1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 58 #include <asm/tlbflush.h> 59 #include <asm/div64.h> 60 61 #include <linux/swapops.h> 62 #include <linux/balloon_compaction.h> 63 #include <linux/sched/sysctl.h> 64 65 #include "internal.h" 66 #include "swap.h" 67 68 #define CREATE_TRACE_POINTS 69 #include <trace/events/vmscan.h> 70 71 struct scan_control { 72 /* How many pages shrink_list() should reclaim */ 73 unsigned long nr_to_reclaim; 74 75 /* 76 * Nodemask of nodes allowed by the caller. If NULL, all nodes 77 * are scanned. 78 */ 79 nodemask_t *nodemask; 80 81 /* 82 * The memory cgroup that hit its limit and as a result is the 83 * primary target of this reclaim invocation. 84 */ 85 struct mem_cgroup *target_mem_cgroup; 86 87 /* 88 * Scan pressure balancing between anon and file LRUs 89 */ 90 unsigned long anon_cost; 91 unsigned long file_cost; 92 93 /* Can active folios be deactivated as part of reclaim? */ 94 #define DEACTIVATE_ANON 1 95 #define DEACTIVATE_FILE 2 96 unsigned int may_deactivate:2; 97 unsigned int force_deactivate:1; 98 unsigned int skipped_deactivate:1; 99 100 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 101 unsigned int may_writepage:1; 102 103 /* Can mapped folios be reclaimed? */ 104 unsigned int may_unmap:1; 105 106 /* Can folios be swapped as part of reclaim? */ 107 unsigned int may_swap:1; 108 109 /* Proactive reclaim invoked by userspace through memory.reclaim */ 110 unsigned int proactive:1; 111 112 /* 113 * Cgroup memory below memory.low is protected as long as we 114 * don't threaten to OOM. If any cgroup is reclaimed at 115 * reduced force or passed over entirely due to its memory.low 116 * setting (memcg_low_skipped), and nothing is reclaimed as a 117 * result, then go back for one more cycle that reclaims the protected 118 * memory (memcg_low_reclaim) to avert OOM. 119 */ 120 unsigned int memcg_low_reclaim:1; 121 unsigned int memcg_low_skipped:1; 122 123 unsigned int hibernation_mode:1; 124 125 /* One of the zones is ready for compaction */ 126 unsigned int compaction_ready:1; 127 128 /* There is easily reclaimable cold cache in the current node */ 129 unsigned int cache_trim_mode:1; 130 131 /* The file folios on the current node are dangerously low */ 132 unsigned int file_is_tiny:1; 133 134 /* Always discard instead of demoting to lower tier memory */ 135 unsigned int no_demotion:1; 136 137 #ifdef CONFIG_LRU_GEN 138 /* help kswapd make better choices among multiple memcgs */ 139 unsigned int memcgs_need_aging:1; 140 unsigned long last_reclaimed; 141 #endif 142 143 /* Allocation order */ 144 s8 order; 145 146 /* Scan (total_size >> priority) pages at once */ 147 s8 priority; 148 149 /* The highest zone to isolate folios for reclaim from */ 150 s8 reclaim_idx; 151 152 /* This context's GFP mask */ 153 gfp_t gfp_mask; 154 155 /* Incremented by the number of inactive pages that were scanned */ 156 unsigned long nr_scanned; 157 158 /* Number of pages freed so far during a call to shrink_zones() */ 159 unsigned long nr_reclaimed; 160 161 struct { 162 unsigned int dirty; 163 unsigned int unqueued_dirty; 164 unsigned int congested; 165 unsigned int writeback; 166 unsigned int immediate; 167 unsigned int file_taken; 168 unsigned int taken; 169 } nr; 170 171 /* for recording the reclaimed slab by now */ 172 struct reclaim_state reclaim_state; 173 }; 174 175 #ifdef ARCH_HAS_PREFETCHW 176 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 177 do { \ 178 if ((_folio)->lru.prev != _base) { \ 179 struct folio *prev; \ 180 \ 181 prev = lru_to_folio(&(_folio->lru)); \ 182 prefetchw(&prev->_field); \ 183 } \ 184 } while (0) 185 #else 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 187 #endif 188 189 /* 190 * From 0 .. 200. Higher means more swappy. 191 */ 192 int vm_swappiness = 60; 193 194 static void set_task_reclaim_state(struct task_struct *task, 195 struct reclaim_state *rs) 196 { 197 /* Check for an overwrite */ 198 WARN_ON_ONCE(rs && task->reclaim_state); 199 200 /* Check for the nulling of an already-nulled member */ 201 WARN_ON_ONCE(!rs && !task->reclaim_state); 202 203 task->reclaim_state = rs; 204 } 205 206 LIST_HEAD(shrinker_list); 207 DECLARE_RWSEM(shrinker_rwsem); 208 209 #ifdef CONFIG_MEMCG 210 static int shrinker_nr_max; 211 212 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 213 static inline int shrinker_map_size(int nr_items) 214 { 215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 216 } 217 218 static inline int shrinker_defer_size(int nr_items) 219 { 220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 221 } 222 223 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 224 int nid) 225 { 226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 227 lockdep_is_held(&shrinker_rwsem)); 228 } 229 230 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 231 int map_size, int defer_size, 232 int old_map_size, int old_defer_size) 233 { 234 struct shrinker_info *new, *old; 235 struct mem_cgroup_per_node *pn; 236 int nid; 237 int size = map_size + defer_size; 238 239 for_each_node(nid) { 240 pn = memcg->nodeinfo[nid]; 241 old = shrinker_info_protected(memcg, nid); 242 /* Not yet online memcg */ 243 if (!old) 244 return 0; 245 246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 247 if (!new) 248 return -ENOMEM; 249 250 new->nr_deferred = (atomic_long_t *)(new + 1); 251 new->map = (void *)new->nr_deferred + defer_size; 252 253 /* map: set all old bits, clear all new bits */ 254 memset(new->map, (int)0xff, old_map_size); 255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 256 /* nr_deferred: copy old values, clear all new values */ 257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 258 memset((void *)new->nr_deferred + old_defer_size, 0, 259 defer_size - old_defer_size); 260 261 rcu_assign_pointer(pn->shrinker_info, new); 262 kvfree_rcu(old, rcu); 263 } 264 265 return 0; 266 } 267 268 void free_shrinker_info(struct mem_cgroup *memcg) 269 { 270 struct mem_cgroup_per_node *pn; 271 struct shrinker_info *info; 272 int nid; 273 274 for_each_node(nid) { 275 pn = memcg->nodeinfo[nid]; 276 info = rcu_dereference_protected(pn->shrinker_info, true); 277 kvfree(info); 278 rcu_assign_pointer(pn->shrinker_info, NULL); 279 } 280 } 281 282 int alloc_shrinker_info(struct mem_cgroup *memcg) 283 { 284 struct shrinker_info *info; 285 int nid, size, ret = 0; 286 int map_size, defer_size = 0; 287 288 down_write(&shrinker_rwsem); 289 map_size = shrinker_map_size(shrinker_nr_max); 290 defer_size = shrinker_defer_size(shrinker_nr_max); 291 size = map_size + defer_size; 292 for_each_node(nid) { 293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 294 if (!info) { 295 free_shrinker_info(memcg); 296 ret = -ENOMEM; 297 break; 298 } 299 info->nr_deferred = (atomic_long_t *)(info + 1); 300 info->map = (void *)info->nr_deferred + defer_size; 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 302 } 303 up_write(&shrinker_rwsem); 304 305 return ret; 306 } 307 308 static inline bool need_expand(int nr_max) 309 { 310 return round_up(nr_max, BITS_PER_LONG) > 311 round_up(shrinker_nr_max, BITS_PER_LONG); 312 } 313 314 static int expand_shrinker_info(int new_id) 315 { 316 int ret = 0; 317 int new_nr_max = new_id + 1; 318 int map_size, defer_size = 0; 319 int old_map_size, old_defer_size = 0; 320 struct mem_cgroup *memcg; 321 322 if (!need_expand(new_nr_max)) 323 goto out; 324 325 if (!root_mem_cgroup) 326 goto out; 327 328 lockdep_assert_held(&shrinker_rwsem); 329 330 map_size = shrinker_map_size(new_nr_max); 331 defer_size = shrinker_defer_size(new_nr_max); 332 old_map_size = shrinker_map_size(shrinker_nr_max); 333 old_defer_size = shrinker_defer_size(shrinker_nr_max); 334 335 memcg = mem_cgroup_iter(NULL, NULL, NULL); 336 do { 337 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 338 old_map_size, old_defer_size); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 356 rcu_read_lock(); 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 358 /* Pairs with smp mb in shrink_slab() */ 359 smp_mb__before_atomic(); 360 set_bit(shrinker_id, info->map); 361 rcu_read_unlock(); 362 } 363 } 364 365 static DEFINE_IDR(shrinker_idr); 366 367 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 368 { 369 int id, ret = -ENOMEM; 370 371 if (mem_cgroup_disabled()) 372 return -ENOSYS; 373 374 down_write(&shrinker_rwsem); 375 /* This may call shrinker, so it must use down_read_trylock() */ 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 377 if (id < 0) 378 goto unlock; 379 380 if (id >= shrinker_nr_max) { 381 if (expand_shrinker_info(id)) { 382 idr_remove(&shrinker_idr, id); 383 goto unlock; 384 } 385 } 386 shrinker->id = id; 387 ret = 0; 388 unlock: 389 up_write(&shrinker_rwsem); 390 return ret; 391 } 392 393 static void unregister_memcg_shrinker(struct shrinker *shrinker) 394 { 395 int id = shrinker->id; 396 397 BUG_ON(id < 0); 398 399 lockdep_assert_held(&shrinker_rwsem); 400 401 idr_remove(&shrinker_idr, id); 402 } 403 404 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 405 struct mem_cgroup *memcg) 406 { 407 struct shrinker_info *info; 408 409 info = shrinker_info_protected(memcg, nid); 410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 411 } 412 413 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 414 struct mem_cgroup *memcg) 415 { 416 struct shrinker_info *info; 417 418 info = shrinker_info_protected(memcg, nid); 419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 420 } 421 422 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 423 { 424 int i, nid; 425 long nr; 426 struct mem_cgroup *parent; 427 struct shrinker_info *child_info, *parent_info; 428 429 parent = parent_mem_cgroup(memcg); 430 if (!parent) 431 parent = root_mem_cgroup; 432 433 /* Prevent from concurrent shrinker_info expand */ 434 down_read(&shrinker_rwsem); 435 for_each_node(nid) { 436 child_info = shrinker_info_protected(memcg, nid); 437 parent_info = shrinker_info_protected(parent, nid); 438 for (i = 0; i < shrinker_nr_max; i++) { 439 nr = atomic_long_read(&child_info->nr_deferred[i]); 440 atomic_long_add(nr, &parent_info->nr_deferred[i]); 441 } 442 } 443 up_read(&shrinker_rwsem); 444 } 445 446 static bool cgroup_reclaim(struct scan_control *sc) 447 { 448 return sc->target_mem_cgroup; 449 } 450 451 /** 452 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 453 * @sc: scan_control in question 454 * 455 * The normal page dirty throttling mechanism in balance_dirty_pages() is 456 * completely broken with the legacy memcg and direct stalling in 457 * shrink_folio_list() is used for throttling instead, which lacks all the 458 * niceties such as fairness, adaptive pausing, bandwidth proportional 459 * allocation and configurability. 460 * 461 * This function tests whether the vmscan currently in progress can assume 462 * that the normal dirty throttling mechanism is operational. 