xref: /openbmc/linux/mm/vmscan.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Can active pages be deactivated as part of reclaim? */
83 #define DEACTIVATE_ANON 1
84 #define DEACTIVATE_FILE 2
85 	unsigned int may_deactivate:2;
86 	unsigned int force_deactivate:1;
87 	unsigned int skipped_deactivate:1;
88 
89 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/*
99 	 * Cgroups are not reclaimed below their configured memory.low,
100 	 * unless we threaten to OOM. If any cgroups are skipped due to
101 	 * memory.low and nothing was reclaimed, go back for memory.low.
102 	 */
103 	unsigned int memcg_low_reclaim:1;
104 	unsigned int memcg_low_skipped:1;
105 
106 	unsigned int hibernation_mode:1;
107 
108 	/* One of the zones is ready for compaction */
109 	unsigned int compaction_ready:1;
110 
111 	/* There is easily reclaimable cold cache in the current node */
112 	unsigned int cache_trim_mode:1;
113 
114 	/* The file pages on the current node are dangerously low */
115 	unsigned int file_is_tiny:1;
116 
117 	/* Allocation order */
118 	s8 order;
119 
120 	/* Scan (total_size >> priority) pages at once */
121 	s8 priority;
122 
123 	/* The highest zone to isolate pages for reclaim from */
124 	s8 reclaim_idx;
125 
126 	/* This context's GFP mask */
127 	gfp_t gfp_mask;
128 
129 	/* Incremented by the number of inactive pages that were scanned */
130 	unsigned long nr_scanned;
131 
132 	/* Number of pages freed so far during a call to shrink_zones() */
133 	unsigned long nr_reclaimed;
134 
135 	struct {
136 		unsigned int dirty;
137 		unsigned int unqueued_dirty;
138 		unsigned int congested;
139 		unsigned int writeback;
140 		unsigned int immediate;
141 		unsigned int file_taken;
142 		unsigned int taken;
143 	} nr;
144 
145 	/* for recording the reclaimed slab by now */
146 	struct reclaim_state reclaim_state;
147 };
148 
149 #ifdef ARCH_HAS_PREFETCHW
150 #define prefetchw_prev_lru_page(_page, _base, _field)			\
151 	do {								\
152 		if ((_page)->lru.prev != _base) {			\
153 			struct page *prev;				\
154 									\
155 			prev = lru_to_page(&(_page->lru));		\
156 			prefetchw(&prev->_field);			\
157 		}							\
158 	} while (0)
159 #else
160 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
161 #endif
162 
163 /*
164  * From 0 .. 100.  Higher means more swappy.
165  */
166 int vm_swappiness = 60;
167 /*
168  * The total number of pages which are beyond the high watermark within all
169  * zones.
170  */
171 unsigned long vm_total_pages;
172 
173 static void set_task_reclaim_state(struct task_struct *task,
174 				   struct reclaim_state *rs)
175 {
176 	/* Check for an overwrite */
177 	WARN_ON_ONCE(rs && task->reclaim_state);
178 
179 	/* Check for the nulling of an already-nulled member */
180 	WARN_ON_ONCE(!rs && !task->reclaim_state);
181 
182 	task->reclaim_state = rs;
183 }
184 
185 static LIST_HEAD(shrinker_list);
186 static DECLARE_RWSEM(shrinker_rwsem);
187 
188 #ifdef CONFIG_MEMCG
189 /*
190  * We allow subsystems to populate their shrinker-related
191  * LRU lists before register_shrinker_prepared() is called
192  * for the shrinker, since we don't want to impose
193  * restrictions on their internal registration order.
194  * In this case shrink_slab_memcg() may find corresponding
195  * bit is set in the shrinkers map.
196  *
197  * This value is used by the function to detect registering
198  * shrinkers and to skip do_shrink_slab() calls for them.
199  */
200 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
201 
202 static DEFINE_IDR(shrinker_idr);
203 static int shrinker_nr_max;
204 
205 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
206 {
207 	int id, ret = -ENOMEM;
208 
209 	down_write(&shrinker_rwsem);
210 	/* This may call shrinker, so it must use down_read_trylock() */
211 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
212 	if (id < 0)
213 		goto unlock;
214 
215 	if (id >= shrinker_nr_max) {
216 		if (memcg_expand_shrinker_maps(id)) {
217 			idr_remove(&shrinker_idr, id);
218 			goto unlock;
219 		}
220 
221 		shrinker_nr_max = id + 1;
222 	}
223 	shrinker->id = id;
224 	ret = 0;
225 unlock:
226 	up_write(&shrinker_rwsem);
227 	return ret;
228 }
229 
230 static void unregister_memcg_shrinker(struct shrinker *shrinker)
231 {
232 	int id = shrinker->id;
233 
234 	BUG_ON(id < 0);
235 
236 	down_write(&shrinker_rwsem);
237 	idr_remove(&shrinker_idr, id);
238 	up_write(&shrinker_rwsem);
239 }
240 
241 static bool cgroup_reclaim(struct scan_control *sc)
242 {
243 	return sc->target_mem_cgroup;
244 }
245 
246 /**
247  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
248  * @sc: scan_control in question
249  *
250  * The normal page dirty throttling mechanism in balance_dirty_pages() is
251  * completely broken with the legacy memcg and direct stalling in
252  * shrink_page_list() is used for throttling instead, which lacks all the
253  * niceties such as fairness, adaptive pausing, bandwidth proportional
254  * allocation and configurability.
255  *
256  * This function tests whether the vmscan currently in progress can assume
257  * that the normal dirty throttling mechanism is operational.
258  */
259 static bool writeback_throttling_sane(struct scan_control *sc)
260 {
261 	if (!cgroup_reclaim(sc))
262 		return true;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
265 		return true;
266 #endif
267 	return false;
268 }
269 #else
270 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
271 {
272 	return 0;
273 }
274 
275 static void unregister_memcg_shrinker(struct shrinker *shrinker)
276 {
277 }
278 
279 static bool cgroup_reclaim(struct scan_control *sc)
280 {
281 	return false;
282 }
283 
284 static bool writeback_throttling_sane(struct scan_control *sc)
285 {
286 	return true;
287 }
288 #endif
289 
290 /*
291  * This misses isolated pages which are not accounted for to save counters.
292  * As the data only determines if reclaim or compaction continues, it is
293  * not expected that isolated pages will be a dominating factor.
294  */
295 unsigned long zone_reclaimable_pages(struct zone *zone)
296 {
297 	unsigned long nr;
298 
299 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
300 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
301 	if (get_nr_swap_pages() > 0)
302 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
303 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
304 
305 	return nr;
306 }
307 
308 /**
309  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
310  * @lruvec: lru vector
311  * @lru: lru to use
312  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
313  */
314 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
315 {
316 	unsigned long size = 0;
317 	int zid;
318 
319 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
321 
322 		if (!managed_zone(zone))
323 			continue;
324 
325 		if (!mem_cgroup_disabled())
326 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
327 		else
328 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
329 	}
330 	return size;
331 }
332 
333 /*
334  * Add a shrinker callback to be called from the vm.
335  */
336 int prealloc_shrinker(struct shrinker *shrinker)
337 {
338 	unsigned int size = sizeof(*shrinker->nr_deferred);
339 
340 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
341 		size *= nr_node_ids;
342 
343 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
344 	if (!shrinker->nr_deferred)
345 		return -ENOMEM;
346 
347 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
348 		if (prealloc_memcg_shrinker(shrinker))
349 			goto free_deferred;
350 	}
351 
352 	return 0;
353 
354 free_deferred:
355 	kfree(shrinker->nr_deferred);
356 	shrinker->nr_deferred = NULL;
357 	return -ENOMEM;
358 }
359 
360 void free_prealloced_shrinker(struct shrinker *shrinker)
361 {
362 	if (!shrinker->nr_deferred)
363 		return;
364 
365 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
366 		unregister_memcg_shrinker(shrinker);
367 
368 	kfree(shrinker->nr_deferred);
369 	shrinker->nr_deferred = NULL;
370 }
371 
372 void register_shrinker_prepared(struct shrinker *shrinker)
373 {
374 	down_write(&shrinker_rwsem);
375 	list_add_tail(&shrinker->list, &shrinker_list);
376 #ifdef CONFIG_MEMCG
377 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
378 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
379 #endif
380 	up_write(&shrinker_rwsem);
381 }
382 
383 int register_shrinker(struct shrinker *shrinker)
384 {
385 	int err = prealloc_shrinker(shrinker);
386 
387 	if (err)
388 		return err;
389 	register_shrinker_prepared(shrinker);
390 	return 0;
391 }
392 EXPORT_SYMBOL(register_shrinker);
393 
394 /*
395  * Remove one
396  */
397 void unregister_shrinker(struct shrinker *shrinker)
398 {
399 	if (!shrinker->nr_deferred)
400 		return;
401 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 		unregister_memcg_shrinker(shrinker);
403 	down_write(&shrinker_rwsem);
404 	list_del(&shrinker->list);
405 	up_write(&shrinker_rwsem);
406 	kfree(shrinker->nr_deferred);
407 	shrinker->nr_deferred = NULL;
408 }
409 EXPORT_SYMBOL(unregister_shrinker);
410 
411 #define SHRINK_BATCH 128
412 
413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414 				    struct shrinker *shrinker, int priority)
415 {
416 	unsigned long freed = 0;
417 	unsigned long long delta;
418 	long total_scan;
419 	long freeable;
420 	long nr;
421 	long new_nr;
422 	int nid = shrinkctl->nid;
423 	long batch_size = shrinker->batch ? shrinker->batch
424 					  : SHRINK_BATCH;
425 	long scanned = 0, next_deferred;
426 
427 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
428 		nid = 0;
429 
430 	freeable = shrinker->count_objects(shrinker, shrinkctl);
431 	if (freeable == 0 || freeable == SHRINK_EMPTY)
432 		return freeable;
433 
434 	/*
435 	 * copy the current shrinker scan count into a local variable
436 	 * and zero it so that other concurrent shrinker invocations
437 	 * don't also do this scanning work.
438 	 */
439 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
440 
441 	total_scan = nr;
442 	if (shrinker->seeks) {
443 		delta = freeable >> priority;
444 		delta *= 4;
445 		do_div(delta, shrinker->seeks);
446 	} else {
447 		/*
448 		 * These objects don't require any IO to create. Trim
449 		 * them aggressively under memory pressure to keep
450 		 * them from causing refetches in the IO caches.
451 		 */
452 		delta = freeable / 2;
453 	}
454 
455 	total_scan += delta;
456 	if (total_scan < 0) {
457 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
458 		       shrinker->scan_objects, total_scan);
459 		total_scan = freeable;
460 		next_deferred = nr;
461 	} else
462 		next_deferred = total_scan;
463 
464 	/*
465 	 * We need to avoid excessive windup on filesystem shrinkers
466 	 * due to large numbers of GFP_NOFS allocations causing the
467 	 * shrinkers to return -1 all the time. This results in a large
468 	 * nr being built up so when a shrink that can do some work
469 	 * comes along it empties the entire cache due to nr >>>
470 	 * freeable. This is bad for sustaining a working set in
471 	 * memory.
472 	 *
473 	 * Hence only allow the shrinker to scan the entire cache when
474 	 * a large delta change is calculated directly.
475 	 */
476 	if (delta < freeable / 4)
477 		total_scan = min(total_scan, freeable / 2);
478 
479 	/*
480 	 * Avoid risking looping forever due to too large nr value:
481 	 * never try to free more than twice the estimate number of
482 	 * freeable entries.
483 	 */
484 	if (total_scan > freeable * 2)
485 		total_scan = freeable * 2;
486 
487 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488 				   freeable, delta, total_scan, priority);
489 
490 	/*
491 	 * Normally, we should not scan less than batch_size objects in one
492 	 * pass to avoid too frequent shrinker calls, but if the slab has less
493 	 * than batch_size objects in total and we are really tight on memory,
494 	 * we will try to reclaim all available objects, otherwise we can end
495 	 * up failing allocations although there are plenty of reclaimable
496 	 * objects spread over several slabs with usage less than the
497 	 * batch_size.
498 	 *
499 	 * We detect the "tight on memory" situations by looking at the total
500 	 * number of objects we want to scan (total_scan). If it is greater
501 	 * than the total number of objects on slab (freeable), we must be
502 	 * scanning at high prio and therefore should try to reclaim as much as
503 	 * possible.
504 	 */
505 	while (total_scan >= batch_size ||
506 	       total_scan >= freeable) {
507 		unsigned long ret;
508 		unsigned long nr_to_scan = min(batch_size, total_scan);
509 
510 		shrinkctl->nr_to_scan = nr_to_scan;
511 		shrinkctl->nr_scanned = nr_to_scan;
512 		ret = shrinker->scan_objects(shrinker, shrinkctl);
513 		if (ret == SHRINK_STOP)
514 			break;
515 		freed += ret;
516 
517 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
518 		total_scan -= shrinkctl->nr_scanned;
519 		scanned += shrinkctl->nr_scanned;
520 
521 		cond_resched();
522 	}
523 
524 	if (next_deferred >= scanned)
525 		next_deferred -= scanned;
526 	else
527 		next_deferred = 0;
528 	/*
529 	 * move the unused scan count back into the shrinker in a
530 	 * manner that handles concurrent updates. If we exhausted the
531 	 * scan, there is no need to do an update.
532 	 */
533 	if (next_deferred > 0)
534 		new_nr = atomic_long_add_return(next_deferred,
535 						&shrinker->nr_deferred[nid]);
536 	else
537 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
538 
539 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
540 	return freed;
541 }
542 
543 #ifdef CONFIG_MEMCG
544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 			struct mem_cgroup *memcg, int priority)
546 {
547 	struct memcg_shrinker_map *map;
548 	unsigned long ret, freed = 0;
549 	int i;
550 
551 	if (!mem_cgroup_online(memcg))
552 		return 0;
553 
554 	if (!down_read_trylock(&shrinker_rwsem))
555 		return 0;
556 
557 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
558 					true);
559 	if (unlikely(!map))
560 		goto unlock;
561 
562 	for_each_set_bit(i, map->map, shrinker_nr_max) {
563 		struct shrink_control sc = {
564 			.gfp_mask = gfp_mask,
565 			.nid = nid,
566 			.memcg = memcg,
567 		};
568 		struct shrinker *shrinker;
569 
570 		shrinker = idr_find(&shrinker_idr, i);
571 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
572 			if (!shrinker)
573 				clear_bit(i, map->map);
574 			continue;
575 		}
576 
577 		/* Call non-slab shrinkers even though kmem is disabled */
578 		if (!memcg_kmem_enabled() &&
579 		    !(shrinker->flags & SHRINKER_NONSLAB))
580 			continue;
581 
582 		ret = do_shrink_slab(&sc, shrinker, priority);
583 		if (ret == SHRINK_EMPTY) {
584 			clear_bit(i, map->map);
585 			/*
586 			 * After the shrinker reported that it had no objects to
587 			 * free, but before we cleared the corresponding bit in
588 			 * the memcg shrinker map, a new object might have been
589 			 * added. To make sure, we have the bit set in this
590 			 * case, we invoke the shrinker one more time and reset
591 			 * the bit if it reports that it is not empty anymore.
592 			 * The memory barrier here pairs with the barrier in
593 			 * memcg_set_shrinker_bit():
594 			 *
595 			 * list_lru_add()     shrink_slab_memcg()
596 			 *   list_add_tail()    clear_bit()
597 			 *   <MB>               <MB>
598 			 *   set_bit()          do_shrink_slab()
599 			 */
600 			smp_mb__after_atomic();
601 			ret = do_shrink_slab(&sc, shrinker, priority);
602 			if (ret == SHRINK_EMPTY)
603 				ret = 0;
604 			else
605 				memcg_set_shrinker_bit(memcg, nid, i);
606 		}
607 		freed += ret;
608 
609 		if (rwsem_is_contended(&shrinker_rwsem)) {
610 			freed = freed ? : 1;
611 			break;
612 		}
613 	}
614 unlock:
615 	up_read(&shrinker_rwsem);
616 	return freed;
617 }
618 #else /* CONFIG_MEMCG */
619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
620 			struct mem_cgroup *memcg, int priority)
621 {
622 	return 0;
623 }
624 #endif /* CONFIG_MEMCG */
625 
626 /**
627  * shrink_slab - shrink slab caches
628  * @gfp_mask: allocation context
629  * @nid: node whose slab caches to target
630  * @memcg: memory cgroup whose slab caches to target
631  * @priority: the reclaim priority
632  *
633  * Call the shrink functions to age shrinkable caches.
634  *
635  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
636  * unaware shrinkers will receive a node id of 0 instead.
637  *
638  * @memcg specifies the memory cgroup to target. Unaware shrinkers
639  * are called only if it is the root cgroup.
640  *
641  * @priority is sc->priority, we take the number of objects and >> by priority
642  * in order to get the scan target.
643  *
644  * Returns the number of reclaimed slab objects.
645  */
646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
647 				 struct mem_cgroup *memcg,
648 				 int priority)
649 {
650 	unsigned long ret, freed = 0;
651 	struct shrinker *shrinker;
652 
653 	/*
654 	 * The root memcg might be allocated even though memcg is disabled
655 	 * via "cgroup_disable=memory" boot parameter.  This could make
656 	 * mem_cgroup_is_root() return false, then just run memcg slab
657 	 * shrink, but skip global shrink.  This may result in premature
658 	 * oom.
