xref: /openbmc/linux/mm/vmscan.c (revision f30828a6)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 
45 #include <linux/swapops.h>
46 
47 #include "internal.h"
48 
49 struct scan_control {
50 	/* Incremented by the number of inactive pages that were scanned */
51 	unsigned long nr_scanned;
52 
53 	/* This context's GFP mask */
54 	gfp_t gfp_mask;
55 
56 	int may_writepage;
57 
58 	/* Can pages be swapped as part of reclaim? */
59 	int may_swap;
60 
61 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 	 * In this context, it doesn't matter that we scan the
64 	 * whole list at once. */
65 	int swap_cluster_max;
66 
67 	int swappiness;
68 
69 	int all_unreclaimable;
70 
71 	int order;
72 
73 	/* Which cgroup do we reclaim from */
74 	struct mem_cgroup *mem_cgroup;
75 
76 	/* Pluggable isolate pages callback */
77 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78 			unsigned long *scanned, int order, int mode,
79 			struct zone *z, struct mem_cgroup *mem_cont,
80 			int active);
81 };
82 
83 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84 
85 #ifdef ARCH_HAS_PREFETCH
86 #define prefetch_prev_lru_page(_page, _base, _field)			\
87 	do {								\
88 		if ((_page)->lru.prev != _base) {			\
89 			struct page *prev;				\
90 									\
91 			prev = lru_to_page(&(_page->lru));		\
92 			prefetch(&prev->_field);			\
93 		}							\
94 	} while (0)
95 #else
96 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97 #endif
98 
99 #ifdef ARCH_HAS_PREFETCHW
100 #define prefetchw_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetchw(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 /*
114  * From 0 .. 100.  Higher means more swappy.
115  */
116 int vm_swappiness = 60;
117 long vm_total_pages;	/* The total number of pages which the VM controls */
118 
119 static LIST_HEAD(shrinker_list);
120 static DECLARE_RWSEM(shrinker_rwsem);
121 
122 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
123 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
124 #else
125 #define scan_global_lru(sc)	(1)
126 #endif
127 
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 void register_shrinker(struct shrinker *shrinker)
132 {
133 	shrinker->nr = 0;
134 	down_write(&shrinker_rwsem);
135 	list_add_tail(&shrinker->list, &shrinker_list);
136 	up_write(&shrinker_rwsem);
137 }
138 EXPORT_SYMBOL(register_shrinker);
139 
140 /*
141  * Remove one
142  */
143 void unregister_shrinker(struct shrinker *shrinker)
144 {
145 	down_write(&shrinker_rwsem);
146 	list_del(&shrinker->list);
147 	up_write(&shrinker_rwsem);
148 }
149 EXPORT_SYMBOL(unregister_shrinker);
150 
151 #define SHRINK_BATCH 128
152 /*
153  * Call the shrink functions to age shrinkable caches
154  *
155  * Here we assume it costs one seek to replace a lru page and that it also
156  * takes a seek to recreate a cache object.  With this in mind we age equal
157  * percentages of the lru and ageable caches.  This should balance the seeks
158  * generated by these structures.
159  *
160  * If the vm encountered mapped pages on the LRU it increase the pressure on
161  * slab to avoid swapping.
162  *
163  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164  *
165  * `lru_pages' represents the number of on-LRU pages in all the zones which
166  * are eligible for the caller's allocation attempt.  It is used for balancing
167  * slab reclaim versus page reclaim.
168  *
169  * Returns the number of slab objects which we shrunk.
170  */
171 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172 			unsigned long lru_pages)
173 {
174 	struct shrinker *shrinker;
175 	unsigned long ret = 0;
176 
177 	if (scanned == 0)
178 		scanned = SWAP_CLUSTER_MAX;
179 
180 	if (!down_read_trylock(&shrinker_rwsem))
181 		return 1;	/* Assume we'll be able to shrink next time */
182 
183 	list_for_each_entry(shrinker, &shrinker_list, list) {
184 		unsigned long long delta;
185 		unsigned long total_scan;
186 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
187 
188 		delta = (4 * scanned) / shrinker->seeks;
189 		delta *= max_pass;
190 		do_div(delta, lru_pages + 1);
191 		shrinker->nr += delta;
192 		if (shrinker->nr < 0) {
193 			printk(KERN_ERR "%s: nr=%ld\n",
194 					__func__, shrinker->nr);
195 			shrinker->nr = max_pass;
196 		}
197 
198 		/*
199 		 * Avoid risking looping forever due to too large nr value:
200 		 * never try to free more than twice the estimate number of
201 		 * freeable entries.
202 		 */
203 		if (shrinker->nr > max_pass * 2)
204 			shrinker->nr = max_pass * 2;
205 
206 		total_scan = shrinker->nr;
207 		shrinker->nr = 0;
208 
209 		while (total_scan >= SHRINK_BATCH) {
210 			long this_scan = SHRINK_BATCH;
211 			int shrink_ret;
212 			int nr_before;
213 
214 			nr_before = (*shrinker->shrink)(0, gfp_mask);
215 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
216 			if (shrink_ret == -1)
217 				break;
218 			if (shrink_ret < nr_before)
219 				ret += nr_before - shrink_ret;
220 			count_vm_events(SLABS_SCANNED, this_scan);
221 			total_scan -= this_scan;
222 
223 			cond_resched();
224 		}
225 
226 		shrinker->nr += total_scan;
227 	}
228 	up_read(&shrinker_rwsem);
229 	return ret;
230 }
231 
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page *page)
234 {
235 	struct address_space *mapping;
236 
237 	/* Page is in somebody's page tables. */
238 	if (page_mapped(page))
239 		return 1;
240 
241 	/* Be more reluctant to reclaim swapcache than pagecache */
242 	if (PageSwapCache(page))
243 		return 1;
244 
245 	mapping = page_mapping(page);
246 	if (!mapping)
247 		return 0;
248 
249 	/* File is mmap'd by somebody? */
250 	return mapping_mapped(mapping);
251 }
252 
253 static inline int is_page_cache_freeable(struct page *page)
254 {
255 	return page_count(page) - !!PagePrivate(page) == 2;
256 }
257 
258 static int may_write_to_queue(struct backing_dev_info *bdi)
259 {
260 	if (current->flags & PF_SWAPWRITE)
261 		return 1;
262 	if (!bdi_write_congested(bdi))
263 		return 1;
264 	if (bdi == current->backing_dev_info)
265 		return 1;
266 	return 0;
267 }
268 
269 /*
270  * We detected a synchronous write error writing a page out.  Probably
271  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
272  * fsync(), msync() or close().
273  *
274  * The tricky part is that after writepage we cannot touch the mapping: nothing
275  * prevents it from being freed up.  But we have a ref on the page and once
276  * that page is locked, the mapping is pinned.
277  *
278  * We're allowed to run sleeping lock_page() here because we know the caller has
279  * __GFP_FS.
280  */
281 static void handle_write_error(struct address_space *mapping,
282 				struct page *page, int error)
283 {
284 	lock_page(page);
285 	if (page_mapping(page) == mapping)
286 		mapping_set_error(mapping, error);
287 	unlock_page(page);
288 }
289 
290 /* Request for sync pageout. */
291 enum pageout_io {
292 	PAGEOUT_IO_ASYNC,
293 	PAGEOUT_IO_SYNC,
294 };
295 
296 /* possible outcome of pageout() */
297 typedef enum {
298 	/* failed to write page out, page is locked */
299 	PAGE_KEEP,
300 	/* move page to the active list, page is locked */
301 	PAGE_ACTIVATE,
302 	/* page has been sent to the disk successfully, page is unlocked */
303 	PAGE_SUCCESS,
304 	/* page is clean and locked */
305 	PAGE_CLEAN,
306 } pageout_t;
307 
308 /*
309  * pageout is called by shrink_page_list() for each dirty page.
310  * Calls ->writepage().
311  */
312 static pageout_t pageout(struct page *page, struct address_space *mapping,
313 						enum pageout_io sync_writeback)
314 {
315 	/*
316 	 * If the page is dirty, only perform writeback if that write
317 	 * will be non-blocking.  To prevent this allocation from being
318 	 * stalled by pagecache activity.  But note that there may be
319 	 * stalls if we need to run get_block().  We could test
320 	 * PagePrivate for that.
