONES; i++) 582 count += zone_page_state(zones + i, item); 583 584 return count; 585 } 586 587 #endif 588 589 #ifdef CONFIG_COMPACTION 590 591 struct contig_page_info { 592 unsigned long free_pages; 593 unsigned long free_blocks_total; 594 unsigned long free_blocks_suitable; 595 }; 596 597 /* 598 * Calculate the number of free pages in a zone, how many contiguous 599 * pages are free and how many are large enough to satisfy an allocation of 600 * the target size. Note that this function makes no attempt to estimate 601 * how many suitable free blocks there *might* be if MOVABLE pages were 602 * migrated. Calculating that is possible, but expensive and can be 603 * figured out from userspace 604 */ 605 static void fill_contig_page_info(struct zone *zone, 606 unsigned int suitable_order, 607 struct contig_page_info *info) 608 { 609 unsigned int order; 610 611 info->free_pages = 0; 612 info->free_blocks_total = 0; 613 info->free_blocks_suitable = 0; 614 615 for (order = 0; order < MAX_ORDER; order++) { 616 unsigned long blocks; 617 618 /* Count number of free blocks */ 619 blocks = zone->free_area[order].nr_free; 620 info->free_blocks_total += blocks; 621 622 /* Count free base pages */ 623 info->free_pages += blocks << order; 624 625 /* Count the suitable free blocks */ 626 if (order >= suitable_order) 627 info->free_blocks_suitable += blocks << 628 (order - suitable_order); 629 } 630 } 631 632 /* 633 * A fragmentation index only makes sense if an allocation of a requested 634 * size would fail. If that is true, the fragmentation index indicates 635 * whether external fragmentation or a lack of memory was the problem. 636 * The value can be used to determine if page reclaim or compaction 637 * should be used 638 */ 639 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 640 { 641 unsigned long requested = 1UL << order; 642 643 if (!info->free_blocks_total) 644 return 0; 645 646 /* Fragmentation index only makes sense when a request would fail */ 647 if (info->free_blocks_suitable) 648 return -1000; 649 650 /* 651 * Index is between 0 and 1 so return within 3 decimal places 652 * 653 * 0 => allocation would fail due to lack of memory 654 * 1 => allocation would fail due to fragmentation 655 */ 656 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 657 } 658 659 /* Same as __fragmentation index but allocs contig_page_info on stack */ 660 int fragmentation_index(struct zone *zone, unsigned int order) 661 { 662 struct contig_page_info info; 663 664 fill_contig_page_info(zone, order, &info); 665 return __fragmentation_index(order, &info); 666 } 667 #endif 668 669 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 670 #ifdef CONFIG_ZONE_DMA 671 #define TEXT_FOR_DMA(xx) xx "_dma", 672 #else 673 #define TEXT_FOR_DMA(xx) 674 #endif 675 676 #ifdef CONFIG_ZONE_DMA32 677 #define TEXT_FOR_DMA32(xx) xx "_dma32", 678 #else 679 #define TEXT_FOR_DMA32(xx) 680 #endif 681 682 #ifdef CONFIG_HIGHMEM 683 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 684 #else 685 #define TEXT_FOR_HIGHMEM(xx) 686 #endif 687 688 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 689 TEXT_FOR_HIGHMEM(xx) xx "_movable", 690 691 const char * const vmstat_text[] = { 692 /* enum zone_stat_item countes */ 693 "nr_free_pages", 694 "nr_alloc_batch", 695 "nr_inactive_anon", 696 "nr_active_anon", 697 "nr_inactive_file", 698 "nr_active_file", 699 "nr_unevictable", 700 "nr_mlock", 701 "nr_anon_pages", 702 "nr_mapped", 703 "nr_file_pages", 704 "nr_dirty", 705 "nr_writeback", 706 "nr_slab_reclaimable", 707 "nr_slab_unreclaimable", 708 "nr_page_table_pages", 709 "nr_kernel_stack", 710 "nr_unstable", 711 "nr_bounce", 712 "nr_vmscan_write", 713 "nr_vmscan_immediate_reclaim", 714 "nr_writeback_temp", 715 "nr_isolated_anon", 716 "nr_isolated_file", 717 "nr_shmem", 718 "nr_dirtied", 719 "nr_written", 720 "nr_pages_scanned", 721 722 #ifdef CONFIG_NUMA 723 "numa_hit", 724 "numa_miss", 725 "numa_foreign", 726 "numa_interleave", 727 "numa_local", 728 "numa_other", 729 #endif 730 "workingset_refault", 731 "workingset_activate", 732 "workingset_nodereclaim", 733 "nr_anon_transparent_hugepages", 734 "nr_free_cma", 735 736 /* enum writeback_stat_item counters */ 737 "nr_dirty_threshold", 738 "nr_dirty_background_threshold", 739 740 #ifdef CONFIG_VM_EVENT_COUNTERS 741 /* enum vm_event_item counters */ 742 "pgpgin", 743 "pgpgout", 744 "pswpin", 745 "pswpout", 746 747 TEXTS_FOR_ZONES("pgalloc") 748 749 "pgfree", 750 "pgactivate", 751 "pgdeactivate", 752 753 "pgfault", 754 "pgmajfault", 755 "pglazyfreed", 756 757 TEXTS_FOR_ZONES("pgrefill") 758 TEXTS_FOR_ZONES("pgsteal_kswapd") 759 TEXTS_FOR_ZONES("pgsteal_direct") 760 TEXTS_FOR_ZONES("pgscan_kswapd") 761 TEXTS_FOR_ZONES("pgscan_direct") 762 "pgscan_direct_throttle", 763 764 #ifdef CONFIG_NUMA 765 "zone_reclaim_failed", 766 #endif 767 "pginodesteal", 768 "slabs_scanned", 769 "kswapd_inodesteal", 770 "kswapd_low_wmark_hit_quickly", 771 "kswapd_high_wmark_hit_quickly", 772 "pageoutrun", 773 "allocstall", 774 775 "pgrotated", 776 777 "drop_pagecache", 778 "drop_slab", 779 780 #ifdef CONFIG_NUMA_BALANCING 781 "numa_pte_updates", 782 "numa_huge_pte_updates", 783 "numa_hint_faults", 784 "numa_hint_faults_local", 785 "numa_pages_migrated", 786 #endif 787 #ifdef CONFIG_MIGRATION 788 "pgmigrate_success", 789 "pgmigrate_fail", 790 #endif 791 #ifdef CONFIG_COMPACTION 792 "compact_migrate_scanned", 793 "compact_free_scanned", 794 "compact_isolated", 795 "compact_stall", 796 "compact_fail", 797 "compact_success", 798 "compact_daemon_wake", 799 #endif 800 801 #ifdef CONFIG_HUGETLB_PAGE 802 "htlb_buddy_alloc_success", 803 "htlb_buddy_alloc_fail", 804 #endif 805 "unevictable_pgs_culled", 806 "unevictable_pgs_scanned", 807 "unevictable_pgs_rescued", 808 "unevictable_pgs_mlocked", 809 "unevictable_pgs_munlocked", 810 "unevictable_pgs_cleared", 811 "unevictable_pgs_stranded", 812 813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 814 "thp_fault_alloc", 815 "thp_fault_fallback", 816 "thp_collapse_alloc", 817 "thp_collapse_alloc_failed", 818 "thp_split_page", 819 "thp_split_page_failed", 820 "thp_deferred_split_page", 821 "thp_split_pmd", 822 "thp_zero_page_alloc", 823 "thp_zero_page_alloc_failed", 824 #endif 825 #ifdef CONFIG_MEMORY_BALLOON 826 "balloon_inflate", 827 "balloon_deflate", 828 #ifdef CONFIG_BALLOON_COMPACTION 829 "balloon_migrate", 830 #endif 831 #endif /* CONFIG_MEMORY_BALLOON */ 832 #ifdef CONFIG_DEBUG_TLBFLUSH 833 #ifdef CONFIG_SMP 834 "nr_tlb_remote_flush", 835 "nr_tlb_remote_flush_received", 836 #endif /* CONFIG_SMP */ 837 "nr_tlb_local_flush_all", 838 "nr_tlb_local_flush_one", 839 #endif /* CONFIG_DEBUG_TLBFLUSH */ 840 841 #ifdef CONFIG_DEBUG_VM_VMACACHE 842 "vmacache_find_calls", 843 "vmacache_find_hits", 844 "vmacache_full_flushes", 845 #endif 846 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 847 }; 848 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 849 850 851 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 852 defined(CONFIG_PROC_FS) 853 static void *frag_start(struct seq_file *m, loff_t *pos) 854 { 855 pg_data_t *pgdat; 856 loff_t node = *pos; 857 858 for (pgdat = first_online_pgdat(); 859 pgdat && node; 860 pgdat = next_online_pgdat(pgdat)) 861 --node; 862 863 return pgdat; 864 } 865 866 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 867 { 868 pg_data_t *pgdat = (pg_data_t *)arg; 869 870 (*pos)++; 871 return next_online_pgdat(pgdat); 872 } 873 874 static void frag_stop(struct seq_file *m, void *arg) 875 { 876 } 877 878 /* Walk all the zones in a node and print using a callback */ 879 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 880 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 881 { 882 struct zone *zone; 883 struct zone *node_zones = pgdat->node_zones; 884 unsigned long flags; 885 886 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 887 if (!populated_zone(zone)) 888 continue; 889 890 spin_lock_irqsave(&zone->lock, flags); 891 print(m, pgdat, zone); 