1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49 }
50
51 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52 static void zero_zones_numa_counters(void)
53 {
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
zero_global_numa_counters(void)61 static void zero_global_numa_counters(void)
62 {
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
invalid_numa_statistics(void)69 static void invalid_numa_statistics(void)
70 {
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79 {
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
sum_vm_events(unsigned long * ret)110 static void sum_vm_events(unsigned long *ret)
111 {
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123 }
124
125 /*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129 */
all_vm_events(unsigned long * ret)130 void all_vm_events(unsigned long *ret)
131 {
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
vm_events_fold_cpu(int cpu)144 void vm_events_fold_cpu(int cpu)
145 {
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
fold_vm_numa_events(void)187 void fold_vm_numa_events(void)
188 {
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
calculate_pressure_threshold(struct zone * zone)198 int calculate_pressure_threshold(struct zone *zone)
199 {
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220 }
221
calculate_normal_threshold(struct zone * zone)222 int calculate_normal_threshold(struct zone *zone)
223 {
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267 }
268
269 /*
270 * Refresh the thresholds for each zone.
271 */
refresh_zone_stat_thresholds(void)272 void refresh_zone_stat_thresholds(void)
273 {
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315 }
316
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319 {
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335 }
336
337 /*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344 {
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375 {
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408
409 /*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451 }
452
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474 }
475
__inc_zone_page_state(struct page * page,enum zone_stat_item item)476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478 __inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481
__inc_node_page_state(struct page * page,enum node_stat_item item)482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484 __inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487
__dec_zone_state(struct zone * zone,enum zone_stat_item item)488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507 }
508
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530 }
531
__dec_zone_page_state(struct page * page,enum zone_stat_item item)532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534 __dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537
__dec_node_page_state(struct page * page,enum node_stat_item item)538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540 __dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)557 static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559 {
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long o, n, t, z;
563
564 do {
565 z = 0; /* overflow to zone counters */
566
567 /*
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
573 *
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
576 */
577 t = this_cpu_read(pcp->stat_threshold);
578
579 o = this_cpu_read(*p);
580 n = delta + o;
581
582 if (abs(n) > t) {
583 int os = overstep_mode * (t >> 1) ;
584
585 /* Overflow must be added to zone counters */
586 z = n + os;
587 n = -os;
588 }
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591 if (z)
592 zone_page_state_add(z, zone, item);
593 }
594
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)595 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 long delta)
597 {
598 mod_zone_state(zone, item, delta, 0);
599 }
600 EXPORT_SYMBOL(mod_zone_page_state);
601
inc_zone_page_state(struct page * page,enum zone_stat_item item)602 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603 {
604 mod_zone_state(page_zone(page), item, 1, 1);
605 }
606 EXPORT_SYMBOL(inc_zone_page_state);
607
dec_zone_page_state(struct page * page,enum zone_stat_item item)608 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609 {
610 mod_zone_state(page_zone(page), item, -1, -1);
611 }
612 EXPORT_SYMBOL(dec_zone_page_state);
613
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)614 static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
616 {
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 long o, n, t, z;
620
621 if (vmstat_item_in_bytes(item)) {
622 /*
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
627 */
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
630 }
631
632 do {
633 z = 0; /* overflow to node counters */
634
635 /*
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
641 *
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
644 */
645 t = this_cpu_read(pcp->stat_threshold);
646
647 o = this_cpu_read(*p);
648 n = delta + o;
649
650 if (abs(n) > t) {
651 int os = overstep_mode * (t >> 1) ;
652
653 /* Overflow must be added to node counters */
654 z = n + os;
655 n = -os;
656 }
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659 if (z)
660 node_page_state_add(z, pgdat, item);
661 }
662
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)663 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 long delta)
665 {
666 mod_node_state(pgdat, item, delta, 0);
667 }
668 EXPORT_SYMBOL(mod_node_page_state);
669
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)670 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671 {
672 mod_node_state(pgdat, item, 1, 1);
673 }
674
inc_node_page_state(struct page * page,enum node_stat_item item)675 void inc_node_page_state(struct page *page, enum node_stat_item item)
676 {
677 mod_node_state(page_pgdat(page), item, 1, 1);
678 }
679 EXPORT_SYMBOL(inc_node_page_state);
680
dec_node_page_state(struct page * page,enum node_stat_item item)681 void dec_node_page_state(struct page *page, enum node_stat_item item)
682 {
683 mod_node_state(page_pgdat(page), item, -1, -1);
684 }
685 EXPORT_SYMBOL(dec_node_page_state);
686 #else
687 /*
688 * Use interrupt disable to serialize counter updates
689 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 long delta)
692 {
693 unsigned long flags;
694
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
698 }
699 EXPORT_SYMBOL(mod_zone_page_state);
700
inc_zone_page_state(struct page * page,enum zone_stat_item item)701 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702 {
703 unsigned long flags;
704 struct zone *zone;
705
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(inc_zone_page_state);
712
dec_zone_page_state(struct page * page,enum zone_stat_item item)713 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
720 }
721 EXPORT_SYMBOL(dec_zone_page_state);
722
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)723 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724 {
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
730 }
731 EXPORT_SYMBOL(inc_node_state);
732
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)733 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 long delta)
735 {
736 unsigned long flags;
737
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
741 }
742 EXPORT_SYMBOL(mod_node_page_state);
743
inc_node_page_state(struct page * page,enum node_stat_item item)744 void inc_node_page_state(struct page *page, enum node_stat_item item)
745 {
746 unsigned long flags;
747 struct pglist_data *pgdat;
748
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(inc_node_page_state);
755
dec_node_page_state(struct page * page,enum node_stat_item item)756 void dec_node_page_state(struct page *page, enum node_stat_item item)
757 {
758 unsigned long flags;
759
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
763 }
764 EXPORT_SYMBOL(dec_node_page_state);
765 #endif
766
767 /*
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
770 */
fold_diff(int * zone_diff,int * node_diff)771 static int fold_diff(int *zone_diff, int *node_diff)
772 {
773 int i;
774 int changes = 0;
775
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 if (zone_diff[i]) {
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 changes++;
780 }
781
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 if (node_diff[i]) {
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 changes++;
786 }
787 return changes;
788 }
789
790 /*
791 * Update the zone counters for the current cpu.