321 	 *
322 	 * If this process is currently in generic_file_write() against
323 	 * this page's queue, we can perform writeback even if that
324 	 * will block.
325 	 *
326 	 * If the page is swapcache, write it back even if that would
327 	 * block, for some throttling. This happens by accident, because
328 	 * swap_backing_dev_info is bust: it doesn't reflect the
329 	 * congestion state of the swapdevs.  Easy to fix, if needed.
330 	 * See swapfile.c:page_queue_congested().
331 	 */
332 	if (!is_page_cache_freeable(page))
333 		return PAGE_KEEP;
334 	if (!mapping) {
335 		/*
336 		 * Some data journaling orphaned pages can have
337 		 * page->mapping == NULL while being dirty with clean buffers.
338 		 */
339 		if (PagePrivate(page)) {
340 			if (try_to_free_buffers(page)) {
341 				ClearPageDirty(page);
342 				printk("%s: orphaned page\n", __func__);
343 				return PAGE_CLEAN;
344 			}
345 		}
346 		return PAGE_KEEP;
347 	}
348 	if (mapping->a_ops->writepage == NULL)
349 		return PAGE_ACTIVATE;
350 	if (!may_write_to_queue(mapping->backing_dev_info))
351 		return PAGE_KEEP;
352 
353 	if (clear_page_dirty_for_io(page)) {
354 		int res;
355 		struct writeback_control wbc = {
356 			.sync_mode = WB_SYNC_NONE,
357 			.nr_to_write = SWAP_CLUSTER_MAX,
358 			.range_start = 0,
359 			.range_end = LLONG_MAX,
360 			.nonblocking = 1,
361 			.for_reclaim = 1,
362 		};
363 
364 		SetPageReclaim(page);
365 		res = mapping->a_ops->writepage(page, &wbc);
366 		if (res < 0)
367 			handle_write_error(mapping, page, res);
368 		if (res == AOP_WRITEPAGE_ACTIVATE) {
369 			ClearPageReclaim(page);
370 			return PAGE_ACTIVATE;
371 		}
372 
373 		/*
374 		 * Wait on writeback if requested to. This happens when
375 		 * direct reclaiming a large contiguous area and the
376 		 * first attempt to free a range of pages fails.
377 		 */
378 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
379 			wait_on_page_writeback(page);
380 
381 		if (!PageWriteback(page)) {
382 			/* synchronous write or broken a_ops? */
383 			ClearPageReclaim(page);
384 		}
385 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
386 		return PAGE_SUCCESS;
387 	}
388 
389 	return PAGE_CLEAN;
390 }
391 
392 /*
393  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
394  * someone else has a ref on the page, abort and return 0.  If it was
395  * successfully detached, return 1.  Assumes the caller has a single ref on
396  * this page.
397  */
398 int remove_mapping(struct address_space *mapping, struct page *page)
399 {
400 	BUG_ON(!PageLocked(page));
401 	BUG_ON(mapping != page_mapping(page));
402 
403 	write_lock_irq(&mapping->tree_lock);
404 	/*
405 	 * The non racy check for a busy page.
406 	 *
407 	 * Must be careful with the order of the tests. When someone has
408 	 * a ref to the page, it may be possible that they dirty it then
409 	 * drop the reference. So if PageDirty is tested before page_count
410 	 * here, then the following race may occur:
411 	 *
412 	 * get_user_pages(&page);
413 	 * [user mapping goes away]
414 	 * write_to(page);
415 	 *				!PageDirty(page)    [good]
416 	 * SetPageDirty(page);
417 	 * put_page(page);
418 	 *				!page_count(page)   [good, discard it]
419 	 *
420 	 * [oops, our write_to data is lost]
421 	 *
422 	 * Reversing the order of the tests ensures such a situation cannot
423 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 	 * load is not satisfied before that of page->_count.
425 	 *
426 	 * Note that if SetPageDirty is always performed via set_page_dirty,
427 	 * and thus under tree_lock, then this ordering is not required.
428 	 */
429 	if (unlikely(page_count(page) != 2))
430 		goto cannot_free;
431 	smp_rmb();
432 	if (unlikely(PageDirty(page)))
433 		goto cannot_free;
434 
435 	if (PageSwapCache(page)) {
436 		swp_entry_t swap = { .val = page_private(page) };
437 		__delete_from_swap_cache(page);
438 		write_unlock_irq(&mapping->tree_lock);
439 		swap_free(swap);
440 		__put_page(page);	/* The pagecache ref */
441 		return 1;
442 	}
443 
444 	__remove_from_page_cache(page);
445 	write_unlock_irq(&mapping->tree_lock);
446 	__put_page(page);
447 	return 1;
448 
449 cannot_free:
450 	write_unlock_irq(&mapping->tree_lock);
451 	return 0;
452 }
453 
454 /*
455  * shrink_page_list() returns the number of reclaimed pages
456  */
457 static unsigned long shrink_page_list(struct list_head *page_list,
458 					struct scan_control *sc,
459 					enum pageout_io sync_writeback)
460 {
461 	LIST_HEAD(ret_pages);
462 	struct pagevec freed_pvec;
463 	int pgactivate = 0;
464 	unsigned long nr_reclaimed = 0;
465 
466 	cond_resched();
467 
468 	pagevec_init(&freed_pvec, 1);
469 	while (!list_empty(page_list)) {
470 		struct address_space *mapping;
471 		struct page *page;
472 		int may_enter_fs;
473 		int referenced;
474 
475 		cond_resched();
476 
477 		page = lru_to_page(page_list);
478 		list_del(&page->lru);
479 
480 		if (TestSetPageLocked(page))
481 			goto keep;
482 
483 		VM_BUG_ON(PageActive(page));
484 
485 		sc->nr_scanned++;
486 
487 		if (!sc->may_swap && page_mapped(page))
488 			goto keep_locked;
489 
490 		/* Double the slab pressure for mapped and swapcache pages */
491 		if (page_mapped(page) || PageSwapCache(page))
492 			sc->nr_scanned++;
493 
494 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
495 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
496 
497 		if (PageWriteback(page)) {
498 			/*
499 			 * Synchronous reclaim is performed in two passes,
500 			 * first an asynchronous pass over the list to
501 			 * start parallel writeback, and a second synchronous
502 			 * pass to wait for the IO to complete.  Wait here
503 			 * for any page for which writeback has already
504 			 * started.
505 			 */
506 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
507 				wait_on_page_writeback(page);
508 			else
509 				goto keep_locked;
510 		}
511 
512 		referenced = page_referenced(page, 1, sc->mem_cgroup);
513 		/* In active use or really unfreeable?  Activate it. */
514 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
515 					referenced && page_mapping_inuse(page))
516 			goto activate_locked;
517 
518 #ifdef CONFIG_SWAP
519 		/*
520 		 * Anonymous process memory has backing store?
521 		 * Try to allocate it some swap space here.
522 		 */
523 		if (PageAnon(page) && !PageSwapCache(page))
524 			if (!add_to_swap(page, GFP_ATOMIC))
525 				goto activate_locked;
526 #endif /* CONFIG_SWAP */
527 
528 		mapping = page_mapping(page);
529 
530 		/*
531 		 * The page is mapped into the page tables of one or more
532 		 * processes. Try to unmap it here.
533 		 */
534 		if (page_mapped(page) && mapping) {
535 			switch (try_to_unmap(page, 0)) {
536 			case SWAP_FAIL:
537 				goto activate_locked;
538 			case SWAP_AGAIN:
539 				goto keep_locked;
540 			case SWAP_SUCCESS:
541 				; /* try to free the page below */
542 			}
543 		}
544 
545 		if (PageDirty(page)) {
546 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
547 				goto keep_locked;
548 			if (!may_enter_fs)
549 				goto keep_locked;
550 			if (!sc->may_writepage)
551 				goto keep_locked;
552 
553 			/* Page is dirty, try to write it out here */
554 			switch (pageout(page, mapping, sync_writeback)) {
555 			case PAGE_KEEP:
556 				goto keep_locked;
557 			case PAGE_ACTIVATE:
558 				goto activate_locked;
559 			case PAGE_SUCCESS:
560 				if (PageWriteback(page) || PageDirty(page))
561 					goto keep;
562 				/*
563 				 * A synchronous write - probably a ramdisk.  Go
564 				 * ahead and try to reclaim the page.
