xref: /openbmc/linux/mm/vmstat.c (revision 25985edc)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int watermark_distance;
90 
91 	/*
92 	 * As vmstats are not up to date, there is drift between the estimated
93 	 * and real values. For high thresholds and a high number of CPUs, it
94 	 * is possible for the min watermark to be breached while the estimated
95 	 * value looks fine. The pressure threshold is a reduced value such
96 	 * that even the maximum amount of drift will not accidentally breach
97 	 * the min watermark
98 	 */
99 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101 
102 	/*
103 	 * Maximum threshold is 125
104 	 */
105 	threshold = min(125, threshold);
106 
107 	return threshold;
108 }
109 
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 	int threshold;
113 	int mem;	/* memory in 128 MB units */
114 
115 	/*
116 	 * The threshold scales with the number of processors and the amount
117 	 * of memory per zone. More memory means that we can defer updates for
118 	 * longer, more processors could lead to more contention.
119  	 * fls() is used to have a cheap way of logarithmic scaling.
120 	 *
121 	 * Some sample thresholds:
122 	 *
123 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
124 	 * ------------------------------------------------------------------
125 	 * 8		1		1	0.9-1 GB	4
126 	 * 16		2		2	0.9-1 GB	4
127 	 * 20 		2		2	1-2 GB		5
128 	 * 24		2		2	2-4 GB		6
129 	 * 28		2		2	4-8 GB		7
130 	 * 32		2		2	8-16 GB		8
131 	 * 4		2		2	<128M		1
132 	 * 30		4		3	2-4 GB		5
133 	 * 48		4		3	8-16 GB		8
134 	 * 32		8		4	1-2 GB		4
135 	 * 32		8		4	0.9-1GB		4
136 	 * 10		16		5	<128M		1
137 	 * 40		16		5	900M		4
138 	 * 70		64		7	2-4 GB		5
139 	 * 84		64		7	4-8 GB		6
140 	 * 108		512		9	4-8 GB		6
141 	 * 125		1024		10	8-16 GB		8
142 	 * 125		1024		10	16-32 GB	9
143 	 */
144 
145 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
146 
147 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148 
149 	/*
150 	 * Maximum threshold is 125
151 	 */
152 	threshold = min(125, threshold);
153 
154 	return threshold;
155 }
156 
157 /*
158  * Refresh the thresholds for each zone.
159  */
160 static void refresh_zone_stat_thresholds(void)
161 {
162 	struct zone *zone;
163 	int cpu;
164 	int threshold;
165 
166 	for_each_populated_zone(zone) {
167 		unsigned long max_drift, tolerate_drift;
168 
169 		threshold = calculate_normal_threshold(zone);
170 
171 		for_each_online_cpu(cpu)
172 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 							= threshold;
174 
175 		/*
176 		 * Only set percpu_drift_mark if there is a danger that
177 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 		 * the min watermark could be breached by an allocation
179 		 */
180 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 		max_drift = num_online_cpus() * threshold;
182 		if (max_drift > tolerate_drift)
183 			zone->percpu_drift_mark = high_wmark_pages(zone) +
184 					max_drift;
185 	}
186 }
187 
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 				int (*calculate_pressure)(struct zone *))
190 {
191 	struct zone *zone;
192 	int cpu;
193 	int threshold;
194 	int i;
195 
196 	for (i = 0; i < pgdat->nr_zones; i++) {
197 		zone = &pgdat->node_zones[i];
198 		if (!zone->percpu_drift_mark)
199 			continue;
200 
201 		threshold = (*calculate_pressure)(zone);
202 		for_each_possible_cpu(cpu)
203 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 							= threshold;
205 	}
206 }
207 
208 /*
209  * For use when we know that interrupts are disabled.
210  */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 				int delta)
213 {
214 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 	s8 __percpu *p = pcp->vm_stat_diff + item;
216 	long x;
217 	long t;
218 
219 	x = delta + __this_cpu_read(*p);
220 
221 	t = __this_cpu_read(pcp->stat_threshold);
222 
223 	if (unlikely(x > t || x < -t)) {
224 		zone_page_state_add(x, zone, item);
225 		x = 0;
226 	}
227 	__this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230 
231 /*
232  * Optimized increment and decrement functions.
233  *
234  * These are only for a single page and therefore can take a struct page *
235  * argument instead of struct zone *. This allows the inclusion of the code
236  * generated for page_zone(page) into the optimized functions.
237  *
238  * No overflow check is necessary and therefore the differential can be
239  * incremented or decremented in place which may allow the compilers to
240  * generate better code.
241  * The increment or decrement is known and therefore one boundary check can
242  * be omitted.
243  *
244  * NOTE: These functions are very performance sensitive. Change only
245  * with care.
246  *
247  * Some processors have inc/dec instructions that are atomic vs an interrupt.