892 spin_unlock_irqrestore(&zone->lock, flags); 893 } 894 } 895 #endif 896 897 #ifdef CONFIG_PROC_FS 898 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 899 struct zone *zone) 900 { 901 int order; 902 903 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 904 for (order = 0; order < MAX_ORDER; ++order) 905 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 906 seq_putc(m, '\n'); 907 } 908 909 /* 910 * This walks the free areas for each zone. 911 */ 912 static int frag_show(struct seq_file *m, void *arg) 913 { 914 pg_data_t *pgdat = (pg_data_t *)arg; 915 walk_zones_in_node(m, pgdat, frag_show_print); 916 return 0; 917 } 918 919 static void pagetypeinfo_showfree_print(struct seq_file *m, 920 pg_data_t *pgdat, struct zone *zone) 921 { 922 int order, mtype; 923 924 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 925 seq_printf(m, "Node %4d, zone %8s, type %12s ", 926 pgdat->node_id, 927 zone->name, 928 migratetype_names[mtype]); 929 for (order = 0; order < MAX_ORDER; ++order) { 930 unsigned long freecount = 0; 931 struct free_area *area; 932 struct list_head *curr; 933 934 area = &(zone->free_area[order]); 935 936 list_for_each(curr, &area->free_list[mtype]) 937 freecount++; 938 seq_printf(m, "%6lu ", freecount); 939 } 940 seq_putc(m, '\n'); 941 } 942 } 943 944 /* Print out the free pages at each order for each migatetype */ 945 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 946 { 947 int order; 948 pg_data_t *pgdat = (pg_data_t *)arg; 949 950 /* Print header */ 951 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 952 for (order = 0; order < MAX_ORDER; ++order) 953 seq_printf(m, "%6d ", order); 954 seq_putc(m, '\n'); 955 956 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 957 958 return 0; 959 } 960 961 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 962 pg_data_t *pgdat, struct zone *zone) 963 { 964 int mtype; 965 unsigned long pfn; 966 unsigned long start_pfn = zone->zone_start_pfn; 967 unsigned long end_pfn = zone_end_pfn(zone); 968 unsigned long count[MIGRATE_TYPES] = { 0, }; 969 970 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 971 struct page *page; 972 973 if (!pfn_valid(pfn)) 974 continue; 975 976 page = pfn_to_page(pfn); 977 978 /* Watch for unexpected holes punched in the memmap */ 979 if (!memmap_valid_within(pfn, page, zone)) 980 continue; 981 982 if (page_zone(page) != zone) 983 continue; 984 985 mtype = get_pageblock_migratetype(page); 986 987 if (mtype < MIGRATE_TYPES) 988 count[mtype]++; 989 } 990 991 /* Print counts */ 992 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 993 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 994 seq_printf(m, "%12lu ", count[mtype]); 995 seq_putc(m, '\n'); 996 } 997 998 /* Print out the free pages at each order for each migratetype */ 999 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1000 { 1001 int mtype; 1002 pg_data_t *pgdat = (pg_data_t *)arg; 1003 1004 seq_printf(m, "\n%-23s", "Number of blocks type "); 1005 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1006 seq_printf(m, "%12s ", migratetype_names[mtype]); 1007 seq_putc(m, '\n'); 1008 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1009 1010 return 0; 1011 } 1012 1013 #ifdef CONFIG_PAGE_OWNER 1014 static void pagetypeinfo_showmixedcount_print(struct seq_file *m, 1015 pg_data_t *pgdat, 1016 struct zone *zone) 1017 { 1018 struct page *page; 1019 struct page_ext *page_ext; 1020 unsigned long pfn = zone->zone_start_pfn, block_end_pfn; 1021 unsigned long end_pfn = pfn + zone->spanned_pages; 1022 unsigned long count[MIGRATE_TYPES] = { 0, }; 1023 int pageblock_mt, page_mt; 1024 int i; 1025 1026 /* Scan block by block. First and last block may be incomplete */ 1027 pfn = zone->zone_start_pfn; 1028 1029 /* 1030 * Walk the zone in pageblock_nr_pages steps. If a page block spans 1031 * a zone boundary, it will be double counted between zones. This does 1032 * not matter as the mixed block count will still be correct 1033 */ 1034 for (; pfn < end_pfn; ) { 1035 if (!pfn_valid(pfn)) { 1036 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); 1037 continue; 1038 } 1039 1040 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 1041 block_end_pfn = min(block_end_pfn, end_pfn); 1042 1043 page = pfn_to_page(pfn); 1044 pageblock_mt = get_pageblock_migratetype(page); 1045 1046 for (; pfn < block_end_pfn; pfn++) { 1047 if (!pfn_valid_within(pfn)) 1048 continue; 1049 1050 page = pfn_to_page(pfn); 1051 1052 if (page_zone(page) != zone) 1053 continue; 1054 1055 if (PageBuddy(page)) { 1056 pfn += (1UL << page_order(page)) - 1; 1057 continue; 1058 } 1059 1060 if (PageReserved(page)) 1061 continue; 1062 1063 page_ext = lookup_page_ext(page); 1064 1065 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) 1066 continue; 1067 1068 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); 1069 if (pageblock_mt != page_mt) { 1070 if (is_migrate_cma(pageblock_mt)) 1071 count[MIGRATE_MOVABLE]++; 1072 else 1073 count[pageblock_mt]++; 1074 1075 pfn = block_end_pfn; 1076 break; 1077 } 1078 pfn += (1UL << page_ext->order) - 1; 1079 } 1080 } 1081 1082 /* Print counts */ 1083 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1084 for (i = 0; i < MIGRATE_TYPES; i++) 1085 seq_printf(m, "%12lu ", count[i]); 1086 seq_putc(m, '\n'); 1087 } 1088 #endif /* CONFIG_PAGE_OWNER */ 1089 1090 /* 1091 * Print out the number of pageblocks for each migratetype that contain pages 1092 * of other types. This gives an indication of how well fallbacks are being 1093 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1094 * to determine what is going on 1095 */ 1096 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1097 { 1098 #ifdef CONFIG_PAGE_OWNER 1099 int mtype; 1100 1101 if (!static_branch_unlikely(&page_owner_inited)) 1102 return; 1103 1104 drain_all_pages(NULL); 1105 1106 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1107 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1108 seq_printf(m, "%12s ", migratetype_names[mtype]); 1109 seq_putc(m, '\n'); 1110 1111 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1112 #endif /* CONFIG_PAGE_OWNER */ 1113 } 1114 1115 /* 1116 * This prints out statistics in relation to grouping pages by mobility. 1117 * It is expensive to collect so do not constantly read the file. 1118 */ 1119 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1120 { 1121 pg_data_t *pgdat = (pg_data_t *)arg; 1122 1123 /* check memoryless node */ 1124 if (!node_state(pgdat->node_id, N_MEMORY)) 1125 return 0; 1126 1127 seq_printf(m, "Page block order: %d\n", pageblock_order); 1128 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1129 seq_putc(m, '\n'); 1130 pagetypeinfo_showfree(m, pgdat); 1131 pagetypeinfo_showblockcount(m, pgdat); 1132 pagetypeinfo_showmixedcount(m, pgdat); 1133 1134 return 0; 1135 } 1136 1137 static const struct seq_operations fragmentation_op = { 1138 .start = frag_start, 1139 .next = frag_next, 1140 .stop = frag_stop, 1141 .show = frag_show, 1142 }; 1143 1144 static int fragmentation_open(struct inode *inode, struct file *file) 1145 { 1146 return seq_open(file, &fragmentation_op); 1147 } 1148 1149 static const struct file_operations fragmentation_file_operations = { 1150 .open = fragmentation_open, 1151 .read = seq_read, 1152 .llseek = seq_lseek, 1153 .release = seq_release, 1154 }; 1155 1156 static const struct seq_operations pagetypeinfo_op = { 1157 .start = frag_start, 1158 .next = frag_next, 1159 .stop = frag_stop, 1160 .show = pagetypeinfo_show, 1161 }; 1162 1163 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1164 { 1165 return seq_open(file, &pagetypeinfo_op); 1166 } 1167 1168 static const struct file_operations pagetypeinfo_file_ops = { 1169 .open = pagetypeinfo_open, 1170 .read = seq_read, 1171 .llseek = seq_lseek, 1172 .release = seq_release, 1173 }; 1174 1175 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1176 struct zone *zone) 1177 { 1178 int i; 1179 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1180 