659 	 */
660 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
662 
663 	if (!down_read_trylock(&shrinker_rwsem))
664 		goto out;
665 
666 	list_for_each_entry(shrinker, &shrinker_list, list) {
667 		struct shrink_control sc = {
668 			.gfp_mask = gfp_mask,
669 			.nid = nid,
670 			.memcg = memcg,
671 		};
672 
673 		ret = do_shrink_slab(&sc, shrinker, priority);
674 		if (ret == SHRINK_EMPTY)
675 			ret = 0;
676 		freed += ret;
677 		/*
678 		 * Bail out if someone want to register a new shrinker to
679 		 * prevent the regsitration from being stalled for long periods
680 		 * by parallel ongoing shrinking.
681 		 */
682 		if (rwsem_is_contended(&shrinker_rwsem)) {
683 			freed = freed ? : 1;
684 			break;
685 		}
686 	}
687 
688 	up_read(&shrinker_rwsem);
689 out:
690 	cond_resched();
691 	return freed;
692 }
693 
694 void drop_slab_node(int nid)
695 {
696 	unsigned long freed;
697 
698 	do {
699 		struct mem_cgroup *memcg = NULL;
700 
701 		freed = 0;
702 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
703 		do {
704 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
705 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
706 	} while (freed > 10);
707 }
708 
709 void drop_slab(void)
710 {
711 	int nid;
712 
713 	for_each_online_node(nid)
714 		drop_slab_node(nid);
715 }
716 
717 static inline int is_page_cache_freeable(struct page *page)
718 {
719 	/*
720 	 * A freeable page cache page is referenced only by the caller
721 	 * that isolated the page, the page cache and optional buffer
722 	 * heads at page->private.
723 	 */
724 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
725 		HPAGE_PMD_NR : 1;
726 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
727 }
728 
729 static int may_write_to_inode(struct inode *inode)
730 {
731 	if (current->flags & PF_SWAPWRITE)
732 		return 1;
733 	if (!inode_write_congested(inode))
734 		return 1;
735 	if (inode_to_bdi(inode) == current->backing_dev_info)
736 		return 1;
737 	return 0;
738 }
739 
740 /*
741  * We detected a synchronous write error writing a page out.  Probably
742  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
743  * fsync(), msync() or close().
744  *
745  * The tricky part is that after writepage we cannot touch the mapping: nothing
746  * prevents it from being freed up.  But we have a ref on the page and once
747  * that page is locked, the mapping is pinned.
748  *
749  * We're allowed to run sleeping lock_page() here because we know the caller has
750  * __GFP_FS.
751  */
752 static void handle_write_error(struct address_space *mapping,
753 				struct page *page, int error)
754 {
755 	lock_page(page);
756 	if (page_mapping(page) == mapping)
757 		mapping_set_error(mapping, error);
758 	unlock_page(page);
759 }
760 
761 /* possible outcome of pageout() */
762 typedef enum {
763 	/* failed to write page out, page is locked */
764 	PAGE_KEEP,
765 	/* move page to the active list, page is locked */
766 	PAGE_ACTIVATE,
767 	/* page has been sent to the disk successfully, page is unlocked */
768 	PAGE_SUCCESS,
769 	/* page is clean and locked */
770 	PAGE_CLEAN,
771 } pageout_t;
772 
773 /*
774  * pageout is called by shrink_page_list() for each dirty page.
775  * Calls ->writepage().
776  */
777 static pageout_t pageout(struct page *page, struct address_space *mapping)
778 {
779 	/*
780 	 * If the page is dirty, only perform writeback if that write
781 	 * will be non-blocking.  To prevent this allocation from being
782 	 * stalled by pagecache activity.  But note that there may be
783 	 * stalls if we need to run get_block().  We could test
784 	 * PagePrivate for that.
785 	 *
786 	 * If this process is currently in __generic_file_write_iter() against
787 	 * this page's queue, we can perform writeback even if that
788 	 * will block.
789 	 *
790 	 * If the page is swapcache, write it back even if that would
791 	 * block, for some throttling. This happens by accident, because
792 	 * swap_backing_dev_info is bust: it doesn't reflect the
793 	 * congestion state of the swapdevs.  Easy to fix, if needed.
794 	 */
795 	if (!is_page_cache_freeable(page))
796 		return PAGE_KEEP;
797 	if (!mapping) {
798 		/*
799 		 * Some data journaling orphaned pages can have
800 		 * page->mapping == NULL while being dirty with clean buffers.
801 		 */
802 		if (page_has_private(page)) {
803 			if (try_to_free_buffers(page)) {
804 				ClearPageDirty(page);
805 				pr_info("%s: orphaned page\n", __func__);
806 				return PAGE_CLEAN;
807 			}
808 		}
809 		return PAGE_KEEP;
810 	}
811 	if (mapping->a_ops->writepage == NULL)
812 		return PAGE_ACTIVATE;
813 	if (!may_write_to_inode(mapping->host))
814 		return PAGE_KEEP;
815 
816 	if (clear_page_dirty_for_io(page)) {
817 		int res;
818 		struct writeback_control wbc = {
819 			.sync_mode = WB_SYNC_NONE,
820 			.nr_to_write = SWAP_CLUSTER_MAX,
821 			.range_start = 0,
822 			.range_end = LLONG_MAX,
823 			.for_reclaim = 1,
824 		};
825 
826 		SetPageReclaim(page);
827 		res = mapping->a_ops->writepage(page, &wbc);
828 		if (res < 0)
829 			handle_write_error(mapping, page, res);
830 		if (res == AOP_WRITEPAGE_ACTIVATE) {
831 			ClearPageReclaim(page);
832 			return PAGE_ACTIVATE;
833 		}
834 
835 		if (!PageWriteback(page)) {
836 			/* synchronous write or broken a_ops? */
837 			ClearPageReclaim(page);
838 		}
839 		trace_mm_vmscan_writepage(page);
840 		inc_node_page_state(page, NR_VMSCAN_WRITE);
841 		return PAGE_SUCCESS;
842 	}
843 
844 	return PAGE_CLEAN;
845 }
846 
847 /*
848  * Same as remove_mapping, but if the page is removed from the mapping, it
849  * gets returned with a refcount of 0.
850  */
851 static int __remove_mapping(struct address_space *mapping, struct page *page,
852 			    bool reclaimed, struct mem_cgroup *target_memcg)
853 {
854 	unsigned long flags;
855 	int refcount;
856 
857 	BUG_ON(!PageLocked(page));
858 	BUG_ON(mapping != page_mapping(page));
859 
860 	xa_lock_irqsave(&mapping->i_pages, flags);
861 	/*
862 	 * The non racy check for a busy page.
863 	 *
864 	 * Must be careful with the order of the tests. When someone has
865 	 * a ref to the page, it may be possible that they dirty it then
866 	 * drop the reference. So if PageDirty is tested before page_count
867 	 * here, then the following race may occur:
868 	 *
869 	 * get_user_pages(&page);
870 	 * [user mapping goes away]
871 	 * write_to(page);
872 	 *				!PageDirty(page)    [good]
873 	 * SetPageDirty(page);
874 	 * put_page(page);
875 	 *				!page_count(page)   [good, discard it]
876 	 *
877 	 * [oops, our write_to data is lost]
878 	 *
879 	 * Reversing the order of the tests ensures such a situation cannot
880 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
881 	 * load is not satisfied before that of page->_refcount.
882 	 *
883 	 * Note that if SetPageDirty is always performed via set_page_dirty,
884 	 * and thus under the i_pages lock, then this ordering is not required.
885 	 */
886 	refcount = 1 + compound_nr(page);
887 	if (!page_ref_freeze(page, refcount))
888 		goto cannot_free;
889 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
890 	if (unlikely(PageDirty(page))) {
891 		page_ref_unfreeze(page, refcount);
892 		goto cannot_free;
893 	}
894 
895 	if (PageSwapCache(page)) {
896 		swp_entry_t swap = { .val = page_private(page) };
897 		mem_cgroup_swapout(page, swap);
898 		__delete_from_swap_cache(page, swap);
899 		xa_unlock_irqrestore(&mapping->i_pages, flags);
900 		put_swap_page(page, swap);
901 	} else {
902 		void (*freepage)(struct page *);
903 		void *shadow = NULL;
904 
905 		freepage = mapping->a_ops->freepage;
906 		/*
907 		 * Remember a shadow entry for reclaimed file cache in
908 		 * order to detect refaults, thus thrashing, later on.
909 		 *
910 		 * But don't store shadows in an address space that is
911 		 * already exiting.  This is not just an optizimation,
912 		 * inode reclaim needs to empty out the radix tree or
913 		 * the nodes are lost.  Don't plant shadows behind its
914 		 * back.
915 		 *
916 		 * We also don't store shadows for DAX mappings because the
917 		 * only page cache pages found in these are zero pages
918 		 * covering holes, and because we don't want to mix DAX
919 		 * exceptional entries and shadow exceptional entries in the
920 		 * same address_space.
921 		 */
922 		if (reclaimed && page_is_file_cache(page) &&
923 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
924 			shadow = workingset_eviction(page, target_memcg);
925 		__delete_from_page_cache(page, shadow);
926 		xa_unlock_irqrestore(&mapping->i_pages, flags);
927 
928 		if (freepage != NULL)
929 			freepage(page);
930 	}
931 
932 	return 1;
933 
934 cannot_free:
935 	xa_unlock_irqrestore(&mapping->i_pages, flags);
936 	return 0;
937 }
938 
939 /*
940  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
941  * someone else has a ref on the page, abort and return 0.  If it was
942  * successfully detached, return 1.  Assumes the caller has a single ref on
943  * this page.
944  */
945 int remove_mapping(struct address_space *mapping, struct page *page)
946 {
947 	if (__remove_mapping(mapping, page, false, NULL)) {
948 		/*
949 		 * Unfreezing the refcount with 1 rather than 2 effectively
950 		 * drops the pagecache ref for us without requiring another
951 		 * atomic operation.
952 		 */
953 		page_ref_unfreeze(page, 1);
954 		return 1;
955 	}
956 	return 0;
957 }
958 
959 /**
960  * putback_lru_page - put previously isolated page onto appropriate LRU list
961  * @page: page to be put back to appropriate lru list
962  *
963  * Add previously isolated @page to appropriate LRU list.
964  * Page may still be unevictable for other reasons.
965  *
966  * lru_lock must not be held, interrupts must be enabled.
967  */
968 void putback_lru_page(struct page *page)
969 {
970 	lru_cache_add(page);
971 	put_page(page);		/* drop ref from isolate */
972 }
973 
974 enum page_references {
975 	PAGEREF_RECLAIM,
976 	PAGEREF_RECLAIM_CLEAN,
977 	PAGEREF_KEEP,
978 	PAGEREF_ACTIVATE,
979 };
980 
981 static enum page_references page_check_references(struct page *page,
982 						  struct scan_control *sc)
983 {
984 	int referenced_ptes, referenced_page;
985 	unsigned long vm_flags;
986 
987 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
988 					  &vm_flags);
989 	referenced_page = TestClearPageReferenced(page);
990 
991 	/*
992 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
993 	 * move the page to the unevictable list.
994 	 */
995 	if (vm_flags & VM_LOCKED)
996 		return PAGEREF_RECLAIM;
997 
998 	if (referenced_ptes) {
999 		if (PageSwapBacked(page))
1000 			return PAGEREF_ACTIVATE;
1001 		/*
1002 		 * All mapped pages start out with page table
1003 		 * references from the instantiating fault, so we need
1004 		 * to look twice if a mapped file page is used more
1005 		 * than once.
1006 		 *
1007 		 * Mark it and spare it for another trip around the
1008 		 * inactive list.  Another page table reference will
1009 		 * lead to its activation.
1010 		 *
1011 		 * Note: the mark is set for activated pages as well
1012 		 * so that recently deactivated but used pages are
1013 		 * quickly recovered.
1014 		 */
1015 		SetPageReferenced(page);
1016 
1017 		if (referenced_page || referenced_ptes > 1)
1018 			return PAGEREF_ACTIVATE;
1019 
1020 		/*
1021 		 * Activate file-backed executable pages after first usage.
1022 		 */
1023 		if (vm_flags & VM_EXEC)
1024 			return PAGEREF_ACTIVATE;
1025 
1026 		return PAGEREF_KEEP;
1027 	}
1028 
1029 	/* Reclaim if clean, defer dirty pages to writeback */
1030 	if (referenced_page && !PageSwapBacked(page))
1031 		return PAGEREF_RECLAIM_CLEAN;
1032 
1033 	return PAGEREF_RECLAIM;
1034 }
1035 
1036 /* Check if a page is dirty or under writeback */
1037 static void page_check_dirty_writeback(struct page *page,
1038 				       bool *dirty, bool *writeback)
1039 {
1040 	struct address_space *mapping;
1041 
1042 	/*
1043 	 * Anonymous pages are not handled by flushers and must be written
1044 	 * from reclaim context. Do not stall reclaim based on them
1045 	 */
1046 	if (!page_is_file_cache(page) ||
1047 	    (PageAnon(page) && !PageSwapBacked(page))) {
1048 		*dirty = false;
1049 		*writeback = false;
1050 		return;
1051 	}
1052 
1053 	/* By default assume that the page flags are accurate */
1054 	*dirty = PageDirty(page);
1055 	*writeback = PageWriteback(page);
1056 
1057 	/* Verify dirty/writeback state if the filesystem supports it */
1058 	if (!page_has_private(page))
1059 		return;
1060 
1061 	mapping = page_mapping(page);
1062 	if (mapping && mapping->a_ops->is_dirty_writeback)
1063 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1064 }
1065 
1066 /*
1067  * shrink_page_list() returns the number of reclaimed pages
1068  */
1069 static unsigned long shrink_page_list(struct list_head *page_list,
1070 				      struct pglist_data *pgdat,
1071 				      struct scan_control *sc,
1072 				      enum ttu_flags ttu_flags,
1073 				      struct reclaim_stat *stat,
1074 				      bool ignore_references)
1075 {
1076 	LIST_HEAD(ret_pages);
1077 	LIST_HEAD(free_pages);
1078 	unsigned nr_reclaimed = 0;
1079 	unsigned pgactivate = 0;
1080 
1081 	memset(stat, 0, sizeof(*stat));
1082 	cond_resched();
1083 
1084 	while (!list_empty(page_list)) {
1085 		struct address_space *mapping;
1086 		struct page *page;
1087 		int may_enter_fs;
1088 		enum page_references references = PAGEREF_RECLAIM;
1089 		bool dirty, writeback;
1090 		unsigned int nr_pages;
1091 
1092 		cond_resched();
1093 
1094 		page = lru_to_page(page_list);
1095 		list_del(&page->lru);
1096 
1097 		if (!trylock_page(page))
1098 			goto keep;
1099 
1100 		VM_BUG_ON_PAGE(PageActive(page), page);
1101 
1102 		nr_pages = compound_nr(page);
1103 
1104 		/* Account the number of base pages even though THP */
1105 		sc->nr_scanned += nr_pages;
1106 
1107 		if (unlikely(!page_evictable(page)))
1108 			goto activate_locked;
1109 
1110 		if (!sc->may_unmap && page_mapped(page))
1111 			goto keep_locked;
1112 
1113 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115 
1116 		/*
1117 		 * The number of dirty pages determines if a node is marked
1118 		 * reclaim_congested which affects wait_iff_congested. kswapd
1119 		 * will stall and start writing pages if the tail of the LRU
1120 		 * is all dirty unqueued pages.
1121 		 */
1122 		page_check_dirty_writeback(page, &dirty, &writeback);
1123 		if (dirty || writeback)
1124 			stat->nr_dirty++;
1125 
1126 		if (dirty && !writeback)
1127 			stat->nr_unqueued_dirty++;
1128 
1129 		/*
1130 		 * Treat this page as congested if the underlying BDI is or if
1131 		 * pages are cycling through the LRU so quickly that the
1132 		 * pages marked for immediate reclaim are making it to the
1133 		 * end of the LRU a second time.
1134 		 */
1135 		mapping = page_mapping(page);
1136 		if (((dirty || writeback) && mapping &&
1137 		     inode_write_congested(mapping->host)) ||
1138 		    (writeback && PageReclaim(page)))
1139 			stat->nr_congested++;
1140 
1141 		/*
1142 		 * If a page at the tail of the LRU is under writeback, there
1143 		 * are three cases to consider.
1144 		 *
1145 		 * 1) If reclaim is encountering an excessive number of pages
1146 		 *    under writeback and this page is both under writeback and
1147 		 *    PageReclaim then it indicates that pages are being queued
1148 		 *    for IO but are being recycled through the LRU before the
1149 		 *    IO can complete. Waiting on the page itself risks an
1150 		 *    indefinite stall if it is impossible to writeback the
1151 		 *    page due to IO error or disconnected storage so instead
1152 		 *    note that the LRU is being scanned too quickly and the
1153 		 *    caller can stall after page list has been processed.
1154 		 *
1155 		 * 2) Global or new memcg reclaim encounters a page that is
1156 		 *    not marked for immediate reclaim, or the caller does not
1157 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158 		 *    not to fs). In this case mark the page for immediate
1159 		 *    reclaim and continue scanning.