248  * However, the code must first determine the differential location in a zone
249  * based on the processor number and then inc/dec the counter. There is no
250  * guarantee without disabling preemption that the processor will not change
251  * in between and therefore the atomicity vs. interrupt cannot be exploited
252  * in a useful way here.
253  */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 	s8 __percpu *p = pcp->vm_stat_diff + item;
258 	s8 v, t;
259 
260 	v = __this_cpu_inc_return(*p);
261 	t = __this_cpu_read(pcp->stat_threshold);
262 	if (unlikely(v > t)) {
263 		s8 overstep = t >> 1;
264 
265 		zone_page_state_add(v + overstep, zone, item);
266 		__this_cpu_write(*p, -overstep);
267 	}
268 }
269 
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	__inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275 
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 	s8 __percpu *p = pcp->vm_stat_diff + item;
280 	s8 v, t;
281 
282 	v = __this_cpu_dec_return(*p);
283 	t = __this_cpu_read(pcp->stat_threshold);
284 	if (unlikely(v < - t)) {
285 		s8 overstep = t >> 1;
286 
287 		zone_page_state_add(v - overstep, zone, item);
288 		__this_cpu_write(*p, overstep);
289 	}
290 }
291 
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 	__dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297 
298 #ifdef CONFIG_CMPXCHG_LOCAL
299 /*
300  * If we have cmpxchg_local support then we do not need to incur the overhead
301  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302  *
303  * mod_state() modifies the zone counter state through atomic per cpu
304  * operations.
305  *
306  * Overstep mode specifies how overstep should handled:
307  *     0       No overstepping
308  *     1       Overstepping half of threshold
309  *     -1      Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312        enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 	s8 __percpu *p = pcp->vm_stat_diff + item;
316 	long o, n, t, z;
317 
318 	do {
319 		z = 0;  /* overflow to zone counters */
320 
321 		/*
322 		 * The fetching of the stat_threshold is racy. We may apply
323 		 * a counter threshold to the wrong the cpu if we get
324 		 * rescheduled while executing here. However, the following
325 		 * will apply the threshold again and therefore bring the
326 		 * counter under the threshold.
327 		 */
328 		t = this_cpu_read(pcp->stat_threshold);
329 
330 		o = this_cpu_read(*p);
331 		n = delta + o;
332 
333 		if (n > t || n < -t) {
334 			int os = overstep_mode * (t >> 1) ;
335 
336 			/* Overflow must be added to zone counters */
337 			z = n + os;
338 			n = -os;
339 		}
340 	} while (this_cpu_cmpxchg(*p, o, n) != o);
341 
342 	if (z)
343 		zone_page_state_add(z, zone, item);
344 }
345 
346 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
347 					int delta)
348 {
349 	mod_state(zone, item, delta, 0);
350 }
351 EXPORT_SYMBOL(mod_zone_page_state);
352 
353 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
354 {
355 	mod_state(zone, item, 1, 1);
356 }
357 
358 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
359 {
360 	mod_state(page_zone(page), item, 1, 1);
361 }
362 EXPORT_SYMBOL(inc_zone_page_state);
363 
364 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 	mod_state(page_zone(page), item, -1, -1);
367 }
368 EXPORT_SYMBOL(dec_zone_page_state);
369 #else
370 /*
371  * Use interrupt disable to serialize counter updates
372  */
373 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
374 					int delta)
375 {
376 	unsigned long flags;
377 
378 	local_irq_save(flags);
379 	__mod_zone_page_state(zone, item, delta);
380 	local_irq_restore(flags);
381 }
382 EXPORT_SYMBOL(mod_zone_page_state);
383 
384 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
385 {
386 	unsigned long flags;
387 
388 	local_irq_save(flags);
389 	__inc_zone_state(zone, item);
390 	local_irq_restore(flags);
391 }
392 
393 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
394 {
395 	unsigned long flags;
396 	struct zone *zone;
397 
398 	zone = page_zone(page);
399 	local_irq_save(flags);
400 	__inc_zone_state(zone, item);
401 	local_irq_restore(flags);
402 }
403 EXPORT_SYMBOL(inc_zone_page_state);
404 
405 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
406 {
407 	unsigned long flags;
408 
409 	local_irq_save(flags);
410 	__dec_zone_page_state(page, item);
411 	local_irq_restore(flags);
412 }
413 EXPORT_SYMBOL(dec_zone_page_state);
414 #endif
415 
416 /*
417  * Update the zone counters for one cpu.
418  *
419  * The cpu specified must be either the current cpu or a processor that
420  * is not online. If it is the current cpu then the execution thread must
421  * be pinned to the current cpu.
422  *
423  * Note that refresh_cpu_vm_stats strives to only access
424  * node local memory. The per cpu pagesets on remote zones are placed
425  * in the memory local to the processor using that pageset. So the
426  * loop over all zones will access a series of cachelines local to
427  * the processor.