565 				 */
566 				if (TestSetPageLocked(page))
567 					goto keep;
568 				if (PageDirty(page) || PageWriteback(page))
569 					goto keep_locked;
570 				mapping = page_mapping(page);
571 			case PAGE_CLEAN:
572 				; /* try to free the page below */
573 			}
574 		}
575 
576 		/*
577 		 * If the page has buffers, try to free the buffer mappings
578 		 * associated with this page. If we succeed we try to free
579 		 * the page as well.
580 		 *
581 		 * We do this even if the page is PageDirty().
582 		 * try_to_release_page() does not perform I/O, but it is
583 		 * possible for a page to have PageDirty set, but it is actually
584 		 * clean (all its buffers are clean).  This happens if the
585 		 * buffers were written out directly, with submit_bh(). ext3
586 		 * will do this, as well as the blockdev mapping.
587 		 * try_to_release_page() will discover that cleanness and will
588 		 * drop the buffers and mark the page clean - it can be freed.
589 		 *
590 		 * Rarely, pages can have buffers and no ->mapping.  These are
591 		 * the pages which were not successfully invalidated in
592 		 * truncate_complete_page().  We try to drop those buffers here
593 		 * and if that worked, and the page is no longer mapped into
594 		 * process address space (page_count == 1) it can be freed.
595 		 * Otherwise, leave the page on the LRU so it is swappable.
596 		 */
597 		if (PagePrivate(page)) {
598 			if (!try_to_release_page(page, sc->gfp_mask))
599 				goto activate_locked;
600 			if (!mapping && page_count(page) == 1)
601 				goto free_it;
602 		}
603 
604 		if (!mapping || !remove_mapping(mapping, page))
605 			goto keep_locked;
606 
607 free_it:
608 		unlock_page(page);
609 		nr_reclaimed++;
610 		if (!pagevec_add(&freed_pvec, page))
611 			__pagevec_release_nonlru(&freed_pvec);
612 		continue;
613 
614 activate_locked:
615 		SetPageActive(page);
616 		pgactivate++;
617 keep_locked:
618 		unlock_page(page);
619 keep:
620 		list_add(&page->lru, &ret_pages);
621 		VM_BUG_ON(PageLRU(page));
622 	}
623 	list_splice(&ret_pages, page_list);
624 	if (pagevec_count(&freed_pvec))
625 		__pagevec_release_nonlru(&freed_pvec);
626 	count_vm_events(PGACTIVATE, pgactivate);
627 	return nr_reclaimed;
628 }
629 
630 /* LRU Isolation modes. */
631 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
632 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
633 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
634 
635 /*
636  * Attempt to remove the specified page from its LRU.  Only take this page
637  * if it is of the appropriate PageActive status.  Pages which are being
638  * freed elsewhere are also ignored.
639  *
640  * page:	page to consider
641  * mode:	one of the LRU isolation modes defined above
642  *
643  * returns 0 on success, -ve errno on failure.
644  */
645 int __isolate_lru_page(struct page *page, int mode)
646 {
647 	int ret = -EINVAL;
648 
649 	/* Only take pages on the LRU. */
650 	if (!PageLRU(page))
651 		return ret;
652 
653 	/*
654 	 * When checking the active state, we need to be sure we are
655 	 * dealing with comparible boolean values.  Take the logical not
656 	 * of each.
657 	 */
658 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
659 		return ret;
660 
661 	ret = -EBUSY;
662 	if (likely(get_page_unless_zero(page))) {
663 		/*
664 		 * Be careful not to clear PageLRU until after we're
665 		 * sure the page is not being freed elsewhere -- the
666 		 * page release code relies on it.
667 		 */
668 		ClearPageLRU(page);
669 		ret = 0;
670 	}
671 
672 	return ret;
673 }
674 
675 /*
676  * zone->lru_lock is heavily contended.  Some of the functions that
677  * shrink the lists perform better by taking out a batch of pages
678  * and working on them outside the LRU lock.
679  *
680  * For pagecache intensive workloads, this function is the hottest
681  * spot in the kernel (apart from copy_*_user functions).
682  *
683  * Appropriate locks must be held before calling this function.
684  *
685  * @nr_to_scan:	The number of pages to look through on the list.
686  * @src:	The LRU list to pull pages off.
687  * @dst:	The temp list to put pages on to.
688  * @scanned:	The number of pages that were scanned.
689  * @order:	The caller's attempted allocation order
690  * @mode:	One of the LRU isolation modes
691  *
692  * returns how many pages were moved onto *@dst.
693  */
694 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
695 		struct list_head *src, struct list_head *dst,
696 		unsigned long *scanned, int order, int mode)
697 {
698 	unsigned long nr_taken = 0;
699 	unsigned long scan;
700 
701 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
702 		struct page *page;
703 		unsigned long pfn;
704 		unsigned long end_pfn;
705 		unsigned long page_pfn;
706 		int zone_id;
707 
708 		page = lru_to_page(src);
709 		prefetchw_prev_lru_page(page, src, flags);
710 
711 		VM_BUG_ON(!PageLRU(page));
712 
713 		switch (__isolate_lru_page(page, mode)) {
714 		case 0:
715 			list_move(&page->lru, dst);
716 			nr_taken++;
717 			break;
718 
719 		case -EBUSY:
720 			/* else it is being freed elsewhere */
721 			list_move(&page->lru, src);
722 			continue;
723 
724 		default:
725 			BUG();
726 		}
727 
728 		if (!order)
729 			continue;
730 
731 		/*
732 		 * Attempt to take all pages in the order aligned region
733 		 * surrounding the tag page.  Only take those pages of
734 		 * the same active state as that tag page.  We may safely
735 		 * round the target page pfn down to the requested order
736 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
737 		 * where that page is in a different zone we will detect
738 		 * it from its zone id and abort this block scan.
739 		 */
740 		zone_id = page_zone_id(page);
741 		page_pfn = page_to_pfn(page);
742 		pfn = page_pfn & ~((1 << order) - 1);
743 		end_pfn = pfn + (1 << order);
744 		for (; pfn < end_pfn; pfn++) {
745 			struct page *cursor_page;
746 
747 			/* The target page is in the block, ignore it. */
748 			if (unlikely(pfn == page_pfn))
749 				continue;
750 
751 			/* Avoid holes within the zone. */
752 			if (unlikely(!pfn_valid_within(pfn)))
753 				break;
754 
755 			cursor_page = pfn_to_page(pfn);
756 			/* Check that we have not crossed a zone boundary. */
757 			if (unlikely(page_zone_id(cursor_page) != zone_id))
758 				continue;
759 			switch (__isolate_lru_page(cursor_page, mode)) {
760 			case 0:
761 				list_move(&cursor_page->lru, dst);
762 				nr_taken++;
763 				scan++;
764 				break;
765 
766 			case -EBUSY:
767 				/* else it is being freed elsewhere */
768 				list_move(&cursor_page->lru, src);
769 			default:
770 				break;
771 			}
772 		}
773 	}
774 
775 	*scanned = scan;
776 	return nr_taken;
777 }
778 
779 static unsigned long isolate_pages_global(unsigned long nr,
780 					struct list_head *dst,
781 					unsigned long *scanned, int order,
782 					int mode, struct zone *z,
783 					struct mem_cgroup *mem_cont,
784 					int active)
785 {
786 	if (active)
787 		return isolate_lru_pages(nr, &z->active_list, dst,
788 						scanned, order, mode);
789 	else
790 		return isolate_lru_pages(nr, &z->inactive_list, dst,
791 						scanned, order, mode);
792 }
793 
794 /*
795  * clear_active_flags() is a helper for shrink_active_list(), clearing
796  * any active bits from the pages in the list.