792 *
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
797 * the processor.
798 *
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
803 *
804 * The function returns the number of global counters updated.
805 */
refresh_cpu_vm_stats(bool do_pagesets)806 static int refresh_cpu_vm_stats(bool do_pagesets)
807 {
808 struct pglist_data *pgdat;
809 struct zone *zone;
810 int i;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 int changes = 0;
814
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817 #ifdef CONFIG_NUMA
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819 #endif
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832 #endif
833 }
834 }
835 #ifdef CONFIG_NUMA
836
837 if (do_pagesets) {
838 cond_resched();
839 /*
840 * Deal with draining the remote pageset of this
841 * processor
842 *
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
845 */
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
848 continue;
849
850 /*
851 * We never drain zones local to this processor.
852 */
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
855 continue;
856 }
857
858 if (__this_cpu_dec_return(pcp->expire))
859 continue;
860
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
863 changes++;
864 }
865 }
866 #endif
867 }
868
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 int v;
874
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 if (v) {
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
879 }
880 }
881 }
882
883 changes += fold_diff(global_zone_diff, global_node_diff);
884 return changes;
885 }
886
887 /*
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
891 */
cpu_vm_stats_fold(int cpu)892 void cpu_vm_stats_fold(int cpu)
893 {
894 struct pglist_data *pgdat;
895 struct zone *zone;
896 int i;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
902
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
907 int v;
908
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
913 }
914 }
915 #ifdef CONFIG_NUMA
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
918 unsigned long v;
919
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
923 }
924 }
925 #endif
926 }
927
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
930
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
935 int v;
936
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
941 }
942 }
943
944 fold_diff(global_zone_diff, global_node_diff);
945 }
946
947 /*
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
950 */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)951 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952 {
953 unsigned long v;
954 int i;
955
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
961 }
962 }
963
964 #ifdef CONFIG_NUMA
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
970 }
971 }
972 #endif
973 }
974 #endif
975
976 #ifdef CONFIG_NUMA
977 /*
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
981 */
sum_zone_node_page_state(int node,enum zone_stat_item item)982 unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
984 {
985 struct zone *zones = NODE_DATA(node)->node_zones;
986 int i;
987 unsigned long count = 0;
988
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
991
992 return count;
993 }
994
995 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)996 unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
998 {
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1001 int i;
1002
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1005
1006 return count;
1007 }
1008
1009 /*
1010 * Determine the per node value of a stat item.
1011 */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1012 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1014 {
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1016 #ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019 #endif
1020 return x;
1021 }
1022
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1023 unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1025 {
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028 return node_page_state_pages(pgdat, item);
1029 }
1030 #endif
1031
1032 #ifdef CONFIG_COMPACTION
1033
1034 struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1038 };
1039
1040 /*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1048 static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1051 {
1052 unsigned int order;
1053
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1057
1058 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1059 unsigned long blocks;
1060
1061 /*
1062 * Count number of free blocks.
1063 *
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 */
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1069
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1072
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1077 }
1078 }
1079
1080 /*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1087 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088 {
1089 unsigned long requested = 1UL << order;
1090
1091 if (WARN_ON_ONCE(order > MAX_ORDER))
1092 return 0;
1093
1094 if (!info->free_blocks_total)
1095 return 0;
1096
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1099 return -1000;
1100
1101 /*
1102 * Index is between 0 and 1 so return within 3 decimal places
1103 *
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1106 */