463 */ 464 static bool writeback_throttling_sane(struct scan_control *sc) 465 { 466 if (!cgroup_reclaim(sc)) 467 return true; 468 #ifdef CONFIG_CGROUP_WRITEBACK 469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 470 return true; 471 #endif 472 return false; 473 } 474 #else 475 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 476 { 477 return -ENOSYS; 478 } 479 480 static void unregister_memcg_shrinker(struct shrinker *shrinker) 481 { 482 } 483 484 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 485 struct mem_cgroup *memcg) 486 { 487 return 0; 488 } 489 490 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 491 struct mem_cgroup *memcg) 492 { 493 return 0; 494 } 495 496 static bool cgroup_reclaim(struct scan_control *sc) 497 { 498 return false; 499 } 500 501 static bool writeback_throttling_sane(struct scan_control *sc) 502 { 503 return true; 504 } 505 #endif 506 507 static long xchg_nr_deferred(struct shrinker *shrinker, 508 struct shrink_control *sc) 509 { 510 int nid = sc->nid; 511 512 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 513 nid = 0; 514 515 if (sc->memcg && 516 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 517 return xchg_nr_deferred_memcg(nid, shrinker, 518 sc->memcg); 519 520 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 521 } 522 523 524 static long add_nr_deferred(long nr, struct shrinker *shrinker, 525 struct shrink_control *sc) 526 { 527 int nid = sc->nid; 528 529 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 530 nid = 0; 531 532 if (sc->memcg && 533 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 534 return add_nr_deferred_memcg(nr, nid, shrinker, 535 sc->memcg); 536 537 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 538 } 539 540 static bool can_demote(int nid, struct scan_control *sc) 541 { 542 if (!numa_demotion_enabled) 543 return false; 544 if (sc && sc->no_demotion) 545 return false; 546 if (next_demotion_node(nid) == NUMA_NO_NODE) 547 return false; 548 549 return true; 550 } 551 552 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 553 int nid, 554 struct scan_control *sc) 555 { 556 if (memcg == NULL) { 557 /* 558 * For non-memcg reclaim, is there 559 * space in any swap device? 560 */ 561 if (get_nr_swap_pages() > 0) 562 return true; 563 } else { 564 /* Is the memcg below its swap limit? */ 565 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 566 return true; 567 } 568 569 /* 570 * The page can not be swapped. 571 * 572 * Can it be reclaimed from this node via demotion? 573 */ 574 return can_demote(nid, sc); 575 } 576 577 /* 578 * This misses isolated folios which are not accounted for to save counters. 579 * As the data only determines if reclaim or compaction continues, it is 580 * not expected that isolated folios will be a dominating factor. 581 */ 582 unsigned long zone_reclaimable_pages(struct zone *zone) 583 { 584 unsigned long nr; 585 586 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 587 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 588 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 589 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 590 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 591 592 return nr; 593 } 594 595 /** 596 * lruvec_lru_size - Returns the number of pages on the given LRU list. 597 * @lruvec: lru vector 598 * @lru: lru to use 599 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 600 */ 601 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 602 int zone_idx) 603 { 604 unsigned long size = 0; 605 int zid; 606 607 for (zid = 0; zid <= zone_idx; zid++) { 608 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 609 610 if (!managed_zone(zone)) 611 continue; 612 613 if (!mem_cgroup_disabled()) 614 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 615 else 616 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 617 } 618 return size; 619 } 620 621 /* 622 * Add a shrinker callback to be called from the vm. 623 */ 624 static int __prealloc_shrinker(struct shrinker *shrinker) 625 { 626 unsigned int size; 627 int err; 628 629 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 630 err = prealloc_memcg_shrinker(shrinker); 631 if (err != -ENOSYS) 632 return err; 633 634 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 635 } 636 637 size = sizeof(*shrinker->nr_deferred); 638 if (shrinker->flags & SHRINKER_NUMA_AWARE) 639 size *= nr_node_ids; 640 641 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 642 if (!shrinker->nr_deferred) 643 return -ENOMEM; 644 645 return 0; 646 } 647 648 #ifdef CONFIG_SHRINKER_DEBUG 649 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 650 { 651 va_list ap; 652 int err; 653 654 va_start(ap, fmt); 655 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 656 va_end(ap); 657 if (!shrinker->name) 658 return -ENOMEM; 659 660 err = __prealloc_shrinker(shrinker); 661 if (err) { 662 kfree_const(shrinker->name); 663 shrinker->name = NULL; 664 } 665 666 return err; 667 } 668 #else 669 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 670 { 671 return __prealloc_shrinker(shrinker); 672 } 673 #endif 674 675 void free_prealloced_shrinker(struct shrinker *shrinker) 676 { 677 #ifdef CONFIG_SHRINKER_DEBUG 678 kfree_const(shrinker->name); 679 shrinker->name = NULL; 680 #endif 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 682 down_write(&shrinker_rwsem); 683 unregister_memcg_shrinker(shrinker); 684 up_write(&shrinker_rwsem); 685 return; 686 } 687 688 kfree(shrinker->nr_deferred); 689 shrinker->nr_deferred = NULL; 690 } 691 692 void register_shrinker_prepared(struct shrinker *shrinker) 693 { 694 down_write(&shrinker_rwsem); 695 list_add_tail(&shrinker->list, &shrinker_list); 696 shrinker->flags |= SHRINKER_REGISTERED; 697 shrinker_debugfs_add(shrinker); 698 up_write(&shrinker_rwsem); 699 } 700 701 static int __register_shrinker(struct shrinker *shrinker) 702 { 703 int err = __prealloc_shrinker(shrinker); 704 705 if (err) 706 return err; 707 register_shrinker_prepared(shrinker); 708 return 0; 709 } 710 711 #ifdef CONFIG_SHRINKER_DEBUG 712 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 713 { 714 va_list ap; 715 int err; 716 717 va_start(ap, fmt); 718 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 719 va_end(ap); 720 if (!shrinker->name) 721 return -ENOMEM; 722 723 err = __register_shrinker(shrinker); 724 if (err) { 725 kfree_const(shrinker->name); 726 shrinker->name = NULL; 727 } 728 return err; 729 } 730 #else 731 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 732 { 733 return __register_shrinker(shrinker); 734 } 735 #endif 736 EXPORT_SYMBOL(register_shrinker); 737 738 /* 739 * Remove one 740 */ 741 void unregister_shrinker(struct shrinker *shrinker) 742 { 743 if (!(shrinker->flags & SHRINKER_REGISTERED)) 744 return; 745 746 down_write(&shrinker_rwsem); 747 list_del(&shrinker->list); 748 shrinker->flags &= ~SHRINKER_REGISTERED; 749 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 750 unregister_memcg_shrinker(shrinker); 751 shrinker_debugfs_remove(shrinker); 752 up_write(&shrinker_rwsem); 753 754 kfree(shrinker->nr_deferred); 755 shrinker->nr_deferred = NULL; 756 } 757 EXPORT_SYMBOL(unregister_shrinker); 758 759 /** 760 * synchronize_shrinkers - Wait for all running shrinkers to complete. 761 * 762 * This is equivalent to calling unregister_shrink() and register_shrinker(), 763 * but atomically and with less overhead. This is useful to guarantee that all 764 * shrinker invocations have seen an update, before freeing memory, similar to 765 * rcu. 766 */ 767 void synchronize_shrinkers(void) 768 { 769 down_write(&shrinker_rwsem); 770 up_write(&shrinker_rwsem); 771 } 772 EXPORT_SYMBOL(synchronize_shrinkers); 773 774 #define SHRINK_BATCH 128 775 776 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 777 struct shrinker *shrinker, int priority) 778 { 779 unsigned long freed = 0; 780 unsigned long long delta; 781 long total_scan; 782 long freeable; 783 long nr; 784 long new_nr; 785 long batch_size = shrinker->batch ? shrinker->batch 786 : SHRINK_BATCH; 787 long scanned = 0, next_deferred; 788 789 freeable = shrinker->count_objects(shrinker, shrinkctl); 790 if (freeable == 0 || freeable == SHRINK_EMPTY) 791 return freeable; 792 793 /* 794 * copy the current shrinker scan count into a local variable 795 * and zero it so that other concurrent shrinker invocations 796 * don't also do this scanning work. 797 */ 798 nr = xchg_nr_deferred(shrinker, shrinkctl); 799 800 if (shrinker->seeks) { 801 delta = freeable >> priority; 802 delta *= 4; 803 do_div(delta, shrinker->seeks); 804 } else { 805 /* 806 * These objects don't require any IO to create. Trim 807 * them aggressively under memory pressure to keep 808 * them from causing refetches in the IO caches. 809 */ 810 delta = freeable / 2; 811 } 812 813 total_scan = nr >> priority; 814 total_scan += delta; 815 total_scan = min(total_scan, (2 * freeable)); 816 817 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 818 freeable, delta, total_scan, priority); 819 820 /* 821 * Normally, we should not scan less than batch_size objects in one 822 * pass to avoid too frequent shrinker calls, but if the slab has less 823 * than batch_size objects in total and we are really tight on memory, 824 * we will try to reclaim all available objects, otherwise we can end 825 * up failing allocations although there are plenty of reclaimable 826 * objects spread over several slabs with usage less than the 827 * batch_size. 828 * 829 * We detect the "tight on memory" situations by looking at the total 830 * number of objects we want to scan (total_scan). If it is greater 831 * than the total number of objects on slab (freeable), we must be 832 * scanning at high prio and therefore should try to reclaim as much as 833 * possible. 834 */ 835 while (total_scan >= batch_size || 836 total_scan >= freeable) { 837 unsigned long ret; 838 unsigned long nr_to_scan = min(batch_size, total_scan); 839 840 shrinkctl->nr_to_scan = nr_to_scan; 841 shrinkctl->nr_scanned = nr_to_scan; 842 ret = shrinker->scan_objects(shrinker, shrinkctl); 843 if (ret == SHRINK_STOP) 844 break; 845 freed += ret; 846 847 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 848 total_scan -= shrinkctl->nr_scanned; 849 scanned += shrinkctl->nr_scanned; 850 851 cond_resched(); 852 } 853 854 /* 855 * The deferred work is increased by any new work (delta) that wasn't 856 * done, decreased by old deferred work that was done now. 857 * 858 * And it is capped to two times of the freeable items. 859 */ 860 next_deferred = max_t(long, (nr + delta - scanned), 0); 861 next_deferred = min(next_deferred, (2 * freeable)); 862 863 /* 864 * move the unused scan count back into the shrinker in a 865 * manner that handles concurrent updates. 866 */ 867 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 868 869 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 870 return freed; 871 } 872 873 #ifdef CONFIG_MEMCG 874 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 875 struct mem_cgroup *memcg, int priority) 876 { 877 struct shrinker_info *info; 878 unsigned long ret, freed = 0; 879 int i; 880 881 if (!mem_cgroup_online(memcg)) 882 return 0; 883 884 if (!down_read_trylock(&shrinker_rwsem)) 885 return 0; 886 887 info = shrinker_info_protected(memcg, nid); 888 if (unlikely(!info)) 889 goto unlock; 890 891 for_each_set_bit(i, info->map, shrinker_nr_max) { 892 struct shrink_control sc = { 893 .gfp_mask = gfp_mask, 894 .nid = nid, 895 .memcg = memcg, 896 }; 897 struct shrinker *shrinker; 898 899 shrinker = idr_find(&shrinker_idr, i); 900 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 901 if (!shrinker) 902 clear_bit(i, info->map); 903 continue; 904 } 905 906 /* Call non-slab shrinkers even though kmem is disabled */ 907 if (!memcg_kmem_enabled() && 908 !(shrinker->flags & SHRINKER_NONSLAB)) 909 continue; 910 911 ret = do_shrink_slab(&sc, shrinker, priority); 912 if (ret == SHRINK_EMPTY) { 913 clear_bit(i, info->map); 914 /* 915 * After the shrinker reported that it had no objects to 916 * free, but before we cleared the corresponding bit in 917 * the memcg shrinker map, a new object might have been 918 * added. To make sure, we have the bit set in this 919 * case, we invoke the shrinker one more time and reset 920 * the bit if it reports that it is not empty anymore. 