797  */
798 static unsigned long clear_active_flags(struct list_head *page_list)
799 {
800 	int nr_active = 0;
801 	struct page *page;
802 
803 	list_for_each_entry(page, page_list, lru)
804 		if (PageActive(page)) {
805 			ClearPageActive(page);
806 			nr_active++;
807 		}
808 
809 	return nr_active;
810 }
811 
812 /*
813  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
814  * of reclaimed pages
815  */
816 static unsigned long shrink_inactive_list(unsigned long max_scan,
817 				struct zone *zone, struct scan_control *sc)
818 {
819 	LIST_HEAD(page_list);
820 	struct pagevec pvec;
821 	unsigned long nr_scanned = 0;
822 	unsigned long nr_reclaimed = 0;
823 
824 	pagevec_init(&pvec, 1);
825 
826 	lru_add_drain();
827 	spin_lock_irq(&zone->lru_lock);
828 	do {
829 		struct page *page;
830 		unsigned long nr_taken;
831 		unsigned long nr_scan;
832 		unsigned long nr_freed;
833 		unsigned long nr_active;
834 
835 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
836 			     &page_list, &nr_scan, sc->order,
837 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
838 					     ISOLATE_BOTH : ISOLATE_INACTIVE,
839 				zone, sc->mem_cgroup, 0);
840 		nr_active = clear_active_flags(&page_list);
841 		__count_vm_events(PGDEACTIVATE, nr_active);
842 
843 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
844 		__mod_zone_page_state(zone, NR_INACTIVE,
845 						-(nr_taken - nr_active));
846 		if (scan_global_lru(sc))
847 			zone->pages_scanned += nr_scan;
848 		spin_unlock_irq(&zone->lru_lock);
849 
850 		nr_scanned += nr_scan;
851 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
852 
853 		/*
854 		 * If we are direct reclaiming for contiguous pages and we do
855 		 * not reclaim everything in the list, try again and wait
856 		 * for IO to complete. This will stall high-order allocations
857 		 * but that should be acceptable to the caller
858 		 */
859 		if (nr_freed < nr_taken && !current_is_kswapd() &&
860 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
861 			congestion_wait(WRITE, HZ/10);
862 
863 			/*
864 			 * The attempt at page out may have made some
865 			 * of the pages active, mark them inactive again.
866 			 */
867 			nr_active = clear_active_flags(&page_list);
868 			count_vm_events(PGDEACTIVATE, nr_active);
869 
870 			nr_freed += shrink_page_list(&page_list, sc,
871 							PAGEOUT_IO_SYNC);
872 		}
873 
874 		nr_reclaimed += nr_freed;
875 		local_irq_disable();
876 		if (current_is_kswapd()) {
877 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
878 			__count_vm_events(KSWAPD_STEAL, nr_freed);
879 		} else if (scan_global_lru(sc))
880 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
881 
882 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
883 
884 		if (nr_taken == 0)
885 			goto done;
886 
887 		spin_lock(&zone->lru_lock);
888 		/*
889 		 * Put back any unfreeable pages.
890 		 */
891 		while (!list_empty(&page_list)) {
892 			page = lru_to_page(&page_list);
893 			VM_BUG_ON(PageLRU(page));
894 			SetPageLRU(page);
895 			list_del(&page->lru);
896 			if (PageActive(page))
897 				add_page_to_active_list(zone, page);
898 			else
899 				add_page_to_inactive_list(zone, page);
900 			if (!pagevec_add(&pvec, page)) {
901 				spin_unlock_irq(&zone->lru_lock);
902 				__pagevec_release(&pvec);
903 				spin_lock_irq(&zone->lru_lock);
904 			}
905 		}
906   	} while (nr_scanned < max_scan);
907 	spin_unlock(&zone->lru_lock);
908 done:
909 	local_irq_enable();
910 	pagevec_release(&pvec);
911 	return nr_reclaimed;
912 }
913 
914 /*
915  * We are about to scan this zone at a certain priority level.  If that priority
916  * level is smaller (ie: more urgent) than the previous priority, then note
917  * that priority level within the zone.  This is done so that when the next
918  * process comes in to scan this zone, it will immediately start out at this
919  * priority level rather than having to build up its own scanning priority.
920  * Here, this priority affects only the reclaim-mapped threshold.
921  */
922 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
923 {
924 	if (priority < zone->prev_priority)
925 		zone->prev_priority = priority;
926 }
927 
928 static inline int zone_is_near_oom(struct zone *zone)
929 {
930 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
931 				+ zone_page_state(zone, NR_INACTIVE))*3;
932 }
933 
934 /*
935  * Determine we should try to reclaim mapped pages.
936  * This is called only when sc->mem_cgroup is NULL.
937  */
938 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
939 				int priority)
940 {
941 	long mapped_ratio;
942 	long distress;
943 	long swap_tendency;
944 	long imbalance;
945 	int reclaim_mapped = 0;
946 	int prev_priority;
947 
948 	if (scan_global_lru(sc) && zone_is_near_oom(zone))
949 		return 1;
950 	/*
951 	 * `distress' is a measure of how much trouble we're having
952 	 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
953 	 */
954 	if (scan_global_lru(sc))
955 		prev_priority = zone->prev_priority;
956 	else
957 		prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
958 
959 	distress = 100 >> min(prev_priority, priority);
960 
961 	/*
962 	 * The point of this algorithm is to decide when to start
963 	 * reclaiming mapped memory instead of just pagecache.  Work out
964 	 * how much memory
965 	 * is mapped.
966 	 */
967 	if (scan_global_lru(sc))
968 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
969 				global_page_state(NR_ANON_PAGES)) * 100) /
970 					vm_total_pages;
971 	else
972 		mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
973 
974 	/*
975 	 * Now decide how much we really want to unmap some pages.  The
976 	 * mapped ratio is downgraded - just because there's a lot of
977 	 * mapped memory doesn't necessarily mean that page reclaim
978 	 * isn't succeeding.
979 	 *
980 	 * The distress ratio is important - we don't want to start
981 	 * going oom.
982 	 *
983 	 * A 100% value of vm_swappiness overrides this algorithm
984 	 * altogether.
985 	 */
986 	swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
987 
988 	/*
989 	 * If there's huge imbalance between active and inactive
990 	 * (think active 100 times larger than inactive) we should
991 	 * become more permissive, or the system will take too much
992 	 * cpu before it start swapping during memory pressure.
993 	 * Distress is about avoiding early-oom, this is about
994 	 * making swappiness graceful despite setting it to low
995 	 * values.
996 	 *
997 	 * Avoid div by zero with nr_inactive+1, and max resulting
998 	 * value is vm_total_pages.
999 	 */
1000 	if (scan_global_lru(sc)) {
1001 		imbalance  = zone_page_state(zone, NR_ACTIVE);
1002 		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1003 	} else
1004 		imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1005 
1006 	/*
1007 	 * Reduce the effect of imbalance if swappiness is low,
1008 	 * this means for a swappiness very low, the imbalance
1009 	 * must be much higher than 100 for this logic to make
1010 	 * the difference.
1011 	 *
1012 	 * Max temporary value is vm_total_pages*100.
1013 	 */
1014 	imbalance *= (vm_swappiness + 1);
1015 	imbalance /= 100;
1016 
1017 	/*
1018 	 * If not much of the ram is mapped, makes the imbalance
1019 	 * less relevant, it's high priority we refill the inactive
1020 	 * list with mapped pages only in presence of high ratio of
1021 	 * mapped pages.
1022 	 *
1023 	 * Max temporary value is vm_total_pages*100.
1024 	 */
1025 	imbalance *= mapped_ratio;
1026 	imbalance /= 100;
1027 
1028 	/* apply imbalance feedback to swap_tendency */
1029 	swap_tendency += imbalance;
1030 
1031 	/*
1032 	 * Now use this metric to decide whether to start moving mapped
1033 	 * memory onto the inactive list.
1034 	 */
1035 	if (swap_tendency >= 100)
1036 		reclaim_mapped = 1;
1037 
1038 	return reclaim_mapped;
1039 }
1040 
1041 /*
1042  * This moves pages from the active list to the inactive list.
1043  *
1044  * We move them the other way if the page is referenced by one or more
1045  * processes, from rmap.
1046  *
1047  * If the pages are mostly unmapped, the processing is fast and it is
1048  * appropriate to hold zone->lru_lock across the whole operation.  But if
1049  * the pages are mapped, the processing is slow (page_referenced()) so we
1050  * should drop zone->lru_lock around each page.  It's impossible to balance
1051  * this, so instead we remove the pages from the LRU while processing them.
1052  * It is safe to rely on PG_active against the non-LRU pages in here because
1053  * nobody will play with that bit on a non-LRU page.
1054  *
1055  * The downside is that we have to touch page->_count against each page.
1056  * But we had to alter page->flags anyway.