seq_printf(m, 1181 "\n pages free %lu" 1182 "\n min %lu" 1183 "\n low %lu" 1184 "\n high %lu" 1185 "\n scanned %lu" 1186 "\n spanned %lu" 1187 "\n present %lu" 1188 "\n managed %lu", 1189 zone_page_state(zone, NR_FREE_PAGES), 1190 min_wmark_pages(zone), 1191 low_wmark_pages(zone), 1192 high_wmark_pages(zone), 1193 zone_page_state(zone, NR_PAGES_SCANNED), 1194 zone->spanned_pages, 1195 zone->present_pages, 1196 zone->managed_pages); 1197 1198 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1199 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1200 zone_page_state(zone, i)); 1201 1202 seq_printf(m, 1203 "\n protection: (%ld", 1204 zone->lowmem_reserve[0]); 1205 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1206 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1207 seq_printf(m, 1208 ")" 1209 "\n pagesets"); 1210 for_each_online_cpu(i) { 1211 struct per_cpu_pageset *pageset; 1212 1213 pageset = per_cpu_ptr(zone->pageset, i); 1214 seq_printf(m, 1215 "\n cpu: %i" 1216 "\n count: %i" 1217 "\n high: %i" 1218 "\n batch: %i", 1219 i, 1220 pageset->pcp.count, 1221 pageset->pcp.high, 1222 pageset->pcp.batch); 1223 #ifdef CONFIG_SMP 1224 seq_printf(m, "\n vm stats threshold: %d", 1225 pageset->stat_threshold); 1226 #endif 1227 } 1228 seq_printf(m, 1229 "\n all_unreclaimable: %u" 1230 "\n start_pfn: %lu" 1231 "\n inactive_ratio: %u", 1232 !zone_reclaimable(zone), 1233 zone->zone_start_pfn, 1234 zone->inactive_ratio); 1235 seq_putc(m, '\n'); 1236 } 1237 1238 /* 1239 * Output information about zones in @pgdat. 1240 */ 1241 static int zoneinfo_show(struct seq_file *m, void *arg) 1242 { 1243 pg_data_t *pgdat = (pg_data_t *)arg; 1244 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1245 return 0; 1246 } 1247 1248 static const struct seq_operations zoneinfo_op = { 1249 .start = frag_start, /* iterate over all zones. The same as in 1250 * fragmentation. */ 1251 .next = frag_next, 1252 .stop = frag_stop, 1253 .show = zoneinfo_show, 1254 }; 1255 1256 static int zoneinfo_open(struct inode *inode, struct file *file) 1257 { 1258 return seq_open(file, &zoneinfo_op); 1259 } 1260 1261 static const struct file_operations proc_zoneinfo_file_operations = { 1262 .open = zoneinfo_open, 1263 .read = seq_read, 1264 .llseek = seq_lseek, 1265 .release = seq_release, 1266 }; 1267 1268 enum writeback_stat_item { 1269 NR_DIRTY_THRESHOLD, 1270 NR_DIRTY_BG_THRESHOLD, 1271 NR_VM_WRITEBACK_STAT_ITEMS, 1272 }; 1273 1274 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1275 { 1276 unsigned long *v; 1277 int i, stat_items_size; 1278 1279 if (*pos >= ARRAY_SIZE(vmstat_text)) 1280 return NULL; 1281 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1282 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1283 1284 #ifdef CONFIG_VM_EVENT_COUNTERS 1285 stat_items_size += sizeof(struct vm_event_state); 1286 #endif 1287 1288 v = kmalloc(stat_items_size, GFP_KERNEL); 1289 m->private = v; 1290 if (!v) 1291 return ERR_PTR(-ENOMEM); 1292 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1293 v[i] = global_page_state(i); 1294 v += NR_VM_ZONE_STAT_ITEMS; 1295 1296 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1297 v + NR_DIRTY_THRESHOLD); 1298 v += NR_VM_WRITEBACK_STAT_ITEMS; 1299 1300 #ifdef CONFIG_VM_EVENT_COUNTERS 1301 all_vm_events(v); 1302 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1303 v[PGPGOUT] /= 2; 1304 #endif 1305 return (unsigned long *)m->private + *pos; 1306 } 1307 1308 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1309 { 1310 (*pos)++; 1311 if (*pos >= ARRAY_SIZE(vmstat_text)) 1312 return NULL; 1313 return (unsigned long *)m->private + *pos; 1314 } 1315 1316 static int vmstat_show(struct seq_file *m, void *arg) 1317 { 1318 unsigned long *l = arg; 1319 unsigned long off = l - (unsigned long *)m->private; 1320 1321 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1322 return 0; 1323 } 1324 1325 static void vmstat_stop(struct seq_file *m, void *arg) 1326 { 1327 kfree(m->private); 