921 * The memory barrier here pairs with the barrier in 922 * set_shrinker_bit(): 923 * 924 * list_lru_add() shrink_slab_memcg() 925 * list_add_tail() clear_bit() 926 * <MB> <MB> 927 * set_bit() do_shrink_slab() 928 */ 929 smp_mb__after_atomic(); 930 ret = do_shrink_slab(&sc, shrinker, priority); 931 if (ret == SHRINK_EMPTY) 932 ret = 0; 933 else 934 set_shrinker_bit(memcg, nid, i); 935 } 936 freed += ret; 937 938 if (rwsem_is_contended(&shrinker_rwsem)) { 939 freed = freed ? : 1; 940 break; 941 } 942 } 943 unlock: 944 up_read(&shrinker_rwsem); 945 return freed; 946 } 947 #else /* CONFIG_MEMCG */ 948 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 949 struct mem_cgroup *memcg, int priority) 950 { 951 return 0; 952 } 953 #endif /* CONFIG_MEMCG */ 954 955 /** 956 * shrink_slab - shrink slab caches 957 * @gfp_mask: allocation context 958 * @nid: node whose slab caches to target 959 * @memcg: memory cgroup whose slab caches to target 960 * @priority: the reclaim priority 961 * 962 * Call the shrink functions to age shrinkable caches. 963 * 964 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 965 * unaware shrinkers will receive a node id of 0 instead. 966 * 967 * @memcg specifies the memory cgroup to target. Unaware shrinkers 968 * are called only if it is the root cgroup. 969 * 970 * @priority is sc->priority, we take the number of objects and >> by priority 971 * in order to get the scan target. 972 * 973 * Returns the number of reclaimed slab objects. 974 */ 975 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 976 struct mem_cgroup *memcg, 977 int priority) 978 { 979 unsigned long ret, freed = 0; 980 struct shrinker *shrinker; 981 982 /* 983 * The root memcg might be allocated even though memcg is disabled 984 * via "cgroup_disable=memory" boot parameter. This could make 985 * mem_cgroup_is_root() return false, then just run memcg slab 986 * shrink, but skip global shrink. This may result in premature 987 * oom. 988 */ 989 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 990 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 991 992 if (!down_read_trylock(&shrinker_rwsem)) 993 goto out; 994 995 list_for_each_entry(shrinker, &shrinker_list, list) { 996 struct shrink_control sc = { 997 .gfp_mask = gfp_mask, 998 .nid = nid, 999 .memcg = memcg, 1000 }; 1001 1002 ret = do_shrink_slab(&sc, shrinker, priority); 1003 if (ret == SHRINK_EMPTY) 1004 ret = 0; 1005 freed += ret; 1006 /* 1007 * Bail out if someone want to register a new shrinker to 1008 * prevent the registration from being stalled for long periods 1009 * by parallel ongoing shrinking. 1010 */ 1011 if (rwsem_is_contended(&shrinker_rwsem)) { 1012 freed = freed ? : 1; 1013 break; 1014 } 1015 } 1016 1017 up_read(&shrinker_rwsem); 1018 out: 1019 cond_resched(); 1020 return freed; 1021 } 1022 1023 static void drop_slab_node(int nid) 1024 { 1025 unsigned long freed; 1026 int shift = 0; 1027 1028 do { 1029 struct mem_cgroup *memcg = NULL; 1030 1031 if (fatal_signal_pending(current)) 1032 return; 1033 1034 freed = 0; 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1036 do { 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1039 } while ((freed >> shift++) > 1); 1040 } 1041 1042 void drop_slab(void) 1043 { 1044 int nid; 1045 1046 for_each_online_node(nid) 1047 drop_slab_node(nid); 1048 } 1049 1050 static inline int is_page_cache_freeable(struct folio *folio) 1051 { 1052 /* 1053 * A freeable page cache folio is referenced only by the caller 1054 * that isolated the folio, the page cache and optional filesystem 1055 * private data at folio->private. 1056 */ 1057 return folio_ref_count(folio) - folio_test_private(folio) == 1058 1 + folio_nr_pages(folio); 1059 } 1060 1061 /* 1062 * We detected a synchronous write error writing a folio out. Probably 1063 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1064 * fsync(), msync() or close(). 1065 * 1066 * The tricky part is that after writepage we cannot touch the mapping: nothing 1067 * prevents it from being freed up. But we have a ref on the folio and once 1068 * that folio is locked, the mapping is pinned. 1069 * 1070 * We're allowed to run sleeping folio_lock() here because we know the caller has 1071 * __GFP_FS. 1072 */ 1073 static void handle_write_error(struct address_space *mapping, 1074 struct folio *folio, int error) 1075 { 1076 folio_lock(folio); 1077 if (folio_mapping(folio) == mapping) 1078 mapping_set_error(mapping, error); 1079 folio_unlock(folio); 1080 } 1081 1082 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1083 { 1084 int reclaimable = 0, write_pending = 0; 1085 int i; 1086 1087 /* 1088 * If kswapd is disabled, reschedule if necessary but do not 1089 * throttle as the system is likely near OOM. 1090 */ 1091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1092 return true; 1093 1094 /* 1095 * If there are a lot of dirty/writeback folios then do not 1096 * throttle as throttling will occur when the folios cycle 1097 * towards the end of the LRU if still under writeback. 1098 */ 1099 for (i = 0; i < MAX_NR_ZONES; i++) { 1100 struct zone *zone = pgdat->node_zones + i; 1101 1102 if (!managed_zone(zone)) 1103 continue; 1104 1105 reclaimable += zone_reclaimable_pages(zone); 1106 write_pending += zone_page_state_snapshot(zone, 1107 NR_ZONE_WRITE_PENDING); 1108 } 1109 if (2 * write_pending <= reclaimable) 1110 return true; 1111 1112 return false; 1113 } 1114 1115 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1116 { 1117 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1118 long timeout, ret; 1119 DEFINE_WAIT(wait); 1120 1121 /* 1122 * Do not throttle IO workers, kthreads other than kswapd or 1123 * workqueues. They may be required for reclaim to make 1124 * forward progress (e.g. journalling workqueues or kthreads). 1125 */ 1126 if (!current_is_kswapd() && 1127 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1128 cond_resched(); 1129 return; 1130 } 1131 1132 /* 1133 * These figures are pulled out of thin air. 1134 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1135 * parallel reclaimers which is a short-lived event so the timeout is 1136 * short. Failing to make progress or waiting on writeback are 1137 * potentially long-lived events so use a longer timeout. This is shaky 1138 * logic as a failure to make progress could be due to anything from 1139 * writeback to a slow device to excessive referenced folios at the tail 1140 * of the inactive LRU. 1141 */ 1142 switch(reason) { 1143 case VMSCAN_THROTTLE_WRITEBACK: 1144 timeout = HZ/10; 1145 1146 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1147 WRITE_ONCE(pgdat->nr_reclaim_start, 1148 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1149 } 1150 1151 break; 1152 case VMSCAN_THROTTLE_CONGESTED: 1153 fallthrough; 1154 case VMSCAN_THROTTLE_NOPROGRESS: 1155 if (skip_throttle_noprogress(pgdat)) { 1156 cond_resched(); 1157 return; 1158 } 1159 1160 timeout = 1; 1161 1162 break; 1163 case VMSCAN_THROTTLE_ISOLATED: 1164 timeout = HZ/50; 1165 break; 1166 default: 1167 WARN_ON_ONCE(1); 1168 timeout = HZ; 1169 break; 1170 } 1171 1172 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1173 ret = schedule_timeout(timeout); 1174 finish_wait(wqh, &wait); 1175 1176 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1177 atomic_dec(&pgdat->nr_writeback_throttled); 1178 1179 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1180 jiffies_to_usecs(timeout - ret), 1181 reason); 1182 } 1183 1184 /* 1185 * Account for folios written if tasks are throttled waiting on dirty 1186 * folios to clean. If enough folios have been cleaned since throttling 1187 * started then wakeup the throttled tasks. 1188 */ 1189 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1190 int nr_throttled) 1191 { 1192 unsigned long nr_written; 1193 1194 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1195 1196 /* 1197 * This is an inaccurate read as the per-cpu deltas may not 1198 * be synchronised. However, given that the system is 1199 * writeback throttled, it is not worth taking the penalty 1200 * of getting an accurate count. At worst, the throttle 1201 * timeout guarantees forward progress. 1202 */ 1203 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1204 READ_ONCE(pgdat->nr_reclaim_start); 1205 1206 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1207 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1208 } 1209 1210 /* possible outcome of pageout() */ 1211 typedef enum { 1212 /* failed to write folio out, folio is locked */ 1213 PAGE_KEEP, 1214 /* move folio to the active list, folio is locked */ 1215 PAGE_ACTIVATE, 1216 /* folio has been sent to the disk successfully, folio is unlocked */ 1217 PAGE_SUCCESS, 1218 /* folio is clean and locked */ 1219 PAGE_CLEAN, 1220 } pageout_t; 1221 1222 /* 1223 * pageout is called by shrink_folio_list() for each dirty folio. 1224 * Calls ->writepage(). 1225 */ 1226 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1227 struct swap_iocb **plug) 1228 { 1229 /* 1230 * If the folio is dirty, only perform writeback if that write 1231 * will be non-blocking. To prevent this allocation from being 1232 * stalled by pagecache activity. But note that there may be 1233 * stalls if we need to run get_block(). We could test 1234 * PagePrivate for that. 1235 * 1236 * If this process is currently in __generic_file_write_iter() against 1237 * this folio's queue, we can perform writeback even if that 1238 * will block. 1239 * 1240 * If the folio is swapcache, write it back even if that would 1241 * block, for some throttling. This happens by accident, because 1242 * swap_backing_dev_info is bust: it doesn't reflect the 1243 * congestion state of the swapdevs. Easy to fix, if needed. 1244 */ 1245 if (!is_page_cache_freeable(folio)) 1246 return PAGE_KEEP; 1247 if (!mapping) { 1248 /* 1249 * Some data journaling orphaned folios can have 1250 * folio->mapping == NULL while being dirty with clean buffers. 1251 */ 1252 if (folio_test_private(folio)) { 1253 if (try_to_free_buffers(folio)) { 1254 folio_clear_dirty(folio); 1255 pr_info("%s: orphaned folio\n", __func__); 1256 return PAGE_CLEAN; 1257 } 1258 } 1259 return PAGE_KEEP; 1260 } 1261 if (mapping->a_ops->writepage == NULL) 1262 return PAGE_ACTIVATE; 1263 1264 if (folio_clear_dirty_for_io(folio)) { 1265 int res; 1266 struct writeback_control wbc = { 1267 .sync_mode = WB_SYNC_NONE, 1268 .nr_to_write = SWAP_CLUSTER_MAX, 1269 .range_start = 0, 1270 .range_end = LLONG_MAX, 1271 .for_reclaim = 1, 1272 .swap_plug = plug, 1273 }; 1274 1275 folio_set_reclaim(folio); 1276 res = mapping->a_ops->writepage(&folio->page, &wbc); 1277 if (res < 0) 1278 handle_write_error(mapping, folio, res); 1279 if (res == AOP_WRITEPAGE_ACTIVATE) { 1280 folio_clear_reclaim(folio); 1281 return PAGE_ACTIVATE; 1282 } 1283 1284 if (!folio_test_writeback(folio)) { 1285 /* synchronous write or broken a_ops? */ 1286 folio_clear_reclaim(folio); 1287 } 1288 trace_mm_vmscan_write_folio(folio); 1289 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1290 return PAGE_SUCCESS; 1291 } 1292 1293 return PAGE_CLEAN; 1294 } 1295 1296 /* 1297 * Same as remove_mapping, but if the folio is removed from the mapping, it 1298 * gets returned with a refcount of 0. 1299 */ 1300 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1301 bool reclaimed, struct mem_cgroup *target_memcg) 1302 { 1303 int refcount; 1304 void *shadow = NULL; 1305 1306 BUG_ON(!folio_test_locked(folio)); 1307 BUG_ON(mapping != folio_mapping(folio)); 1308 1309 if (!folio_test_swapcache(folio)) 1310 spin_lock(&mapping->host->i_lock); 1311 xa_lock_irq(&mapping->i_pages); 1312 /* 1313 * The non racy check for a busy folio. 