1057  */
1058 
1059 
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061 				struct scan_control *sc, int priority)
1062 {
1063 	unsigned long pgmoved;
1064 	int pgdeactivate = 0;
1065 	unsigned long pgscanned;
1066 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1067 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1068 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1069 	struct page *page;
1070 	struct pagevec pvec;
1071 	int reclaim_mapped = 0;
1072 
1073 	if (sc->may_swap)
1074 		reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1075 
1076 	lru_add_drain();
1077 	spin_lock_irq(&zone->lru_lock);
1078 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1079 					ISOLATE_ACTIVE, zone,
1080 					sc->mem_cgroup, 1);
1081 	/*
1082 	 * zone->pages_scanned is used for detect zone's oom
1083 	 * mem_cgroup remembers nr_scan by itself.
1084 	 */
1085 	if (scan_global_lru(sc))
1086 		zone->pages_scanned += pgscanned;
1087 
1088 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1089 	spin_unlock_irq(&zone->lru_lock);
1090 
1091 	while (!list_empty(&l_hold)) {
1092 		cond_resched();
1093 		page = lru_to_page(&l_hold);
1094 		list_del(&page->lru);
1095 		if (page_mapped(page)) {
1096 			if (!reclaim_mapped ||
1097 			    (total_swap_pages == 0 && PageAnon(page)) ||
1098 			    page_referenced(page, 0, sc->mem_cgroup)) {
1099 				list_add(&page->lru, &l_active);
1100 				continue;
1101 			}
1102 		}
1103 		list_add(&page->lru, &l_inactive);
1104 	}
1105 
1106 	pagevec_init(&pvec, 1);
1107 	pgmoved = 0;
1108 	spin_lock_irq(&zone->lru_lock);
1109 	while (!list_empty(&l_inactive)) {
1110 		page = lru_to_page(&l_inactive);
1111 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1112 		VM_BUG_ON(PageLRU(page));
1113 		SetPageLRU(page);
1114 		VM_BUG_ON(!PageActive(page));
1115 		ClearPageActive(page);
1116 
1117 		list_move(&page->lru, &zone->inactive_list);
1118 		mem_cgroup_move_lists(page, false);
1119 		pgmoved++;
1120 		if (!pagevec_add(&pvec, page)) {
1121 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1122 			spin_unlock_irq(&zone->lru_lock);
1123 			pgdeactivate += pgmoved;
1124 			pgmoved = 0;
1125 			if (buffer_heads_over_limit)
1126 				pagevec_strip(&pvec);
1127 			__pagevec_release(&pvec);
1128 			spin_lock_irq(&zone->lru_lock);
1129 		}
1130 	}
1131 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1132 	pgdeactivate += pgmoved;
1133 	if (buffer_heads_over_limit) {
1134 		spin_unlock_irq(&zone->lru_lock);
1135 		pagevec_strip(&pvec);
1136 		spin_lock_irq(&zone->lru_lock);
1137 	}
1138 
1139 	pgmoved = 0;
1140 	while (!list_empty(&l_active)) {
1141 		page = lru_to_page(&l_active);
1142 		prefetchw_prev_lru_page(page, &l_active, flags);
1143 		VM_BUG_ON(PageLRU(page));
1144 		SetPageLRU(page);
1145 		VM_BUG_ON(!PageActive(page));
1146 
1147 		list_move(&page->lru, &zone->active_list);
1148 		mem_cgroup_move_lists(page, true);
1149 		pgmoved++;
1150 		if (!pagevec_add(&pvec, page)) {
1151 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1152 			pgmoved = 0;
1153 			spin_unlock_irq(&zone->lru_lock);
1154 			__pagevec_release(&pvec);
1155 			spin_lock_irq(&zone->lru_lock);
1156 		}
1157 	}
1158 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1159 
1160 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1161 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1162 	spin_unlock_irq(&zone->lru_lock);
1163 
1164 	pagevec_release(&pvec);
1165 }
1166 
1167 /*
1168  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1169  */
1170 static unsigned long shrink_zone(int priority, struct zone *zone,
1171 				struct scan_control *sc)
1172 {
1173 	unsigned long nr_active;
1174 	unsigned long nr_inactive;
1175 	unsigned long nr_to_scan;
1176 	unsigned long nr_reclaimed = 0;
1177 
1178 	if (scan_global_lru(sc)) {
1179 		/*
1180 		 * Add one to nr_to_scan just to make sure that the kernel
1181 		 * will slowly sift through the active list.
1182 		 */
1183 		zone->nr_scan_active +=
1184 			(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1185 		nr_active = zone->nr_scan_active;
1186 		zone->nr_scan_inactive +=
1187 			(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1188 		nr_inactive = zone->nr_scan_inactive;
1189 		if (nr_inactive >= sc->swap_cluster_max)
1190 			zone->nr_scan_inactive = 0;
1191 		else
1192 			nr_inactive = 0;
1193 
1194 		if (nr_active >= sc->swap_cluster_max)
1195 			zone->nr_scan_active = 0;
1196 		else
1197 			nr_active = 0;
1198 	} else {
1199 		/*
1200 		 * This reclaim occurs not because zone memory shortage but
1201 		 * because memory controller hits its limit.
1202 		 * Then, don't modify zone reclaim related data.
1203 		 */
1204 		nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1205 					zone, priority);
1206 
1207 		nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1208 					zone, priority);
1209 	}
1210 
1211 
1212 	while (nr_active || nr_inactive) {
1213 		if (nr_active) {
1214 			nr_to_scan = min(nr_active,
1215 					(unsigned long)sc->swap_cluster_max);
1216 			nr_active -= nr_to_scan;
1217 			shrink_active_list(nr_to_scan, zone, sc, priority);
1218 		}
1219 
1220 		if (nr_inactive) {
1221 			nr_to_scan = min(nr_inactive,
1222 					(unsigned long)sc->swap_cluster_max);
1223 			nr_inactive -= nr_to_scan;
1224 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1225 								sc);
1226 		}
1227 	}
1228 
1229 	throttle_vm_writeout(sc->gfp_mask);
1230 	return nr_reclaimed;
1231 }
1232 
1233 /*
1234  * This is the direct reclaim path, for page-allocating processes.  We only
1235  * try to reclaim pages from zones which will satisfy the caller's allocation
1236  * request.
1237  *
1238  * We reclaim from a zone even if that zone is over pages_high.  Because:
1239  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1240  *    allocation or
1241  * b) The zones may be over pages_high but they must go *over* pages_high to
1242  *    satisfy the `incremental min' zone defense algorithm.
1243  *
1244  * Returns the number of reclaimed pages.
1245  *
1246  * If a zone is deemed to be full of pinned pages then just give it a light
1247  * scan then give up on it.
1248  */
1249 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1250 					struct scan_control *sc)
1251 {
1252 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1253 	unsigned long nr_reclaimed = 0;
1254 	struct zoneref *z;
1255 	struct zone *zone;
1256 
1257 	sc->all_unreclaimable = 1;
1258 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1259 		if (!populated_zone(zone))
1260 			continue;
1261 		/*
1262 		 * Take care memory controller reclaiming has small influence
1263 		 * to global LRU.
1264 		 */
1265 		if (scan_global_lru(sc)) {
1266 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1267 				continue;
1268 			note_zone_scanning_priority(zone, priority);
1269 
1270 			if (zone_is_all_unreclaimable(zone) &&
1271 						priority != DEF_PRIORITY)
1272 				continue;	/* Let kswapd poll it */
1273 			sc->all_unreclaimable = 0;
1274 		} else {
1275 			/*
1276 			 * Ignore cpuset limitation here. We just want to reduce
1277 			 * # of used pages by us regardless of memory shortage.
1278 			 */
1279 			sc->all_unreclaimable = 0;
1280 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1281 							priority);
1282 		}
1283 
1284 		nr_reclaimed += shrink_zone(priority, zone, sc);
1285 	}
1286 
1287 	return nr_reclaimed;
1288 }
1289 
1290 /*
1291  * This is the main entry point to direct page reclaim.
1292  *
1293  * If a full scan of the inactive list fails to free enough memory then we
1294  * are "out of memory" and something needs to be killed.
1295  *
1296  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1297  * high - the zone may be full of dirty or under-writeback pages, which this
1298  * caller can't do much about.  We kick pdflush and take explicit naps in the
1299  * hope that some of these pages can be written.  But if the allocating task
1300  * holds filesystem locks which prevent writeout this might not work, and the
1301  * allocation attempt will fail.