1328 m->private = NULL; 1329 } 1330 1331 static const struct seq_operations vmstat_op = { 1332 .start = vmstat_start, 1333 .next = vmstat_next, 1334 .stop = vmstat_stop, 1335 .show = vmstat_show, 1336 }; 1337 1338 static int vmstat_open(struct inode *inode, struct file *file) 1339 { 1340 return seq_open(file, &vmstat_op); 1341 } 1342 1343 static const struct file_operations proc_vmstat_file_operations = { 1344 .open = vmstat_open, 1345 .read = seq_read, 1346 .llseek = seq_lseek, 1347 .release = seq_release, 1348 }; 1349 #endif /* CONFIG_PROC_FS */ 1350 1351 #ifdef CONFIG_SMP 1352 static struct workqueue_struct *vmstat_wq; 1353 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1354 int sysctl_stat_interval __read_mostly = HZ; 1355 1356 #ifdef CONFIG_PROC_FS 1357 static void refresh_vm_stats(struct work_struct *work) 1358 { 1359 refresh_cpu_vm_stats(true); 1360 } 1361 1362 int vmstat_refresh(struct ctl_table *table, int write, 1363 void __user *buffer, size_t *lenp, loff_t *ppos) 1364 { 1365 long val; 1366 int err; 1367 int i; 1368 1369 /* 1370 * The regular update, every sysctl_stat_interval, may come later 1371 * than expected: leaving a significant amount in per_cpu buckets. 1372 * This is particularly misleading when checking a quantity of HUGE 1373 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1374 * which can equally be echo'ed to or cat'ted from (by root), 1375 * can be used to update the stats just before reading them. 1376 * 1377 * Oh, and since global_page_state() etc. are so careful to hide 1378 * transiently negative values, report an error here if any of 1379 * the stats is negative, so we know to go looking for imbalance. 1380 */ 1381 err = schedule_on_each_cpu(refresh_vm_stats); 1382 if (err) 1383 return err; 1384 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1385 val = atomic_long_read(&vm_stat[i]); 1386 if (val < 0) { 1387 switch (i) { 1388 case NR_ALLOC_BATCH: 1389 case NR_PAGES_SCANNED: 1390 /* 1391 * These are often seen to go negative in 1392 * recent kernels, but not to go permanently 1393 * negative. Whilst it would be nicer not to 1394 * have exceptions, rooting them out would be 1395 * another task, of rather low priority. 1396 */ 1397 break; 1398 default: 1399 pr_warn("%s: %s %ld\n", 1400 __func__, vmstat_text[i], val); 1401 err = -EINVAL; 1402 break; 1403 } 1404 } 1405 } 1406 if (err) 1407 return err; 1408 if (write) 1409 *ppos += *lenp; 1410 else 1411 *lenp = 0; 1412 return 0; 1413 } 1414 #endif /* CONFIG_PROC_FS */ 1415 1416 static void vmstat_update(struct work_struct *w) 1417 { 1418 if (refresh_cpu_vm_stats(true)) { 1419 /* 1420 * Counters were updated so we expect more updates 1421 * to occur in the future. Keep on running the 1422 * update worker thread. 1423 */ 1424 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 1425 this_cpu_ptr(&vmstat_work), 1426 round_jiffies_relative(sysctl_stat_interval)); 1427 } 1428 } 1429 1430 /* 1431 * Switch off vmstat processing and then fold all the remaining differentials 1432 * until the diffs stay at zero. The function is used by NOHZ and can only be 1433 * invoked when tick processing is not active. 1434 */ 1435 /* 1436 * Check if the diffs for a certain cpu indicate that 1437 * an update is needed. 1438 */ 1439 static bool need_update(int cpu) 1440 { 1441 struct zone *zone; 1442 1443 for_each_populated_zone(zone) { 1444 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1445 1446 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1447 /* 1448 * The fast way of checking if there are any vmstat diffs. 1449 * This works because the diffs are byte sized items. 1450 */ 1451 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1452 return true; 1453 1454 } 1455 return false; 1456 } 1457 1458 /* 1459 * Switch off vmstat processing and then fold all the remaining differentials 1460 * until the diffs stay at zero. The function is used by NOHZ and can only be 1461 * invoked when tick processing is not active. 