1314 * 1315 * Must be careful with the order of the tests. When someone has 1316 * a ref to the folio, it may be possible that they dirty it then 1317 * drop the reference. So if the dirty flag is tested before the 1318 * refcount here, then the following race may occur: 1319 * 1320 * get_user_pages(&page); 1321 * [user mapping goes away] 1322 * write_to(page); 1323 * !folio_test_dirty(folio) [good] 1324 * folio_set_dirty(folio); 1325 * folio_put(folio); 1326 * !refcount(folio) [good, discard it] 1327 * 1328 * [oops, our write_to data is lost] 1329 * 1330 * Reversing the order of the tests ensures such a situation cannot 1331 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1332 * load is not satisfied before that of folio->_refcount. 1333 * 1334 * Note that if the dirty flag is always set via folio_mark_dirty, 1335 * and thus under the i_pages lock, then this ordering is not required. 1336 */ 1337 refcount = 1 + folio_nr_pages(folio); 1338 if (!folio_ref_freeze(folio, refcount)) 1339 goto cannot_free; 1340 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1341 if (unlikely(folio_test_dirty(folio))) { 1342 folio_ref_unfreeze(folio, refcount); 1343 goto cannot_free; 1344 } 1345 1346 if (folio_test_swapcache(folio)) { 1347 swp_entry_t swap = folio_swap_entry(folio); 1348 1349 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */ 1350 if (reclaimed && !mapping_exiting(mapping)) 1351 shadow = workingset_eviction(folio, target_memcg); 1352 mem_cgroup_swapout(folio, swap); 1353 __delete_from_swap_cache(folio, swap, shadow); 1354 xa_unlock_irq(&mapping->i_pages); 1355 put_swap_folio(folio, swap); 1356 } else { 1357 void (*free_folio)(struct folio *); 1358 1359 free_folio = mapping->a_ops->free_folio; 1360 /* 1361 * Remember a shadow entry for reclaimed file cache in 1362 * order to detect refaults, thus thrashing, later on. 1363 * 1364 * But don't store shadows in an address space that is 1365 * already exiting. This is not just an optimization, 1366 * inode reclaim needs to empty out the radix tree or 1367 * the nodes are lost. Don't plant shadows behind its 1368 * back. 1369 * 1370 * We also don't store shadows for DAX mappings because the 1371 * only page cache folios found in these are zero pages 1372 * covering holes, and because we don't want to mix DAX 1373 * exceptional entries and shadow exceptional entries in the 1374 * same address_space. 1375 */ 1376 if (reclaimed && folio_is_file_lru(folio) && 1377 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1378 shadow = workingset_eviction(folio, target_memcg); 1379 __filemap_remove_folio(folio, shadow); 1380 xa_unlock_irq(&mapping->i_pages); 1381 if (mapping_shrinkable(mapping)) 1382 inode_add_lru(mapping->host); 1383 spin_unlock(&mapping->host->i_lock); 1384 1385 if (free_folio) 1386 free_folio(folio); 1387 } 1388 1389 return 1; 1390 1391 cannot_free: 1392 xa_unlock_irq(&mapping->i_pages); 1393 if (!folio_test_swapcache(folio)) 1394 spin_unlock(&mapping->host->i_lock); 1395 return 0; 1396 } 1397 1398 /** 1399 * remove_mapping() - Attempt to remove a folio from its mapping. 1400 * @mapping: The address space. 1401 * @folio: The folio to remove. 1402 * 1403 * If the folio is dirty, under writeback or if someone else has a ref 1404 * on it, removal will fail. 1405 * Return: The number of pages removed from the mapping. 0 if the folio 1406 * could not be removed. 1407 * Context: The caller should have a single refcount on the folio and 1408 * hold its lock. 1409 */ 1410 long remove_mapping(struct address_space *mapping, struct folio *folio) 1411 { 1412 if (__remove_mapping(mapping, folio, false, NULL)) { 1413 /* 1414 * Unfreezing the refcount with 1 effectively 1415 * drops the pagecache ref for us without requiring another 1416 * atomic operation. 1417 */ 1418 folio_ref_unfreeze(folio, 1); 1419 return folio_nr_pages(folio); 1420 } 1421 return 0; 1422 } 1423 1424 /** 1425 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1426 * @folio: Folio to be returned to an LRU list. 1427 * 1428 * Add previously isolated @folio to appropriate LRU list. 1429 * The folio may still be unevictable for other reasons. 1430 * 1431 * Context: lru_lock must not be held, interrupts must be enabled. 1432 */ 1433 void folio_putback_lru(struct folio *folio) 1434 { 1435 folio_add_lru(folio); 1436 folio_put(folio); /* drop ref from isolate */ 1437 } 1438 1439 enum folio_references { 1440 FOLIOREF_RECLAIM, 1441 FOLIOREF_RECLAIM_CLEAN, 1442 FOLIOREF_KEEP, 1443 FOLIOREF_ACTIVATE, 1444 }; 1445 1446 static enum folio_references folio_check_references(struct folio *folio, 1447 struct scan_control *sc) 1448 { 1449 int referenced_ptes, referenced_folio; 1450 unsigned long vm_flags; 1451 1452 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1453 &vm_flags); 1454 referenced_folio = folio_test_clear_referenced(folio); 1455 1456 /* 1457 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1458 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1459 */ 1460 if (vm_flags & VM_LOCKED) 1461 return FOLIOREF_ACTIVATE; 1462 1463 /* rmap lock contention: rotate */ 1464 if (referenced_ptes == -1) 1465 return FOLIOREF_KEEP; 1466 1467 if (referenced_ptes) { 1468 /* 1469 * All mapped folios start out with page table 1470 * references from the instantiating fault, so we need 1471 * to look twice if a mapped file/anon folio is used more 1472 * than once. 1473 * 1474 * Mark it and spare it for another trip around the 1475 * inactive list. Another page table reference will 1476 * lead to its activation. 1477 * 1478 * Note: the mark is set for activated folios as well 1479 * so that recently deactivated but used folios are 1480 * quickly recovered. 1481 */ 1482 folio_set_referenced(folio); 1483 1484 if (referenced_folio || referenced_ptes > 1) 1485 return FOLIOREF_ACTIVATE; 1486 1487 /* 1488 * Activate file-backed executable folios after first usage. 1489 */ 1490 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1491 return FOLIOREF_ACTIVATE; 1492 1493 return FOLIOREF_KEEP; 1494 } 1495 1496 /* Reclaim if clean, defer dirty folios to writeback */ 1497 if (referenced_folio && folio_is_file_lru(folio)) 1498 return FOLIOREF_RECLAIM_CLEAN; 1499 1500 return FOLIOREF_RECLAIM; 1501 } 1502 1503 /* Check if a folio is dirty or under writeback */ 1504 static void folio_check_dirty_writeback(struct folio *folio, 1505 bool *dirty, bool *writeback) 1506 { 1507 struct address_space *mapping; 1508 1509 /* 1510 * Anonymous folios are not handled by flushers and must be written 1511 * from reclaim context. Do not stall reclaim based on them. 1512 * MADV_FREE anonymous folios are put into inactive file list too. 1513 * They could be mistakenly treated as file lru. So further anon 1514 * test is needed. 1515 */ 1516 if (!folio_is_file_lru(folio) || 1517 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1518 *dirty = false; 1519 *writeback = false; 1520 return; 1521 } 1522 1523 /* By default assume that the folio flags are accurate */ 1524 *dirty = folio_test_dirty(folio); 1525 *writeback = folio_test_writeback(folio); 1526 1527 /* Verify dirty/writeback state if the filesystem supports it */ 1528 if (!folio_test_private(folio)) 1529 return; 1530 1531 mapping = folio_mapping(folio); 1532 if (mapping && mapping->a_ops->is_dirty_writeback) 1533 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1534 } 1535 1536 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1537 { 1538 struct page *target_page; 1539 nodemask_t *allowed_mask; 1540 struct migration_target_control *mtc; 1541 1542 mtc = (struct migration_target_control *)private; 1543 1544 allowed_mask = mtc->nmask; 1545 /* 1546 * make sure we allocate from the target node first also trying to 1547 * demote or reclaim pages from the target node via kswapd if we are 1548 * low on free memory on target node. If we don't do this and if 1549 * we have free memory on the slower(lower) memtier, we would start 1550 * allocating pages from slower(lower) memory tiers without even forcing 1551 * a demotion of cold pages from the target memtier. This can result 1552 * in the kernel placing hot pages in slower(lower) memory tiers. 1553 */ 1554 mtc->nmask = NULL; 1555 mtc->gfp_mask |= __GFP_THISNODE; 1556 target_page = alloc_migration_target(page, (unsigned long)mtc); 1557 if (target_page) 1558 return target_page; 1559 1560 mtc->gfp_mask &= ~__GFP_THISNODE; 1561 mtc->nmask = allowed_mask; 1562 1563 return alloc_migration_target(page, (unsigned long)mtc); 1564 } 1565 1566 /* 1567 * Take folios on @demote_folios and attempt to demote them to another node. 1568 * Folios which are not demoted are left on @demote_folios. 1569 */ 1570 static unsigned int demote_folio_list(struct list_head *demote_folios, 1571 struct pglist_data *pgdat) 1572 { 1573 int target_nid = next_demotion_node(pgdat->node_id); 1574 unsigned int nr_succeeded; 1575 nodemask_t allowed_mask; 1576 1577 struct migration_target_control mtc = { 1578 /* 1579 * Allocate from 'node', or fail quickly and quietly. 1580 * When this happens, 'page' will likely just be discarded 1581 * instead of migrated. 1582 */ 1583 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1584 __GFP_NOMEMALLOC | GFP_NOWAIT, 1585 .nid = target_nid, 1586 .nmask = &allowed_mask 1587 }; 1588 1589 if (list_empty(demote_folios)) 1590 return 0; 1591 1592 if (target_nid == NUMA_NO_NODE) 1593 return 0; 1594 1595 node_get_allowed_targets(pgdat, &allowed_mask); 1596 1597 /* Demotion ignores all cpuset and mempolicy settings */ 1598 migrate_pages(demote_folios, alloc_demote_page, NULL, 1599 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1600 &nr_succeeded); 1601 1602 if (current_is_kswapd()) 1603 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1604 else 1605 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1606 1607 return nr_succeeded; 1608 } 1609 1610 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1611 { 1612 if (gfp_mask & __GFP_FS) 1613 return true; 1614 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1615 return false; 1616 /* 1617 * We can "enter_fs" for swap-cache with only __GFP_IO 1618 * providing this isn't SWP_FS_OPS. 1619 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1620 * but that will never affect SWP_FS_OPS, so the data_race 1621 * is safe. 1622 */ 1623 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1624 } 1625 1626 /* 1627 * shrink_folio_list() returns the number of reclaimed pages 1628 */ 1629 static unsigned int shrink_folio_list(struct list_head *folio_list, 1630 struct pglist_data *pgdat, struct scan_control *sc, 1631 struct reclaim_stat *stat, bool ignore_references) 1632 { 1633 LIST_HEAD(ret_folios); 1634 LIST_HEAD(free_folios); 1635 LIST_HEAD(demote_folios); 1636 unsigned int nr_reclaimed = 0; 1637 unsigned int pgactivate = 0; 1638 bool do_demote_pass; 1639 struct swap_iocb *plug = NULL; 1640 1641 memset(stat, 0, sizeof(*stat)); 1642 cond_resched(); 1643 do_demote_pass = can_demote(pgdat->node_id, sc); 1644 1645 retry: 1646 while (!list_empty(folio_list)) { 1647 struct address_space *mapping; 1648 struct folio *folio; 1649 enum folio_references references = FOLIOREF_RECLAIM; 1650 bool dirty, writeback; 1651 unsigned int nr_pages; 1652 1653 cond_resched(); 1654 1655 folio = lru_to_folio(folio_list); 1656 list_del(&folio->lru); 1657 1658 if (!folio_trylock(folio)) 1659 goto keep; 1660 1661 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1662 1663 nr_pages = folio_nr_pages(folio); 1664 1665 /* Account the number of base pages */ 1666 sc->nr_scanned += nr_pages; 1667 1668 if (unlikely(!folio_evictable(folio))) 1669 goto activate_locked; 1670 1671 if (!sc->may_unmap && folio_mapped(folio)) 1672 goto keep_locked; 1673 1674 /* folio_update_gen() tried to promote this page? */ 1675 if (lru_gen_enabled() && !ignore_references && 1676 folio_mapped(folio) && folio_test_referenced(folio)) 1677 goto keep_locked; 1678 1679 /* 1680 * The number of dirty pages determines if a node is marked 1681 * reclaim_congested. kswapd will stall and start writing 1682 * folios if the tail of the LRU is all dirty unqueued folios. 