428  *
429  * The call to zone_page_state_add updates the cachelines with the
430  * statistics in the remote zone struct as well as the global cachelines
431  * with the global counters. These could cause remote node cache line
432  * bouncing and will have to be only done when necessary.
433  */
434 void refresh_cpu_vm_stats(int cpu)
435 {
436 	struct zone *zone;
437 	int i;
438 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
439 
440 	for_each_populated_zone(zone) {
441 		struct per_cpu_pageset *p;
442 
443 		p = per_cpu_ptr(zone->pageset, cpu);
444 
445 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446 			if (p->vm_stat_diff[i]) {
447 				unsigned long flags;
448 				int v;
449 
450 				local_irq_save(flags);
451 				v = p->vm_stat_diff[i];
452 				p->vm_stat_diff[i] = 0;
453 				local_irq_restore(flags);
454 				atomic_long_add(v, &zone->vm_stat[i]);
455 				global_diff[i] += v;
456 #ifdef CONFIG_NUMA
457 				/* 3 seconds idle till flush */
458 				p->expire = 3;
459 #endif
460 			}
461 		cond_resched();
462 #ifdef CONFIG_NUMA
463 		/*
464 		 * Deal with draining the remote pageset of this
465 		 * processor
466 		 *
467 		 * Check if there are pages remaining in this pageset
468 		 * if not then there is nothing to expire.
469 		 */
470 		if (!p->expire || !p->pcp.count)
471 			continue;
472 
473 		/*
474 		 * We never drain zones local to this processor.
475 		 */
476 		if (zone_to_nid(zone) == numa_node_id()) {
477 			p->expire = 0;
478 			continue;
479 		}
480 
481 		p->expire--;
482 		if (p->expire)
483 			continue;
484 
485 		if (p->pcp.count)
486 			drain_zone_pages(zone, &p->pcp);
487 #endif
488 	}
489 
490 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
491 		if (global_diff[i])
492 			atomic_long_add(global_diff[i], &vm_stat[i]);
493 }
494 
495 #endif
496 
497 #ifdef CONFIG_NUMA
498 /*
499  * zonelist = the list of zones passed to the allocator
500  * z 	    = the zone from which the allocation occurred.
501  *
502  * Must be called with interrupts disabled.
503  *
504  * When __GFP_OTHER_NODE is set assume the node of the preferred
505  * zone is the local node. This is useful for daemons who allocate
506  * memory on behalf of other processes.
507  */
508 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
509 {
510 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
511 		__inc_zone_state(z, NUMA_HIT);
512 	} else {
513 		__inc_zone_state(z, NUMA_MISS);
514 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
515 	}
516 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
517 			preferred_zone->node : numa_node_id()))
518 		__inc_zone_state(z, NUMA_LOCAL);
519 	else
520 		__inc_zone_state(z, NUMA_OTHER);
521 }
522 #endif
523 
524 #ifdef CONFIG_COMPACTION
525 
526 struct contig_page_info {
527 	unsigned long free_pages;
528 	unsigned long free_blocks_total;
529 	unsigned long free_blocks_suitable;
530 };
531 
532 /*
533  * Calculate the number of free pages in a zone, how many contiguous
534  * pages are free and how many are large enough to satisfy an allocation of
535  * the target size. Note that this function makes no attempt to estimate
536  * how many suitable free blocks there *might* be if MOVABLE pages were
537  * migrated. Calculating that is possible, but expensive and can be
538  * figured out from userspace
539  */
540 static void fill_contig_page_info(struct zone *zone,
541 				unsigned int suitable_order,
542 				struct contig_page_info *info)
543 {
544 	unsigned int order;
545 
546 	info->free_pages = 0;
547 	info->free_blocks_total = 0;
548 	info->free_blocks_suitable = 0;
549 
550 	for (order = 0; order < MAX_ORDER; order++) {
551 		unsigned long blocks;
552 
553 		/* Count number of free blocks */
554 		blocks = zone->free_area[order].nr_free;
555 		info->free_blocks_total += blocks;
556 
557 		/* Count free base pages */
558 		info->free_pages += blocks << order;
559 
560 		/* Count the suitable free blocks */
561 		if (order >= suitable_order)
562 			info->free_blocks_suitable += blocks <<
563 						(order - suitable_order);
564 	}
565 }
566 
567 /*
568  * A fragmentation index only makes sense if an allocation of a requested
569  * size would fail. If that is true, the fragmentation index indicates
570  * whether external fragmentation or a lack of memory was the problem.