1462 */ 1463 void quiet_vmstat(void) 1464 { 1465 if (system_state != SYSTEM_RUNNING) 1466 return; 1467 1468 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1469 return; 1470 1471 if (!need_update(smp_processor_id())) 1472 return; 1473 1474 /* 1475 * Just refresh counters and do not care about the pending delayed 1476 * vmstat_update. It doesn't fire that often to matter and canceling 1477 * it would be too expensive from this path. 1478 * vmstat_shepherd will take care about that for us. 1479 */ 1480 refresh_cpu_vm_stats(false); 1481 } 1482 1483 /* 1484 * Shepherd worker thread that checks the 1485 * differentials of processors that have their worker 1486 * threads for vm statistics updates disabled because of 1487 * inactivity. 1488 */ 1489 static void vmstat_shepherd(struct work_struct *w); 1490 1491 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1492 1493 static void vmstat_shepherd(struct work_struct *w) 1494 { 1495 int cpu; 1496 1497 get_online_cpus(); 1498 /* Check processors whose vmstat worker threads have been disabled */ 1499 for_each_online_cpu(cpu) { 1500 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1501 1502 if (!delayed_work_pending(dw) && need_update(cpu)) 1503 queue_delayed_work_on(cpu, vmstat_wq, dw, 0); 1504 } 1505 put_online_cpus(); 1506 1507 schedule_delayed_work(&shepherd, 1508 round_jiffies_relative(sysctl_stat_interval)); 1509 } 1510 1511 static void __init start_shepherd_timer(void) 1512 { 1513 int cpu; 1514 1515 for_each_possible_cpu(cpu) 1516 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1517 vmstat_update); 1518 1519 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 1520 schedule_delayed_work(&shepherd, 1521 round_jiffies_relative(sysctl_stat_interval)); 1522 } 1523 1524 static void vmstat_cpu_dead(int node) 1525 { 1526 int cpu; 1527 1528 get_online_cpus(); 1529 for_each_online_cpu(cpu) 1530 if (cpu_to_node(cpu) == node) 1531 goto end; 1532 1533 node_clear_state(node, N_CPU); 1534 end: 1535 put_online_cpus(); 1536 } 1537 1538 /* 1539 * Use the cpu notifier to insure that the thresholds are recalculated 1540 * when necessary. 1541 */ 1542 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1543 unsigned long action, 1544 void *hcpu) 1545 { 1546 long cpu = (long)hcpu; 1547 1548 switch (action) { 1549 case CPU_ONLINE: 1550 case CPU_ONLINE_FROZEN: 1551 refresh_zone_stat_thresholds(); 1552 node_set_state(cpu_to_node(cpu), N_CPU); 1553 break; 1554 case CPU_DOWN_PREPARE: 1555 case CPU_DOWN_PREPARE_FROZEN: 1556 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1557 break; 1558 case CPU_DOWN_FAILED: 1559 case CPU_DOWN_FAILED_FROZEN: 1560 break; 1561 case CPU_DEAD: 1562 case CPU_DEAD_FROZEN: 1563 refresh_zone_stat_thresholds(); 1564 vmstat_cpu_dead(cpu_to_node(cpu)); 1565 break; 1566 default: 1567 break; 1568 } 1569 return NOTIFY_OK; 1570 } 1571 1572 static struct notifier_block vmstat_notifier = 1573 { &vmstat_cpuup_callback, NULL, 0 }; 1574 #endif 1575 1576 static int __init setup_vmstat(void) 1577 { 1578 #ifdef CONFIG_SMP 1579 cpu_notifier_register_begin(); 1580 __register_cpu_notifier(&vmstat_notifier); 1581 1582 start_shepherd_timer(); 1583 cpu_notifier_register_done(); 1584 #endif 1585 #ifdef CONFIG_PROC_FS 1586 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1587 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1588 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1589 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1590 #endif 1591 return 0; 1592 } 1593 module_init(setup_vmstat) 1594 1595 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1596 1597 /* 1598 * Return an index indicating how much of the available free memory is 1599 * unusable for an allocation of the requested size. 1600 */ 1601 static int unusable_free_index(unsigned int order, 1602 struct contig_page_info *info) 1603 { 1604 /* No free memory is interpreted as all free memory is unusable */ 1605 if (info->free_pages == 0) 1606 return 1000; 1607 1608 /* 1609 * Index should be a value between 0 and 1. Return a value to 3 1610 * decimal places. 