1683 */ 1684 folio_check_dirty_writeback(folio, &dirty, &writeback); 1685 if (dirty || writeback) 1686 stat->nr_dirty += nr_pages; 1687 1688 if (dirty && !writeback) 1689 stat->nr_unqueued_dirty += nr_pages; 1690 1691 /* 1692 * Treat this folio as congested if folios are cycling 1693 * through the LRU so quickly that the folios marked 1694 * for immediate reclaim are making it to the end of 1695 * the LRU a second time. 1696 */ 1697 if (writeback && folio_test_reclaim(folio)) 1698 stat->nr_congested += nr_pages; 1699 1700 /* 1701 * If a folio at the tail of the LRU is under writeback, there 1702 * are three cases to consider. 1703 * 1704 * 1) If reclaim is encountering an excessive number 1705 * of folios under writeback and this folio has both 1706 * the writeback and reclaim flags set, then it 1707 * indicates that folios are being queued for I/O but 1708 * are being recycled through the LRU before the I/O 1709 * can complete. Waiting on the folio itself risks an 1710 * indefinite stall if it is impossible to writeback 1711 * the folio due to I/O error or disconnected storage 1712 * so instead note that the LRU is being scanned too 1713 * quickly and the caller can stall after the folio 1714 * list has been processed. 1715 * 1716 * 2) Global or new memcg reclaim encounters a folio that is 1717 * not marked for immediate reclaim, or the caller does not 1718 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1719 * not to fs). In this case mark the folio for immediate 1720 * reclaim and continue scanning. 1721 * 1722 * Require may_enter_fs() because we would wait on fs, which 1723 * may not have submitted I/O yet. And the loop driver might 1724 * enter reclaim, and deadlock if it waits on a folio for 1725 * which it is needed to do the write (loop masks off 1726 * __GFP_IO|__GFP_FS for this reason); but more thought 1727 * would probably show more reasons. 1728 * 1729 * 3) Legacy memcg encounters a folio that already has the 1730 * reclaim flag set. memcg does not have any dirty folio 1731 * throttling so we could easily OOM just because too many 1732 * folios are in writeback and there is nothing else to 1733 * reclaim. Wait for the writeback to complete. 1734 * 1735 * In cases 1) and 2) we activate the folios to get them out of 1736 * the way while we continue scanning for clean folios on the 1737 * inactive list and refilling from the active list. The 1738 * observation here is that waiting for disk writes is more 1739 * expensive than potentially causing reloads down the line. 1740 * Since they're marked for immediate reclaim, they won't put 1741 * memory pressure on the cache working set any longer than it 1742 * takes to write them to disk. 1743 */ 1744 if (folio_test_writeback(folio)) { 1745 /* Case 1 above */ 1746 if (current_is_kswapd() && 1747 folio_test_reclaim(folio) && 1748 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1749 stat->nr_immediate += nr_pages; 1750 goto activate_locked; 1751 1752 /* Case 2 above */ 1753 } else if (writeback_throttling_sane(sc) || 1754 !folio_test_reclaim(folio) || 1755 !may_enter_fs(folio, sc->gfp_mask)) { 1756 /* 1757 * This is slightly racy - 1758 * folio_end_writeback() might have 1759 * just cleared the reclaim flag, then 1760 * setting the reclaim flag here ends up 1761 * interpreted as the readahead flag - but 1762 * that does not matter enough to care. 1763 * What we do want is for this folio to 1764 * have the reclaim flag set next time 1765 * memcg reclaim reaches the tests above, 1766 * so it will then wait for writeback to 1767 * avoid OOM; and it's also appropriate 1768 * in global reclaim. 1769 */ 1770 folio_set_reclaim(folio); 1771 stat->nr_writeback += nr_pages; 1772 goto activate_locked; 1773 1774 /* Case 3 above */ 1775 } else { 1776 folio_unlock(folio); 1777 folio_wait_writeback(folio); 1778 /* then go back and try same folio again */ 1779 list_add_tail(&folio->lru, folio_list); 1780 continue; 1781 } 1782 } 1783 1784 if (!ignore_references) 1785 references = folio_check_references(folio, sc); 1786 1787 switch (references) { 1788 case FOLIOREF_ACTIVATE: 1789 goto activate_locked; 1790 case FOLIOREF_KEEP: 1791 stat->nr_ref_keep += nr_pages; 1792 goto keep_locked; 1793 case FOLIOREF_RECLAIM: 1794 case FOLIOREF_RECLAIM_CLEAN: 1795 ; /* try to reclaim the folio below */ 1796 } 1797 1798 /* 1799 * Before reclaiming the folio, try to relocate 1800 * its contents to another node. 1801 */ 1802 if (do_demote_pass && 1803 (thp_migration_supported() || !folio_test_large(folio))) { 1804 list_add(&folio->lru, &demote_folios); 1805 folio_unlock(folio); 1806 continue; 1807 } 1808 1809 /* 1810 * Anonymous process memory has backing store? 1811 * Try to allocate it some swap space here. 1812 * Lazyfree folio could be freed directly 1813 */ 1814 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1815 if (!folio_test_swapcache(folio)) { 1816 if (!(sc->gfp_mask & __GFP_IO)) 1817 goto keep_locked; 1818 if (folio_maybe_dma_pinned(folio)) 1819 goto keep_locked; 1820 if (folio_test_large(folio)) { 1821 /* cannot split folio, skip it */ 1822 if (!can_split_folio(folio, NULL)) 1823 goto activate_locked; 1824 /* 1825 * Split folios without a PMD map right 1826 * away. Chances are some or all of the 1827 * tail pages can be freed without IO. 1828 */ 1829 if (!folio_entire_mapcount(folio) && 1830 split_folio_to_list(folio, 1831 folio_list)) 1832 goto activate_locked; 1833 } 1834 if (!add_to_swap(folio)) { 1835 if (!folio_test_large(folio)) 1836 goto activate_locked_split; 1837 /* Fallback to swap normal pages */ 1838 if (split_folio_to_list(folio, 1839 folio_list)) 1840 goto activate_locked; 1841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1842 count_vm_event(THP_SWPOUT_FALLBACK); 1843 #endif 1844 if (!add_to_swap(folio)) 1845 goto activate_locked_split; 1846 } 1847 } 1848 } else if (folio_test_swapbacked(folio) && 1849 folio_test_large(folio)) { 1850 /* Split shmem folio */ 1851 if (split_folio_to_list(folio, folio_list)) 1852 goto keep_locked; 1853 } 1854 1855 /* 1856 * If the folio was split above, the tail pages will make 1857 * their own pass through this function and be accounted 1858 * then. 1859 */ 1860 if ((nr_pages > 1) && !folio_test_large(folio)) { 1861 sc->nr_scanned -= (nr_pages - 1); 1862 nr_pages = 1; 1863 } 1864 1865 /* 1866 * The folio is mapped into the page tables of one or more 1867 * processes. Try to unmap it here. 1868 */ 1869 if (folio_mapped(folio)) { 1870 enum ttu_flags flags = TTU_BATCH_FLUSH; 1871 bool was_swapbacked = folio_test_swapbacked(folio); 1872 1873 if (folio_test_pmd_mappable(folio)) 1874 flags |= TTU_SPLIT_HUGE_PMD; 1875 1876 try_to_unmap(folio, flags); 1877 if (folio_mapped(folio)) { 1878 stat->nr_unmap_fail += nr_pages; 1879 if (!was_swapbacked && 1880 folio_test_swapbacked(folio)) 1881 stat->nr_lazyfree_fail += nr_pages; 1882 goto activate_locked; 1883 } 1884 } 1885 1886 mapping = folio_mapping(folio); 1887 if (folio_test_dirty(folio)) { 1888 /* 1889 * Only kswapd can writeback filesystem folios 1890 * to avoid risk of stack overflow. But avoid 1891 * injecting inefficient single-folio I/O into 1892 * flusher writeback as much as possible: only 1893 * write folios when we've encountered many 1894 * dirty folios, and when we've already scanned 1895 * the rest of the LRU for clean folios and see 1896 * the same dirty folios again (with the reclaim 1897 * flag set). 1898 */ 1899 if (folio_is_file_lru(folio) && 1900 (!current_is_kswapd() || 1901 !folio_test_reclaim(folio) || 1902 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1903 /* 1904 * Immediately reclaim when written back. 1905 * Similar in principle to deactivate_page() 1906 * except we already have the folio isolated 1907 * and know it's dirty 1908 */ 1909 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1910 nr_pages); 1911 folio_set_reclaim(folio); 1912 1913 goto activate_locked; 1914 } 1915 1916 if (references == FOLIOREF_RECLAIM_CLEAN) 1917 goto keep_locked; 1918 if (!may_enter_fs(folio, sc->gfp_mask)) 1919 goto keep_locked; 1920 if (!sc->may_writepage) 1921 goto keep_locked; 1922 1923 /* 1924 * Folio is dirty. Flush the TLB if a writable entry 1925 * potentially exists to avoid CPU writes after I/O 1926 * starts and then write it out here. 1927 */ 1928 try_to_unmap_flush_dirty(); 1929 switch (pageout(folio, mapping, &plug)) { 1930 case PAGE_KEEP: 1931 goto keep_locked; 1932 case PAGE_ACTIVATE: 1933 goto activate_locked; 1934 case PAGE_SUCCESS: 1935 stat->nr_pageout += nr_pages; 1936 1937 if (folio_test_writeback(folio)) 1938 goto keep; 1939 if (folio_test_dirty(folio)) 1940 goto keep; 1941 1942 /* 1943 * A synchronous write - probably a ramdisk. Go 1944 * ahead and try to reclaim the folio. 1945 */ 1946 if (!folio_trylock(folio)) 1947 goto keep; 1948 if (folio_test_dirty(folio) || 1949 folio_test_writeback(folio)) 1950 goto keep_locked; 1951 mapping = folio_mapping(folio); 1952 fallthrough; 1953 case PAGE_CLEAN: 1954 ; /* try to free the folio below */ 1955 } 1956 } 1957 1958 /* 1959 * If the folio has buffers, try to free the buffer 1960 * mappings associated with this folio. If we succeed 1961 * we try to free the folio as well. 1962 * 1963 * We do this even if the folio is dirty. 1964 * filemap_release_folio() does not perform I/O, but it 1965 * is possible for a folio to have the dirty flag set, 1966 * but it is actually clean (all its buffers are clean). 1967 * This happens if the buffers were written out directly, 1968 * with submit_bh(). ext3 will do this, as well as 1969 * the blockdev mapping. filemap_release_folio() will 1970 * discover that cleanness and will drop the buffers 1971 * and mark the folio clean - it can be freed. 1972 * 1973 * Rarely, folios can have buffers and no ->mapping. 1974 * These are the folios which were not successfully 1975 * invalidated in truncate_cleanup_folio(). We try to 1976 * drop those buffers here and if that worked, and the 1977 * folio is no longer mapped into process address space 1978 * (refcount == 1) it can be freed. Otherwise, leave 1979 * the folio on the LRU so it is swappable. 1980 */ 1981 if (folio_has_private(folio)) { 1982 if (!filemap_release_folio(folio, sc->gfp_mask)) 1983 goto activate_locked; 1984 if (!mapping && folio_ref_count(folio) == 1) { 1985 folio_unlock(folio); 1986 if (folio_put_testzero(folio)) 1987 goto free_it; 1988 else { 1989 /* 1990 * rare race with speculative reference. 1991 * the speculative reference will free 1992 * this folio shortly, so we may 1993 * increment nr_reclaimed here (and 1994 * leave it off the LRU). 