571  * The value can be used to determine if page reclaim or compaction
572  * should be used
573  */
574 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
575 {
576 	unsigned long requested = 1UL << order;
577 
578 	if (!info->free_blocks_total)
579 		return 0;
580 
581 	/* Fragmentation index only makes sense when a request would fail */
582 	if (info->free_blocks_suitable)
583 		return -1000;
584 
585 	/*
586 	 * Index is between 0 and 1 so return within 3 decimal places
587 	 *
588 	 * 0 => allocation would fail due to lack of memory
589 	 * 1 => allocation would fail due to fragmentation
590 	 */
591 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
592 }
593 
594 /* Same as __fragmentation index but allocs contig_page_info on stack */
595 int fragmentation_index(struct zone *zone, unsigned int order)
596 {
597 	struct contig_page_info info;
598 
599 	fill_contig_page_info(zone, order, &info);
600 	return __fragmentation_index(order, &info);
601 }
602 #endif
603 
604 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
605 #include <linux/proc_fs.h>
606 #include <linux/seq_file.h>
607 
608 static char * const migratetype_names[MIGRATE_TYPES] = {
609 	"Unmovable",
610 	"Reclaimable",
611 	"Movable",
612 	"Reserve",
613 	"Isolate",
614 };
615 
616 static void *frag_start(struct seq_file *m, loff_t *pos)
617 {
618 	pg_data_t *pgdat;
619 	loff_t node = *pos;
620 	for (pgdat = first_online_pgdat();
621 	     pgdat && node;
622 	     pgdat = next_online_pgdat(pgdat))
623 		--node;
624 
625 	return pgdat;
626 }
627 
628 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
629 {
630 	pg_data_t *pgdat = (pg_data_t *)arg;
631 
632 	(*pos)++;
633 	return next_online_pgdat(pgdat);
634 }
635 
636 static void frag_stop(struct seq_file *m, void *arg)
637 {
638 }
639 
640 /* Walk all the zones in a node and print using a callback */
641 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
642 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
643 {
644 	struct zone *zone;
645 	struct zone *node_zones = pgdat->node_zones;
646 	unsigned long flags;
647 
648 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
649 		if (!populated_zone(zone))
650 			continue;
651 
652 		spin_lock_irqsave(&zone->lock, flags);
653 		print(m, pgdat, zone);
654 		spin_unlock_irqrestore(&zone->lock, flags);
655 	}
656 }
657 #endif
658 
659 #ifdef CONFIG_PROC_FS
660 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
661 						struct zone *zone)
662 {
663 	int order;
664 
665 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
666 	for (order = 0; order < MAX_ORDER; ++order)
667 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
668 	seq_putc(m, '\n');
669 }
670 
671 /*
672  * This walks the free areas for each zone.
673  */
674 static int frag_show(struct seq_file *m, void *arg)
675 {
676 	pg_data_t *pgdat = (pg_data_t *)arg;
677 	walk_zones_in_node(m, pgdat, frag_show_print);
678 	return 0;
679 }
680 
681 static void pagetypeinfo_showfree_print(struct seq_file *m,
682 					pg_data_t *pgdat, struct zone *zone)
683 {
684 	int order, mtype;
685 
686 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
687 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
688 					pgdat->node_id,
689 					zone->name,
690 					migratetype_names[mtype]);
691 		for (order = 0; order < MAX_ORDER; ++order) {
692 			unsigned long freecount = 0;
693 			struct free_area *area;
694 			struct list_head *curr;
695 
696 			area = &(zone->free_area[order]);
697 
698 			list_for_each(curr, &area->free_list[mtype])
699 				freecount++;
700 			seq_printf(m, "%6lu ", freecount);
701 		}
702 		seq_putc(m, '\n');
703 	}
704 }
705 
706 /* Print out the free pages at each order for each migatetype */
707 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
708 {
709 	int order;
710 	pg_data_t *pgdat = (pg_data_t *)arg;
711 
712 	/* Print header */
713 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
714 	for (order = 0; order < MAX_ORDER; ++order)
715 		seq_printf(m, "%6d ", order);
716 	seq_putc(m, '\n');
717 
718 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
719 
720 	return 0;
721 }
722 
723 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
724 					pg_data_t *pgdat, struct zone *zone)
725 {
726 	int mtype;
727 	unsigned long pfn;
728 	unsigned long start_pfn = zone->zone_start_pfn;
729 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
730 	unsigned long count[MIGRATE_TYPES] = { 0, };
731 
732 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
733 		struct page *page;
734 
735 		if (!pfn_valid(pfn))
736 			continue;
737 
738 		page = pfn_to_page(pfn);
739 
740 		/* Watch for unexpected holes punched in the memmap */
741 		if (!memmap_valid_within(pfn, page, zone))
742 			continue;
743 
744 		mtype = get_pageblock_migratetype(page);
745 
746 		if (mtype < MIGRATE_TYPES)
747 			count[mtype]++;
748 	}
749 
750 	/* Print counts */
751 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
752 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
753 		seq_printf(m, "%12lu ", count[mtype]);
754 	seq_putc(m, '\n');
755 }
756 
757 /* Print out the free pages at each order for each migratetype */
758 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
759 {
760 	int mtype;
761 	pg_data_t *pgdat = (pg_data_t *)arg;
762 
763 	seq_printf(m, "\n%-23s", "Number of blocks type ");
764 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
765 		seq_printf(m, "%12s ", migratetype_names[mtype]);
766 	seq_putc(m, '\n');
767 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
768 
769 	return 0;
770 }
771 
772 /*
773  * This prints out statistics in relation to grouping pages by mobility.