1611 * 1612 * 0 => no fragmentation 1613 * 1 => high fragmentation 1614 */ 1615 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1616 1617 } 1618 1619 static void unusable_show_print(struct seq_file *m, 1620 pg_data_t *pgdat, struct zone *zone) 1621 { 1622 unsigned int order; 1623 int index; 1624 struct contig_page_info info; 1625 1626 seq_printf(m, "Node %d, zone %8s ", 1627 pgdat->node_id, 1628 zone->name); 1629 for (order = 0; order < MAX_ORDER; ++order) { 1630 fill_contig_page_info(zone, order, &info); 1631 index = unusable_free_index(order, &info); 1632 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1633 } 1634 1635 seq_putc(m, '\n'); 1636 } 1637 1638 /* 1639 * Display unusable free space index 1640 * 1641 * The unusable free space index measures how much of the available free 1642 * memory cannot be used to satisfy an allocation of a given size and is a 1643 * value between 0 and 1. The higher the value, the more of free memory is 1644 * unusable and by implication, the worse the external fragmentation is. This 1645 * can be expressed as a percentage by multiplying by 100. 1646 */ 1647 static int unusable_show(struct seq_file *m, void *arg) 1648 { 1649 pg_data_t *pgdat = (pg_data_t *)arg; 1650 1651 /* check memoryless node */ 1652 if (!node_state(pgdat->node_id, N_MEMORY)) 1653 return 0; 1654 1655 walk_zones_in_node(m, pgdat, unusable_show_print); 1656 1657 return 0; 1658 } 1659 1660 static const struct seq_operations unusable_op = { 1661 .start = frag_start, 1662 .next = frag_next, 1663 .stop = frag_stop, 1664 .show = unusable_show, 1665 }; 1666 1667 static int unusable_open(struct inode *inode, struct file *file) 1668 { 1669 return seq_open(file, &unusable_op); 1670 } 1671 1672 static const struct file_operations unusable_file_ops = { 1673 .open = unusable_open, 1674 .read = seq_read, 1675 .llseek = seq_lseek, 1676 .release = seq_release, 1677 }; 1678 1679 static void extfrag_show_print(struct seq_file *m, 1680 pg_data_t *pgdat, struct zone *zone) 1681 { 1682 unsigned int order; 1683 int index; 1684 1685 /* Alloc on stack as interrupts are disabled for zone walk */ 1686 struct contig_page_info info; 1687 1688 seq_printf(m, "Node %d, zone %8s ", 1689 pgdat->node_id, 1690 zone->name); 1691 for (order = 0; order < MAX_ORDER; ++order) { 1692 fill_contig_page_info(zone, order, &info); 1693 index = __fragmentation_index(order, &info); 1694 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1695 } 1696 1697 seq_putc(m, '\n'); 1698 } 1699 1700 /* 1701 * Display fragmentation index for orders that allocations would fail for 1702 */ 1703 static int extfrag_show(struct seq_file *m, void *arg) 1704 { 1705 pg_data_t *pgdat = (pg_data_t *)arg; 1706 1707 walk_zones_in_node(m, pgdat, extfrag_show_print); 1708 1709 return 0; 1710 } 1711 1712 static const struct seq_operations extfrag_op = { 1713 .start = frag_start, 1714 .next = frag_next, 1715 .stop = frag_stop, 1716 .show = extfrag_show, 1717 }; 1718 1719 static int extfrag_open(struct inode *inode, struct file *file) 1720 { 1721 return seq_open(file, &extfrag_op); 1722 } 1723 1724 static const struct file_operations extfrag_file_ops = { 1725 .open = extfrag_open, 1726 .read = seq_read, 1727 .llseek = seq_lseek, 1728 .release = seq_release, 1729 }; 1730 1731 static int __init extfrag_debug_init(void) 1732 { 1733 struct dentry *extfrag_debug_root; 1734 1735 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1736 if (!extfrag_debug_root) 1737 return -ENOMEM; 1738 1739 if (!debugfs_create_file("unusable_index", 0444, 1740 extfrag_debug_root, NULL, &unusable_file_ops)) 1741 goto fail; 1742 1743 if (!debugfs_create_file("extfrag_index", 0444, 1744 extfrag_debug_root, NULL, &extfrag_file_ops)) 1745 goto fail; 1746 1747 return 0; 1748 fail: 1749 debugfs_remove_recursive(extfrag_debug_root); 1750 return -ENOMEM; 1751 } 1752 1753 module_init(extfrag_debug_init); 1754 #endif 1755