1995 */ 1996 nr_reclaimed += nr_pages; 1997 continue; 1998 } 1999 } 2000 } 2001 2002 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2003 /* follow __remove_mapping for reference */ 2004 if (!folio_ref_freeze(folio, 1)) 2005 goto keep_locked; 2006 /* 2007 * The folio has only one reference left, which is 2008 * from the isolation. After the caller puts the 2009 * folio back on the lru and drops the reference, the 2010 * folio will be freed anyway. It doesn't matter 2011 * which lru it goes on. So we don't bother checking 2012 * the dirty flag here. 2013 */ 2014 count_vm_events(PGLAZYFREED, nr_pages); 2015 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2016 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2017 sc->target_mem_cgroup)) 2018 goto keep_locked; 2019 2020 folio_unlock(folio); 2021 free_it: 2022 /* 2023 * Folio may get swapped out as a whole, need to account 2024 * all pages in it. 2025 */ 2026 nr_reclaimed += nr_pages; 2027 2028 /* 2029 * Is there need to periodically free_folio_list? It would 2030 * appear not as the counts should be low 2031 */ 2032 if (unlikely(folio_test_large(folio))) 2033 destroy_large_folio(folio); 2034 else 2035 list_add(&folio->lru, &free_folios); 2036 continue; 2037 2038 activate_locked_split: 2039 /* 2040 * The tail pages that are failed to add into swap cache 2041 * reach here. Fixup nr_scanned and nr_pages. 2042 */ 2043 if (nr_pages > 1) { 2044 sc->nr_scanned -= (nr_pages - 1); 2045 nr_pages = 1; 2046 } 2047 activate_locked: 2048 /* Not a candidate for swapping, so reclaim swap space. */ 2049 if (folio_test_swapcache(folio) && 2050 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2051 folio_free_swap(folio); 2052 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2053 if (!folio_test_mlocked(folio)) { 2054 int type = folio_is_file_lru(folio); 2055 folio_set_active(folio); 2056 stat->nr_activate[type] += nr_pages; 2057 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2058 } 2059 keep_locked: 2060 folio_unlock(folio); 2061 keep: 2062 list_add(&folio->lru, &ret_folios); 2063 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2064 folio_test_unevictable(folio), folio); 2065 } 2066 /* 'folio_list' is always empty here */ 2067 2068 /* Migrate folios selected for demotion */ 2069 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2070 /* Folios that could not be demoted are still in @demote_folios */ 2071 if (!list_empty(&demote_folios)) { 2072 /* Folios which weren't demoted go back on @folio_list for retry: */ 2073 list_splice_init(&demote_folios, folio_list); 2074 do_demote_pass = false; 2075 goto retry; 2076 } 2077 2078 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2079 2080 mem_cgroup_uncharge_list(&free_folios); 2081 try_to_unmap_flush(); 2082 free_unref_page_list(&free_folios); 2083 2084 list_splice(&ret_folios, folio_list); 2085 count_vm_events(PGACTIVATE, pgactivate); 2086 2087 if (plug) 2088 swap_write_unplug(plug); 2089 return nr_reclaimed; 2090 } 2091 2092 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2093 struct list_head *folio_list) 2094 { 2095 struct scan_control sc = { 2096 .gfp_mask = GFP_KERNEL, 2097 .may_unmap = 1, 2098 }; 2099 struct reclaim_stat stat; 2100 unsigned int nr_reclaimed; 2101 struct folio *folio, *next; 2102 LIST_HEAD(clean_folios); 2103 unsigned int noreclaim_flag; 2104 2105 list_for_each_entry_safe(folio, next, folio_list, lru) { 2106 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2107 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2108 !folio_test_unevictable(folio)) { 2109 folio_clear_active(folio); 2110 list_move(&folio->lru, &clean_folios); 2111 } 2112 } 2113 2114 /* 2115 * We should be safe here since we are only dealing with file pages and 2116 * we are not kswapd and therefore cannot write dirty file pages. But 2117 * call memalloc_noreclaim_save() anyway, just in case these conditions 2118 * change in the future. 2119 */ 2120 noreclaim_flag = memalloc_noreclaim_save(); 2121 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2122 &stat, true); 2123 memalloc_noreclaim_restore(noreclaim_flag); 2124 2125 list_splice(&clean_folios, folio_list); 2126 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2127 -(long)nr_reclaimed); 2128 /* 2129 * Since lazyfree pages are isolated from file LRU from the beginning, 2130 * they will rotate back to anonymous LRU in the end if it failed to 2131 * discard so isolated count will be mismatched. 2132 * Compensate the isolated count for both LRU lists. 2133 */ 2134 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2135 stat.nr_lazyfree_fail); 2136 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2137 -(long)stat.nr_lazyfree_fail); 2138 return nr_reclaimed; 2139 } 2140 2141 /* 2142 * Update LRU sizes after isolating pages. The LRU size updates must 2143 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2144 */ 2145 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2146 enum lru_list lru, unsigned long *nr_zone_taken) 2147 { 2148 int zid; 2149 2150 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2151 if (!nr_zone_taken[zid]) 2152 continue; 2153 2154 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2155 } 2156 2157 } 2158 2159 /* 2160 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2161 * 2162 * lruvec->lru_lock is heavily contended. Some of the functions that 2163 * shrink the lists perform better by taking out a batch of pages 2164 * and working on them outside the LRU lock. 2165 * 2166 * For pagecache intensive workloads, this function is the hottest 2167 * spot in the kernel (apart from copy_*_user functions). 2168 * 2169 * Lru_lock must be held before calling this function. 2170 * 2171 * @nr_to_scan: The number of eligible pages to look through on the list. 2172 * @lruvec: The LRU vector to pull pages from. 2173 * @dst: The temp list to put pages on to. 2174 * @nr_scanned: The number of pages that were scanned. 2175 * @sc: The scan_control struct for this reclaim session 2176 * @lru: LRU list id for isolating 2177 * 2178 * returns how many pages were moved onto *@dst. 2179 */ 2180 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2181 struct lruvec *lruvec, struct list_head *dst, 2182 unsigned long *nr_scanned, struct scan_control *sc, 2183 enum lru_list lru) 2184 { 2185 struct list_head *src = &lruvec->lists[lru]; 2186 unsigned long nr_taken = 0; 2187 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2188 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2189 unsigned long skipped = 0; 2190 unsigned long scan, total_scan, nr_pages; 2191 LIST_HEAD(folios_skipped); 2192 2193 total_scan = 0; 2194 scan = 0; 2195 while (scan < nr_to_scan && !list_empty(src)) { 2196 struct list_head *move_to = src; 2197 struct folio *folio; 2198 2199 folio = lru_to_folio(src); 2200 prefetchw_prev_lru_folio(folio, src, flags); 2201 2202 nr_pages = folio_nr_pages(folio); 2203 total_scan += nr_pages; 2204 2205 if (folio_zonenum(folio) > sc->reclaim_idx) { 2206 nr_skipped[folio_zonenum(folio)] += nr_pages; 2207 move_to = &folios_skipped; 2208 goto move; 2209 } 2210 2211 /* 2212 * Do not count skipped folios because that makes the function 2213 * return with no isolated folios if the LRU mostly contains 2214 * ineligible folios. This causes the VM to not reclaim any 2215 * folios, triggering a premature OOM. 2216 * Account all pages in a folio. 2217 */ 2218 scan += nr_pages; 2219 2220 if (!folio_test_lru(folio)) 2221 goto move; 2222 if (!sc->may_unmap && folio_mapped(folio)) 2223 goto move; 2224 2225 /* 2226 * Be careful not to clear the lru flag until after we're 2227 * sure the folio is not being freed elsewhere -- the 2228 * folio release code relies on it. 2229 */ 2230 if (unlikely(!folio_try_get(folio))) 2231 goto move; 2232 2233 if (!folio_test_clear_lru(folio)) { 2234 /* Another thread is already isolating this folio */ 2235 folio_put(folio); 2236 goto move; 2237 } 2238 2239 nr_taken += nr_pages; 2240 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2241 move_to = dst; 2242 move: 2243 list_move(&folio->lru, move_to); 2244 } 2245 2246 /* 2247 * Splice any skipped folios to the start of the LRU list. Note that 2248 * this disrupts the LRU order when reclaiming for lower zones but 2249 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2250 * scanning would soon rescan the same folios to skip and waste lots 2251 * of cpu cycles. 2252 */ 2253 if (!list_empty(&folios_skipped)) { 2254 int zid; 2255 2256 list_splice(&folios_skipped, src); 2257 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2258 if (!nr_skipped[zid]) 2259 continue; 2260 2261 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2262 skipped += nr_skipped[zid]; 2263 } 2264 } 2265 *nr_scanned = total_scan; 2266 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2267 total_scan, skipped, nr_taken, 2268 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2269 update_lru_sizes(lruvec, lru, nr_zone_taken); 2270 return nr_taken; 2271 } 2272 2273 /** 2274 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2275 * @folio: Folio to isolate from its LRU list. 2276 * 2277 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2278 * corresponding to whatever LRU list the folio was on. 2279 * 2280 * The folio will have its LRU flag cleared. If it was found on the 2281 * active list, it will have the Active flag set. If it was found on the 2282 * unevictable list, it will have the Unevictable flag set. These flags 2283 * may need to be cleared by the caller before letting the page go. 2284 * 2285 * Context: 2286 * 2287 * (1) Must be called with an elevated refcount on the folio. This is a 2288 * fundamental difference from isolate_lru_folios() (which is called 2289 * without a stable reference). 2290 * (2) The lru_lock must not be held. 2291 * (3) Interrupts must be enabled. 2292 * 2293 * Return: 0 if the folio was removed from an LRU list. 2294 * -EBUSY if the folio was not on an LRU list. 2295 */ 2296 int folio_isolate_lru(struct folio *folio) 2297 { 2298 int ret = -EBUSY; 2299 2300 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2301 2302 if (folio_test_clear_lru(folio)) { 2303 struct lruvec *lruvec; 2304 2305 folio_get(folio); 2306 lruvec = folio_lruvec_lock_irq(folio); 2307 lruvec_del_folio(lruvec, folio); 2308 unlock_page_lruvec_irq(lruvec); 2309 ret = 0; 2310 } 2311 2312 return ret; 2313 } 2314 2315 /* 2316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2317 * then get rescheduled. When there are massive number of tasks doing page 2318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2319 * the LRU list will go small and be scanned faster than necessary, leading to 2320 * unnecessary swapping, thrashing and OOM. 2321 */ 2322 static int too_many_isolated(struct pglist_data *pgdat, int file, 2323 struct scan_control *sc) 2324 { 2325 unsigned long inactive, isolated; 2326 bool too_many; 2327 2328 if (current_is_kswapd()) 2329 return 0; 2330 2331 if (!writeback_throttling_sane(sc)) 2332 return 0; 2333 2334 if (file) { 2335 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2336 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2337 } else { 2338 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2339 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2340 } 2341 2342 /* 2343 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2344 * won't get blocked by normal direct-reclaimers, forming a circular 2345 * deadlock. 2346 */ 2347 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2348 inactive >>= 3; 2349 2350 too_many = isolated > inactive; 2351 2352 /* Wake up tasks throttled due to too_many_isolated. */ 2353 if (!too_many) 2354 wake_throttle_isolated(pgdat); 2355 2356 return too_many; 2357 } 2358 2359 /* 2360 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2361 * On return, @list is reused as a list of folios to be freed by the caller. 2362 * 2363 * Returns the number of pages moved to the given lruvec. 