774  * It is expensive to collect so do not constantly read the file.
775  */
776 static int pagetypeinfo_show(struct seq_file *m, void *arg)
777 {
778 	pg_data_t *pgdat = (pg_data_t *)arg;
779 
780 	/* check memoryless node */
781 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
782 		return 0;
783 
784 	seq_printf(m, "Page block order: %d\n", pageblock_order);
785 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
786 	seq_putc(m, '\n');
787 	pagetypeinfo_showfree(m, pgdat);
788 	pagetypeinfo_showblockcount(m, pgdat);
789 
790 	return 0;
791 }
792 
793 static const struct seq_operations fragmentation_op = {
794 	.start	= frag_start,
795 	.next	= frag_next,
796 	.stop	= frag_stop,
797 	.show	= frag_show,
798 };
799 
800 static int fragmentation_open(struct inode *inode, struct file *file)
801 {
802 	return seq_open(file, &fragmentation_op);
803 }
804 
805 static const struct file_operations fragmentation_file_operations = {
806 	.open		= fragmentation_open,
807 	.read		= seq_read,
808 	.llseek		= seq_lseek,
809 	.release	= seq_release,
810 };
811 
812 static const struct seq_operations pagetypeinfo_op = {
813 	.start	= frag_start,
814 	.next	= frag_next,
815 	.stop	= frag_stop,
816 	.show	= pagetypeinfo_show,
817 };
818 
819 static int pagetypeinfo_open(struct inode *inode, struct file *file)
820 {
821 	return seq_open(file, &pagetypeinfo_op);
822 }
823 
824 static const struct file_operations pagetypeinfo_file_ops = {
825 	.open		= pagetypeinfo_open,
826 	.read		= seq_read,
827 	.llseek		= seq_lseek,
828 	.release	= seq_release,
829 };
830 
831 #ifdef CONFIG_ZONE_DMA
832 #define TEXT_FOR_DMA(xx) xx "_dma",
833 #else
834 #define TEXT_FOR_DMA(xx)
835 #endif
836 
837 #ifdef CONFIG_ZONE_DMA32
838 #define TEXT_FOR_DMA32(xx) xx "_dma32",
839 #else
840 #define TEXT_FOR_DMA32(xx)
841 #endif
842 
843 #ifdef CONFIG_HIGHMEM
844 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
845 #else
846 #define TEXT_FOR_HIGHMEM(xx)
847 #endif
848 
849 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
850 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
851 
852 static const char * const vmstat_text[] = {
853 	/* Zoned VM counters */
854 	"nr_free_pages",
855 	"nr_inactive_anon",
856 	"nr_active_anon",
857 	"nr_inactive_file",
858 	"nr_active_file",
859 	"nr_unevictable",
860 	"nr_mlock",
861 	"nr_anon_pages",
862 	"nr_mapped",
863 	"nr_file_pages",
864 	"nr_dirty",
865 	"nr_writeback",
866 	"nr_slab_reclaimable",
867 	"nr_slab_unreclaimable",
868 	"nr_page_table_pages",
869 	"nr_kernel_stack",
870 	"nr_unstable",
871 	"nr_bounce",
872 	"nr_vmscan_write",
873 	"nr_writeback_temp",
874 	"nr_isolated_anon",
875 	"nr_isolated_file",
876 	"nr_shmem",
877 	"nr_dirtied",
878 	"nr_written",
879 
880 #ifdef CONFIG_NUMA
881 	"numa_hit",
882 	"numa_miss",
883 	"numa_foreign",
884 	"numa_interleave",
885 	"numa_local",
886 	"numa_other",
887 #endif
888 	"nr_anon_transparent_hugepages",
889 	"nr_dirty_threshold",
890 	"nr_dirty_background_threshold",
891 
892 #ifdef CONFIG_VM_EVENT_COUNTERS
893 	"pgpgin",
894 	"pgpgout",
895 	"pswpin",
896 	"pswpout",
897 
898 	TEXTS_FOR_ZONES("pgalloc")
899 
900 	"pgfree",
901 	"pgactivate",
902 	"pgdeactivate",
903 
904 	"pgfault",
905 	"pgmajfault",
906 
907 	TEXTS_FOR_ZONES("pgrefill")
908 	TEXTS_FOR_ZONES("pgsteal")
909 	TEXTS_FOR_ZONES("pgscan_kswapd")
910 	TEXTS_FOR_ZONES("pgscan_direct")
911 
912 #ifdef CONFIG_NUMA
913 	"zone_reclaim_failed",
914 #endif
915 	"pginodesteal",
916 	"slabs_scanned",
917 	"kswapd_steal",
918 	"kswapd_inodesteal",
919 	"kswapd_low_wmark_hit_quickly",
920 	"kswapd_high_wmark_hit_quickly",
921 	"kswapd_skip_congestion_wait",
922 	"pageoutrun",
923 	"allocstall",
924 
925 	"pgrotated",
926 
927 #ifdef CONFIG_COMPACTION
928 	"compact_blocks_moved",
929 	"compact_pages_moved",
930 	"compact_pagemigrate_failed",
931 	"compact_stall",
932 	"compact_fail",
933 	"compact_success",
934 #endif
935 
936 #ifdef CONFIG_HUGETLB_PAGE
937 	"htlb_buddy_alloc_success",