1160 		 *
1161 		 *    Require may_enter_fs because we would wait on fs, which
1162 		 *    may not have submitted IO yet. And the loop driver might
1163 		 *    enter reclaim, and deadlock if it waits on a page for
1164 		 *    which it is needed to do the write (loop masks off
1165 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166 		 *    would probably show more reasons.
1167 		 *
1168 		 * 3) Legacy memcg encounters a page that is already marked
1169 		 *    PageReclaim. memcg does not have any dirty pages
1170 		 *    throttling so we could easily OOM just because too many
1171 		 *    pages are in writeback and there is nothing else to
1172 		 *    reclaim. Wait for the writeback to complete.
1173 		 *
1174 		 * In cases 1) and 2) we activate the pages to get them out of
1175 		 * the way while we continue scanning for clean pages on the
1176 		 * inactive list and refilling from the active list. The
1177 		 * observation here is that waiting for disk writes is more
1178 		 * expensive than potentially causing reloads down the line.
1179 		 * Since they're marked for immediate reclaim, they won't put
1180 		 * memory pressure on the cache working set any longer than it
1181 		 * takes to write them to disk.
1182 		 */
1183 		if (PageWriteback(page)) {
1184 			/* Case 1 above */
1185 			if (current_is_kswapd() &&
1186 			    PageReclaim(page) &&
1187 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188 				stat->nr_immediate++;
1189 				goto activate_locked;
1190 
1191 			/* Case 2 above */
1192 			} else if (writeback_throttling_sane(sc) ||
1193 			    !PageReclaim(page) || !may_enter_fs) {
1194 				/*
1195 				 * This is slightly racy - end_page_writeback()
1196 				 * might have just cleared PageReclaim, then
1197 				 * setting PageReclaim here end up interpreted
1198 				 * as PageReadahead - but that does not matter
1199 				 * enough to care.  What we do want is for this
1200 				 * page to have PageReclaim set next time memcg
1201 				 * reclaim reaches the tests above, so it will
1202 				 * then wait_on_page_writeback() to avoid OOM;
1203 				 * and it's also appropriate in global reclaim.
1204 				 */
1205 				SetPageReclaim(page);
1206 				stat->nr_writeback++;
1207 				goto activate_locked;
1208 
1209 			/* Case 3 above */
1210 			} else {
1211 				unlock_page(page);
1212 				wait_on_page_writeback(page);
1213 				/* then go back and try same page again */
1214 				list_add_tail(&page->lru, page_list);
1215 				continue;
1216 			}
1217 		}
1218 
1219 		if (!ignore_references)
1220 			references = page_check_references(page, sc);
1221 
1222 		switch (references) {
1223 		case PAGEREF_ACTIVATE:
1224 			goto activate_locked;
1225 		case PAGEREF_KEEP:
1226 			stat->nr_ref_keep += nr_pages;
1227 			goto keep_locked;
1228 		case PAGEREF_RECLAIM:
1229 		case PAGEREF_RECLAIM_CLEAN:
1230 			; /* try to reclaim the page below */
1231 		}
1232 
1233 		/*
1234 		 * Anonymous process memory has backing store?
1235 		 * Try to allocate it some swap space here.
1236 		 * Lazyfree page could be freed directly
1237 		 */
1238 		if (PageAnon(page) && PageSwapBacked(page)) {
1239 			if (!PageSwapCache(page)) {
1240 				if (!(sc->gfp_mask & __GFP_IO))
1241 					goto keep_locked;
1242 				if (PageTransHuge(page)) {
1243 					/* cannot split THP, skip it */
1244 					if (!can_split_huge_page(page, NULL))
1245 						goto activate_locked;
1246 					/*
1247 					 * Split pages without a PMD map right
1248 					 * away. Chances are some or all of the
1249 					 * tail pages can be freed without IO.
1250 					 */
1251 					if (!compound_mapcount(page) &&
1252 					    split_huge_page_to_list(page,
1253 								    page_list))
1254 						goto activate_locked;
1255 				}
1256 				if (!add_to_swap(page)) {
1257 					if (!PageTransHuge(page))
1258 						goto activate_locked_split;
1259 					/* Fallback to swap normal pages */
1260 					if (split_huge_page_to_list(page,
1261 								    page_list))
1262 						goto activate_locked;
1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264 					count_vm_event(THP_SWPOUT_FALLBACK);
1265 #endif
1266 					if (!add_to_swap(page))
1267 						goto activate_locked_split;
1268 				}
1269 
1270 				may_enter_fs = 1;
1271 
1272 				/* Adding to swap updated mapping */
1273 				mapping = page_mapping(page);
1274 			}
1275 		} else if (unlikely(PageTransHuge(page))) {
1276 			/* Split file THP */
1277 			if (split_huge_page_to_list(page, page_list))
1278 				goto keep_locked;
1279 		}
1280 
1281 		/*
1282 		 * THP may get split above, need minus tail pages and update
1283 		 * nr_pages to avoid accounting tail pages twice.
1284 		 *
1285 		 * The tail pages that are added into swap cache successfully
1286 		 * reach here.
1287 		 */
1288 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1289 			sc->nr_scanned -= (nr_pages - 1);
1290 			nr_pages = 1;
1291 		}
1292 
1293 		/*
1294 		 * The page is mapped into the page tables of one or more
1295 		 * processes. Try to unmap it here.
1296 		 */
1297 		if (page_mapped(page)) {
1298 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299 
1300 			if (unlikely(PageTransHuge(page)))
1301 				flags |= TTU_SPLIT_HUGE_PMD;
1302 			if (!try_to_unmap(page, flags)) {
1303 				stat->nr_unmap_fail += nr_pages;
1304 				goto activate_locked;
1305 			}
1306 		}
1307 
1308 		if (PageDirty(page)) {
1309 			/*
1310 			 * Only kswapd can writeback filesystem pages
1311 			 * to avoid risk of stack overflow. But avoid
1312 			 * injecting inefficient single-page IO into
1313 			 * flusher writeback as much as possible: only
1314 			 * write pages when we've encountered many
1315 			 * dirty pages, and when we've already scanned
1316 			 * the rest of the LRU for clean pages and see
1317 			 * the same dirty pages again (PageReclaim).
1318 			 */
1319 			if (page_is_file_cache(page) &&
1320 			    (!current_is_kswapd() || !PageReclaim(page) ||
1321 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1322 				/*
1323 				 * Immediately reclaim when written back.
1324 				 * Similar in principal to deactivate_page()
1325 				 * except we already have the page isolated
1326 				 * and know it's dirty
1327 				 */
1328 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1329 				SetPageReclaim(page);
1330 
1331 				goto activate_locked;
1332 			}
1333 
1334 			if (references == PAGEREF_RECLAIM_CLEAN)
1335 				goto keep_locked;
1336 			if (!may_enter_fs)
1337 				goto keep_locked;
1338 			if (!sc->may_writepage)
1339 				goto keep_locked;
1340 
1341 			/*
1342 			 * Page is dirty. Flush the TLB if a writable entry
1343 			 * potentially exists to avoid CPU writes after IO
1344 			 * starts and then write it out here.
1345 			 */
1346 			try_to_unmap_flush_dirty();
1347 			switch (pageout(page, mapping)) {
1348 			case PAGE_KEEP:
1349 				goto keep_locked;
1350 			case PAGE_ACTIVATE:
1351 				goto activate_locked;
1352 			case PAGE_SUCCESS:
1353 				if (PageWriteback(page))
1354 					goto keep;
1355 				if (PageDirty(page))
1356 					goto keep;
1357 
1358 				/*
1359 				 * A synchronous write - probably a ramdisk.  Go
1360 				 * ahead and try to reclaim the page.
1361 				 */
1362 				if (!trylock_page(page))
1363 					goto keep;
1364 				if (PageDirty(page) || PageWriteback(page))
1365 					goto keep_locked;
1366 				mapping = page_mapping(page);
1367 			case PAGE_CLEAN:
1368 				; /* try to free the page below */
1369 			}
1370 		}
1371 
1372 		/*
1373 		 * If the page has buffers, try to free the buffer mappings
1374 		 * associated with this page. If we succeed we try to free
1375 		 * the page as well.
1376 		 *
1377 		 * We do this even if the page is PageDirty().
1378 		 * try_to_release_page() does not perform I/O, but it is
1379 		 * possible for a page to have PageDirty set, but it is actually
1380 		 * clean (all its buffers are clean).  This happens if the
1381 		 * buffers were written out directly, with submit_bh(). ext3
1382 		 * will do this, as well as the blockdev mapping.
1383 		 * try_to_release_page() will discover that cleanness and will
1384 		 * drop the buffers and mark the page clean - it can be freed.
1385 		 *
1386 		 * Rarely, pages can have buffers and no ->mapping.  These are
1387 		 * the pages which were not successfully invalidated in
1388 		 * truncate_complete_page().  We try to drop those buffers here
1389 		 * and if that worked, and the page is no longer mapped into
1390 		 * process address space (page_count == 1) it can be freed.
1391 		 * Otherwise, leave the page on the LRU so it is swappable.
1392 		 */
1393 		if (page_has_private(page)) {
1394 			if (!try_to_release_page(page, sc->gfp_mask))
1395 				goto activate_locked;
1396 			if (!mapping && page_count(page) == 1) {
1397 				unlock_page(page);
1398 				if (put_page_testzero(page))
1399 					goto free_it;
1400 				else {
1401 					/*
1402 					 * rare race with speculative reference.
1403 					 * the speculative reference will free
1404 					 * this page shortly, so we may
1405 					 * increment nr_reclaimed here (and
1406 					 * leave it off the LRU).
1407 					 */
1408 					nr_reclaimed++;
1409 					continue;
1410 				}
1411 			}
1412 		}
1413 
1414 		if (PageAnon(page) && !PageSwapBacked(page)) {
1415 			/* follow __remove_mapping for reference */
1416 			if (!page_ref_freeze(page, 1))
1417 				goto keep_locked;
1418 			if (PageDirty(page)) {
1419 				page_ref_unfreeze(page, 1);
1420 				goto keep_locked;
1421 			}
1422 
1423 			count_vm_event(PGLAZYFREED);
1424 			count_memcg_page_event(page, PGLAZYFREED);
1425 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1426 							 sc->target_mem_cgroup))
1427 			goto keep_locked;
1428 
1429 		unlock_page(page);
1430 free_it:
1431 		/*
1432 		 * THP may get swapped out in a whole, need account
1433 		 * all base pages.
1434 		 */
1435 		nr_reclaimed += nr_pages;
1436 
1437 		/*
1438 		 * Is there need to periodically free_page_list? It would
1439 		 * appear not as the counts should be low
1440 		 */
1441 		if (unlikely(PageTransHuge(page)))
1442 			(*get_compound_page_dtor(page))(page);
1443 		else
1444 			list_add(&page->lru, &free_pages);
1445 		continue;
1446 
1447 activate_locked_split:
1448 		/*
1449 		 * The tail pages that are failed to add into swap cache
1450 		 * reach here.  Fixup nr_scanned and nr_pages.
1451 		 */
1452 		if (nr_pages > 1) {
1453 			sc->nr_scanned -= (nr_pages - 1);
1454 			nr_pages = 1;
1455 		}
1456 activate_locked:
1457 		/* Not a candidate for swapping, so reclaim swap space. */
1458 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1459 						PageMlocked(page)))
1460 			try_to_free_swap(page);
1461 		VM_BUG_ON_PAGE(PageActive(page), page);
1462 		if (!PageMlocked(page)) {
1463 			int type = page_is_file_cache(page);
1464 			SetPageActive(page);
1465 			stat->nr_activate[type] += nr_pages;
1466 			count_memcg_page_event(page, PGACTIVATE);
1467 		}
1468 keep_locked:
1469 		unlock_page(page);
1470 keep:
1471 		list_add(&page->lru, &ret_pages);
1472 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1473 	}
1474 
1475 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1476 
1477 	mem_cgroup_uncharge_list(&free_pages);
1478 	try_to_unmap_flush();
1479 	free_unref_page_list(&free_pages);
1480 
1481 	list_splice(&ret_pages, page_list);
1482 	count_vm_events(PGACTIVATE, pgactivate);
1483 
1484 	return nr_reclaimed;
1485 }
1486 
1487 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1488 					    struct list_head *page_list)
1489 {
1490 	struct scan_control sc = {
1491 		.gfp_mask = GFP_KERNEL,
1492 		.priority = DEF_PRIORITY,
1493 		.may_unmap = 1,
1494 	};
1495 	struct reclaim_stat dummy_stat;
1496 	unsigned long ret;
1497 	struct page *page, *next;
1498 	LIST_HEAD(clean_pages);
1499 
1500 	list_for_each_entry_safe(page, next, page_list, lru) {
1501 		if (page_is_file_cache(page) && !PageDirty(page) &&
1502 		    !__PageMovable(page) && !PageUnevictable(page)) {
1503 			ClearPageActive(page);
1504 			list_move(&page->lru, &clean_pages);
1505 		}
1506 	}
1507 
1508 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1509 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1510 	list_splice(&clean_pages, page_list);
1511 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Attempt to remove the specified page from its LRU.  Only take this page
1517  * if it is of the appropriate PageActive status.  Pages which are being
1518  * freed elsewhere are also ignored.
1519  *
1520  * page:	page to consider
1521  * mode:	one of the LRU isolation modes defined above
1522  *
1523  * returns 0 on success, -ve errno on failure.
1524  */
1525 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1526 {
1527 	int ret = -EINVAL;
1528 
1529 	/* Only take pages on the LRU. */
1530 	if (!PageLRU(page))
1531 		return ret;
1532 
1533 	/* Compaction should not handle unevictable pages but CMA can do so */
1534 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1535 		return ret;
1536 
1537 	ret = -EBUSY;
1538 
1539 	/*
1540 	 * To minimise LRU disruption, the caller can indicate that it only
1541 	 * wants to isolate pages it will be able to operate on without
1542 	 * blocking - clean pages for the most part.
1543 	 *
1544 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1545 	 * that it is possible to migrate without blocking
1546 	 */
1547 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1548 		/* All the caller can do on PageWriteback is block */
1549 		if (PageWriteback(page))
1550 			return ret;
1551 
1552 		if (PageDirty(page)) {
1553 			struct address_space *mapping;
1554 			bool migrate_dirty;
1555 
1556 			/*
1557 			 * Only pages without mappings or that have a
1558 			 * ->migratepage callback are possible to migrate
1559 			 * without blocking. However, we can be racing with
1560 			 * truncation so it's necessary to lock the page
1561 			 * to stabilise the mapping as truncation holds
1562 			 * the page lock until after the page is removed
1563 			 * from the page cache.
1564 			 */
1565 			if (!trylock_page(page))
1566 				return ret;
1567 
1568 			mapping = page_mapping(page);
1569 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1570 			unlock_page(page);
1571 			if (!migrate_dirty)
1572 				return ret;
1573 		}
1574 	}
1575 
1576 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1577 		return ret;
1578 
1579 	if (likely(get_page_unless_zero(page))) {
1580 		/*
1581 		 * Be careful not to clear PageLRU until after we're
1582 		 * sure the page is not being freed elsewhere -- the
1583 		 * page release code relies on it.
1584 		 */
1585 		ClearPageLRU(page);
1586 		ret = 0;
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 
1593 /*
1594  * Update LRU sizes after isolating pages. The LRU size updates must
1595  * be complete before mem_cgroup_update_lru_size due to a santity check.
1596  */
1597 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1598 			enum lru_list lru, unsigned long *nr_zone_taken)
1599 {
1600 	int zid;
1601 
1602 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1603 		if (!nr_zone_taken[zid])
1604 			continue;
1605 
1606 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1607 #ifdef CONFIG_MEMCG
1608 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1609 #endif
1610 	}
1611 
1612 }
1613 
1614 /**
1615  * pgdat->lru_lock is heavily contended.  Some of the functions that
1616  * shrink the lists perform better by taking out a batch of pages
1617  * and working on them outside the LRU lock.
1618  *
1619  * For pagecache intensive workloads, this function is the hottest
1620  * spot in the kernel (apart from copy_*_user functions).
1621  *
1622  * Appropriate locks must be held before calling this function.
1623  *
1624  * @nr_to_scan:	The number of eligible pages to look through on the list.
1625  * @lruvec:	The LRU vector to pull pages from.
1626  * @dst:	The temp list to put pages on to.
1627  * @nr_scanned:	The number of pages that were scanned.
1628  * @sc:		The scan_control struct for this reclaim session
1629  * @mode:	One of the LRU isolation modes
1630  * @lru:	LRU list id for isolating
1631  *
1632  * returns how many pages were moved onto *@dst.
1633  */
1634 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1635 		struct lruvec *lruvec, struct list_head *dst,
1636 		unsigned long *nr_scanned, struct scan_control *sc,
1637 		enum lru_list lru)
1638 {
1639 	struct list_head *src = &lruvec->lists[lru];
1640 	unsigned long nr_taken = 0;
1641 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1642 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1643 	unsigned long skipped = 0;
1644 	unsigned long scan, total_scan, nr_pages;
1645 	LIST_HEAD(pages_skipped);
1646 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1647 
1648 	total_scan = 0;
1649 	scan = 0;
1650 	while (scan < nr_to_scan && !list_empty(src)) {
1651 		struct page *page;
1652 
1653 		page = lru_to_page(src);
1654 		prefetchw_prev_lru_page(page, src, flags);
1655 
1656 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1657 
1658 		nr_pages = compound_nr(page);
1659 		total_scan += nr_pages;
1660 
1661 		if (page_zonenum(page) > sc->reclaim_idx) {
1662 			list_move(&page->lru, &pages_skipped);
1663 			nr_skipped[page_zonenum(page)] += nr_pages;
1664 			continue;
1665 		}
1666 
1667 		/*
1668 		 * Do not count skipped pages because that makes the function
1669 		 * return with no isolated pages if the LRU mostly contains
1670 		 * ineligible pages.  This causes the VM to not reclaim any
1671 		 * pages, triggering a premature OOM.