2364 */ 2365 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2366 struct list_head *list) 2367 { 2368 int nr_pages, nr_moved = 0; 2369 LIST_HEAD(folios_to_free); 2370 2371 while (!list_empty(list)) { 2372 struct folio *folio = lru_to_folio(list); 2373 2374 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2375 list_del(&folio->lru); 2376 if (unlikely(!folio_evictable(folio))) { 2377 spin_unlock_irq(&lruvec->lru_lock); 2378 folio_putback_lru(folio); 2379 spin_lock_irq(&lruvec->lru_lock); 2380 continue; 2381 } 2382 2383 /* 2384 * The folio_set_lru needs to be kept here for list integrity. 2385 * Otherwise: 2386 * #0 move_folios_to_lru #1 release_pages 2387 * if (!folio_put_testzero()) 2388 * if (folio_put_testzero()) 2389 * !lru //skip lru_lock 2390 * folio_set_lru() 2391 * list_add(&folio->lru,) 2392 * list_add(&folio->lru,) 2393 */ 2394 folio_set_lru(folio); 2395 2396 if (unlikely(folio_put_testzero(folio))) { 2397 __folio_clear_lru_flags(folio); 2398 2399 if (unlikely(folio_test_large(folio))) { 2400 spin_unlock_irq(&lruvec->lru_lock); 2401 destroy_large_folio(folio); 2402 spin_lock_irq(&lruvec->lru_lock); 2403 } else 2404 list_add(&folio->lru, &folios_to_free); 2405 2406 continue; 2407 } 2408 2409 /* 2410 * All pages were isolated from the same lruvec (and isolation 2411 * inhibits memcg migration). 2412 */ 2413 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2414 lruvec_add_folio(lruvec, folio); 2415 nr_pages = folio_nr_pages(folio); 2416 nr_moved += nr_pages; 2417 if (folio_test_active(folio)) 2418 workingset_age_nonresident(lruvec, nr_pages); 2419 } 2420 2421 /* 2422 * To save our caller's stack, now use input list for pages to free. 2423 */ 2424 list_splice(&folios_to_free, list); 2425 2426 return nr_moved; 2427 } 2428 2429 /* 2430 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2431 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2432 * we should not throttle. Otherwise it is safe to do so. 2433 */ 2434 static int current_may_throttle(void) 2435 { 2436 return !(current->flags & PF_LOCAL_THROTTLE); 2437 } 2438 2439 /* 2440 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2441 * of reclaimed pages 2442 */ 2443 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2444 struct lruvec *lruvec, struct scan_control *sc, 2445 enum lru_list lru) 2446 { 2447 LIST_HEAD(folio_list); 2448 unsigned long nr_scanned; 2449 unsigned int nr_reclaimed = 0; 2450 unsigned long nr_taken; 2451 struct reclaim_stat stat; 2452 bool file = is_file_lru(lru); 2453 enum vm_event_item item; 2454 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2455 bool stalled = false; 2456 2457 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2458 if (stalled) 2459 return 0; 2460 2461 /* wait a bit for the reclaimer. */ 2462 stalled = true; 2463 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2464 2465 /* We are about to die and free our memory. Return now. */ 2466 if (fatal_signal_pending(current)) 2467 return SWAP_CLUSTER_MAX; 2468 } 2469 2470 lru_add_drain(); 2471 2472 spin_lock_irq(&lruvec->lru_lock); 2473 2474 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2475 &nr_scanned, sc, lru); 2476 2477 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2478 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2479 if (!cgroup_reclaim(sc)) 2480 __count_vm_events(item, nr_scanned); 2481 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2482 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2483 2484 spin_unlock_irq(&lruvec->lru_lock); 2485 2486 if (nr_taken == 0) 2487 return 0; 2488 2489 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2490 2491 spin_lock_irq(&lruvec->lru_lock); 2492 move_folios_to_lru(lruvec, &folio_list); 2493 2494 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2495 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2496 if (!cgroup_reclaim(sc)) 2497 __count_vm_events(item, nr_reclaimed); 2498 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2499 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2500 spin_unlock_irq(&lruvec->lru_lock); 2501 2502 lru_note_cost(lruvec, file, stat.nr_pageout); 2503 mem_cgroup_uncharge_list(&folio_list); 2504 free_unref_page_list(&folio_list); 2505 2506 /* 2507 * If dirty folios are scanned that are not queued for IO, it 2508 * implies that flushers are not doing their job. This can 2509 * happen when memory pressure pushes dirty folios to the end of 2510 * the LRU before the dirty limits are breached and the dirty 2511 * data has expired. It can also happen when the proportion of 2512 * dirty folios grows not through writes but through memory 2513 * pressure reclaiming all the clean cache. And in some cases, 2514 * the flushers simply cannot keep up with the allocation 2515 * rate. Nudge the flusher threads in case they are asleep. 2516 */ 2517 if (stat.nr_unqueued_dirty == nr_taken) { 2518 wakeup_flusher_threads(WB_REASON_VMSCAN); 2519 /* 2520 * For cgroupv1 dirty throttling is achieved by waking up 2521 * the kernel flusher here and later waiting on folios 2522 * which are in writeback to finish (see shrink_folio_list()). 2523 * 2524 * Flusher may not be able to issue writeback quickly 2525 * enough for cgroupv1 writeback throttling to work 2526 * on a large system. 2527 */ 2528 if (!writeback_throttling_sane(sc)) 2529 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2530 } 2531 2532 sc->nr.dirty += stat.nr_dirty; 2533 sc->nr.congested += stat.nr_congested; 2534 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2535 sc->nr.writeback += stat.nr_writeback; 2536 sc->nr.immediate += stat.nr_immediate; 2537 sc->nr.taken += nr_taken; 2538 if (file) 2539 sc->nr.file_taken += nr_taken; 2540 2541 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2542 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2543 return nr_reclaimed; 2544 } 2545 2546 /* 2547 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2548 * 2549 * We move them the other way if the folio is referenced by one or more 2550 * processes. 2551 * 2552 * If the folios are mostly unmapped, the processing is fast and it is 2553 * appropriate to hold lru_lock across the whole operation. But if 2554 * the folios are mapped, the processing is slow (folio_referenced()), so 2555 * we should drop lru_lock around each folio. It's impossible to balance 2556 * this, so instead we remove the folios from the LRU while processing them. 2557 * It is safe to rely on the active flag against the non-LRU folios in here 2558 * because nobody will play with that bit on a non-LRU folio. 2559 * 2560 * The downside is that we have to touch folio->_refcount against each folio. 2561 * But we had to alter folio->flags anyway. 2562 */ 2563 static void shrink_active_list(unsigned long nr_to_scan, 2564 struct lruvec *lruvec, 2565 struct scan_control *sc, 2566 enum lru_list lru) 2567 { 2568 unsigned long nr_taken; 2569 unsigned long nr_scanned; 2570 unsigned long vm_flags; 2571 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2572 LIST_HEAD(l_active); 2573 LIST_HEAD(l_inactive); 2574 unsigned nr_deactivate, nr_activate; 2575 unsigned nr_rotated = 0; 2576 int file = is_file_lru(lru); 2577 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2578 2579 lru_add_drain(); 2580 2581 spin_lock_irq(&lruvec->lru_lock); 2582 2583 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2584 &nr_scanned, sc, lru); 2585 2586 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2587 2588 if (!cgroup_reclaim(sc)) 2589 __count_vm_events(PGREFILL, nr_scanned); 2590 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2591 2592 spin_unlock_irq(&lruvec->lru_lock); 2593 2594 while (!list_empty(&l_hold)) { 2595 struct folio *folio; 2596 2597 cond_resched(); 2598 folio = lru_to_folio(&l_hold); 2599 list_del(&folio->lru); 2600 2601 if (unlikely(!folio_evictable(folio))) { 2602 folio_putback_lru(folio); 2603 continue; 2604 } 2605 2606 if (unlikely(buffer_heads_over_limit)) { 2607 if (folio_test_private(folio) && folio_trylock(folio)) { 2608 if (folio_test_private(folio)) 2609 filemap_release_folio(folio, 0); 2610 folio_unlock(folio); 2611 } 2612 } 2613 2614 /* Referenced or rmap lock contention: rotate */ 2615 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2616 &vm_flags) != 0) { 2617 /* 2618 * Identify referenced, file-backed active folios and 2619 * give them one more trip around the active list. So 2620 * that executable code get better chances to stay in 2621 * memory under moderate memory pressure. Anon folios 2622 * are not likely to be evicted by use-once streaming 2623 * IO, plus JVM can create lots of anon VM_EXEC folios, 2624 * so we ignore them here. 2625 */ 2626 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2627 nr_rotated += folio_nr_pages(folio); 2628 list_add(&folio->lru, &l_active); 2629 continue; 2630 } 2631 } 2632 2633 folio_clear_active(folio); /* we are de-activating */ 2634 folio_set_workingset(folio); 2635 list_add(&folio->lru, &l_inactive); 2636 } 2637 2638 /* 2639 * Move folios back to the lru list. 2640 */ 2641 spin_lock_irq(&lruvec->lru_lock); 2642 2643 nr_activate = move_folios_to_lru(lruvec, &l_active); 2644 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2645 /* Keep all free folios in l_active list */ 2646 list_splice(&l_inactive, &l_active); 2647 2648 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2649 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2650 2651 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2652 spin_unlock_irq(&lruvec->lru_lock); 2653 2654 mem_cgroup_uncharge_list(&l_active); 2655 free_unref_page_list(&l_active); 2656 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2657 nr_deactivate, nr_rotated, sc->priority, file); 2658 } 2659 2660 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2661 struct pglist_data *pgdat) 2662 { 2663 struct reclaim_stat dummy_stat; 2664 unsigned int nr_reclaimed; 2665 struct folio *folio; 2666 struct scan_control sc = { 2667 .gfp_mask = GFP_KERNEL, 2668 .may_writepage = 1, 2669 .may_unmap = 1, 2670 .may_swap = 1, 2671 .no_demotion = 1, 2672 }; 2673 2674 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2675 while (!list_empty(folio_list)) { 2676 folio = lru_to_folio(folio_list); 2677 list_del(&folio->lru); 2678 folio_putback_lru(folio); 2679 } 2680 2681 return nr_reclaimed; 2682 } 2683 2684 unsigned long reclaim_pages(struct list_head *folio_list) 2685 { 2686 int nid; 2687 unsigned int nr_reclaimed = 0; 2688 LIST_HEAD(node_folio_list); 2689 unsigned int noreclaim_flag; 2690 2691 if (list_empty(folio_list)) 2692 return nr_reclaimed; 2693 2694 noreclaim_flag = memalloc_noreclaim_save(); 2695 2696 nid = folio_nid(lru_to_folio(folio_list)); 2697 do { 2698 struct folio *folio = lru_to_folio(folio_list); 2699 2700 if (nid == folio_nid(folio)) { 2701 folio_clear_active(folio); 2702 list_move(&folio->lru, &node_folio_list); 2703 continue; 2704 } 2705 2706 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2707 nid = folio_nid(lru_to_folio(folio_list)); 2708 } while (!list_empty(folio_list)); 2709 2710 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2711 2712 memalloc_noreclaim_restore(noreclaim_flag); 2713 2714 return nr_reclaimed; 2715 } 2716 2717 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2718 struct lruvec *lruvec, struct scan_control *sc) 2719 { 2720 if (is_active_lru(lru)) { 2721 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2722 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2723 else 2724 sc->skipped_deactivate = 1; 2725 return 0; 2726 } 2727 2728 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2729 } 2730 2731 /* 2732 * The inactive anon list should be small enough that the VM never has 2733 * to do too much work. 2734 * 2735 * The inactive file list should be small enough to leave most memory 2736 * to the established workingset on the scan-resistant active list, 2737 * but large enough to avoid thrashing the aggregate readahead window. 