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108 }
1109
1110 /*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
extfrag_for_order(struct zone * zone,unsigned int order)1115 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116 {
1117 struct contig_page_info info;
1118
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1121 return 0;
1122
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1125 info.free_pages);
1126 }
1127
1128 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1129 int fragmentation_index(struct zone *zone, unsigned int order)
1130 {
1131 struct contig_page_info info;
1132
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1135 }
1136 #endif
1137
1138 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140 #ifdef CONFIG_ZONE_DMA
1141 #define TEXT_FOR_DMA(xx) xx "_dma",
1142 #else
1143 #define TEXT_FOR_DMA(xx)
1144 #endif
1145
1146 #ifdef CONFIG_ZONE_DMA32
1147 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1148 #else
1149 #define TEXT_FOR_DMA32(xx)
1150 #endif
1151
1152 #ifdef CONFIG_HIGHMEM
1153 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154 #else
1155 #define TEXT_FOR_HIGHMEM(xx)
1156 #endif
1157
1158 #ifdef CONFIG_ZONE_DEVICE
1159 #define TEXT_FOR_DEVICE(xx) xx "_device",
1160 #else
1161 #define TEXT_FOR_DEVICE(xx)
1162 #endif
1163
1164 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 TEXT_FOR_DEVICE(xx)
1167
1168 const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1177 "nr_mlock",
1178 "nr_bounce",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1180 "nr_zspages",
1181 #endif
1182 "nr_free_cma",
1183 #ifdef CONFIG_UNACCEPTED_MEMORY
1184 "nr_unaccepted",
1185 #endif
1186
1187 /* enum numa_stat_item counters */
1188 #ifdef CONFIG_NUMA
1189 "numa_hit",
1190 "numa_miss",
1191 "numa_foreign",
1192 "numa_interleave",
1193 "numa_local",
1194 "numa_other",
1195 #endif
1196
1197 /* enum node_stat_item counters */
1198 "nr_inactive_anon",
1199 "nr_active_anon",
1200 "nr_inactive_file",
1201 "nr_active_file",
1202 "nr_unevictable",
1203 "nr_slab_reclaimable",
1204 "nr_slab_unreclaimable",
1205 "nr_isolated_anon",
1206 "nr_isolated_file",
1207 "workingset_nodes",
1208 "workingset_refault_anon",
1209 "workingset_refault_file",
1210 "workingset_activate_anon",
1211 "workingset_activate_file",
1212 "workingset_restore_anon",
1213 "workingset_restore_file",
1214 "workingset_nodereclaim",
1215 "nr_anon_pages",
1216 "nr_mapped",
1217 "nr_file_pages",
1218 "nr_dirty",
1219 "nr_writeback",
1220 "nr_writeback_temp",
1221 "nr_shmem",
1222 "nr_shmem_hugepages",
1223 "nr_shmem_pmdmapped",
1224 "nr_file_hugepages",
1225 "nr_file_pmdmapped",
1226 "nr_anon_transparent_hugepages",
1227 "nr_vmscan_write",
1228 "nr_vmscan_immediate_reclaim",
1229 "nr_dirtied",
1230 "nr_written",
1231 "nr_throttled_written",
1232 "nr_kernel_misc_reclaimable",
1233 "nr_foll_pin_acquired",
1234 "nr_foll_pin_released",
1235 "nr_kernel_stack",
1236 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1237 "nr_shadow_call_stack",
1238 #endif
1239 "nr_page_table_pages",
1240 "nr_sec_page_table_pages",
1241 #ifdef CONFIG_SWAP
1242 "nr_swapcached",
1243 #endif
1244 #ifdef CONFIG_NUMA_BALANCING
1245 "pgpromote_success",
1246 "pgpromote_candidate",
1247 #endif
1248
1249 /* enum writeback_stat_item counters */
1250 "nr_dirty_threshold",
1251 "nr_dirty_background_threshold",
1252
1253 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1254 /* enum vm_event_item counters */
1255 "pgpgin",
1256 "pgpgout",
1257 "pswpin",
1258 "pswpout",
1259
1260 TEXTS_FOR_ZONES("pgalloc")
1261 TEXTS_FOR_ZONES("allocstall")
1262 TEXTS_FOR_ZONES("pgskip")
1263
1264 "pgfree",
1265 "pgactivate",
1266 "pgdeactivate",
1267 "pglazyfree",
1268
1269 "pgfault",
1270 "pgmajfault",
1271 "pglazyfreed",
1272
1273 "pgrefill",
1274 "pgreuse",
1275 "pgsteal_kswapd",
1276 "pgsteal_direct",
1277 "pgsteal_khugepaged",
1278 "pgdemote_kswapd",
1279 "pgdemote_direct",
1280 "pgdemote_khugepaged",
1281 "pgscan_kswapd",
1282 "pgscan_direct",
1283 "pgscan_khugepaged",
1284 "pgscan_direct_throttle",
1285 "pgscan_anon",
1286 "pgscan_file",
1287 "pgsteal_anon",
1288 "pgsteal_file",
1289
1290 #ifdef CONFIG_NUMA
1291 "zone_reclaim_failed",
1292 #endif
1293 "pginodesteal",
1294 "slabs_scanned",
1295 "kswapd_inodesteal",
1296 "kswapd_low_wmark_hit_quickly",
1297 "kswapd_high_wmark_hit_quickly",
1298 "pageoutrun",
1299
1300 "pgrotated",
1301
1302 "drop_pagecache",
1303 "drop_slab",
1304 "oom_kill",
1305
1306 #ifdef CONFIG_NUMA_BALANCING
1307 "numa_pte_updates",
1308 "numa_huge_pte_updates",
1309 "numa_hint_faults",
1310 "numa_hint_faults_local",
1311 "numa_pages_migrated",
1312 #endif
1313 #ifdef CONFIG_MIGRATION
1314 "pgmigrate_success",
1315 "pgmigrate_fail",
1316 "thp_migration_success",
1317 "thp_migration_fail",
1318 "thp_migration_split",
1319 #endif
1320 #ifdef CONFIG_COMPACTION
1321 "compact_migrate_scanned",
1322 "compact_free_scanned",
1323 "compact_isolated",
1324 "compact_stall",
1325 "compact_fail",
1326 "compact_success",
1327 "compact_daemon_wake",
1328 "compact_daemon_migrate_scanned",
1329 "compact_daemon_free_scanned",
1330 #endif
1331
1332 #ifdef CONFIG_HUGETLB_PAGE
1333 "htlb_buddy_alloc_success",
1334 "htlb_buddy_alloc_fail",
1335 #endif
1336 #ifdef CONFIG_CMA
1337 "cma_alloc_success",
1338 "cma_alloc_fail",
1339 #endif