938 	"htlb_buddy_alloc_fail",
939 #endif
940 	"unevictable_pgs_culled",
941 	"unevictable_pgs_scanned",
942 	"unevictable_pgs_rescued",
943 	"unevictable_pgs_mlocked",
944 	"unevictable_pgs_munlocked",
945 	"unevictable_pgs_cleared",
946 	"unevictable_pgs_stranded",
947 	"unevictable_pgs_mlockfreed",
948 #endif
949 };
950 
951 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
952 							struct zone *zone)
953 {
954 	int i;
955 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
956 	seq_printf(m,
957 		   "\n  pages free     %lu"
958 		   "\n        min      %lu"
959 		   "\n        low      %lu"
960 		   "\n        high     %lu"
961 		   "\n        scanned  %lu"
962 		   "\n        spanned  %lu"
963 		   "\n        present  %lu",
964 		   zone_page_state(zone, NR_FREE_PAGES),
965 		   min_wmark_pages(zone),
966 		   low_wmark_pages(zone),
967 		   high_wmark_pages(zone),
968 		   zone->pages_scanned,
969 		   zone->spanned_pages,
970 		   zone->present_pages);
971 
972 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
973 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
974 				zone_page_state(zone, i));
975 
976 	seq_printf(m,
977 		   "\n        protection: (%lu",
978 		   zone->lowmem_reserve[0]);
979 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
980 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
981 	seq_printf(m,
982 		   ")"
983 		   "\n  pagesets");
984 	for_each_online_cpu(i) {
985 		struct per_cpu_pageset *pageset;
986 
987 		pageset = per_cpu_ptr(zone->pageset, i);
988 		seq_printf(m,
989 			   "\n    cpu: %i"
990 			   "\n              count: %i"
991 			   "\n              high:  %i"
992 			   "\n              batch: %i",
993 			   i,
994 			   pageset->pcp.count,
995 			   pageset->pcp.high,
996 			   pageset->pcp.batch);
997 #ifdef CONFIG_SMP
998 		seq_printf(m, "\n  vm stats threshold: %d",
999 				pageset->stat_threshold);
1000 #endif
1001 	}
1002 	seq_printf(m,
1003 		   "\n  all_unreclaimable: %u"
1004 		   "\n  start_pfn:         %lu"
1005 		   "\n  inactive_ratio:    %u",
1006 		   zone->all_unreclaimable,
1007 		   zone->zone_start_pfn,
1008 		   zone->inactive_ratio);
1009 	seq_putc(m, '\n');
1010 }
1011 
1012 /*
1013  * Output information about zones in @pgdat.
1014  */
1015 static int zoneinfo_show(struct seq_file *m, void *arg)
1016 {
1017 	pg_data_t *pgdat = (pg_data_t *)arg;
1018 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1019 	return 0;
1020 }
1021 
1022 static const struct seq_operations zoneinfo_op = {
1023 	.start	= frag_start, /* iterate over all zones. The same as in
1024 			       * fragmentation. */
1025 	.next	= frag_next,
1026 	.stop	= frag_stop,
1027 	.show	= zoneinfo_show,
1028 };
1029 
1030 static int zoneinfo_open(struct inode *inode, struct file *file)
1031 {
1032 	return seq_open(file, &zoneinfo_op);
1033 }
1034 
1035 static const struct file_operations proc_zoneinfo_file_operations = {
1036 	.open		= zoneinfo_open,
1037 	.read		= seq_read,
1038 	.llseek		= seq_lseek,
1039 	.release	= seq_release,
1040 };
1041 
1042 enum writeback_stat_item {
1043 	NR_DIRTY_THRESHOLD,
1044 	NR_DIRTY_BG_THRESHOLD,
1045 	NR_VM_WRITEBACK_STAT_ITEMS,
1046 };
1047 
1048 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1049 {
1050 	unsigned long *v;
1051 	int i, stat_items_size;
1052 
1053 	if (*pos >= ARRAY_SIZE(vmstat_text))
1054 		return NULL;
1055 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1056 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1057 
1058 #ifdef CONFIG_VM_EVENT_COUNTERS
1059 	stat_items_size += sizeof(struct vm_event_state);
1060 #endif
1061 
1062 	v = kmalloc(stat_items_size, GFP_KERNEL);
1063 	m->private = v;
1064 	if (!v)
1065 		return ERR_PTR(-ENOMEM);
1066 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1067 		v[i] = global_page_state(i);
1068 	v += NR_VM_ZONE_STAT_ITEMS;
1069 
1070 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1071 			    v + NR_DIRTY_THRESHOLD);