1302  *
1303  * returns:	0, if no pages reclaimed
1304  * 		else, the number of pages reclaimed
1305  */
1306 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1307 					struct scan_control *sc)
1308 {
1309 	int priority;
1310 	unsigned long ret = 0;
1311 	unsigned long total_scanned = 0;
1312 	unsigned long nr_reclaimed = 0;
1313 	struct reclaim_state *reclaim_state = current->reclaim_state;
1314 	unsigned long lru_pages = 0;
1315 	struct zoneref *z;
1316 	struct zone *zone;
1317 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1318 
1319 	if (scan_global_lru(sc))
1320 		count_vm_event(ALLOCSTALL);
1321 	/*
1322 	 * mem_cgroup will not do shrink_slab.
1323 	 */
1324 	if (scan_global_lru(sc)) {
1325 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1326 
1327 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1328 				continue;
1329 
1330 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1331 					+ zone_page_state(zone, NR_INACTIVE);
1332 		}
1333 	}
1334 
1335 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1336 		sc->nr_scanned = 0;
1337 		if (!priority)
1338 			disable_swap_token();
1339 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1340 		/*
1341 		 * Don't shrink slabs when reclaiming memory from
1342 		 * over limit cgroups
1343 		 */
1344 		if (scan_global_lru(sc)) {
1345 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1346 			if (reclaim_state) {
1347 				nr_reclaimed += reclaim_state->reclaimed_slab;
1348 				reclaim_state->reclaimed_slab = 0;
1349 			}
1350 		}
1351 		total_scanned += sc->nr_scanned;
1352 		if (nr_reclaimed >= sc->swap_cluster_max) {
1353 			ret = nr_reclaimed;
1354 			goto out;
1355 		}
1356 
1357 		/*
1358 		 * Try to write back as many pages as we just scanned.  This
1359 		 * tends to cause slow streaming writers to write data to the
1360 		 * disk smoothly, at the dirtying rate, which is nice.   But
1361 		 * that's undesirable in laptop mode, where we *want* lumpy
1362 		 * writeout.  So in laptop mode, write out the whole world.
1363 		 */
1364 		if (total_scanned > sc->swap_cluster_max +
1365 					sc->swap_cluster_max / 2) {
1366 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1367 			sc->may_writepage = 1;
1368 		}
1369 
1370 		/* Take a nap, wait for some writeback to complete */
1371 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1372 			congestion_wait(WRITE, HZ/10);
1373 	}
1374 	/* top priority shrink_caches still had more to do? don't OOM, then */
1375 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1376 		ret = nr_reclaimed;
1377 out:
1378 	/*
1379 	 * Now that we've scanned all the zones at this priority level, note
1380 	 * that level within the zone so that the next thread which performs
1381 	 * scanning of this zone will immediately start out at this priority
1382 	 * level.  This affects only the decision whether or not to bring
1383 	 * mapped pages onto the inactive list.
1384 	 */
1385 	if (priority < 0)
1386 		priority = 0;
1387 
1388 	if (scan_global_lru(sc)) {
1389 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1390 
1391 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1392 				continue;
1393 
1394 			zone->prev_priority = priority;
1395 		}
1396 	} else
1397 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1398 
1399 	return ret;
1400 }
1401 
1402 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1403 								gfp_t gfp_mask)
1404 {
1405 	struct scan_control sc = {
1406 		.gfp_mask = gfp_mask,
1407 		.may_writepage = !laptop_mode,
1408 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1409 		.may_swap = 1,
1410 		.swappiness = vm_swappiness,
1411 		.order = order,
1412 		.mem_cgroup = NULL,
1413 		.isolate_pages = isolate_pages_global,
1414 	};
1415 
1416 	return do_try_to_free_pages(zonelist, &sc);
1417 }
1418 
1419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1420 
1421 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1422 						gfp_t gfp_mask)
1423 {
1424 	struct scan_control sc = {
1425 		.may_writepage = !laptop_mode,
1426 		.may_swap = 1,
1427 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1428 		.swappiness = vm_swappiness,
1429 		.order = 0,
1430 		.mem_cgroup = mem_cont,
1431 		.isolate_pages = mem_cgroup_isolate_pages,
1432 	};
1433 	struct zonelist *zonelist;
1434 
1435 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1436 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1437 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1438 	return do_try_to_free_pages(zonelist, &sc);
1439 }
1440 #endif
1441 
1442 /*
1443  * For kswapd, balance_pgdat() will work across all this node's zones until
1444  * they are all at pages_high.
1445  *
1446  * Returns the number of pages which were actually freed.
1447  *
1448  * There is special handling here for zones which are full of pinned pages.
1449  * This can happen if the pages are all mlocked, or if they are all used by
1450  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1451  * What we do is to detect the case where all pages in the zone have been
1452  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1453  * dead and from now on, only perform a short scan.  Basically we're polling
1454  * the zone for when the problem goes away.
1455  *
1456  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1457  * zones which have free_pages > pages_high, but once a zone is found to have
1458  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1459  * of the number of free pages in the lower zones.  This interoperates with
1460  * the page allocator fallback scheme to ensure that aging of pages is balanced
1461  * across the zones.
1462  */
1463 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1464 {
1465 	int all_zones_ok;
1466 	int priority;
1467 	int i;
1468 	unsigned long total_scanned;
1469 	unsigned long nr_reclaimed;
1470 	struct reclaim_state *reclaim_state = current->reclaim_state;
1471 	struct scan_control sc = {
1472 		.gfp_mask = GFP_KERNEL,
1473 		.may_swap = 1,
1474 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1475 		.swappiness = vm_swappiness,
1476 		.order = order,
1477 		.mem_cgroup = NULL,
1478 		.isolate_pages = isolate_pages_global,
1479 	};
1480 	/*
1481 	 * temp_priority is used to remember the scanning priority at which
1482 	 * this zone was successfully refilled to free_pages == pages_high.
1483 	 */
1484 	int temp_priority[MAX_NR_ZONES];
1485 
1486 loop_again:
1487 	total_scanned = 0;
1488 	nr_reclaimed = 0;
1489 	sc.may_writepage = !laptop_mode;
1490 	count_vm_event(PAGEOUTRUN);
1491 
1492 	for (i = 0; i < pgdat->nr_zones; i++)
1493 		temp_priority[i] = DEF_PRIORITY;
1494 
1495 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1496 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1497 		unsigned long lru_pages = 0;
1498 
1499 		/* The swap token gets in the way of swapout... */
1500 		if (!priority)
1501 			disable_swap_token();
1502 
1503 		all_zones_ok = 1;
1504 
1505 		/*
1506 		 * Scan in the highmem->dma direction for the highest
1507 		 * zone which needs scanning
1508 		 */
1509 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1510 			struct zone *zone = pgdat->node_zones + i;
1511 
1512 			if (!populated_zone(zone))
1513 				continue;
1514 
1515 			if (zone_is_all_unreclaimable(zone) &&
1516 			    priority != DEF_PRIORITY)
1517 				continue;
1518 
1519 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1520 					       0, 0)) {
1521 				end_zone = i;
1522 				break;
1523 			}
1524 		}
1525 		if (i < 0)
1526 			goto out;
1527 
1528 		for (i = 0; i <= end_zone; i++) {
1529 			struct zone *zone = pgdat->node_zones + i;
1530 
1531 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1532 					+ zone_page_state(zone, NR_INACTIVE);
1533 		}
1534 
1535 		/*
1536 		 * Now scan the zone in the dma->highmem direction, stopping
1537 		 * at the last zone which needs scanning.
1538 		 *
1539 		 * We do this because the page allocator works in the opposite
1540 		 * direction.  This prevents the page allocator from allocating
1541 		 * pages behind kswapd's direction of progress, which would
1542 		 * cause too much scanning of the lower zones.
1543 		 */
1544 		for (i = 0; i <= end_zone; i++) {
1545 			struct zone *zone = pgdat->node_zones + i;
1546 			int nr_slab;
1547 
1548 			if (!populated_zone(zone))
1549 				continue;
1550 
1551 			if (zone_is_all_unreclaimable(zone) &&
1552 					priority != DEF_PRIORITY)
1553 				continue;
1554 
1555 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1556 					       end_zone, 0))
1557 				all_zones_ok = 0;
1558 			temp_priority[i] = priority;
1559 			sc.nr_scanned = 0;
1560 			note_zone_scanning_priority(zone, priority);
1561 			/*
1562 			 * We put equal pressure on every zone, unless one
1563 			 * zone has way too many pages free already.