1340 "unevictable_pgs_culled",
1341 "unevictable_pgs_scanned",
1342 "unevictable_pgs_rescued",
1343 "unevictable_pgs_mlocked",
1344 "unevictable_pgs_munlocked",
1345 "unevictable_pgs_cleared",
1346 "unevictable_pgs_stranded",
1347
1348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1349 "thp_fault_alloc",
1350 "thp_fault_fallback",
1351 "thp_fault_fallback_charge",
1352 "thp_collapse_alloc",
1353 "thp_collapse_alloc_failed",
1354 "thp_file_alloc",
1355 "thp_file_fallback",
1356 "thp_file_fallback_charge",
1357 "thp_file_mapped",
1358 "thp_split_page",
1359 "thp_split_page_failed",
1360 "thp_deferred_split_page",
1361 "thp_split_pmd",
1362 "thp_scan_exceed_none_pte",
1363 "thp_scan_exceed_swap_pte",
1364 "thp_scan_exceed_share_pte",
1365 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1366 "thp_split_pud",
1367 #endif
1368 "thp_zero_page_alloc",
1369 "thp_zero_page_alloc_failed",
1370 "thp_swpout",
1371 "thp_swpout_fallback",
1372 #endif
1373 #ifdef CONFIG_MEMORY_BALLOON
1374 "balloon_inflate",
1375 "balloon_deflate",
1376 #ifdef CONFIG_BALLOON_COMPACTION
1377 "balloon_migrate",
1378 #endif
1379 #endif /* CONFIG_MEMORY_BALLOON */
1380 #ifdef CONFIG_DEBUG_TLBFLUSH
1381 "nr_tlb_remote_flush",
1382 "nr_tlb_remote_flush_received",
1383 "nr_tlb_local_flush_all",
1384 "nr_tlb_local_flush_one",
1385 #endif /* CONFIG_DEBUG_TLBFLUSH */
1386
1387 #ifdef CONFIG_SWAP
1388 "swap_ra",
1389 "swap_ra_hit",
1390 #ifdef CONFIG_KSM
1391 "ksm_swpin_copy",
1392 #endif
1393 #endif
1394 #ifdef CONFIG_KSM
1395 "cow_ksm",
1396 #endif
1397 #ifdef CONFIG_ZSWAP
1398 "zswpin",
1399 "zswpout",
1400 #endif
1401 #ifdef CONFIG_X86
1402 "direct_map_level2_splits",
1403 "direct_map_level3_splits",
1404 #endif
1405 #ifdef CONFIG_PER_VMA_LOCK_STATS
1406 "vma_lock_success",
1407 "vma_lock_abort",
1408 "vma_lock_retry",
1409 "vma_lock_miss",
1410 #endif
1411 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1412 };
1413 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1414
1415 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1416 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1417 static void *frag_start(struct seq_file *m, loff_t *pos)
1418 {
1419 pg_data_t *pgdat;
1420 loff_t node = *pos;
1421
1422 for (pgdat = first_online_pgdat();
1423 pgdat && node;
1424 pgdat = next_online_pgdat(pgdat))
1425 --node;
1426
1427 return pgdat;
1428 }
1429
frag_next(struct seq_file * m,void * arg,loff_t * pos)1430 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1431 {
1432 pg_data_t *pgdat = (pg_data_t *)arg;
1433
1434 (*pos)++;
1435 return next_online_pgdat(pgdat);
1436 }
1437
frag_stop(struct seq_file * m,void * arg)1438 static void frag_stop(struct seq_file *m, void *arg)
1439 {
1440 }
1441
1442 /*
1443 * Walk zones in a node and print using a callback.
1444 * If @assert_populated is true, only use callback for zones that are populated.
1445 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1446 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1447 bool assert_populated, bool nolock,
1448 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1449 {
1450 struct zone *zone;
1451 struct zone *node_zones = pgdat->node_zones;
1452 unsigned long flags;
1453
1454 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1455 if (assert_populated && !populated_zone(zone))
1456 continue;
1457
1458 if (!nolock)
1459 spin_lock_irqsave(&zone->lock, flags);
1460 print(m, pgdat, zone);
1461 if (!nolock)
1462 spin_unlock_irqrestore(&zone->lock, flags);
1463 }
1464 }
1465 #endif
1466
1467 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1468 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1469 struct zone *zone)
1470 {
1471 int order;
1472
1473 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1474 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1475 /*
1476 * Access to nr_free is lockless as nr_free is used only for
1477 * printing purposes. Use data_race to avoid KCSAN warning.
1478 */
1479 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1480 seq_putc(m, '\n');
1481 }
1482
1483 /*
1484 * This walks the free areas for each zone.
1485 */
frag_show(struct seq_file * m,void * arg)1486 static int frag_show(struct seq_file *m, void *arg)
1487 {
1488 pg_data_t *pgdat = (pg_data_t *)arg;
1489 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1490 return 0;
1491 }
1492
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1493 static void pagetypeinfo_showfree_print(struct seq_file *m,
1494 pg_data_t *pgdat, struct zone *zone)
1495 {
1496 int order, mtype;
1497
1498 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1499 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1500 pgdat->node_id,
1501 zone->name,
1502 migratetype_names[mtype]);
1503 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1504 unsigned long freecount = 0;
1505 struct free_area *area;
1506 struct list_head *curr;
1507 bool overflow = false;
1508
1509 area = &(zone->free_area[order]);
1510
1511 list_for_each(curr, &area->free_list[mtype]) {
1512 /*
1513 * Cap the free_list iteration because it might
1514 * be really large and we are under a spinlock
1515 * so a long time spent here could trigger a
1516 * hard lockup detector. Anyway this is a
1517 * debugging tool so knowing there is a handful
1518 * of pages of this order should be more than
1519 * sufficient.