1672 		 *
1673 		 * Account all tail pages of THP.  This would not cause
1674 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1675 		 * only when the page is being freed somewhere else.
1676 		 */
1677 		scan += nr_pages;
1678 		switch (__isolate_lru_page(page, mode)) {
1679 		case 0:
1680 			nr_taken += nr_pages;
1681 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1682 			list_move(&page->lru, dst);
1683 			break;
1684 
1685 		case -EBUSY:
1686 			/* else it is being freed elsewhere */
1687 			list_move(&page->lru, src);
1688 			continue;
1689 
1690 		default:
1691 			BUG();
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Splice any skipped pages to the start of the LRU list. Note that
1697 	 * this disrupts the LRU order when reclaiming for lower zones but
1698 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1699 	 * scanning would soon rescan the same pages to skip and put the
1700 	 * system at risk of premature OOM.
1701 	 */
1702 	if (!list_empty(&pages_skipped)) {
1703 		int zid;
1704 
1705 		list_splice(&pages_skipped, src);
1706 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1707 			if (!nr_skipped[zid])
1708 				continue;
1709 
1710 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1711 			skipped += nr_skipped[zid];
1712 		}
1713 	}
1714 	*nr_scanned = total_scan;
1715 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1716 				    total_scan, skipped, nr_taken, mode, lru);
1717 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1718 	return nr_taken;
1719 }
1720 
1721 /**
1722  * isolate_lru_page - tries to isolate a page from its LRU list
1723  * @page: page to isolate from its LRU list
1724  *
1725  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1726  * vmstat statistic corresponding to whatever LRU list the page was on.
1727  *
1728  * Returns 0 if the page was removed from an LRU list.
1729  * Returns -EBUSY if the page was not on an LRU list.
1730  *
1731  * The returned page will have PageLRU() cleared.  If it was found on
1732  * the active list, it will have PageActive set.  If it was found on
1733  * the unevictable list, it will have the PageUnevictable bit set. That flag
1734  * may need to be cleared by the caller before letting the page go.
1735  *
1736  * The vmstat statistic corresponding to the list on which the page was
1737  * found will be decremented.
1738  *
1739  * Restrictions:
1740  *
1741  * (1) Must be called with an elevated refcount on the page. This is a
1742  *     fundamentnal difference from isolate_lru_pages (which is called
1743  *     without a stable reference).
1744  * (2) the lru_lock must not be held.
1745  * (3) interrupts must be enabled.
1746  */
1747 int isolate_lru_page(struct page *page)
1748 {
1749 	int ret = -EBUSY;
1750 
1751 	VM_BUG_ON_PAGE(!page_count(page), page);
1752 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1753 
1754 	if (PageLRU(page)) {
1755 		pg_data_t *pgdat = page_pgdat(page);
1756 		struct lruvec *lruvec;
1757 
1758 		spin_lock_irq(&pgdat->lru_lock);
1759 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1760 		if (PageLRU(page)) {
1761 			int lru = page_lru(page);
1762 			get_page(page);
1763 			ClearPageLRU(page);
1764 			del_page_from_lru_list(page, lruvec, lru);
1765 			ret = 0;
1766 		}
1767 		spin_unlock_irq(&pgdat->lru_lock);
1768 	}
1769 	return ret;
1770 }
1771 
1772 /*
1773  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1774  * then get rescheduled. When there are massive number of tasks doing page
1775  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1776  * the LRU list will go small and be scanned faster than necessary, leading to
1777  * unnecessary swapping, thrashing and OOM.
1778  */
1779 static int too_many_isolated(struct pglist_data *pgdat, int file,
1780 		struct scan_control *sc)
1781 {
1782 	unsigned long inactive, isolated;
1783 
1784 	if (current_is_kswapd())
1785 		return 0;
1786 
1787 	if (!writeback_throttling_sane(sc))
1788 		return 0;
1789 
1790 	if (file) {
1791 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1792 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1793 	} else {
1794 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1795 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1796 	}
1797 
1798 	/*
1799 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1800 	 * won't get blocked by normal direct-reclaimers, forming a circular
1801 	 * deadlock.
1802 	 */
1803 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1804 		inactive >>= 3;
1805 
1806 	return isolated > inactive;
1807 }
1808 
1809 /*
1810  * This moves pages from @list to corresponding LRU list.
1811  *
1812  * We move them the other way if the page is referenced by one or more
1813  * processes, from rmap.
1814  *
1815  * If the pages are mostly unmapped, the processing is fast and it is
1816  * appropriate to hold zone_lru_lock across the whole operation.  But if
1817  * the pages are mapped, the processing is slow (page_referenced()) so we
1818  * should drop zone_lru_lock around each page.  It's impossible to balance
1819  * this, so instead we remove the pages from the LRU while processing them.
1820  * It is safe to rely on PG_active against the non-LRU pages in here because
1821  * nobody will play with that bit on a non-LRU page.
1822  *
1823  * The downside is that we have to touch page->_refcount against each page.
1824  * But we had to alter page->flags anyway.
1825  *
1826  * Returns the number of pages moved to the given lruvec.
1827  */
1828 
1829 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1830 						     struct list_head *list)
1831 {
1832 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1833 	int nr_pages, nr_moved = 0;
1834 	LIST_HEAD(pages_to_free);
1835 	struct page *page;
1836 	enum lru_list lru;
1837 
1838 	while (!list_empty(list)) {
1839 		page = lru_to_page(list);
1840 		VM_BUG_ON_PAGE(PageLRU(page), page);
1841 		if (unlikely(!page_evictable(page))) {
1842 			list_del(&page->lru);
1843 			spin_unlock_irq(&pgdat->lru_lock);
1844 			putback_lru_page(page);
1845 			spin_lock_irq(&pgdat->lru_lock);
1846 			continue;
1847 		}
1848 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1849 
1850 		SetPageLRU(page);
1851 		lru = page_lru(page);
1852 
1853 		nr_pages = hpage_nr_pages(page);
1854 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1855 		list_move(&page->lru, &lruvec->lists[lru]);
1856 
1857 		if (put_page_testzero(page)) {
1858 			__ClearPageLRU(page);
1859 			__ClearPageActive(page);
1860 			del_page_from_lru_list(page, lruvec, lru);
1861 
1862 			if (unlikely(PageCompound(page))) {
1863 				spin_unlock_irq(&pgdat->lru_lock);
1864 				(*get_compound_page_dtor(page))(page);
1865 				spin_lock_irq(&pgdat->lru_lock);
1866 			} else
1867 				list_add(&page->lru, &pages_to_free);
1868 		} else {
1869 			nr_moved += nr_pages;
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * To save our caller's stack, now use input list for pages to free.
1875 	 */
1876 	list_splice(&pages_to_free, list);
1877 
1878 	return nr_moved;
1879 }
1880 
1881 /*
1882  * If a kernel thread (such as nfsd for loop-back mounts) services
1883  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1884  * In that case we should only throttle if the backing device it is
1885  * writing to is congested.  In other cases it is safe to throttle.
1886  */
1887 static int current_may_throttle(void)
1888 {
1889 	return !(current->flags & PF_LESS_THROTTLE) ||
1890 		current->backing_dev_info == NULL ||
1891 		bdi_write_congested(current->backing_dev_info);
1892 }
1893 
1894 /*
1895  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1896  * of reclaimed pages
1897  */
1898 static noinline_for_stack unsigned long
1899 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1900 		     struct scan_control *sc, enum lru_list lru)
1901 {
1902 	LIST_HEAD(page_list);
1903 	unsigned long nr_scanned;
1904 	unsigned long nr_reclaimed = 0;
1905 	unsigned long nr_taken;
1906 	struct reclaim_stat stat;
1907 	int file = is_file_lru(lru);
1908 	enum vm_event_item item;
1909 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1911 	bool stalled = false;
1912 
1913 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1914 		if (stalled)
1915 			return 0;
1916 
1917 		/* wait a bit for the reclaimer. */
1918 		msleep(100);
1919 		stalled = true;
1920 
1921 		/* We are about to die and free our memory. Return now. */
1922 		if (fatal_signal_pending(current))
1923 			return SWAP_CLUSTER_MAX;
1924 	}
1925 
1926 	lru_add_drain();
1927 
1928 	spin_lock_irq(&pgdat->lru_lock);
1929 
1930 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1931 				     &nr_scanned, sc, lru);
1932 
1933 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1934 	reclaim_stat->recent_scanned[file] += nr_taken;
1935 
1936 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1937 	if (!cgroup_reclaim(sc))
1938 		__count_vm_events(item, nr_scanned);
1939 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1940 	spin_unlock_irq(&pgdat->lru_lock);
1941 
1942 	if (nr_taken == 0)
1943 		return 0;
1944 
1945 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1946 				&stat, false);
1947 
1948 	spin_lock_irq(&pgdat->lru_lock);
1949 
1950 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1951 	if (!cgroup_reclaim(sc))
1952 		__count_vm_events(item, nr_reclaimed);
1953 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1954 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1955 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1956 
1957 	move_pages_to_lru(lruvec, &page_list);
1958 
1959 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1960 
1961 	spin_unlock_irq(&pgdat->lru_lock);
1962 
1963 	mem_cgroup_uncharge_list(&page_list);
1964 	free_unref_page_list(&page_list);
1965 
1966 	/*
1967 	 * If dirty pages are scanned that are not queued for IO, it
1968 	 * implies that flushers are not doing their job. This can
1969 	 * happen when memory pressure pushes dirty pages to the end of
1970 	 * the LRU before the dirty limits are breached and the dirty
1971 	 * data has expired. It can also happen when the proportion of
1972 	 * dirty pages grows not through writes but through memory
1973 	 * pressure reclaiming all the clean cache. And in some cases,
1974 	 * the flushers simply cannot keep up with the allocation
1975 	 * rate. Nudge the flusher threads in case they are asleep.
1976 	 */
1977 	if (stat.nr_unqueued_dirty == nr_taken)
1978 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1979 
1980 	sc->nr.dirty += stat.nr_dirty;
1981 	sc->nr.congested += stat.nr_congested;
1982 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1983 	sc->nr.writeback += stat.nr_writeback;
1984 	sc->nr.immediate += stat.nr_immediate;
1985 	sc->nr.taken += nr_taken;
1986 	if (file)
1987 		sc->nr.file_taken += nr_taken;
1988 
1989 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1990 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1991 	return nr_reclaimed;
1992 }
1993 
1994 static void shrink_active_list(unsigned long nr_to_scan,
1995 			       struct lruvec *lruvec,
1996 			       struct scan_control *sc,
1997 			       enum lru_list lru)
1998 {
1999 	unsigned long nr_taken;
2000 	unsigned long nr_scanned;
2001 	unsigned long vm_flags;
2002 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2003 	LIST_HEAD(l_active);
2004 	LIST_HEAD(l_inactive);
2005 	struct page *page;
2006 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2007 	unsigned nr_deactivate, nr_activate;
2008 	unsigned nr_rotated = 0;
2009 	int file = is_file_lru(lru);
2010 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2011 
2012 	lru_add_drain();
2013 
2014 	spin_lock_irq(&pgdat->lru_lock);
2015 
2016 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2017 				     &nr_scanned, sc, lru);
2018 
2019 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2020 	reclaim_stat->recent_scanned[file] += nr_taken;
2021 
2022 	__count_vm_events(PGREFILL, nr_scanned);
2023 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2024 
2025 	spin_unlock_irq(&pgdat->lru_lock);
2026 
2027 	while (!list_empty(&l_hold)) {
2028 		cond_resched();
2029 		page = lru_to_page(&l_hold);
2030 		list_del(&page->lru);
2031 
2032 		if (unlikely(!page_evictable(page))) {
2033 			putback_lru_page(page);
2034 			continue;
2035 		}
2036 
2037 		if (unlikely(buffer_heads_over_limit)) {
2038 			if (page_has_private(page) && trylock_page(page)) {
2039 				if (page_has_private(page))
2040 					try_to_release_page(page, 0);
2041 				unlock_page(page);
2042 			}
2043 		}
2044 
2045 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2046 				    &vm_flags)) {
2047 			nr_rotated += hpage_nr_pages(page);
2048 			/*
2049 			 * Identify referenced, file-backed active pages and
2050 			 * give them one more trip around the active list. So
2051 			 * that executable code get better chances to stay in
2052 			 * memory under moderate memory pressure.  Anon pages
2053 			 * are not likely to be evicted by use-once streaming
2054 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2055 			 * so we ignore them here.
2056 			 */
2057 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2058 				list_add(&page->lru, &l_active);
2059 				continue;
2060 			}
2061 		}
2062 
2063 		ClearPageActive(page);	/* we are de-activating */
2064 		SetPageWorkingset(page);
2065 		list_add(&page->lru, &l_inactive);
2066 	}
2067 
2068 	/*
2069 	 * Move pages back to the lru list.
2070 	 */
2071 	spin_lock_irq(&pgdat->lru_lock);
2072 	/*
2073 	 * Count referenced pages from currently used mappings as rotated,
2074 	 * even though only some of them are actually re-activated.  This
2075 	 * helps balance scan pressure between file and anonymous pages in
2076 	 * get_scan_count.
2077 	 */
2078 	reclaim_stat->recent_rotated[file] += nr_rotated;
2079 
2080 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2081 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2082 	/* Keep all free pages in l_active list */
2083 	list_splice(&l_inactive, &l_active);
2084 
2085 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2086 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2087 
2088 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2089 	spin_unlock_irq(&pgdat->lru_lock);
2090 
2091 	mem_cgroup_uncharge_list(&l_active);
2092 	free_unref_page_list(&l_active);
2093 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2094 			nr_deactivate, nr_rotated, sc->priority, file);
2095 }
2096 
2097 unsigned long reclaim_pages(struct list_head *page_list)
2098 {
2099 	int nid = -1;
2100 	unsigned long nr_reclaimed = 0;
2101 	LIST_HEAD(node_page_list);
2102 	struct reclaim_stat dummy_stat;
2103 	struct page *page;
2104 	struct scan_control sc = {
2105 		.gfp_mask = GFP_KERNEL,
2106 		.priority = DEF_PRIORITY,
2107 		.may_writepage = 1,
2108 		.may_unmap = 1,
2109 		.may_swap = 1,
2110 	};
2111 
2112 	while (!list_empty(page_list)) {
2113 		page = lru_to_page(page_list);
2114 		if (nid == -1) {
2115 			nid = page_to_nid(page);
2116 			INIT_LIST_HEAD(&node_page_list);
2117 		}
2118 
2119 		if (nid == page_to_nid(page)) {
2120 			ClearPageActive(page);
2121 			list_move(&page->lru, &node_page_list);
2122 			continue;
2123 		}
2124 
2125 		nr_reclaimed += shrink_page_list(&node_page_list,
2126 						NODE_DATA(nid),
2127 						&sc, 0,
2128 						&dummy_stat, false);
2129 		while (!list_empty(&node_page_list)) {
2130 			page = lru_to_page(&node_page_list);
2131 			list_del(&page->lru);
2132 			putback_lru_page(page);
2133 		}
2134 
2135 		nid = -1;
2136 	}
2137 
2138 	if (!list_empty(&node_page_list)) {
2139 		nr_reclaimed += shrink_page_list(&node_page_list,
2140 						NODE_DATA(nid),
2141 						&sc, 0,
2142 						&dummy_stat, false);
2143 		while (!list_empty(&node_page_list)) {
2144 			page = lru_to_page(&node_page_list);
2145 			list_del(&page->lru);
2146 			putback_lru_page(page);
2147 		}
2148 	}
2149 
2150 	return nr_reclaimed;
2151 }
2152 
2153 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2154 				 struct lruvec *lruvec, struct scan_control *sc)
2155 {
2156 	if (is_active_lru(lru)) {
2157 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2158 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2159 		else
2160 			sc->skipped_deactivate = 1;
2161 		return 0;
2162 	}
2163 
2164 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2165 }
2166 
2167 /*
2168  * The inactive anon list should be small enough that the VM never has
2169  * to do too much work.
2170  *
2171  * The inactive file list should be small enough to leave most memory
2172  * to the established workingset on the scan-resistant active list,
2173  * but large enough to avoid thrashing the aggregate readahead window.
2174  *
2175  * Both inactive lists should also be large enough that each inactive
2176  * page has a chance to be referenced again before it is reclaimed.
2177  *
2178  * If that fails and refaulting is observed, the inactive list grows.