1564 			 */
1565 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1566 						end_zone, 0))
1567 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1568 			reclaim_state->reclaimed_slab = 0;
1569 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1570 						lru_pages);
1571 			nr_reclaimed += reclaim_state->reclaimed_slab;
1572 			total_scanned += sc.nr_scanned;
1573 			if (zone_is_all_unreclaimable(zone))
1574 				continue;
1575 			if (nr_slab == 0 && zone->pages_scanned >=
1576 				(zone_page_state(zone, NR_ACTIVE)
1577 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1578 					zone_set_flag(zone,
1579 						      ZONE_ALL_UNRECLAIMABLE);
1580 			/*
1581 			 * If we've done a decent amount of scanning and
1582 			 * the reclaim ratio is low, start doing writepage
1583 			 * even in laptop mode
1584 			 */
1585 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1586 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1587 				sc.may_writepage = 1;
1588 		}
1589 		if (all_zones_ok)
1590 			break;		/* kswapd: all done */
1591 		/*
1592 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1593 		 * another pass across the zones.
1594 		 */
1595 		if (total_scanned && priority < DEF_PRIORITY - 2)
1596 			congestion_wait(WRITE, HZ/10);
1597 
1598 		/*
1599 		 * We do this so kswapd doesn't build up large priorities for
1600 		 * example when it is freeing in parallel with allocators. It
1601 		 * matches the direct reclaim path behaviour in terms of impact
1602 		 * on zone->*_priority.
1603 		 */
1604 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1605 			break;
1606 	}
1607 out:
1608 	/*
1609 	 * Note within each zone the priority level at which this zone was
1610 	 * brought into a happy state.  So that the next thread which scans this
1611 	 * zone will start out at that priority level.
1612 	 */
1613 	for (i = 0; i < pgdat->nr_zones; i++) {
1614 		struct zone *zone = pgdat->node_zones + i;
1615 
1616 		zone->prev_priority = temp_priority[i];
1617 	}
1618 	if (!all_zones_ok) {
1619 		cond_resched();
1620 
1621 		try_to_freeze();
1622 
1623 		goto loop_again;
1624 	}
1625 
1626 	return nr_reclaimed;
1627 }
1628 
1629 /*
1630  * The background pageout daemon, started as a kernel thread
1631  * from the init process.
1632  *
1633  * This basically trickles out pages so that we have _some_
1634  * free memory available even if there is no other activity
1635  * that frees anything up. This is needed for things like routing
1636  * etc, where we otherwise might have all activity going on in
1637  * asynchronous contexts that cannot page things out.
1638  *
1639  * If there are applications that are active memory-allocators
1640  * (most normal use), this basically shouldn't matter.
1641  */
1642 static int kswapd(void *p)
1643 {
1644 	unsigned long order;
1645 	pg_data_t *pgdat = (pg_data_t*)p;
1646 	struct task_struct *tsk = current;
1647 	DEFINE_WAIT(wait);
1648 	struct reclaim_state reclaim_state = {
1649 		.reclaimed_slab = 0,
1650 	};
1651 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1652 
1653 	if (!cpus_empty(*cpumask))
1654 		set_cpus_allowed_ptr(tsk, cpumask);
1655 	current->reclaim_state = &reclaim_state;
1656 
1657 	/*
1658 	 * Tell the memory management that we're a "memory allocator",
1659 	 * and that if we need more memory we should get access to it
1660 	 * regardless (see "__alloc_pages()"). "kswapd" should
1661 	 * never get caught in the normal page freeing logic.
1662 	 *
1663 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1664 	 * you need a small amount of memory in order to be able to
1665 	 * page out something else, and this flag essentially protects
1666 	 * us from recursively trying to free more memory as we're
1667 	 * trying to free the first piece of memory in the first place).
1668 	 */
1669 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1670 	set_freezable();
1671 
1672 	order = 0;
1673 	for ( ; ; ) {
1674 		unsigned long new_order;
1675 
1676 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1677 		new_order = pgdat->kswapd_max_order;
1678 		pgdat->kswapd_max_order = 0;
1679 		if (order < new_order) {
1680 			/*
1681 			 * Don't sleep if someone wants a larger 'order'
1682 			 * allocation
1683 			 */
1684 			order = new_order;
1685 		} else {
1686 			if (!freezing(current))
1687 				schedule();
1688 
1689 			order = pgdat->kswapd_max_order;
1690 		}
1691 		finish_wait(&pgdat->kswapd_wait, &wait);
1692 
1693 		if (!try_to_freeze()) {
1694 			/* We can speed up thawing tasks if we don't call
1695 			 * balance_pgdat after returning from the refrigerator
1696 			 */
1697 			balance_pgdat(pgdat, order);
1698 		}
1699 	}
1700 	return 0;
1701 }
1702 
1703 /*
1704  * A zone is low on free memory, so wake its kswapd task to service it.
1705  */
1706 void wakeup_kswapd(struct zone *zone, int order)
1707 {
1708 	pg_data_t *pgdat;
1709 
1710 	if (!populated_zone(zone))
1711 		return;
1712 
1713 	pgdat = zone->zone_pgdat;
1714 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1715 		return;
1716 	if (pgdat->kswapd_max_order < order)
1717 		pgdat->kswapd_max_order = order;
1718 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1719 		return;
1720 	if (!waitqueue_active(&pgdat->kswapd_wait))
1721 		return;
1722 	wake_up_interruptible(&pgdat->kswapd_wait);
1723 }
1724 
1725 #ifdef CONFIG_PM
1726 /*
1727  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1728  * from LRU lists system-wide, for given pass and priority, and returns the
1729  * number of reclaimed pages
1730  *
1731  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1732  */
1733 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1734 				      int pass, struct scan_control *sc)
1735 {
1736 	struct zone *zone;
1737 	unsigned long nr_to_scan, ret = 0;
1738 
1739 	for_each_zone(zone) {
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1745 			continue;
1746 
1747 		/* For pass = 0 we don't shrink the active list */
1748 		if (pass > 0) {
1749 			zone->nr_scan_active +=
1750 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1751 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1752 				zone->nr_scan_active = 0;
1753 				nr_to_scan = min(nr_pages,
1754 					zone_page_state(zone, NR_ACTIVE));
1755 				shrink_active_list(nr_to_scan, zone, sc, prio);
1756 			}
1757 		}
1758 
1759 		zone->nr_scan_inactive +=
1760 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1761 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1762 			zone->nr_scan_inactive = 0;
1763 			nr_to_scan = min(nr_pages,
1764 				zone_page_state(zone, NR_INACTIVE));
1765 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1766 			if (ret >= nr_pages)
1767 				return ret;
1768 		}
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 static unsigned long count_lru_pages(void)
1775 {
1776 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1777 }
1778 
1779 /*
1780  * Try to free `nr_pages' of memory, system-wide, and return the number of
1781  * freed pages.