1520 */
1521 if (++freecount >= 100000) {
1522 overflow = true;
1523 break;
1524 }
1525 }
1526 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1527 spin_unlock_irq(&zone->lock);
1528 cond_resched();
1529 spin_lock_irq(&zone->lock);
1530 }
1531 seq_putc(m, '\n');
1532 }
1533 }
1534
1535 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1536 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1537 {
1538 int order;
1539 pg_data_t *pgdat = (pg_data_t *)arg;
1540
1541 /* Print header */
1542 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1543 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1544 seq_printf(m, "%6d ", order);
1545 seq_putc(m, '\n');
1546
1547 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1548 }
1549
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1550 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1551 pg_data_t *pgdat, struct zone *zone)
1552 {
1553 int mtype;
1554 unsigned long pfn;
1555 unsigned long start_pfn = zone->zone_start_pfn;
1556 unsigned long end_pfn = zone_end_pfn(zone);
1557 unsigned long count[MIGRATE_TYPES] = { 0, };
1558
1559 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1560 struct page *page;
1561
1562 page = pfn_to_online_page(pfn);
1563 if (!page)
1564 continue;
1565
1566 if (page_zone(page) != zone)
1567 continue;
1568
1569 mtype = get_pageblock_migratetype(page);
1570
1571 if (mtype < MIGRATE_TYPES)
1572 count[mtype]++;
1573 }
1574
1575 /* Print counts */
1576 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1577 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1578 seq_printf(m, "%12lu ", count[mtype]);
1579 seq_putc(m, '\n');
1580 }
1581
1582 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1583 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1584 {
1585 int mtype;
1586 pg_data_t *pgdat = (pg_data_t *)arg;
1587
1588 seq_printf(m, "\n%-23s", "Number of blocks type ");
1589 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1590 seq_printf(m, "%12s ", migratetype_names[mtype]);
1591 seq_putc(m, '\n');
1592 walk_zones_in_node(m, pgdat, true, false,
1593 pagetypeinfo_showblockcount_print);
1594 }
1595
1596 /*
1597 * Print out the number of pageblocks for each migratetype that contain pages
1598 * of other types. This gives an indication of how well fallbacks are being
1599 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1600 * to determine what is going on
1601 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1602 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1603 {
1604 #ifdef CONFIG_PAGE_OWNER
1605 int mtype;
1606
1607 if (!static_branch_unlikely(&page_owner_inited))
1608 return;
1609
1610 drain_all_pages(NULL);
1611
1612 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1613 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1614 seq_printf(m, "%12s ", migratetype_names[mtype]);
1615 seq_putc(m, '\n');
1616
1617 walk_zones_in_node(m, pgdat, true, true,
1618 pagetypeinfo_showmixedcount_print);
1619 #endif /* CONFIG_PAGE_OWNER */
1620 }
1621
1622 /*
1623 * This prints out statistics in relation to grouping pages by mobility.
1624 * It is expensive to collect so do not constantly read the file.
1625 */
pagetypeinfo_show(struct seq_file * m,void * arg)1626 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1627 {
1628 pg_data_t *pgdat = (pg_data_t *)arg;
1629
1630 /* check memoryless node */
1631 if (!node_state(pgdat->node_id, N_MEMORY))
1632 return 0;
1633
1634 seq_printf(m, "Page block order: %d\n", pageblock_order);
1635 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1636 seq_putc(m, '\n');
1637 pagetypeinfo_showfree(m, pgdat);
1638 pagetypeinfo_showblockcount(m, pgdat);
1639 pagetypeinfo_showmixedcount(m, pgdat);
1640
1641 return 0;
1642 }
1643
1644 static const struct seq_operations fragmentation_op = {
1645 .start = frag_start,
1646 .next = frag_next,
1647 .stop = frag_stop,
1648 .show = frag_show,
1649 };
1650
1651 static const struct seq_operations pagetypeinfo_op = {
1652 .start = frag_start,
1653 .next = frag_next,
1654 .stop = frag_stop,
1655 .show = pagetypeinfo_show,
1656 };
1657
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1658 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1659 {
1660 int zid;
1661
1662 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1663 struct zone *compare = &pgdat->node_zones[zid];
1664
1665 if (populated_zone(compare))
1666 return zone == compare;
1667 }
1668
1669 return false;
1670 }
1671
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1672 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1673 struct zone *zone)
1674 {
1675 int i;
1676 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1677 if (is_zone_first_populated(pgdat, zone)) {
1678 seq_printf(m, "\n per-node stats");
1679 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1680 unsigned long pages = node_page_state_pages(pgdat, i);
1681
1682 if (vmstat_item_print_in_thp(i))
1683 pages /= HPAGE_PMD_NR;
1684 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1685 pages);
1686 }
1687 }
1688 seq_printf(m,
1689 "\n pages free %lu"
1690 "\n boost %lu"
1691 "\n min %lu"
1692 "\n low %lu"
1693 "\n high %lu"
1694 "\n spanned %lu"
1695 "\n present %lu"
1696 "\n managed %lu"
1697 "\n cma %lu",
1698 zone_page_state(zone, NR_FREE_PAGES),
1699 zone->watermark_boost,
1700 min_wmark_pages(zone),
1701 low_wmark_pages(zone),
1702 high_wmark_pages(zone),
1703 zone->spanned_pages,
1704 zone->present_pages,
1705 zone_managed_pages(zone),
1706 zone_cma_pages(zone));
1707
1708 seq_printf(m,
1709 "\n protection: (%ld",
1710 zone->lowmem_reserve[0]);
1711 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1712 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1713 seq_putc(m, ')');