2179  *
2180  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2181  * on this LRU, maintained by the pageout code. An inactive_ratio
2182  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2183  *
2184  * total     target    max
2185  * memory    ratio     inactive
2186  * -------------------------------------
2187  *   10MB       1         5MB
2188  *  100MB       1        50MB
2189  *    1GB       3       250MB
2190  *   10GB      10       0.9GB
2191  *  100GB      31         3GB
2192  *    1TB     101        10GB
2193  *   10TB     320        32GB
2194  */
2195 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2196 {
2197 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2198 	unsigned long inactive, active;
2199 	unsigned long inactive_ratio;
2200 	unsigned long gb;
2201 
2202 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2203 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2204 
2205 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2206 	if (gb)
2207 		inactive_ratio = int_sqrt(10 * gb);
2208 	else
2209 		inactive_ratio = 1;
2210 
2211 	return inactive * inactive_ratio < active;
2212 }
2213 
2214 enum scan_balance {
2215 	SCAN_EQUAL,
2216 	SCAN_FRACT,
2217 	SCAN_ANON,
2218 	SCAN_FILE,
2219 };
2220 
2221 /*
2222  * Determine how aggressively the anon and file LRU lists should be
2223  * scanned.  The relative value of each set of LRU lists is determined
2224  * by looking at the fraction of the pages scanned we did rotate back
2225  * onto the active list instead of evict.
2226  *
2227  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2228  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2229  */
2230 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2231 			   unsigned long *nr)
2232 {
2233 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2234 	int swappiness = mem_cgroup_swappiness(memcg);
2235 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2236 	u64 fraction[2];
2237 	u64 denominator = 0;	/* gcc */
2238 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2239 	unsigned long anon_prio, file_prio;
2240 	enum scan_balance scan_balance;
2241 	unsigned long anon, file;
2242 	unsigned long ap, fp;
2243 	enum lru_list lru;
2244 
2245 	/* If we have no swap space, do not bother scanning anon pages. */
2246 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2247 		scan_balance = SCAN_FILE;
2248 		goto out;
2249 	}
2250 
2251 	/*
2252 	 * Global reclaim will swap to prevent OOM even with no
2253 	 * swappiness, but memcg users want to use this knob to
2254 	 * disable swapping for individual groups completely when
2255 	 * using the memory controller's swap limit feature would be
2256 	 * too expensive.
2257 	 */
2258 	if (cgroup_reclaim(sc) && !swappiness) {
2259 		scan_balance = SCAN_FILE;
2260 		goto out;
2261 	}
2262 
2263 	/*
2264 	 * Do not apply any pressure balancing cleverness when the
2265 	 * system is close to OOM, scan both anon and file equally
2266 	 * (unless the swappiness setting disagrees with swapping).
2267 	 */
2268 	if (!sc->priority && swappiness) {
2269 		scan_balance = SCAN_EQUAL;
2270 		goto out;
2271 	}
2272 
2273 	/*
2274 	 * If the system is almost out of file pages, force-scan anon.
2275 	 */
2276 	if (sc->file_is_tiny) {
2277 		scan_balance = SCAN_ANON;
2278 		goto out;
2279 	}
2280 
2281 	/*
2282 	 * If there is enough inactive page cache, we do not reclaim
2283 	 * anything from the anonymous working right now.
2284 	 */
2285 	if (sc->cache_trim_mode) {
2286 		scan_balance = SCAN_FILE;
2287 		goto out;
2288 	}
2289 
2290 	scan_balance = SCAN_FRACT;
2291 
2292 	/*
2293 	 * With swappiness at 100, anonymous and file have the same priority.
2294 	 * This scanning priority is essentially the inverse of IO cost.
2295 	 */
2296 	anon_prio = swappiness;
2297 	file_prio = 200 - anon_prio;
2298 
2299 	/*
2300 	 * OK, so we have swap space and a fair amount of page cache
2301 	 * pages.  We use the recently rotated / recently scanned
2302 	 * ratios to determine how valuable each cache is.
2303 	 *
2304 	 * Because workloads change over time (and to avoid overflow)
2305 	 * we keep these statistics as a floating average, which ends
2306 	 * up weighing recent references more than old ones.
2307 	 *
2308 	 * anon in [0], file in [1]
2309 	 */
2310 
2311 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2312 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2313 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2314 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2315 
2316 	spin_lock_irq(&pgdat->lru_lock);
2317 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2318 		reclaim_stat->recent_scanned[0] /= 2;
2319 		reclaim_stat->recent_rotated[0] /= 2;
2320 	}
2321 
2322 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2323 		reclaim_stat->recent_scanned[1] /= 2;
2324 		reclaim_stat->recent_rotated[1] /= 2;
2325 	}
2326 
2327 	/*
2328 	 * The amount of pressure on anon vs file pages is inversely
2329 	 * proportional to the fraction of recently scanned pages on
2330 	 * each list that were recently referenced and in active use.
2331 	 */
2332 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2333 	ap /= reclaim_stat->recent_rotated[0] + 1;
2334 
2335 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2336 	fp /= reclaim_stat->recent_rotated[1] + 1;
2337 	spin_unlock_irq(&pgdat->lru_lock);
2338 
2339 	fraction[0] = ap;
2340 	fraction[1] = fp;
2341 	denominator = ap + fp + 1;
2342 out:
2343 	for_each_evictable_lru(lru) {
2344 		int file = is_file_lru(lru);
2345 		unsigned long lruvec_size;
2346 		unsigned long scan;
2347 		unsigned long protection;
2348 
2349 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2350 		protection = mem_cgroup_protection(memcg,
2351 						   sc->memcg_low_reclaim);
2352 
2353 		if (protection) {
2354 			/*
2355 			 * Scale a cgroup's reclaim pressure by proportioning
2356 			 * its current usage to its memory.low or memory.min
2357 			 * setting.
2358 			 *
2359 			 * This is important, as otherwise scanning aggression
2360 			 * becomes extremely binary -- from nothing as we
2361 			 * approach the memory protection threshold, to totally
2362 			 * nominal as we exceed it.  This results in requiring
2363 			 * setting extremely liberal protection thresholds. It
2364 			 * also means we simply get no protection at all if we
2365 			 * set it too low, which is not ideal.
2366 			 *
2367 			 * If there is any protection in place, we reduce scan
2368 			 * pressure by how much of the total memory used is
2369 			 * within protection thresholds.
2370 			 *
2371 			 * There is one special case: in the first reclaim pass,
2372 			 * we skip over all groups that are within their low
2373 			 * protection. If that fails to reclaim enough pages to
2374 			 * satisfy the reclaim goal, we come back and override
2375 			 * the best-effort low protection. However, we still
2376 			 * ideally want to honor how well-behaved groups are in
2377 			 * that case instead of simply punishing them all
2378 			 * equally. As such, we reclaim them based on how much
2379 			 * memory they are using, reducing the scan pressure
2380 			 * again by how much of the total memory used is under
2381 			 * hard protection.
2382 			 */
2383 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2384 
2385 			/* Avoid TOCTOU with earlier protection check */
2386 			cgroup_size = max(cgroup_size, protection);
2387 
2388 			scan = lruvec_size - lruvec_size * protection /
2389 				cgroup_size;
2390 
2391 			/*
2392 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2393 			 * reclaim moving forwards, avoiding decremeting
2394 			 * sc->priority further than desirable.
2395 			 */
2396 			scan = max(scan, SWAP_CLUSTER_MAX);
2397 		} else {
2398 			scan = lruvec_size;
2399 		}
2400 
2401 		scan >>= sc->priority;
2402 
2403 		/*
2404 		 * If the cgroup's already been deleted, make sure to
2405 		 * scrape out the remaining cache.
2406 		 */
2407 		if (!scan && !mem_cgroup_online(memcg))
2408 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2409 
2410 		switch (scan_balance) {
2411 		case SCAN_EQUAL:
2412 			/* Scan lists relative to size */
2413 			break;
2414 		case SCAN_FRACT:
2415 			/*
2416 			 * Scan types proportional to swappiness and
2417 			 * their relative recent reclaim efficiency.
2418 			 * Make sure we don't miss the last page on
2419 			 * the offlined memory cgroups because of a
2420 			 * round-off error.
2421 			 */
2422 			scan = mem_cgroup_online(memcg) ?
2423 			       div64_u64(scan * fraction[file], denominator) :
2424 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2425 						  denominator);
2426 			break;
2427 		case SCAN_FILE:
2428 		case SCAN_ANON:
2429 			/* Scan one type exclusively */
2430 			if ((scan_balance == SCAN_FILE) != file) {
2431 				lruvec_size = 0;
2432 				scan = 0;
2433 			}
2434 			break;
2435 		default:
2436 			/* Look ma, no brain */
2437 			BUG();
2438 		}
2439 
2440 		nr[lru] = scan;
2441 	}
2442 }
2443 
2444 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2445 {
2446 	unsigned long nr[NR_LRU_LISTS];
2447 	unsigned long targets[NR_LRU_LISTS];
2448 	unsigned long nr_to_scan;
2449 	enum lru_list lru;
2450 	unsigned long nr_reclaimed = 0;
2451 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2452 	struct blk_plug plug;
2453 	bool scan_adjusted;
2454 
2455 	get_scan_count(lruvec, sc, nr);
2456 
2457 	/* Record the original scan target for proportional adjustments later */
2458 	memcpy(targets, nr, sizeof(nr));
2459 
2460 	/*
2461 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2462 	 * event that can occur when there is little memory pressure e.g.
2463 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2464 	 * when the requested number of pages are reclaimed when scanning at
2465 	 * DEF_PRIORITY on the assumption that the fact we are direct
2466 	 * reclaiming implies that kswapd is not keeping up and it is best to
2467 	 * do a batch of work at once. For memcg reclaim one check is made to
2468 	 * abort proportional reclaim if either the file or anon lru has already
2469 	 * dropped to zero at the first pass.
2470 	 */
2471 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2472 			 sc->priority == DEF_PRIORITY);
2473 
2474 	blk_start_plug(&plug);
2475 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2476 					nr[LRU_INACTIVE_FILE]) {
2477 		unsigned long nr_anon, nr_file, percentage;
2478 		unsigned long nr_scanned;
2479 
2480 		for_each_evictable_lru(lru) {
2481 			if (nr[lru]) {
2482 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2483 				nr[lru] -= nr_to_scan;
2484 
2485 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2486 							    lruvec, sc);
2487 			}
2488 		}
2489 
2490 		cond_resched();
2491 
2492 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2493 			continue;
2494 
2495 		/*
2496 		 * For kswapd and memcg, reclaim at least the number of pages
2497 		 * requested. Ensure that the anon and file LRUs are scanned
2498 		 * proportionally what was requested by get_scan_count(). We
2499 		 * stop reclaiming one LRU and reduce the amount scanning
2500 		 * proportional to the original scan target.
2501 		 */
2502 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2503 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2504 
2505 		/*
2506 		 * It's just vindictive to attack the larger once the smaller
2507 		 * has gone to zero.  And given the way we stop scanning the
2508 		 * smaller below, this makes sure that we only make one nudge
2509 		 * towards proportionality once we've got nr_to_reclaim.
2510 		 */
2511 		if (!nr_file || !nr_anon)
2512 			break;
2513 
2514 		if (nr_file > nr_anon) {
2515 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2516 						targets[LRU_ACTIVE_ANON] + 1;
2517 			lru = LRU_BASE;
2518 			percentage = nr_anon * 100 / scan_target;
2519 		} else {
2520 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2521 						targets[LRU_ACTIVE_FILE] + 1;
2522 			lru = LRU_FILE;
2523 			percentage = nr_file * 100 / scan_target;
2524 		}
2525 
2526 		/* Stop scanning the smaller of the LRU */
2527 		nr[lru] = 0;
2528 		nr[lru + LRU_ACTIVE] = 0;
2529 
2530 		/*
2531 		 * Recalculate the other LRU scan count based on its original
2532 		 * scan target and the percentage scanning already complete
2533 		 */
2534 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2535 		nr_scanned = targets[lru] - nr[lru];
2536 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2537 		nr[lru] -= min(nr[lru], nr_scanned);
2538 
2539 		lru += LRU_ACTIVE;
2540 		nr_scanned = targets[lru] - nr[lru];
2541 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2542 		nr[lru] -= min(nr[lru], nr_scanned);
2543 
2544 		scan_adjusted = true;
2545 	}
2546 	blk_finish_plug(&plug);
2547 	sc->nr_reclaimed += nr_reclaimed;
2548 
2549 	/*
2550 	 * Even if we did not try to evict anon pages at all, we want to
2551 	 * rebalance the anon lru active/inactive ratio.
2552 	 */
2553 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2554 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2555 				   sc, LRU_ACTIVE_ANON);
2556 }
2557 
2558 /* Use reclaim/compaction for costly allocs or under memory pressure */
2559 static bool in_reclaim_compaction(struct scan_control *sc)
2560 {
2561 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2562 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2563 			 sc->priority < DEF_PRIORITY - 2))
2564 		return true;
2565 
2566 	return false;
2567 }
2568 
2569 /*
2570  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2571  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2572  * true if more pages should be reclaimed such that when the page allocator
2573  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2574  * It will give up earlier than that if there is difficulty reclaiming pages.
2575  */
2576 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2577 					unsigned long nr_reclaimed,
2578 					struct scan_control *sc)
2579 {
2580 	unsigned long pages_for_compaction;
2581 	unsigned long inactive_lru_pages;
2582 	int z;
2583 
2584 	/* If not in reclaim/compaction mode, stop */
2585 	if (!in_reclaim_compaction(sc))
2586 		return false;
2587 
2588 	/*
2589 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2590 	 * number of pages that were scanned. This will return to the caller
2591 	 * with the risk reclaim/compaction and the resulting allocation attempt
2592 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2593 	 * allocations through requiring that the full LRU list has been scanned
2594 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2595 	 * scan, but that approximation was wrong, and there were corner cases
2596 	 * where always a non-zero amount of pages were scanned.
2597 	 */
2598 	if (!nr_reclaimed)
2599 		return false;
2600 
2601 	/* If compaction would go ahead or the allocation would succeed, stop */
2602 	for (z = 0; z <= sc->reclaim_idx; z++) {
2603 		struct zone *zone = &pgdat->node_zones[z];
2604 		if (!managed_zone(zone))
2605 			continue;
2606 
2607 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2608 		case COMPACT_SUCCESS:
2609 		case COMPACT_CONTINUE:
2610 			return false;
2611 		default:
2612 			/* check next zone */
2613 			;
2614 		}
2615 	}
2616 
2617 	/*
2618 	 * If we have not reclaimed enough pages for compaction and the
2619 	 * inactive lists are large enough, continue reclaiming
2620 	 */
2621 	pages_for_compaction = compact_gap(sc->order);
2622 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2623 	if (get_nr_swap_pages() > 0)
2624 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2625 
2626 	return inactive_lru_pages > pages_for_compaction;
2627 }
2628 
2629 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2630 {
2631 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2632 	struct mem_cgroup *memcg;
2633 
2634 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2635 	do {
2636 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2637 		unsigned long reclaimed;
2638 		unsigned long scanned;
2639 
2640 		switch (mem_cgroup_protected(target_memcg, memcg)) {
2641 		case MEMCG_PROT_MIN:
2642 			/*
2643 			 * Hard protection.
2644 			 * If there is no reclaimable memory, OOM.
2645 			 */
2646 			continue;
2647 		case MEMCG_PROT_LOW:
2648 			/*
2649 			 * Soft protection.
2650 			 * Respect the protection only as long as
2651 			 * there is an unprotected supply
2652 			 * of reclaimable memory from other cgroups.
2653 			 */
2654 			if (!sc->memcg_low_reclaim) {
2655 				sc->memcg_low_skipped = 1;
2656 				continue;
2657 			}
2658 			memcg_memory_event(memcg, MEMCG_LOW);
2659 			break;
2660 		case MEMCG_PROT_NONE:
2661 			/*
2662 			 * All protection thresholds breached. We may
2663 			 * still choose to vary the scan pressure
2664 			 * applied based on by how much the cgroup in
2665 			 * question has exceeded its protection
2666 			 * thresholds (see get_scan_count).
2667 			 */
2668 			break;
2669 		}
2670 
2671 		reclaimed = sc->nr_reclaimed;
2672 		scanned = sc->nr_scanned;
2673 
2674 		shrink_lruvec(lruvec, sc);
2675 
2676 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2677 			    sc->priority);
2678 
2679 		/* Record the group's reclaim efficiency */
2680 		vmpressure(sc->gfp_mask, memcg, false,
2681 			   sc->nr_scanned - scanned,
2682 			   sc->nr_reclaimed - reclaimed);
2683 
2684 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2685 }
2686 
2687 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2688 {
2689 	struct reclaim_state *reclaim_state = current->reclaim_state;
2690 	unsigned long nr_reclaimed, nr_scanned;
2691 	struct lruvec *target_lruvec;
2692 	bool reclaimable = false;
2693 	unsigned long file;
2694 
2695 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2696 
2697 again:
2698 	memset(&sc->nr, 0, sizeof(sc->nr));
2699 
2700 	nr_reclaimed = sc->nr_reclaimed;
2701 	nr_scanned = sc->nr_scanned;
2702 
2703 	/*
2704 	 * Target desirable inactive:active list ratios for the anon
2705 	 * and file LRU lists.
2706 	 */
2707 	if (!sc->force_deactivate) {
2708 		unsigned long refaults;
2709 
2710 		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2711 			sc->may_deactivate |= DEACTIVATE_ANON;
2712 		else
2713 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2714 
2715 		/*
2716 		 * When refaults are being observed, it means a new
2717 		 * workingset is being established. Deactivate to get
2718 		 * rid of any stale active pages quickly.