1072 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1073 
1074 #ifdef CONFIG_VM_EVENT_COUNTERS
1075 	all_vm_events(v);
1076 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1077 	v[PGPGOUT] /= 2;
1078 #endif
1079 	return (unsigned long *)m->private + *pos;
1080 }
1081 
1082 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1083 {
1084 	(*pos)++;
1085 	if (*pos >= ARRAY_SIZE(vmstat_text))
1086 		return NULL;
1087 	return (unsigned long *)m->private + *pos;
1088 }
1089 
1090 static int vmstat_show(struct seq_file *m, void *arg)
1091 {
1092 	unsigned long *l = arg;
1093 	unsigned long off = l - (unsigned long *)m->private;
1094 
1095 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1096 	return 0;
1097 }
1098 
1099 static void vmstat_stop(struct seq_file *m, void *arg)
1100 {
1101 	kfree(m->private);
1102 	m->private = NULL;
1103 }
1104 
1105 static const struct seq_operations vmstat_op = {
1106 	.start	= vmstat_start,
1107 	.next	= vmstat_next,
1108 	.stop	= vmstat_stop,
1109 	.show	= vmstat_show,
1110 };
1111 
1112 static int vmstat_open(struct inode *inode, struct file *file)
1113 {
1114 	return seq_open(file, &vmstat_op);
1115 }
1116 
1117 static const struct file_operations proc_vmstat_file_operations = {
1118 	.open		= vmstat_open,
1119 	.read		= seq_read,
1120 	.llseek		= seq_lseek,
1121 	.release	= seq_release,
1122 };
1123 #endif /* CONFIG_PROC_FS */
1124 
1125 #ifdef CONFIG_SMP
1126 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1127 int sysctl_stat_interval __read_mostly = HZ;
1128 
1129 static void vmstat_update(struct work_struct *w)
1130 {
1131 	refresh_cpu_vm_stats(smp_processor_id());
1132 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1133 		round_jiffies_relative(sysctl_stat_interval));
1134 }
1135 
1136 static void __cpuinit start_cpu_timer(int cpu)
1137 {
1138 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1139 
1140 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1141 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1142 }
1143 
1144 /*
1145  * Use the cpu notifier to insure that the thresholds are recalculated
1146  * when necessary.
1147  */
1148 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1149 		unsigned long action,
1150 		void *hcpu)
1151 {
1152 	long cpu = (long)hcpu;
1153 
1154 	switch (action) {
1155 	case CPU_ONLINE:
1156 	case CPU_ONLINE_FROZEN:
1157 		refresh_zone_stat_thresholds();
1158 		start_cpu_timer(cpu);
1159 		node_set_state(cpu_to_node(cpu), N_CPU);
1160 		break;
1161 	case CPU_DOWN_PREPARE:
1162 	case CPU_DOWN_PREPARE_FROZEN:
1163 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1164 		per_cpu(vmstat_work, cpu).work.func = NULL;
1165 		break;
1166 	case CPU_DOWN_FAILED:
1167 	case CPU_DOWN_FAILED_FROZEN:
1168 		start_cpu_timer(cpu);
1169 		break;
1170 	case CPU_DEAD:
1171 	case CPU_DEAD_FROZEN:
1172 		refresh_zone_stat_thresholds();
1173 		break;
1174 	default:
1175 		break;
1176 	}
1177 	return NOTIFY_OK;
1178 }
1179 
1180 static struct notifier_block __cpuinitdata vmstat_notifier =
1181 	{ &vmstat_cpuup_callback, NULL, 0 };
1182 #endif
1183 
1184 static int __init setup_vmstat(void)
1185 {
1186 #ifdef CONFIG_SMP
1187 	int cpu;
1188 
1189 	refresh_zone_stat_thresholds();
1190 	register_cpu_notifier(&vmstat_notifier);
1191 
1192 	for_each_online_cpu(cpu)
1193 		start_cpu_timer(cpu);
1194 #endif
1195 #ifdef CONFIG_PROC_FS
1196 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1197 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1198 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1199 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1200 #endif
1201 	return 0;
1202 }
1203 module_init(setup_vmstat)
1204 
1205 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1206 #include <linux/debugfs.h>
1207 
1208 static struct dentry *extfrag_debug_root;
1209 
1210 /*
1211  * Return an index indicating how much of the available free memory is
1212  * unusable for an allocation of the requested size.