1714
1715 /* If unpopulated, no other information is useful */
1716 if (!populated_zone(zone)) {
1717 seq_putc(m, '\n');
1718 return;
1719 }
1720
1721 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1722 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1723 zone_page_state(zone, i));
1724
1725 #ifdef CONFIG_NUMA
1726 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1727 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1728 zone_numa_event_state(zone, i));
1729 #endif
1730
1731 seq_printf(m, "\n pagesets");
1732 for_each_online_cpu(i) {
1733 struct per_cpu_pages *pcp;
1734 struct per_cpu_zonestat __maybe_unused *pzstats;
1735
1736 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1737 seq_printf(m,
1738 "\n cpu: %i"
1739 "\n count: %i"
1740 "\n high: %i"
1741 "\n batch: %i",
1742 i,
1743 pcp->count,
1744 pcp->high,
1745 pcp->batch);
1746 #ifdef CONFIG_SMP
1747 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1748 seq_printf(m, "\n vm stats threshold: %d",
1749 pzstats->stat_threshold);
1750 #endif
1751 }
1752 seq_printf(m,
1753 "\n node_unreclaimable: %u"
1754 "\n start_pfn: %lu",
1755 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1756 zone->zone_start_pfn);
1757 seq_putc(m, '\n');
1758 }
1759
1760 /*
1761 * Output information about zones in @pgdat. All zones are printed regardless
1762 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1763 * set of all zones and userspace would not be aware of such zones if they are
1764 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1765 */
zoneinfo_show(struct seq_file * m,void * arg)1766 static int zoneinfo_show(struct seq_file *m, void *arg)
1767 {
1768 pg_data_t *pgdat = (pg_data_t *)arg;
1769 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1770 return 0;
1771 }
1772
1773 static const struct seq_operations zoneinfo_op = {
1774 .start = frag_start, /* iterate over all zones. The same as in
1775 * fragmentation. */
1776 .next = frag_next,
1777 .stop = frag_stop,
1778 .show = zoneinfo_show,
1779 };
1780
1781 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1782 NR_VM_NUMA_EVENT_ITEMS + \
1783 NR_VM_NODE_STAT_ITEMS + \
1784 NR_VM_WRITEBACK_STAT_ITEMS + \
1785 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1786 NR_VM_EVENT_ITEMS : 0))
1787
vmstat_start(struct seq_file * m,loff_t * pos)1788 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1789 {
1790 unsigned long *v;
1791 int i;
1792
1793 if (*pos >= NR_VMSTAT_ITEMS)
1794 return NULL;
1795
1796 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1797 fold_vm_numa_events();
1798 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1799 m->private = v;
1800 if (!v)
1801 return ERR_PTR(-ENOMEM);
1802 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1803 v[i] = global_zone_page_state(i);
1804 v += NR_VM_ZONE_STAT_ITEMS;
1805
1806 #ifdef CONFIG_NUMA
1807 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1808 v[i] = global_numa_event_state(i);
1809 v += NR_VM_NUMA_EVENT_ITEMS;
1810 #endif
1811
1812 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1813 v[i] = global_node_page_state_pages(i);
1814 if (vmstat_item_print_in_thp(i))
1815 v[i] /= HPAGE_PMD_NR;
1816 }
1817 v += NR_VM_NODE_STAT_ITEMS;
1818
1819 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1820 v + NR_DIRTY_THRESHOLD);
1821 v += NR_VM_WRITEBACK_STAT_ITEMS;
1822
1823 #ifdef CONFIG_VM_EVENT_COUNTERS
1824 all_vm_events(v);
1825 v[PGPGIN] /= 2; /* sectors -> kbytes */
1826 v[PGPGOUT] /= 2;
1827 #endif
1828 return (unsigned long *)m->private + *pos;
1829 }
1830
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1831 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1832 {
1833 (*pos)++;
1834 if (*pos >= NR_VMSTAT_ITEMS)
1835 return NULL;
1836 return (unsigned long *)m->private + *pos;
1837 }
1838
vmstat_show(struct seq_file * m,void * arg)1839 static int vmstat_show(struct seq_file *m, void *arg)
1840 {
1841 unsigned long *l = arg;
1842 unsigned long off = l - (unsigned long *)m->private;
1843
1844 seq_puts(m, vmstat_text[off]);
1845 seq_put_decimal_ull(m, " ", *l);
1846 seq_putc(m, '\n');
1847
1848 if (off == NR_VMSTAT_ITEMS - 1) {
1849 /*
1850 * We've come to the end - add any deprecated counters to avoid
1851 * breaking userspace which might depend on them being present.
1852 */
1853 seq_puts(m, "nr_unstable 0\n");
1854 }
1855 return 0;
1856 }
1857
vmstat_stop(struct seq_file * m,void * arg)1858 static void vmstat_stop(struct seq_file *m, void *arg)
1859 {
1860 kfree(m->private);
1861 m->private = NULL;
1862 }
1863
1864 static const struct seq_operations vmstat_op = {
1865 .start = vmstat_start,
1866 .next = vmstat_next,
1867 .stop = vmstat_stop,
1868 .show = vmstat_show,
1869 };
1870 #endif /* CONFIG_PROC_FS */
1871
1872 #ifdef CONFIG_SMP
1873 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1874 int sysctl_stat_interval __read_mostly = HZ;
1875
1876 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1877 static void refresh_vm_stats(struct work_struct *work)
1878 {
1879 refresh_cpu_vm_stats(true);
1880 }
1881
vmstat_refresh(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1882 int vmstat_refresh(struct ctl_table *table, int write,
1883 void *buffer, size_t *lenp, loff_t *ppos)
1884 {
1885 long val;
1886 int err;
1887 int i;
1888
1889 /*
1890 * The regular update, every sysctl_stat_interval, may come later
1891 * than expected: leaving a significant amount in per_cpu buckets.
1892 * This is particularly misleading when checking a quantity of HUGE
1893 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1894 * which can equally be echo'ed to or cat'ted from (by root),
1895 * can be used to update the stats just before reading them.