2719 		 */
2720 		refaults = lruvec_page_state(target_lruvec,
2721 					     WORKINGSET_ACTIVATE);
2722 		if (refaults != target_lruvec->refaults ||
2723 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2724 			sc->may_deactivate |= DEACTIVATE_FILE;
2725 		else
2726 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2727 	} else
2728 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2729 
2730 	/*
2731 	 * If we have plenty of inactive file pages that aren't
2732 	 * thrashing, try to reclaim those first before touching
2733 	 * anonymous pages.
2734 	 */
2735 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2736 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2737 		sc->cache_trim_mode = 1;
2738 	else
2739 		sc->cache_trim_mode = 0;
2740 
2741 	/*
2742 	 * Prevent the reclaimer from falling into the cache trap: as
2743 	 * cache pages start out inactive, every cache fault will tip
2744 	 * the scan balance towards the file LRU.  And as the file LRU
2745 	 * shrinks, so does the window for rotation from references.
2746 	 * This means we have a runaway feedback loop where a tiny
2747 	 * thrashing file LRU becomes infinitely more attractive than
2748 	 * anon pages.  Try to detect this based on file LRU size.
2749 	 */
2750 	if (!cgroup_reclaim(sc)) {
2751 		unsigned long total_high_wmark = 0;
2752 		unsigned long free, anon;
2753 		int z;
2754 
2755 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2756 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2757 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2758 
2759 		for (z = 0; z < MAX_NR_ZONES; z++) {
2760 			struct zone *zone = &pgdat->node_zones[z];
2761 			if (!managed_zone(zone))
2762 				continue;
2763 
2764 			total_high_wmark += high_wmark_pages(zone);
2765 		}
2766 
2767 		/*
2768 		 * Consider anon: if that's low too, this isn't a
2769 		 * runaway file reclaim problem, but rather just
2770 		 * extreme pressure. Reclaim as per usual then.
2771 		 */
2772 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2773 
2774 		sc->file_is_tiny =
2775 			file + free <= total_high_wmark &&
2776 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2777 			anon >> sc->priority;
2778 	}
2779 
2780 	shrink_node_memcgs(pgdat, sc);
2781 
2782 	if (reclaim_state) {
2783 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2784 		reclaim_state->reclaimed_slab = 0;
2785 	}
2786 
2787 	/* Record the subtree's reclaim efficiency */
2788 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2789 		   sc->nr_scanned - nr_scanned,
2790 		   sc->nr_reclaimed - nr_reclaimed);
2791 
2792 	if (sc->nr_reclaimed - nr_reclaimed)
2793 		reclaimable = true;
2794 
2795 	if (current_is_kswapd()) {
2796 		/*
2797 		 * If reclaim is isolating dirty pages under writeback,
2798 		 * it implies that the long-lived page allocation rate
2799 		 * is exceeding the page laundering rate. Either the
2800 		 * global limits are not being effective at throttling
2801 		 * processes due to the page distribution throughout
2802 		 * zones or there is heavy usage of a slow backing
2803 		 * device. The only option is to throttle from reclaim
2804 		 * context which is not ideal as there is no guarantee
2805 		 * the dirtying process is throttled in the same way
2806 		 * balance_dirty_pages() manages.
2807 		 *
2808 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2809 		 * count the number of pages under pages flagged for
2810 		 * immediate reclaim and stall if any are encountered
2811 		 * in the nr_immediate check below.
2812 		 */
2813 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2814 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2815 
2816 		/* Allow kswapd to start writing pages during reclaim.*/
2817 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2818 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2819 
2820 		/*
2821 		 * If kswapd scans pages marked marked for immediate
2822 		 * reclaim and under writeback (nr_immediate), it
2823 		 * implies that pages are cycling through the LRU
2824 		 * faster than they are written so also forcibly stall.
2825 		 */
2826 		if (sc->nr.immediate)
2827 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2828 	}
2829 
2830 	/*
2831 	 * Tag a node/memcg as congested if all the dirty pages
2832 	 * scanned were backed by a congested BDI and
2833 	 * wait_iff_congested will stall.
2834 	 *
2835 	 * Legacy memcg will stall in page writeback so avoid forcibly
2836 	 * stalling in wait_iff_congested().
2837 	 */
2838 	if ((current_is_kswapd() ||
2839 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2840 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2841 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842 
2843 	/*
2844 	 * Stall direct reclaim for IO completions if underlying BDIs
2845 	 * and node is congested. Allow kswapd to continue until it
2846 	 * starts encountering unqueued dirty pages or cycling through
2847 	 * the LRU too quickly.
2848 	 */
2849 	if (!current_is_kswapd() && current_may_throttle() &&
2850 	    !sc->hibernation_mode &&
2851 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2852 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2853 
2854 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2855 				    sc))
2856 		goto again;
2857 
2858 	/*
2859 	 * Kswapd gives up on balancing particular nodes after too
2860 	 * many failures to reclaim anything from them and goes to
2861 	 * sleep. On reclaim progress, reset the failure counter. A
2862 	 * successful direct reclaim run will revive a dormant kswapd.
2863 	 */
2864 	if (reclaimable)
2865 		pgdat->kswapd_failures = 0;
2866 }
2867 
2868 /*
2869  * Returns true if compaction should go ahead for a costly-order request, or
2870  * the allocation would already succeed without compaction. Return false if we
2871  * should reclaim first.
2872  */
2873 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2874 {
2875 	unsigned long watermark;
2876 	enum compact_result suitable;
2877 
2878 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2879 	if (suitable == COMPACT_SUCCESS)
2880 		/* Allocation should succeed already. Don't reclaim. */
2881 		return true;
2882 	if (suitable == COMPACT_SKIPPED)
2883 		/* Compaction cannot yet proceed. Do reclaim. */
2884 		return false;
2885 
2886 	/*
2887 	 * Compaction is already possible, but it takes time to run and there
2888 	 * are potentially other callers using the pages just freed. So proceed
2889 	 * with reclaim to make a buffer of free pages available to give
2890 	 * compaction a reasonable chance of completing and allocating the page.
2891 	 * Note that we won't actually reclaim the whole buffer in one attempt
2892 	 * as the target watermark in should_continue_reclaim() is lower. But if
2893 	 * we are already above the high+gap watermark, don't reclaim at all.
2894 	 */
2895 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2896 
2897 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2898 }
2899 
2900 /*
2901  * This is the direct reclaim path, for page-allocating processes.  We only
2902  * try to reclaim pages from zones which will satisfy the caller's allocation
2903  * request.
2904  *
2905  * If a zone is deemed to be full of pinned pages then just give it a light
2906  * scan then give up on it.
2907  */
2908 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2909 {
2910 	struct zoneref *z;
2911 	struct zone *zone;
2912 	unsigned long nr_soft_reclaimed;
2913 	unsigned long nr_soft_scanned;
2914 	gfp_t orig_mask;
2915 	pg_data_t *last_pgdat = NULL;
2916 
2917 	/*
2918 	 * If the number of buffer_heads in the machine exceeds the maximum
2919 	 * allowed level, force direct reclaim to scan the highmem zone as
2920 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2921 	 */
2922 	orig_mask = sc->gfp_mask;
2923 	if (buffer_heads_over_limit) {
2924 		sc->gfp_mask |= __GFP_HIGHMEM;
2925 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926 	}
2927 
2928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2929 					sc->reclaim_idx, sc->nodemask) {
2930 		/*
2931 		 * Take care memory controller reclaiming has small influence
2932 		 * to global LRU.
2933 		 */
2934 		if (!cgroup_reclaim(sc)) {
2935 			if (!cpuset_zone_allowed(zone,
2936 						 GFP_KERNEL | __GFP_HARDWALL))
2937 				continue;
2938 
2939 			/*
2940 			 * If we already have plenty of memory free for
2941 			 * compaction in this zone, don't free any more.
2942 			 * Even though compaction is invoked for any
2943 			 * non-zero order, only frequent costly order
2944 			 * reclamation is disruptive enough to become a
2945 			 * noticeable problem, like transparent huge
2946 			 * page allocations.
2947 			 */
2948 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2949 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2950 			    compaction_ready(zone, sc)) {
2951 				sc->compaction_ready = true;
2952 				continue;
2953 			}
2954 
2955 			/*
2956 			 * Shrink each node in the zonelist once. If the
2957 			 * zonelist is ordered by zone (not the default) then a
2958 			 * node may be shrunk multiple times but in that case
2959 			 * the user prefers lower zones being preserved.
2960 			 */
2961 			if (zone->zone_pgdat == last_pgdat)
2962 				continue;
2963 
2964 			/*
2965 			 * This steals pages from memory cgroups over softlimit
2966 			 * and returns the number of reclaimed pages and
2967 			 * scanned pages. This works for global memory pressure
2968 			 * and balancing, not for a memcg's limit.
2969 			 */
2970 			nr_soft_scanned = 0;
2971 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2972 						sc->order, sc->gfp_mask,
2973 						&nr_soft_scanned);
2974 			sc->nr_reclaimed += nr_soft_reclaimed;
2975 			sc->nr_scanned += nr_soft_scanned;
2976 			/* need some check for avoid more shrink_zone() */
2977 		}
2978 
2979 		/* See comment about same check for global reclaim above */
2980 		if (zone->zone_pgdat == last_pgdat)
2981 			continue;
2982 		last_pgdat = zone->zone_pgdat;
2983 		shrink_node(zone->zone_pgdat, sc);
2984 	}
2985 
2986 	/*
2987 	 * Restore to original mask to avoid the impact on the caller if we
2988 	 * promoted it to __GFP_HIGHMEM.
2989 	 */
2990 	sc->gfp_mask = orig_mask;
2991 }
2992 
2993 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2994 {
2995 	struct lruvec *target_lruvec;
2996 	unsigned long refaults;
2997 
2998 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2999 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
3000 	target_lruvec->refaults = refaults;
3001 }
3002 
3003 /*
3004  * This is the main entry point to direct page reclaim.
3005  *
3006  * If a full scan of the inactive list fails to free enough memory then we
3007  * are "out of memory" and something needs to be killed.
3008  *
3009  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3010  * high - the zone may be full of dirty or under-writeback pages, which this
3011  * caller can't do much about.  We kick the writeback threads and take explicit
3012  * naps in the hope that some of these pages can be written.  But if the
3013  * allocating task holds filesystem locks which prevent writeout this might not
3014  * work, and the allocation attempt will fail.
3015  *
3016  * returns:	0, if no pages reclaimed
3017  * 		else, the number of pages reclaimed
3018  */
3019 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020 					  struct scan_control *sc)
3021 {
3022 	int initial_priority = sc->priority;
3023 	pg_data_t *last_pgdat;
3024 	struct zoneref *z;
3025 	struct zone *zone;
3026 retry:
3027 	delayacct_freepages_start();
3028 
3029 	if (!cgroup_reclaim(sc))
3030 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3031 
3032 	do {
3033 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3034 				sc->priority);
3035 		sc->nr_scanned = 0;
3036 		shrink_zones(zonelist, sc);
3037 
3038 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039 			break;
3040 
3041 		if (sc->compaction_ready)
3042 			break;
3043 
3044 		/*
3045 		 * If we're getting trouble reclaiming, start doing
3046 		 * writepage even in laptop mode.
3047 		 */
3048 		if (sc->priority < DEF_PRIORITY - 2)
3049 			sc->may_writepage = 1;
3050 	} while (--sc->priority >= 0);
3051 
3052 	last_pgdat = NULL;
3053 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3054 					sc->nodemask) {
3055 		if (zone->zone_pgdat == last_pgdat)
3056 			continue;
3057 		last_pgdat = zone->zone_pgdat;
3058 
3059 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3060 
3061 		if (cgroup_reclaim(sc)) {
3062 			struct lruvec *lruvec;
3063 
3064 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3065 						   zone->zone_pgdat);
3066 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3067 		}
3068 	}
3069 
3070 	delayacct_freepages_end();
3071 
3072 	if (sc->nr_reclaimed)
3073 		return sc->nr_reclaimed;
3074 
3075 	/* Aborted reclaim to try compaction? don't OOM, then */
3076 	if (sc->compaction_ready)
3077 		return 1;
3078 
3079 	/*
3080 	 * We make inactive:active ratio decisions based on the node's
3081 	 * composition of memory, but a restrictive reclaim_idx or a
3082 	 * memory.low cgroup setting can exempt large amounts of
3083 	 * memory from reclaim. Neither of which are very common, so
3084 	 * instead of doing costly eligibility calculations of the
3085 	 * entire cgroup subtree up front, we assume the estimates are
3086 	 * good, and retry with forcible deactivation if that fails.
3087 	 */
3088 	if (sc->skipped_deactivate) {
3089 		sc->priority = initial_priority;
3090 		sc->force_deactivate = 1;
3091 		sc->skipped_deactivate = 0;
3092 		goto retry;
3093 	}
3094 
3095 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3096 	if (sc->memcg_low_skipped) {
3097 		sc->priority = initial_priority;
3098 		sc->force_deactivate = 0;
3099 		sc->skipped_deactivate = 0;
3100 		sc->memcg_low_reclaim = 1;
3101 		sc->memcg_low_skipped = 0;
3102 		goto retry;
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 static bool allow_direct_reclaim(pg_data_t *pgdat)
3109 {
3110 	struct zone *zone;
3111 	unsigned long pfmemalloc_reserve = 0;
3112 	unsigned long free_pages = 0;
3113 	int i;
3114 	bool wmark_ok;
3115 
3116 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3117 		return true;
3118 
3119 	for (i = 0; i <= ZONE_NORMAL; i++) {
3120 		zone = &pgdat->node_zones[i];
3121 		if (!managed_zone(zone))
3122 			continue;
3123 
3124 		if (!zone_reclaimable_pages(zone))
3125 			continue;
3126 
3127 		pfmemalloc_reserve += min_wmark_pages(zone);
3128 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3129 	}
3130 
3131 	/* If there are no reserves (unexpected config) then do not throttle */
3132 	if (!pfmemalloc_reserve)
3133 		return true;
3134 
3135 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3136 
3137 	/* kswapd must be awake if processes are being throttled */
3138 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3139 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3140 						(enum zone_type)ZONE_NORMAL);
3141 		wake_up_interruptible(&pgdat->kswapd_wait);
3142 	}
3143 
3144 	return wmark_ok;
3145 }
3146 
3147 /*
3148  * Throttle direct reclaimers if backing storage is backed by the network
3149  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3150  * depleted. kswapd will continue to make progress and wake the processes
3151  * when the low watermark is reached.
3152  *
3153  * Returns true if a fatal signal was delivered during throttling. If this
3154  * happens, the page allocator should not consider triggering the OOM killer.
3155  */
3156 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3157 					nodemask_t *nodemask)
3158 {
3159 	struct zoneref *z;
3160 	struct zone *zone;
3161 	pg_data_t *pgdat = NULL;
3162 
3163 	/*
3164 	 * Kernel threads should not be throttled as they may be indirectly
3165 	 * responsible for cleaning pages necessary for reclaim to make forward
3166 	 * progress. kjournald for example may enter direct reclaim while
3167 	 * committing a transaction where throttling it could forcing other
3168 	 * processes to block on log_wait_commit().
3169 	 */
3170 	if (current->flags & PF_KTHREAD)
3171 		goto out;
3172 
3173 	/*
3174 	 * If a fatal signal is pending, this process should not throttle.
3175 	 * It should return quickly so it can exit and free its memory
3176 	 */
3177 	if (fatal_signal_pending(current))
3178 		goto out;
3179 
3180 	/*
3181 	 * Check if the pfmemalloc reserves are ok by finding the first node
3182 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3183 	 * GFP_KERNEL will be required for allocating network buffers when
3184 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3185 	 *
3186 	 * Throttling is based on the first usable node and throttled processes
3187 	 * wait on a queue until kswapd makes progress and wakes them. There
3188 	 * is an affinity then between processes waking up and where reclaim
3189 	 * progress has been made assuming the process wakes on the same node.
3190 	 * More importantly, processes running on remote nodes will not compete
3191 	 * for remote pfmemalloc reserves and processes on different nodes
3192 	 * should make reasonable progress.
3193 	 */
3194 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3195 					gfp_zone(gfp_mask), nodemask) {
3196 		if (zone_idx(zone) > ZONE_NORMAL)
3197 			continue;
3198 
3199 		/* Throttle based on the first usable node */
3200 		pgdat = zone->zone_pgdat;
3201 		if (allow_direct_reclaim(pgdat))
3202 			goto out;
3203 		break;
3204 	}
3205 
3206 	/* If no zone was usable by the allocation flags then do not throttle */
3207 	if (!pgdat)
3208 		goto out;
3209 
3210 	/* Account for the throttling */
3211 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3212 
3213 	/*
3214 	 * If the caller cannot enter the filesystem, it's possible that it
3215 	 * is due to the caller holding an FS lock or performing a journal
3216 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3217 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3218 	 * blocked waiting on the same lock. Instead, throttle for up to a
3219 	 * second before continuing.
3220 	 */
3221 	if (!(gfp_mask & __GFP_FS)) {
3222 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3223 			allow_direct_reclaim(pgdat), HZ);
3224 
3225 		goto check_pending;
3226 	}
3227 
3228 	/* Throttle until kswapd wakes the process */
3229 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3230 		allow_direct_reclaim(pgdat));
3231 
3232 check_pending:
3233 	if (fatal_signal_pending(current))
3234 		return true;
3235 
3236 out:
3237 	return false;
3238 }
3239 
3240 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3241 				gfp_t gfp_mask, nodemask_t *nodemask)
3242 {
3243 	unsigned long nr_reclaimed;
3244 	struct scan_control sc = {
3245 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3246 		.gfp_mask = current_gfp_context(gfp_mask),
3247 		.reclaim_idx = gfp_zone(gfp_mask),
3248 		.order = order,
3249 		.nodemask = nodemask,
3250 		.priority = DEF_PRIORITY,
3251 		.may_writepage = !laptop_mode,
3252 		.may_unmap = 1,
3253 		.may_swap = 1,
3254 	};
3255 
3256 	/*
3257 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3258 	 * Confirm they are large enough for max values.