1213  */
1214 static int unusable_free_index(unsigned int order,
1215 				struct contig_page_info *info)
1216 {
1217 	/* No free memory is interpreted as all free memory is unusable */
1218 	if (info->free_pages == 0)
1219 		return 1000;
1220 
1221 	/*
1222 	 * Index should be a value between 0 and 1. Return a value to 3
1223 	 * decimal places.
1224 	 *
1225 	 * 0 => no fragmentation
1226 	 * 1 => high fragmentation
1227 	 */
1228 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1229 
1230 }
1231 
1232 static void unusable_show_print(struct seq_file *m,
1233 					pg_data_t *pgdat, struct zone *zone)
1234 {
1235 	unsigned int order;
1236 	int index;
1237 	struct contig_page_info info;
1238 
1239 	seq_printf(m, "Node %d, zone %8s ",
1240 				pgdat->node_id,
1241 				zone->name);
1242 	for (order = 0; order < MAX_ORDER; ++order) {
1243 		fill_contig_page_info(zone, order, &info);
1244 		index = unusable_free_index(order, &info);
1245 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1246 	}
1247 
1248 	seq_putc(m, '\n');
1249 }
1250 
1251 /*
1252  * Display unusable free space index
1253  *
1254  * The unusable free space index measures how much of the available free
1255  * memory cannot be used to satisfy an allocation of a given size and is a
1256  * value between 0 and 1. The higher the value, the more of free memory is
1257  * unusable and by implication, the worse the external fragmentation is. This
1258  * can be expressed as a percentage by multiplying by 100.
1259  */
1260 static int unusable_show(struct seq_file *m, void *arg)
1261 {
1262 	pg_data_t *pgdat = (pg_data_t *)arg;
1263 
1264 	/* check memoryless node */
1265 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1266 		return 0;
1267 
1268 	walk_zones_in_node(m, pgdat, unusable_show_print);
1269 
1270 	return 0;
1271 }
1272 
1273 static const struct seq_operations unusable_op = {
1274 	.start	= frag_start,
1275 	.next	= frag_next,
1276 	.stop	= frag_stop,
1277 	.show	= unusable_show,
1278 };
1279 
1280 static int unusable_open(struct inode *inode, struct file *file)
1281 {
1282 	return seq_open(file, &unusable_op);
1283 }
1284 
1285 static const struct file_operations unusable_file_ops = {
1286 	.open		= unusable_open,
1287 	.read		= seq_read,
1288 	.llseek		= seq_lseek,
1289 	.release	= seq_release,
1290 };
1291 
1292 static void extfrag_show_print(struct seq_file *m,
1293 					pg_data_t *pgdat, struct zone *zone)
1294 {
1295 	unsigned int order;
1296 	int index;
1297 
1298 	/* Alloc on stack as interrupts are disabled for zone walk */
1299 	struct contig_page_info info;
1300 
1301 	seq_printf(m, "Node %d, zone %8s ",
1302 				pgdat->node_id,
1303 				zone->name);
1304 	for (order = 0; order < MAX_ORDER; ++order) {
1305 		fill_contig_page_info(zone, order, &info);
1306 		index = __fragmentation_index(order, &info);
1307 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1308 	}
1309 
1310 	seq_putc(m, '\n');
1311 }
1312 
1313 /*
1314  * Display fragmentation index for orders that allocations would fail for
1315  */
1316 static int extfrag_show(struct seq_file *m, void *arg)
1317 {
1318 	pg_data_t *pgdat = (pg_data_t *)arg;
1319 
1320 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1321 
1322 	return 0;
1323 }
1324 
1325 static const struct seq_operations extfrag_op = {
1326 	.start	= frag_start,
1327 	.next	= frag_next,
1328 	.stop	= frag_stop,
1329 	.show	= extfrag_show,
1330 };
1331 
1332 static int extfrag_open(struct inode *inode, struct file *file)
1333 {
1334 	return seq_open(file, &extfrag_op);
1335 }
1336 
1337 static const struct file_operations extfrag_file_ops = {
1338 	.open		= extfrag_open,
1339 	.read		= seq_read,
1340 	.llseek		= seq_lseek,
1341 	.release	= seq_release,
1342 };
1343 
1344 static int __init extfrag_debug_init(void)
1345 {
1346 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1347 	if (!extfrag_debug_root)
1348 		return -ENOMEM;
1349 
1350 	if (!debugfs_create_file("unusable_index", 0444,
1351 			extfrag_debug_root, NULL, &unusable_file_ops))
1352 		return -ENOMEM;
1353 
1354 	if (!debugfs_create_file("extfrag_index", 0444,
1355 			extfrag_debug_root, NULL, &extfrag_file_ops))
1356 		return -ENOMEM;
1357 
1358 	return 0;
1359 }
1360 
1361 module_init(extfrag_debug_init);
1362 #endif
1363