1896 *
1897 * Oh, and since global_zone_page_state() etc. are so careful to hide
1898 * transiently negative values, report an error here if any of
1899 * the stats is negative, so we know to go looking for imbalance.
1900 */
1901 err = schedule_on_each_cpu(refresh_vm_stats);
1902 if (err)
1903 return err;
1904 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1905 /*
1906 * Skip checking stats known to go negative occasionally.
1907 */
1908 switch (i) {
1909 case NR_ZONE_WRITE_PENDING:
1910 case NR_FREE_CMA_PAGES:
1911 continue;
1912 }
1913 val = atomic_long_read(&vm_zone_stat[i]);
1914 if (val < 0) {
1915 pr_warn("%s: %s %ld\n",
1916 __func__, zone_stat_name(i), val);
1917 }
1918 }
1919 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1920 /*
1921 * Skip checking stats known to go negative occasionally.
1922 */
1923 switch (i) {
1924 case NR_WRITEBACK:
1925 continue;
1926 }
1927 val = atomic_long_read(&vm_node_stat[i]);
1928 if (val < 0) {
1929 pr_warn("%s: %s %ld\n",
1930 __func__, node_stat_name(i), val);
1931 }
1932 }
1933 if (write)
1934 *ppos += *lenp;
1935 else
1936 *lenp = 0;
1937 return 0;
1938 }
1939 #endif /* CONFIG_PROC_FS */
1940
vmstat_update(struct work_struct * w)1941 static void vmstat_update(struct work_struct *w)
1942 {
1943 if (refresh_cpu_vm_stats(true)) {
1944 /*
1945 * Counters were updated so we expect more updates
1946 * to occur in the future. Keep on running the
1947 * update worker thread.
1948 */
1949 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1950 this_cpu_ptr(&vmstat_work),
1951 round_jiffies_relative(sysctl_stat_interval));
1952 }
1953 }
1954
1955 /*
1956 * Check if the diffs for a certain cpu indicate that
1957 * an update is needed.
1958 */
need_update(int cpu)1959 static bool need_update(int cpu)
1960 {
1961 pg_data_t *last_pgdat = NULL;
1962 struct zone *zone;
1963
1964 for_each_populated_zone(zone) {
1965 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1966 struct per_cpu_nodestat *n;
1967
1968 /*
1969 * The fast way of checking if there are any vmstat diffs.
1970 */
1971 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1972 return true;
1973
1974 if (last_pgdat == zone->zone_pgdat)
1975 continue;
1976 last_pgdat = zone->zone_pgdat;
1977 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1978 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1979 return true;
1980 }
1981 return false;
1982 }
1983
1984 /*
1985 * Switch off vmstat processing and then fold all the remaining differentials
1986 * until the diffs stay at zero. The function is used by NOHZ and can only be
1987 * invoked when tick processing is not active.
1988 */
quiet_vmstat(void)1989 void quiet_vmstat(void)
1990 {
1991 if (system_state != SYSTEM_RUNNING)
1992 return;
1993
1994 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1995 return;
1996
1997 if (!need_update(smp_processor_id()))
1998 return;
1999
2000 /*
2001 * Just refresh counters and do not care about the pending delayed
2002 * vmstat_update. It doesn't fire that often to matter and canceling
2003 * it would be too expensive from this path.
2004 * vmstat_shepherd will take care about that for us.
2005 */
2006 refresh_cpu_vm_stats(false);
2007 }
2008
2009 /*
2010 * Shepherd worker thread that checks the
2011 * differentials of processors that have their worker
2012 * threads for vm statistics updates disabled because of
2013 * inactivity.
2014 */
2015 static void vmstat_shepherd(struct work_struct *w);
2016
2017 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2018
vmstat_shepherd(struct work_struct * w)2019 static void vmstat_shepherd(struct work_struct *w)
2020 {
2021 int cpu;
2022
2023 cpus_read_lock();
2024 /* Check processors whose vmstat worker threads have been disabled */
2025 for_each_online_cpu(cpu) {
2026 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2027
2028 /*
2029 * In kernel users of vmstat counters either require the precise value and
2030 * they are using zone_page_state_snapshot interface or they can live with
2031 * an imprecision as the regular flushing can happen at arbitrary time and
2032 * cumulative error can grow (see calculate_normal_threshold).
2033 *
2034 * From that POV the regular flushing can be postponed for CPUs that have
2035 * been isolated from the kernel interference without critical
2036 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2037 * for all isolated CPUs to avoid interference with the isolated workload.