3259 	 */
3260 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3261 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3262 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3263 
3264 	/*
3265 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3266 	 * 1 is returned so that the page allocator does not OOM kill at this
3267 	 * point.
3268 	 */
3269 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3270 		return 1;
3271 
3272 	set_task_reclaim_state(current, &sc.reclaim_state);
3273 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3274 
3275 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3276 
3277 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3278 	set_task_reclaim_state(current, NULL);
3279 
3280 	return nr_reclaimed;
3281 }
3282 
3283 #ifdef CONFIG_MEMCG
3284 
3285 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3286 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3287 						gfp_t gfp_mask, bool noswap,
3288 						pg_data_t *pgdat,
3289 						unsigned long *nr_scanned)
3290 {
3291 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3292 	struct scan_control sc = {
3293 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3294 		.target_mem_cgroup = memcg,
3295 		.may_writepage = !laptop_mode,
3296 		.may_unmap = 1,
3297 		.reclaim_idx = MAX_NR_ZONES - 1,
3298 		.may_swap = !noswap,
3299 	};
3300 
3301 	WARN_ON_ONCE(!current->reclaim_state);
3302 
3303 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3304 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3305 
3306 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3307 						      sc.gfp_mask);
3308 
3309 	/*
3310 	 * NOTE: Although we can get the priority field, using it
3311 	 * here is not a good idea, since it limits the pages we can scan.
3312 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3313 	 * will pick up pages from other mem cgroup's as well. We hack
3314 	 * the priority and make it zero.
3315 	 */
3316 	shrink_lruvec(lruvec, &sc);
3317 
3318 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3319 
3320 	*nr_scanned = sc.nr_scanned;
3321 
3322 	return sc.nr_reclaimed;
3323 }
3324 
3325 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3326 					   unsigned long nr_pages,
3327 					   gfp_t gfp_mask,
3328 					   bool may_swap)
3329 {
3330 	unsigned long nr_reclaimed;
3331 	unsigned long pflags;
3332 	unsigned int noreclaim_flag;
3333 	struct scan_control sc = {
3334 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3335 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3336 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3337 		.reclaim_idx = MAX_NR_ZONES - 1,
3338 		.target_mem_cgroup = memcg,
3339 		.priority = DEF_PRIORITY,
3340 		.may_writepage = !laptop_mode,
3341 		.may_unmap = 1,
3342 		.may_swap = may_swap,
3343 	};
3344 	/*
3345 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3346 	 * equal pressure on all the nodes. This is based on the assumption that
3347 	 * the reclaim does not bail out early.
3348 	 */
3349 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3350 
3351 	set_task_reclaim_state(current, &sc.reclaim_state);
3352 
3353 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3354 
3355 	psi_memstall_enter(&pflags);
3356 	noreclaim_flag = memalloc_noreclaim_save();
3357 
3358 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3359 
3360 	memalloc_noreclaim_restore(noreclaim_flag);
3361 	psi_memstall_leave(&pflags);
3362 
3363 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3364 	set_task_reclaim_state(current, NULL);
3365 
3366 	return nr_reclaimed;
3367 }
3368 #endif
3369 
3370 static void age_active_anon(struct pglist_data *pgdat,
3371 				struct scan_control *sc)
3372 {
3373 	struct mem_cgroup *memcg;
3374 	struct lruvec *lruvec;
3375 
3376 	if (!total_swap_pages)
3377 		return;
3378 
3379 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3380 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3381 		return;
3382 
3383 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3384 	do {
3385 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3386 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3387 				   sc, LRU_ACTIVE_ANON);
3388 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3389 	} while (memcg);
3390 }
3391 
3392 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3393 {
3394 	int i;
3395 	struct zone *zone;
3396 
3397 	/*
3398 	 * Check for watermark boosts top-down as the higher zones
3399 	 * are more likely to be boosted. Both watermarks and boosts
3400 	 * should not be checked at the time time as reclaim would
3401 	 * start prematurely when there is no boosting and a lower
3402 	 * zone is balanced.
3403 	 */
3404 	for (i = classzone_idx; i >= 0; i--) {
3405 		zone = pgdat->node_zones + i;
3406 		if (!managed_zone(zone))
3407 			continue;
3408 
3409 		if (zone->watermark_boost)
3410 			return true;
3411 	}
3412 
3413 	return false;
3414 }
3415 
3416 /*
3417  * Returns true if there is an eligible zone balanced for the request order
3418  * and classzone_idx
3419  */
3420 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3421 {
3422 	int i;
3423 	unsigned long mark = -1;
3424 	struct zone *zone;
3425 
3426 	/*
3427 	 * Check watermarks bottom-up as lower zones are more likely to
3428 	 * meet watermarks.
3429 	 */
3430 	for (i = 0; i <= classzone_idx; i++) {
3431 		zone = pgdat->node_zones + i;
3432 
3433 		if (!managed_zone(zone))
3434 			continue;
3435 
3436 		mark = high_wmark_pages(zone);
3437 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3438 			return true;
3439 	}
3440 
3441 	/*
3442 	 * If a node has no populated zone within classzone_idx, it does not
3443 	 * need balancing by definition. This can happen if a zone-restricted
3444 	 * allocation tries to wake a remote kswapd.
3445 	 */
3446 	if (mark == -1)
3447 		return true;
3448 
3449 	return false;
3450 }
3451 
3452 /* Clear pgdat state for congested, dirty or under writeback. */
3453 static void clear_pgdat_congested(pg_data_t *pgdat)
3454 {
3455 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3456 
3457 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3458 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3459 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3460 }
3461 
3462 /*
3463  * Prepare kswapd for sleeping. This verifies that there are no processes
3464  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3465  *
3466  * Returns true if kswapd is ready to sleep
3467  */
3468 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3469 {
3470 	/*
3471 	 * The throttled processes are normally woken up in balance_pgdat() as
3472 	 * soon as allow_direct_reclaim() is true. But there is a potential
3473 	 * race between when kswapd checks the watermarks and a process gets
3474 	 * throttled. There is also a potential race if processes get
3475 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3476 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3477 	 * the wake up checks. If kswapd is going to sleep, no process should
3478 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3479 	 * the wake up is premature, processes will wake kswapd and get
3480 	 * throttled again. The difference from wake ups in balance_pgdat() is
3481 	 * that here we are under prepare_to_wait().
3482 	 */
3483 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3484 		wake_up_all(&pgdat->pfmemalloc_wait);
3485 
3486 	/* Hopeless node, leave it to direct reclaim */
3487 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3488 		return true;
3489 
3490 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3491 		clear_pgdat_congested(pgdat);
3492 		return true;
3493 	}
3494 
3495 	return false;
3496 }
3497 
3498 /*
3499  * kswapd shrinks a node of pages that are at or below the highest usable
3500  * zone that is currently unbalanced.
3501  *
3502  * Returns true if kswapd scanned at least the requested number of pages to
3503  * reclaim or if the lack of progress was due to pages under writeback.
3504  * This is used to determine if the scanning priority needs to be raised.
3505  */
3506 static bool kswapd_shrink_node(pg_data_t *pgdat,
3507 			       struct scan_control *sc)
3508 {
3509 	struct zone *zone;
3510 	int z;
3511 
3512 	/* Reclaim a number of pages proportional to the number of zones */
3513 	sc->nr_to_reclaim = 0;
3514 	for (z = 0; z <= sc->reclaim_idx; z++) {
3515 		zone = pgdat->node_zones + z;
3516 		if (!managed_zone(zone))
3517 			continue;
3518 
3519 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3520 	}
3521 
3522 	/*
3523 	 * Historically care was taken to put equal pressure on all zones but
3524 	 * now pressure is applied based on node LRU order.
3525 	 */
3526 	shrink_node(pgdat, sc);
3527 
3528 	/*
3529 	 * Fragmentation may mean that the system cannot be rebalanced for
3530 	 * high-order allocations. If twice the allocation size has been
3531 	 * reclaimed then recheck watermarks only at order-0 to prevent
3532 	 * excessive reclaim. Assume that a process requested a high-order
3533 	 * can direct reclaim/compact.
3534 	 */
3535 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3536 		sc->order = 0;
3537 
3538 	return sc->nr_scanned >= sc->nr_to_reclaim;
3539 }
3540 
3541 /*
3542  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3543  * that are eligible for use by the caller until at least one zone is
3544  * balanced.
3545  *
3546  * Returns the order kswapd finished reclaiming at.
3547  *
3548  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3549  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3550  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3551  * or lower is eligible for reclaim until at least one usable zone is
3552  * balanced.
3553  */
3554 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3555 {
3556 	int i;
3557 	unsigned long nr_soft_reclaimed;
3558 	unsigned long nr_soft_scanned;
3559 	unsigned long pflags;
3560 	unsigned long nr_boost_reclaim;
3561 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3562 	bool boosted;
3563 	struct zone *zone;
3564 	struct scan_control sc = {
3565 		.gfp_mask = GFP_KERNEL,
3566 		.order = order,
3567 		.may_unmap = 1,
3568 	};
3569 
3570 	set_task_reclaim_state(current, &sc.reclaim_state);
3571 	psi_memstall_enter(&pflags);
3572 	__fs_reclaim_acquire();
3573 
3574 	count_vm_event(PAGEOUTRUN);
3575 
3576 	/*
3577 	 * Account for the reclaim boost. Note that the zone boost is left in
3578 	 * place so that parallel allocations that are near the watermark will
3579 	 * stall or direct reclaim until kswapd is finished.
3580 	 */
3581 	nr_boost_reclaim = 0;
3582 	for (i = 0; i <= classzone_idx; i++) {
3583 		zone = pgdat->node_zones + i;
3584 		if (!managed_zone(zone))
3585 			continue;
3586 
3587 		nr_boost_reclaim += zone->watermark_boost;
3588 		zone_boosts[i] = zone->watermark_boost;
3589 	}
3590 	boosted = nr_boost_reclaim;
3591 
3592 restart:
3593 	sc.priority = DEF_PRIORITY;
3594 	do {
3595 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3596 		bool raise_priority = true;
3597 		bool balanced;
3598 		bool ret;
3599 
3600 		sc.reclaim_idx = classzone_idx;
3601 
3602 		/*
3603 		 * If the number of buffer_heads exceeds the maximum allowed
3604 		 * then consider reclaiming from all zones. This has a dual
3605 		 * purpose -- on 64-bit systems it is expected that
3606 		 * buffer_heads are stripped during active rotation. On 32-bit
3607 		 * systems, highmem pages can pin lowmem memory and shrinking
3608 		 * buffers can relieve lowmem pressure. Reclaim may still not
3609 		 * go ahead if all eligible zones for the original allocation
3610 		 * request are balanced to avoid excessive reclaim from kswapd.
3611 		 */
3612 		if (buffer_heads_over_limit) {
3613 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3614 				zone = pgdat->node_zones + i;
3615 				if (!managed_zone(zone))
3616 					continue;
3617 
3618 				sc.reclaim_idx = i;
3619 				break;
3620 			}
3621 		}
3622 
3623 		/*
3624 		 * If the pgdat is imbalanced then ignore boosting and preserve
3625 		 * the watermarks for a later time and restart. Note that the
3626 		 * zone watermarks will be still reset at the end of balancing
3627 		 * on the grounds that the normal reclaim should be enough to
3628 		 * re-evaluate if boosting is required when kswapd next wakes.
3629 		 */
3630 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3631 		if (!balanced && nr_boost_reclaim) {
3632 			nr_boost_reclaim = 0;
3633 			goto restart;
3634 		}
3635 
3636 		/*
3637 		 * If boosting is not active then only reclaim if there are no
3638 		 * eligible zones. Note that sc.reclaim_idx is not used as
3639 		 * buffer_heads_over_limit may have adjusted it.
3640 		 */
3641 		if (!nr_boost_reclaim && balanced)
3642 			goto out;
3643 
3644 		/* Limit the priority of boosting to avoid reclaim writeback */
3645 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3646 			raise_priority = false;
3647 
3648 		/*
3649 		 * Do not writeback or swap pages for boosted reclaim. The
3650 		 * intent is to relieve pressure not issue sub-optimal IO
3651 		 * from reclaim context. If no pages are reclaimed, the
3652 		 * reclaim will be aborted.
3653 		 */
3654 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3655 		sc.may_swap = !nr_boost_reclaim;
3656 
3657 		/*
3658 		 * Do some background aging of the anon list, to give
3659 		 * pages a chance to be referenced before reclaiming. All
3660 		 * pages are rotated regardless of classzone as this is
3661 		 * about consistent aging.
3662 		 */
3663 		age_active_anon(pgdat, &sc);
3664 
3665 		/*
3666 		 * If we're getting trouble reclaiming, start doing writepage
3667 		 * even in laptop mode.
3668 		 */
3669 		if (sc.priority < DEF_PRIORITY - 2)
3670 			sc.may_writepage = 1;
3671 
3672 		/* Call soft limit reclaim before calling shrink_node. */
3673 		sc.nr_scanned = 0;
3674 		nr_soft_scanned = 0;
3675 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3676 						sc.gfp_mask, &nr_soft_scanned);
3677 		sc.nr_reclaimed += nr_soft_reclaimed;
3678 
3679 		/*
3680 		 * There should be no need to raise the scanning priority if
3681 		 * enough pages are already being scanned that that high
3682 		 * watermark would be met at 100% efficiency.
3683 		 */
3684 		if (kswapd_shrink_node(pgdat, &sc))
3685 			raise_priority = false;
3686 
3687 		/*
3688 		 * If the low watermark is met there is no need for processes
3689 		 * to be throttled on pfmemalloc_wait as they should not be
3690 		 * able to safely make forward progress. Wake them
3691 		 */
3692 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3693 				allow_direct_reclaim(pgdat))
3694 			wake_up_all(&pgdat->pfmemalloc_wait);
3695 
3696 		/* Check if kswapd should be suspending */
3697 		__fs_reclaim_release();
3698 		ret = try_to_freeze();
3699 		__fs_reclaim_acquire();
3700 		if (ret || kthread_should_stop())
3701 			break;
3702 
3703 		/*
3704 		 * Raise priority if scanning rate is too low or there was no
3705 		 * progress in reclaiming pages
3706 		 */
3707 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3708 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3709 
3710 		/*
3711 		 * If reclaim made no progress for a boost, stop reclaim as
3712 		 * IO cannot be queued and it could be an infinite loop in
3713 		 * extreme circumstances.
3714 		 */
3715 		if (nr_boost_reclaim && !nr_reclaimed)
3716 			break;
3717 
3718 		if (raise_priority || !nr_reclaimed)
3719 			sc.priority--;
3720 	} while (sc.priority >= 1);
3721 
3722 	if (!sc.nr_reclaimed)
3723 		pgdat->kswapd_failures++;
3724 
3725 out:
3726 	/* If reclaim was boosted, account for the reclaim done in this pass */
3727 	if (boosted) {
3728 		unsigned long flags;
3729 
3730 		for (i = 0; i <= classzone_idx; i++) {
3731 			if (!zone_boosts[i])
3732 				continue;
3733 
3734 			/* Increments are under the zone lock */
3735 			zone = pgdat->node_zones + i;
3736 			spin_lock_irqsave(&zone->lock, flags);
3737 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3738 			spin_unlock_irqrestore(&zone->lock, flags);
3739 		}
3740 
3741 		/*
3742 		 * As there is now likely space, wakeup kcompact to defragment
3743 		 * pageblocks.
3744 		 */
3745 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3746 	}
3747 
3748 	snapshot_refaults(NULL, pgdat);
3749 	__fs_reclaim_release();
3750 	psi_memstall_leave(&pflags);
3751 	set_task_reclaim_state(current, NULL);
3752 
3753 	/*
3754 	 * Return the order kswapd stopped reclaiming at as
3755 	 * prepare_kswapd_sleep() takes it into account. If another caller
3756 	 * entered the allocator slow path while kswapd was awake, order will
3757 	 * remain at the higher level.
3758 	 */
3759 	return sc.order;
3760 }
3761 
3762 /*
3763  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3764  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3765  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3766  * after previous reclaim attempt (node is still unbalanced). In that case
3767  * return the zone index of the previous kswapd reclaim cycle.
3768  */
3769 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3770 					   enum zone_type prev_classzone_idx)
3771 {
3772 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3773 		return prev_classzone_idx;
3774 	return pgdat->kswapd_classzone_idx;
3775 }
3776 
3777 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3778 				unsigned int classzone_idx)
3779 {
3780 	long remaining = 0;
3781 	DEFINE_WAIT(wait);
3782 
3783 	if (freezing(current) || kthread_should_stop())
3784 		return;
3785 
3786 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3787 
3788 	/*
3789 	 * Try to sleep for a short interval. Note that kcompactd will only be
3790 	 * woken if it is possible to sleep for a short interval. This is
3791 	 * deliberate on the assumption that if reclaim cannot keep an
3792 	 * eligible zone balanced that it's also unlikely that compaction will
3793 	 * succeed.