1782  *
1783  * Rather than trying to age LRUs the aim is to preserve the overall
1784  * LRU order by reclaiming preferentially
1785  * inactive > active > active referenced > active mapped
1786  */
1787 unsigned long shrink_all_memory(unsigned long nr_pages)
1788 {
1789 	unsigned long lru_pages, nr_slab;
1790 	unsigned long ret = 0;
1791 	int pass;
1792 	struct reclaim_state reclaim_state;
1793 	struct scan_control sc = {
1794 		.gfp_mask = GFP_KERNEL,
1795 		.may_swap = 0,
1796 		.swap_cluster_max = nr_pages,
1797 		.may_writepage = 1,
1798 		.swappiness = vm_swappiness,
1799 		.isolate_pages = isolate_pages_global,
1800 	};
1801 
1802 	current->reclaim_state = &reclaim_state;
1803 
1804 	lru_pages = count_lru_pages();
1805 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1806 	/* If slab caches are huge, it's better to hit them first */
1807 	while (nr_slab >= lru_pages) {
1808 		reclaim_state.reclaimed_slab = 0;
1809 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1810 		if (!reclaim_state.reclaimed_slab)
1811 			break;
1812 
1813 		ret += reclaim_state.reclaimed_slab;
1814 		if (ret >= nr_pages)
1815 			goto out;
1816 
1817 		nr_slab -= reclaim_state.reclaimed_slab;
1818 	}
1819 
1820 	/*
1821 	 * We try to shrink LRUs in 5 passes:
1822 	 * 0 = Reclaim from inactive_list only
1823 	 * 1 = Reclaim from active list but don't reclaim mapped
1824 	 * 2 = 2nd pass of type 1
1825 	 * 3 = Reclaim mapped (normal reclaim)
1826 	 * 4 = 2nd pass of type 3
1827 	 */
1828 	for (pass = 0; pass < 5; pass++) {
1829 		int prio;
1830 
1831 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1832 		if (pass > 2) {
1833 			sc.may_swap = 1;
1834 			sc.swappiness = 100;
1835 		}
1836 
1837 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1838 			unsigned long nr_to_scan = nr_pages - ret;
1839 
1840 			sc.nr_scanned = 0;
1841 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1842 			if (ret >= nr_pages)
1843 				goto out;
1844 
1845 			reclaim_state.reclaimed_slab = 0;
1846 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1847 					count_lru_pages());
1848 			ret += reclaim_state.reclaimed_slab;
1849 			if (ret >= nr_pages)
1850 				goto out;
1851 
1852 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1853 				congestion_wait(WRITE, HZ / 10);
1854 		}
1855 	}
1856 
1857 	/*
1858 	 * If ret = 0, we could not shrink LRUs, but there may be something
1859 	 * in slab caches
1860 	 */
1861 	if (!ret) {
1862 		do {
1863 			reclaim_state.reclaimed_slab = 0;
1864 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1865 			ret += reclaim_state.reclaimed_slab;
1866 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1867 	}
1868 
1869 out:
1870 	current->reclaim_state = NULL;
1871 
1872 	return ret;
1873 }
1874 #endif
1875 
1876 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1877    not required for correctness.  So if the last cpu in a node goes
1878    away, we get changed to run anywhere: as the first one comes back,
1879    restore their cpu bindings. */
1880 static int __devinit cpu_callback(struct notifier_block *nfb,
1881 				  unsigned long action, void *hcpu)
1882 {
1883 	int nid;
1884 
1885 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1886 		for_each_node_state(nid, N_HIGH_MEMORY) {
1887 			pg_data_t *pgdat = NODE_DATA(nid);
1888 			node_to_cpumask_ptr(mask, pgdat->node_id);
1889 
1890 			if (any_online_cpu(*mask) < nr_cpu_ids)
1891 				/* One of our CPUs online: restore mask */
1892 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
1893 		}
1894 	}
1895 	return NOTIFY_OK;
1896 }
1897 
1898 /*
1899  * This kswapd start function will be called by init and node-hot-add.
1900  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1901  */
1902 int kswapd_run(int nid)
1903 {
1904 	pg_data_t *pgdat = NODE_DATA(nid);
1905 	int ret = 0;
1906 
1907 	if (pgdat->kswapd)
1908 		return 0;
1909 
1910 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1911 	if (IS_ERR(pgdat->kswapd)) {
1912 		/* failure at boot is fatal */
1913 		BUG_ON(system_state == SYSTEM_BOOTING);
1914 		printk("Failed to start kswapd on node %d\n",nid);
1915 		ret = -1;
1916 	}
1917 	return ret;
1918 }
1919 
1920 static int __init kswapd_init(void)
1921 {
1922 	int nid;
1923 
1924 	swap_setup();
1925 	for_each_node_state(nid, N_HIGH_MEMORY)
1926  		kswapd_run(nid);
1927 	hotcpu_notifier(cpu_callback, 0);
1928 	return 0;
1929 }
1930 
1931 module_init(kswapd_init)
1932 
1933 #ifdef CONFIG_NUMA
1934 /*
1935  * Zone reclaim mode
1936  *
1937  * If non-zero call zone_reclaim when the number of free pages falls below
1938  * the watermarks.
1939  */
1940 int zone_reclaim_mode __read_mostly;
1941 
1942 #define RECLAIM_OFF 0
1943 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1944 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1945 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1946 
1947 /*
1948  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1949  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1950  * a zone.
1951  */
1952 #define ZONE_RECLAIM_PRIORITY 4
1953 
1954 /*
1955  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1956  * occur.
1957  */
1958 int sysctl_min_unmapped_ratio = 1;
1959 
1960 /*
1961  * If the number of slab pages in a zone grows beyond this percentage then
1962  * slab reclaim needs to occur.
1963  */
1964 int sysctl_min_slab_ratio = 5;
1965 
1966 /*
1967  * Try to free up some pages from this zone through reclaim.
1968  */
1969 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1970 {
1971 	/* Minimum pages needed in order to stay on node */
1972 	const unsigned long nr_pages = 1 << order;
1973 	struct task_struct *p = current;
1974 	struct reclaim_state reclaim_state;
1975 	int priority;
1976 	unsigned long nr_reclaimed = 0;
1977 	struct scan_control sc = {
1978 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1979 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1980 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1981 					SWAP_CLUSTER_MAX),
1982 		.gfp_mask = gfp_mask,
1983 		.swappiness = vm_swappiness,
1984 		.isolate_pages = isolate_pages_global,
1985 	};
1986 	unsigned long slab_reclaimable;
1987 
1988 	disable_swap_token();
1989 	cond_resched();
1990 	/*
1991 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1992 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1993 	 * and RECLAIM_SWAP.
1994 	 */
1995 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1996 	reclaim_state.reclaimed_slab = 0;
1997 	p->reclaim_state = &reclaim_state;
1998 
1999 	if (zone_page_state(zone, NR_FILE_PAGES) -
2000 		zone_page_state(zone, NR_FILE_MAPPED) >
2001 		zone->min_unmapped_pages) {
2002 		/*
2003 		 * Free memory by calling shrink zone with increasing
2004 		 * priorities until we have enough memory freed.
2005 		 */
2006 		priority = ZONE_RECLAIM_PRIORITY;
2007 		do {
2008 			note_zone_scanning_priority(zone, priority);
2009 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2010 			priority--;
2011 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2012 	}
2013 
2014 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2015 	if (slab_reclaimable > zone->min_slab_pages) {
2016 		/*
2017 		 * shrink_slab() does not currently allow us to determine how
2018 		 * many pages were freed in this zone. So we take the current
2019 		 * number of slab pages and shake the slab until it is reduced
2020 		 * by the same nr_pages that we used for reclaiming unmapped
2021 		 * pages.
2022 		 *
2023 		 * Note that shrink_slab will free memory on all zones and may
2024 		 * take a long time.
2025 		 */
2026 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2027 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2028 				slab_reclaimable - nr_pages)
2029 			;
2030 
2031 		/*
2032 		 * Update nr_reclaimed by the number of slab pages we
2033 		 * reclaimed from this zone.
2034 		 */
2035 		nr_reclaimed += slab_reclaimable -
2036 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2037 	}
2038 
2039 	p->reclaim_state = NULL;
2040 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2041 	return nr_reclaimed >= nr_pages;
2042 }
2043 
2044 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2045 {
2046 	int node_id;
2047 	int ret;
2048 
2049 	/*
2050 	 * Zone reclaim reclaims unmapped file backed pages and
2051 	 * slab pages if we are over the defined limits.
2052 	 *
2053 	 * A small portion of unmapped file backed pages is needed for
2054 	 * file I/O otherwise pages read by file I/O will be immediately
2055 	 * thrown out if the zone is overallocated. So we do not reclaim
2056 	 * if less than a specified percentage of the zone is used by
2057 	 * unmapped file backed pages.
2058 	 */
2059 	if (zone_page_state(zone, NR_FILE_PAGES) -
2060 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2061 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2062 			<= zone->min_slab_pages)
2063 		return 0;
2064 
2065 	if (zone_is_all_unreclaimable(zone))
2066 		return 0;
2067 
2068 	/*
2069 	 * Do not scan if the allocation should not be delayed.
2070 	 */
2071 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2072 			return 0;
2073 
2074 	/*
2075 	 * Only run zone reclaim on the local zone or on zones that do not
2076 	 * have associated processors. This will favor the local processor
2077 	 * over remote processors and spread off node memory allocations
2078 	 * as wide as possible.
2079 	 */
2080 	node_id = zone_to_nid(zone);
2081 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2082 		return 0;
2083 
2084 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2085 		return 0;
2086 	ret = __zone_reclaim(zone, gfp_mask, order);
2087 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2088 
2089 	return ret;
2090 }
2091 #endif
2092