2038 */
2039 if (cpu_is_isolated(cpu))
2040 continue;
2041
2042 if (!delayed_work_pending(dw) && need_update(cpu))
2043 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2044
2045 cond_resched();
2046 }
2047 cpus_read_unlock();
2048
2049 schedule_delayed_work(&shepherd,
2050 round_jiffies_relative(sysctl_stat_interval));
2051 }
2052
start_shepherd_timer(void)2053 static void __init start_shepherd_timer(void)
2054 {
2055 int cpu;
2056
2057 for_each_possible_cpu(cpu)
2058 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2059 vmstat_update);
2060
2061 schedule_delayed_work(&shepherd,
2062 round_jiffies_relative(sysctl_stat_interval));
2063 }
2064
init_cpu_node_state(void)2065 static void __init init_cpu_node_state(void)
2066 {
2067 int node;
2068
2069 for_each_online_node(node) {
2070 if (!cpumask_empty(cpumask_of_node(node)))
2071 node_set_state(node, N_CPU);
2072 }
2073 }
2074
vmstat_cpu_online(unsigned int cpu)2075 static int vmstat_cpu_online(unsigned int cpu)
2076 {
2077 refresh_zone_stat_thresholds();
2078
2079 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2080 node_set_state(cpu_to_node(cpu), N_CPU);
2081 }
2082
2083 return 0;
2084 }
2085
vmstat_cpu_down_prep(unsigned int cpu)2086 static int vmstat_cpu_down_prep(unsigned int cpu)
2087 {
2088 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2089 return 0;
2090 }
2091
vmstat_cpu_dead(unsigned int cpu)2092 static int vmstat_cpu_dead(unsigned int cpu)
2093 {
2094 const struct cpumask *node_cpus;
2095 int node;
2096
2097 node = cpu_to_node(cpu);
2098
2099 refresh_zone_stat_thresholds();
2100 node_cpus = cpumask_of_node(node);
2101 if (!cpumask_empty(node_cpus))
2102 return 0;
2103
2104 node_clear_state(node, N_CPU);
2105
2106 return 0;
2107 }
2108
2109 #endif
2110
2111 struct workqueue_struct *mm_percpu_wq;
2112
init_mm_internals(void)2113 void __init init_mm_internals(void)
2114 {
2115 int ret __maybe_unused;
2116
2117 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2118
2119 #ifdef CONFIG_SMP
2120 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2121 NULL, vmstat_cpu_dead);
2122 if (ret < 0)
2123 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2124
2125 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2126 vmstat_cpu_online,
2127 vmstat_cpu_down_prep);
2128 if (ret < 0)
2129 pr_err("vmstat: failed to register 'online' hotplug state\n");
2130
2131 cpus_read_lock();
2132 init_cpu_node_state();
2133 cpus_read_unlock();
2134
2135 start_shepherd_timer();
2136 #endif
2137 #ifdef CONFIG_PROC_FS
2138 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2139 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2140 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2141 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2142 #endif
2143 }
2144
2145 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2146
2147 /*
2148 * Return an index indicating how much of the available free memory is
2149 * unusable for an allocation of the requested size.
2150 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2151 static int unusable_free_index(unsigned int order,
2152 struct contig_page_info *info)
2153 {
2154 /* No free memory is interpreted as all free memory is unusable */
2155 if (info->free_pages == 0)
2156 return 1000;
2157
2158 /*
2159 * Index should be a value between 0 and 1. Return a value to 3
2160 * decimal places.
2161 *
2162 * 0 => no fragmentation
2163 * 1 => high fragmentation
2164 */
2165 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2166
2167 }
2168
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2169 static void unusable_show_print(struct seq_file *m,
2170 pg_data_t *pgdat, struct zone *zone)
2171 {
2172 unsigned int order;
2173 int index;
2174 struct contig_page_info info;
2175
2176 seq_printf(m, "Node %d, zone %8s ",
2177 pgdat->node_id,
2178 zone->name);
2179 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2180 fill_contig_page_info(zone, order, &info);
2181 index = unusable_free_index(order, &info);
2182 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2183 }
2184
2185 seq_putc(m, '\n');
2186 }
2187
2188 /*
2189 * Display unusable free space index
2190 *
2191 * The unusable free space index measures how much of the available free
2192 * memory cannot be used to satisfy an allocation of a given size and is a
2193 * value between 0 and 1. The higher the value, the more of free memory is
2194 * unusable and by implication, the worse the external fragmentation is. This
2195 * can be expressed as a percentage by multiplying by 100.
2196 */
unusable_show(struct seq_file * m,void * arg)2197 static int unusable_show(struct seq_file *m, void *arg)
2198 {
2199 pg_data_t *pgdat = (pg_data_t *)arg;
2200
2201 /* check memoryless node */
2202 if (!node_state(pgdat->node_id, N_MEMORY))
2203 return 0;
2204
2205 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2206
2207 return 0;
2208 }
2209
2210 static const struct seq_operations unusable_sops = {
2211 .start = frag_start,
2212 .next = frag_next,
2213 .stop = frag_stop,
2214 .show = unusable_show,
2215 };
2216
2217 DEFINE_SEQ_ATTRIBUTE(unusable);
2218
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2219 static void extfrag_show_print(struct seq_file *m,
2220 pg_data_t *pgdat, struct zone *zone)
2221 {
2222 unsigned int order;
2223 int index;
2224
2225 /* Alloc on stack as interrupts are disabled for zone walk */
2226 struct contig_page_info info;
2227
2228 seq_printf(m, "Node %d, zone %8s ",
2229 pgdat->node_id,
2230 zone->name);
2231 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2232 fill_contig_page_info(zone, order, &info);
2233 index = __fragmentation_index(order, &info);
2234 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2235 }
2236
2237 seq_putc(m, '\n');
2238 }
2239
2240 /*
2241 * Display fragmentation index for orders that allocations would fail for
2242 */
extfrag_show(struct seq_file * m,void * arg)2243 static int extfrag_show(struct seq_file *m, void *arg)
2244 {
2245 pg_data_t *pgdat = (pg_data_t *)arg;
2246
2247 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2248
2249 return 0;
2250 }
2251
2252 static const struct seq_operations extfrag_sops = {
2253 .start = frag_start,
2254 .next = frag_next,
2255 .stop = frag_stop,
2256 .show = extfrag_show,
2257 };
2258
2259 DEFINE_SEQ_ATTRIBUTE(extfrag);
2260
extfrag_debug_init(void)2261 static int __init extfrag_debug_init(void)
2262 {
2263 struct dentry *extfrag_debug_root;
2264
2265 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2266
2267 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2268 &unusable_fops);
2269
2270 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2271 &extfrag_fops);
2272
2273 return 0;
2274 }
2275
2276 module_init(extfrag_debug_init);
2277 #endif
2278