3794 	 */
3795 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3796 		/*
3797 		 * Compaction records what page blocks it recently failed to
3798 		 * isolate pages from and skips them in the future scanning.
3799 		 * When kswapd is going to sleep, it is reasonable to assume
3800 		 * that pages and compaction may succeed so reset the cache.
3801 		 */
3802 		reset_isolation_suitable(pgdat);
3803 
3804 		/*
3805 		 * We have freed the memory, now we should compact it to make
3806 		 * allocation of the requested order possible.
3807 		 */
3808 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3809 
3810 		remaining = schedule_timeout(HZ/10);
3811 
3812 		/*
3813 		 * If woken prematurely then reset kswapd_classzone_idx and
3814 		 * order. The values will either be from a wakeup request or
3815 		 * the previous request that slept prematurely.
3816 		 */
3817 		if (remaining) {
3818 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3819 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3820 		}
3821 
3822 		finish_wait(&pgdat->kswapd_wait, &wait);
3823 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3824 	}
3825 
3826 	/*
3827 	 * After a short sleep, check if it was a premature sleep. If not, then
3828 	 * go fully to sleep until explicitly woken up.
3829 	 */
3830 	if (!remaining &&
3831 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3832 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3833 
3834 		/*
3835 		 * vmstat counters are not perfectly accurate and the estimated
3836 		 * value for counters such as NR_FREE_PAGES can deviate from the
3837 		 * true value by nr_online_cpus * threshold. To avoid the zone
3838 		 * watermarks being breached while under pressure, we reduce the
3839 		 * per-cpu vmstat threshold while kswapd is awake and restore
3840 		 * them before going back to sleep.
3841 		 */
3842 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3843 
3844 		if (!kthread_should_stop())
3845 			schedule();
3846 
3847 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3848 	} else {
3849 		if (remaining)
3850 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3851 		else
3852 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3853 	}
3854 	finish_wait(&pgdat->kswapd_wait, &wait);
3855 }
3856 
3857 /*
3858  * The background pageout daemon, started as a kernel thread
3859  * from the init process.
3860  *
3861  * This basically trickles out pages so that we have _some_
3862  * free memory available even if there is no other activity
3863  * that frees anything up. This is needed for things like routing
3864  * etc, where we otherwise might have all activity going on in
3865  * asynchronous contexts that cannot page things out.
3866  *
3867  * If there are applications that are active memory-allocators
3868  * (most normal use), this basically shouldn't matter.
3869  */
3870 static int kswapd(void *p)
3871 {
3872 	unsigned int alloc_order, reclaim_order;
3873 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3874 	pg_data_t *pgdat = (pg_data_t*)p;
3875 	struct task_struct *tsk = current;
3876 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3877 
3878 	if (!cpumask_empty(cpumask))
3879 		set_cpus_allowed_ptr(tsk, cpumask);
3880 
3881 	/*
3882 	 * Tell the memory management that we're a "memory allocator",
3883 	 * and that if we need more memory we should get access to it
3884 	 * regardless (see "__alloc_pages()"). "kswapd" should
3885 	 * never get caught in the normal page freeing logic.
3886 	 *
3887 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3888 	 * you need a small amount of memory in order to be able to
3889 	 * page out something else, and this flag essentially protects
3890 	 * us from recursively trying to free more memory as we're
3891 	 * trying to free the first piece of memory in the first place).
3892 	 */
3893 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3894 	set_freezable();
3895 
3896 	pgdat->kswapd_order = 0;
3897 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3898 	for ( ; ; ) {
3899 		bool ret;
3900 
3901 		alloc_order = reclaim_order = pgdat->kswapd_order;
3902 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3903 
3904 kswapd_try_sleep:
3905 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3906 					classzone_idx);
3907 
3908 		/* Read the new order and classzone_idx */
3909 		alloc_order = reclaim_order = pgdat->kswapd_order;
3910 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3911 		pgdat->kswapd_order = 0;
3912 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3913 
3914 		ret = try_to_freeze();
3915 		if (kthread_should_stop())
3916 			break;
3917 
3918 		/*
3919 		 * We can speed up thawing tasks if we don't call balance_pgdat
3920 		 * after returning from the refrigerator
3921 		 */
3922 		if (ret)
3923 			continue;
3924 
3925 		/*
3926 		 * Reclaim begins at the requested order but if a high-order
3927 		 * reclaim fails then kswapd falls back to reclaiming for
3928 		 * order-0. If that happens, kswapd will consider sleeping
3929 		 * for the order it finished reclaiming at (reclaim_order)
3930 		 * but kcompactd is woken to compact for the original
3931 		 * request (alloc_order).
3932 		 */
3933 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3934 						alloc_order);
3935 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3936 		if (reclaim_order < alloc_order)
3937 			goto kswapd_try_sleep;
3938 	}
3939 
3940 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3941 
3942 	return 0;
3943 }
3944 
3945 /*
3946  * A zone is low on free memory or too fragmented for high-order memory.  If
3947  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3948  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3949  * has failed or is not needed, still wake up kcompactd if only compaction is
3950  * needed.
3951  */
3952 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3953 		   enum zone_type classzone_idx)
3954 {
3955 	pg_data_t *pgdat;
3956 
3957 	if (!managed_zone(zone))
3958 		return;
3959 
3960 	if (!cpuset_zone_allowed(zone, gfp_flags))
3961 		return;
3962 	pgdat = zone->zone_pgdat;
3963 
3964 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3965 		pgdat->kswapd_classzone_idx = classzone_idx;
3966 	else
3967 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3968 						  classzone_idx);
3969 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3970 	if (!waitqueue_active(&pgdat->kswapd_wait))
3971 		return;
3972 
3973 	/* Hopeless node, leave it to direct reclaim if possible */
3974 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3975 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3976 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3977 		/*
3978 		 * There may be plenty of free memory available, but it's too
3979 		 * fragmented for high-order allocations.  Wake up kcompactd
3980 		 * and rely on compaction_suitable() to determine if it's
3981 		 * needed.  If it fails, it will defer subsequent attempts to
3982 		 * ratelimit its work.
3983 		 */
3984 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3985 			wakeup_kcompactd(pgdat, order, classzone_idx);
3986 		return;
3987 	}
3988 
3989 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3990 				      gfp_flags);
3991 	wake_up_interruptible(&pgdat->kswapd_wait);
3992 }
3993 
3994 #ifdef CONFIG_HIBERNATION
3995 /*
3996  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3997  * freed pages.
3998  *
3999  * Rather than trying to age LRUs the aim is to preserve the overall
4000  * LRU order by reclaiming preferentially
4001  * inactive > active > active referenced > active mapped
4002  */
4003 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4004 {
4005 	struct scan_control sc = {
4006 		.nr_to_reclaim = nr_to_reclaim,
4007 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4008 		.reclaim_idx = MAX_NR_ZONES - 1,
4009 		.priority = DEF_PRIORITY,
4010 		.may_writepage = 1,
4011 		.may_unmap = 1,
4012 		.may_swap = 1,
4013 		.hibernation_mode = 1,
4014 	};
4015 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4016 	unsigned long nr_reclaimed;
4017 	unsigned int noreclaim_flag;
4018 
4019 	fs_reclaim_acquire(sc.gfp_mask);
4020 	noreclaim_flag = memalloc_noreclaim_save();
4021 	set_task_reclaim_state(current, &sc.reclaim_state);
4022 
4023 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4024 
4025 	set_task_reclaim_state(current, NULL);
4026 	memalloc_noreclaim_restore(noreclaim_flag);
4027 	fs_reclaim_release(sc.gfp_mask);
4028 
4029 	return nr_reclaimed;
4030 }
4031 #endif /* CONFIG_HIBERNATION */
4032 
4033 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4034    not required for correctness.  So if the last cpu in a node goes
4035    away, we get changed to run anywhere: as the first one comes back,
4036    restore their cpu bindings. */
4037 static int kswapd_cpu_online(unsigned int cpu)
4038 {
4039 	int nid;
4040 
4041 	for_each_node_state(nid, N_MEMORY) {
4042 		pg_data_t *pgdat = NODE_DATA(nid);
4043 		const struct cpumask *mask;
4044 
4045 		mask = cpumask_of_node(pgdat->node_id);
4046 
4047 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4048 			/* One of our CPUs online: restore mask */
4049 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4050 	}
4051 	return 0;
4052 }
4053 
4054 /*
4055  * This kswapd start function will be called by init and node-hot-add.
4056  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4057  */
4058 int kswapd_run(int nid)
4059 {
4060 	pg_data_t *pgdat = NODE_DATA(nid);
4061 	int ret = 0;
4062 
4063 	if (pgdat->kswapd)
4064 		return 0;
4065 
4066 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4067 	if (IS_ERR(pgdat->kswapd)) {
4068 		/* failure at boot is fatal */
4069 		BUG_ON(system_state < SYSTEM_RUNNING);
4070 		pr_err("Failed to start kswapd on node %d\n", nid);
4071 		ret = PTR_ERR(pgdat->kswapd);
4072 		pgdat->kswapd = NULL;
4073 	}
4074 	return ret;
4075 }
4076 
4077 /*
4078  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4079  * hold mem_hotplug_begin/end().
4080  */
4081 void kswapd_stop(int nid)
4082 {
4083 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4084 
4085 	if (kswapd) {
4086 		kthread_stop(kswapd);
4087 		NODE_DATA(nid)->kswapd = NULL;
4088 	}
4089 }
4090 
4091 static int __init kswapd_init(void)
4092 {
4093 	int nid, ret;
4094 
4095 	swap_setup();
4096 	for_each_node_state(nid, N_MEMORY)
4097  		kswapd_run(nid);
4098 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4099 					"mm/vmscan:online", kswapd_cpu_online,
4100 					NULL);
4101 	WARN_ON(ret < 0);
4102 	return 0;
4103 }
4104 
4105 module_init(kswapd_init)
4106 
4107 #ifdef CONFIG_NUMA
4108 /*
4109  * Node reclaim mode
4110  *
4111  * If non-zero call node_reclaim when the number of free pages falls below
4112  * the watermarks.
4113  */
4114 int node_reclaim_mode __read_mostly;
4115 
4116 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4117 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4118 
4119 /*
4120  * Priority for NODE_RECLAIM. This determines the fraction of pages
4121  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4122  * a zone.
4123  */
4124 #define NODE_RECLAIM_PRIORITY 4
4125 
4126 /*
4127  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4128  * occur.
4129  */
4130 int sysctl_min_unmapped_ratio = 1;
4131 
4132 /*
4133  * If the number of slab pages in a zone grows beyond this percentage then
4134  * slab reclaim needs to occur.
4135  */
4136 int sysctl_min_slab_ratio = 5;
4137 
4138 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4139 {
4140 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4141 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4142 		node_page_state(pgdat, NR_ACTIVE_FILE);
4143 
4144 	/*
4145 	 * It's possible for there to be more file mapped pages than
4146 	 * accounted for by the pages on the file LRU lists because
4147 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4148 	 */
4149 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4150 }
4151 
4152 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4153 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4154 {
4155 	unsigned long nr_pagecache_reclaimable;
4156 	unsigned long delta = 0;
4157 
4158 	/*
4159 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4160 	 * potentially reclaimable. Otherwise, we have to worry about
4161 	 * pages like swapcache and node_unmapped_file_pages() provides
4162 	 * a better estimate
4163 	 */
4164 	if (node_reclaim_mode & RECLAIM_UNMAP)
4165 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4166 	else
4167 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4168 
4169 	/* If we can't clean pages, remove dirty pages from consideration */
4170 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4171 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4172 
4173 	/* Watch for any possible underflows due to delta */
4174 	if (unlikely(delta > nr_pagecache_reclaimable))
4175 		delta = nr_pagecache_reclaimable;
4176 
4177 	return nr_pagecache_reclaimable - delta;
4178 }
4179 
4180 /*
4181  * Try to free up some pages from this node through reclaim.
4182  */
4183 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4184 {
4185 	/* Minimum pages needed in order to stay on node */
4186 	const unsigned long nr_pages = 1 << order;
4187 	struct task_struct *p = current;
4188 	unsigned int noreclaim_flag;
4189 	struct scan_control sc = {
4190 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4191 		.gfp_mask = current_gfp_context(gfp_mask),
4192 		.order = order,
4193 		.priority = NODE_RECLAIM_PRIORITY,
4194 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4195 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4196 		.may_swap = 1,
4197 		.reclaim_idx = gfp_zone(gfp_mask),
4198 	};
4199 
4200 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4201 					   sc.gfp_mask);
4202 
4203 	cond_resched();
4204 	fs_reclaim_acquire(sc.gfp_mask);
4205 	/*
4206 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4207 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4208 	 * and RECLAIM_UNMAP.
4209 	 */
4210 	noreclaim_flag = memalloc_noreclaim_save();
4211 	p->flags |= PF_SWAPWRITE;
4212 	set_task_reclaim_state(p, &sc.reclaim_state);
4213 
4214 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4215 		/*
4216 		 * Free memory by calling shrink node with increasing
4217 		 * priorities until we have enough memory freed.
4218 		 */
4219 		do {
4220 			shrink_node(pgdat, &sc);
4221 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4222 	}
4223 
4224 	set_task_reclaim_state(p, NULL);
4225 	current->flags &= ~PF_SWAPWRITE;
4226 	memalloc_noreclaim_restore(noreclaim_flag);
4227 	fs_reclaim_release(sc.gfp_mask);
4228 
4229 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4230 
4231 	return sc.nr_reclaimed >= nr_pages;
4232 }
4233 
4234 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4235 {
4236 	int ret;
4237 
4238 	/*
4239 	 * Node reclaim reclaims unmapped file backed pages and
4240 	 * slab pages if we are over the defined limits.
4241 	 *
4242 	 * A small portion of unmapped file backed pages is needed for
4243 	 * file I/O otherwise pages read by file I/O will be immediately
4244 	 * thrown out if the node is overallocated. So we do not reclaim
4245 	 * if less than a specified percentage of the node is used by
4246 	 * unmapped file backed pages.
4247 	 */
4248 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4249 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4250 		return NODE_RECLAIM_FULL;
4251 
4252 	/*
4253 	 * Do not scan if the allocation should not be delayed.
4254 	 */
4255 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4256 		return NODE_RECLAIM_NOSCAN;
4257 
4258 	/*
4259 	 * Only run node reclaim on the local node or on nodes that do not
4260 	 * have associated processors. This will favor the local processor
4261 	 * over remote processors and spread off node memory allocations
4262 	 * as wide as possible.
4263 	 */
4264 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4265 		return NODE_RECLAIM_NOSCAN;
4266 
4267 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4268 		return NODE_RECLAIM_NOSCAN;
4269 
4270 	ret = __node_reclaim(pgdat, gfp_mask, order);
4271 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4272 
4273 	if (!ret)
4274 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4275 
4276 	return ret;
4277 }
4278 #endif
4279 
4280 /*
4281  * page_evictable - test whether a page is evictable
4282  * @page: the page to test
4283  *
4284  * Test whether page is evictable--i.e., should be placed on active/inactive
4285  * lists vs unevictable list.
4286  *
4287  * Reasons page might not be evictable:
4288  * (1) page's mapping marked unevictable
4289  * (2) page is part of an mlocked VMA
4290  *
4291  */
4292 int page_evictable(struct page *page)
4293 {
4294 	int ret;
4295 
4296 	/* Prevent address_space of inode and swap cache from being freed */
4297 	rcu_read_lock();
4298 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4299 	rcu_read_unlock();
4300 	return ret;
4301 }
4302 
4303 /**
4304  * check_move_unevictable_pages - check pages for evictability and move to
4305  * appropriate zone lru list
4306  * @pvec: pagevec with lru pages to check
4307  *
4308  * Checks pages for evictability, if an evictable page is in the unevictable
4309  * lru list, moves it to the appropriate evictable lru list. This function
4310  * should be only used for lru pages.
4311  */
4312 void check_move_unevictable_pages(struct pagevec *pvec)
4313 {
4314 	struct lruvec *lruvec;
4315 	struct pglist_data *pgdat = NULL;
4316 	int pgscanned = 0;
4317 	int pgrescued = 0;
4318 	int i;
4319 
4320 	for (i = 0; i < pvec->nr; i++) {
4321 		struct page *page = pvec->pages[i];
4322 		struct pglist_data *pagepgdat = page_pgdat(page);
4323 
4324 		pgscanned++;
4325 		if (pagepgdat != pgdat) {
4326 			if (pgdat)
4327 				spin_unlock_irq(&pgdat->lru_lock);
4328 			pgdat = pagepgdat;
4329 			spin_lock_irq(&pgdat->lru_lock);
4330 		}
4331 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4332 
4333 		if (!PageLRU(page) || !PageUnevictable(page))
4334 			continue;
4335 
4336 		if (page_evictable(page)) {
4337 			enum lru_list lru = page_lru_base_type(page);
4338 
4339 			VM_BUG_ON_PAGE(PageActive(page), page);
4340 			ClearPageUnevictable(page);
4341 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4342 			add_page_to_lru_list(page, lruvec, lru);
4343 			pgrescued++;
4344 		}
4345 	}
4346 
4347 	if (pgdat) {
4348 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4349 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4350 		spin_unlock_irq(&pgdat->lru_lock);
4351 	}
4352 }
4353 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4354