2738 * 2739 * Both inactive lists should also be large enough that each inactive 2740 * folio has a chance to be referenced again before it is reclaimed. 2741 * 2742 * If that fails and refaulting is observed, the inactive list grows. 2743 * 2744 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2745 * on this LRU, maintained by the pageout code. An inactive_ratio 2746 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2747 * 2748 * total target max 2749 * memory ratio inactive 2750 * ------------------------------------- 2751 * 10MB 1 5MB 2752 * 100MB 1 50MB 2753 * 1GB 3 250MB 2754 * 10GB 10 0.9GB 2755 * 100GB 31 3GB 2756 * 1TB 101 10GB 2757 * 10TB 320 32GB 2758 */ 2759 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2760 { 2761 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2762 unsigned long inactive, active; 2763 unsigned long inactive_ratio; 2764 unsigned long gb; 2765 2766 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2767 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2768 2769 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2770 if (gb) 2771 inactive_ratio = int_sqrt(10 * gb); 2772 else 2773 inactive_ratio = 1; 2774 2775 return inactive * inactive_ratio < active; 2776 } 2777 2778 enum scan_balance { 2779 SCAN_EQUAL, 2780 SCAN_FRACT, 2781 SCAN_ANON, 2782 SCAN_FILE, 2783 }; 2784 2785 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2786 { 2787 unsigned long file; 2788 struct lruvec *target_lruvec; 2789 2790 if (lru_gen_enabled()) 2791 return; 2792 2793 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2794 2795 /* 2796 * Flush the memory cgroup stats, so that we read accurate per-memcg 2797 * lruvec stats for heuristics. 2798 */ 2799 mem_cgroup_flush_stats(); 2800 2801 /* 2802 * Determine the scan balance between anon and file LRUs. 2803 */ 2804 spin_lock_irq(&target_lruvec->lru_lock); 2805 sc->anon_cost = target_lruvec->anon_cost; 2806 sc->file_cost = target_lruvec->file_cost; 2807 spin_unlock_irq(&target_lruvec->lru_lock); 2808 2809 /* 2810 * Target desirable inactive:active list ratios for the anon 2811 * and file LRU lists. 2812 */ 2813 if (!sc->force_deactivate) { 2814 unsigned long refaults; 2815 2816 /* 2817 * When refaults are being observed, it means a new 2818 * workingset is being established. Deactivate to get 2819 * rid of any stale active pages quickly. 2820 */ 2821 refaults = lruvec_page_state(target_lruvec, 2822 WORKINGSET_ACTIVATE_ANON); 2823 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2824 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2825 sc->may_deactivate |= DEACTIVATE_ANON; 2826 else 2827 sc->may_deactivate &= ~DEACTIVATE_ANON; 2828 2829 refaults = lruvec_page_state(target_lruvec, 2830 WORKINGSET_ACTIVATE_FILE); 2831 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2832 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2833 sc->may_deactivate |= DEACTIVATE_FILE; 2834 else 2835 sc->may_deactivate &= ~DEACTIVATE_FILE; 2836 } else 2837 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2838 2839 /* 2840 * If we have plenty of inactive file pages that aren't 2841 * thrashing, try to reclaim those first before touching 2842 * anonymous pages. 2843 */ 2844 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2845 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2846 sc->cache_trim_mode = 1; 2847 else 2848 sc->cache_trim_mode = 0; 2849 2850 /* 2851 * Prevent the reclaimer from falling into the cache trap: as 2852 * cache pages start out inactive, every cache fault will tip 2853 * the scan balance towards the file LRU. And as the file LRU 2854 * shrinks, so does the window for rotation from references. 2855 * This means we have a runaway feedback loop where a tiny 2856 * thrashing file LRU becomes infinitely more attractive than 2857 * anon pages. Try to detect this based on file LRU size. 2858 */ 2859 if (!cgroup_reclaim(sc)) { 2860 unsigned long total_high_wmark = 0; 2861 unsigned long free, anon; 2862 int z; 2863 2864 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2865 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2866 node_page_state(pgdat, NR_INACTIVE_FILE); 2867 2868 for (z = 0; z < MAX_NR_ZONES; z++) { 2869 struct zone *zone = &pgdat->node_zones[z]; 2870 2871 if (!managed_zone(zone)) 2872 continue; 2873 2874 total_high_wmark += high_wmark_pages(zone); 2875 } 2876 2877 /* 2878 * Consider anon: if that's low too, this isn't a 2879 * runaway file reclaim problem, but rather just 2880 * extreme pressure. Reclaim as per usual then. 2881 */ 2882 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2883 2884 sc->file_is_tiny = 2885 file + free <= total_high_wmark && 2886 !(sc->may_deactivate & DEACTIVATE_ANON) && 2887 anon >> sc->priority; 2888 } 2889 } 2890 2891 /* 2892 * Determine how aggressively the anon and file LRU lists should be 2893 * scanned. 2894 * 2895 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2896 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2897 */ 2898 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2899 unsigned long *nr) 2900 { 2901 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2902 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2903 unsigned long anon_cost, file_cost, total_cost; 2904 int swappiness = mem_cgroup_swappiness(memcg); 2905 u64 fraction[ANON_AND_FILE]; 2906 u64 denominator = 0; /* gcc */ 2907 enum scan_balance scan_balance; 2908 unsigned long ap, fp; 2909 enum lru_list lru; 2910 2911 /* If we have no swap space, do not bother scanning anon folios. */ 2912 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2913 scan_balance = SCAN_FILE; 2914 goto out; 2915 } 2916 2917 /* 2918 * Global reclaim will swap to prevent OOM even with no 2919 * swappiness, but memcg users want to use this knob to 2920 * disable swapping for individual groups completely when 2921 * using the memory controller's swap limit feature would be 2922 * too expensive. 2923 */ 2924 if (cgroup_reclaim(sc) && !swappiness) { 2925 scan_balance = SCAN_FILE; 2926 goto out; 2927 } 2928 2929 /* 2930 * Do not apply any pressure balancing cleverness when the 2931 * system is close to OOM, scan both anon and file equally 2932 * (unless the swappiness setting disagrees with swapping). 2933 */ 2934 if (!sc->priority && swappiness) { 2935 scan_balance = SCAN_EQUAL; 2936 goto out; 2937 } 2938 2939 /* 2940 * If the system is almost out of file pages, force-scan anon. 2941 */ 2942 if (sc->file_is_tiny) { 2943 scan_balance = SCAN_ANON; 2944 goto out; 2945 } 2946 2947 /* 2948 * If there is enough inactive page cache, we do not reclaim 2949 * anything from the anonymous working right now. 2950 */ 2951 if (sc->cache_trim_mode) { 2952 scan_balance = SCAN_FILE; 2953 goto out; 2954 } 2955 2956 scan_balance = SCAN_FRACT; 2957 /* 2958 * Calculate the pressure balance between anon and file pages. 2959 * 2960 * The amount of pressure we put on each LRU is inversely 2961 * proportional to the cost of reclaiming each list, as 2962 * determined by the share of pages that are refaulting, times 2963 * the relative IO cost of bringing back a swapped out 2964 * anonymous page vs reloading a filesystem page (swappiness). 2965 * 2966 * Although we limit that influence to ensure no list gets 2967 * left behind completely: at least a third of the pressure is 2968 * applied, before swappiness. 2969 * 2970 * With swappiness at 100, anon and file have equal IO cost. 2971 */ 2972 total_cost = sc->anon_cost + sc->file_cost; 2973 anon_cost = total_cost + sc->anon_cost; 2974 file_cost = total_cost + sc->file_cost; 2975 total_cost = anon_cost + file_cost; 2976 2977 ap = swappiness * (total_cost + 1); 2978 ap /= anon_cost + 1; 2979 2980 fp = (200 - swappiness) * (total_cost + 1); 2981 fp /= file_cost + 1; 2982 2983 fraction[0] = ap; 2984 fraction[1] = fp; 2985 denominator = ap + fp; 2986 out: 2987 for_each_evictable_lru(lru) { 2988 int file = is_file_lru(lru); 2989 unsigned long lruvec_size; 2990 unsigned long low, min; 2991 unsigned long scan; 2992 2993 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2994 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2995 &min, &low); 2996 2997 if (min || low) { 2998 /* 2999 * Scale a cgroup's reclaim pressure by proportioning 3000 * its current usage to its memory.low or memory.min 3001 * setting. 3002 * 3003 * This is important, as otherwise scanning aggression 3004 * becomes extremely binary -- from nothing as we 3005 * approach the memory protection threshold, to totally 3006 * nominal as we exceed it. This results in requiring 3007 * setting extremely liberal protection thresholds. It 3008 * also means we simply get no protection at all if we 3009 * set it too low, which is not ideal. 3010 * 3011 * If there is any protection in place, we reduce scan 3012 * pressure by how much of the total memory used is 3013 * within protection thresholds. 3014 * 3015 * There is one special case: in the first reclaim pass, 3016 * we skip over all groups that are within their low 3017 * protection. If that fails to reclaim enough pages to 3018 * satisfy the reclaim goal, we come back and override 3019 * the best-effort low protection. However, we still 3020 * ideally want to honor how well-behaved groups are in 3021 * that case instead of simply punishing them all 3022 * equally. As such, we reclaim them based on how much 3023 * memory they are using, reducing the scan pressure 3024 * again by how much of the total memory used is under 3025 * hard protection. 3026 */ 3027 unsigned long cgroup_size = mem_cgroup_size(memcg); 3028 unsigned long protection; 3029 3030 /* memory.low scaling, make sure we retry before OOM */ 3031 if (!sc->memcg_low_reclaim && low > min) { 3032 protection = low; 3033 sc->memcg_low_skipped = 1; 3034 } else { 3035 protection = min; 3036 } 3037 3038 /* Avoid TOCTOU with earlier protection check */ 3039 cgroup_size = max(cgroup_size, protection); 3040 3041 scan = lruvec_size - lruvec_size * protection / 3042 (cgroup_size + 1); 3043 3044 /* 3045 * Minimally target SWAP_CLUSTER_MAX pages to keep 3046 * reclaim moving forwards, avoiding decrementing 3047 * sc->priority further than desirable. 3048 */ 3049 scan = max(scan, SWAP_CLUSTER_MAX); 3050 } else { 3051 scan = lruvec_size; 3052 } 3053 3054 scan >>= sc->priority; 3055 3056 /* 3057 * If the cgroup's already been deleted, make sure to 3058 * scrape out the remaining cache. 3059 */ 3060 if (!scan && !mem_cgroup_online(memcg)) 3061 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3062 3063 switch (scan_balance) { 3064 case SCAN_EQUAL: 3065 /* Scan lists relative to size */ 3066 break; 3067 case SCAN_FRACT: 3068 /* 3069 * Scan types proportional to swappiness and 3070 * their relative recent reclaim efficiency. 3071 * Make sure we don't miss the last page on 3072 * the offlined memory cgroups because of a 3073 * round-off error. 3074 */ 3075 scan = mem_cgroup_online(memcg) ? 3076 div64_u64(scan * fraction[file], denominator) : 3077 DIV64_U64_ROUND_UP(scan * fraction[file], 3078 denominator); 3079 break; 3080 case SCAN_FILE: 3081 case SCAN_ANON: 3082 /* Scan one type exclusively */ 3083 if ((scan_balance == SCAN_FILE) != file) 3084 scan = 0; 3085 break; 3086 default: 3087 /* Look ma, no brain */ 3088 BUG(); 3089 } 3090 3091 nr[lru] = scan; 3092 } 3093 } 3094 3095 /* 3096 * Anonymous LRU management is a waste if there is 3097 * ultimately no way to reclaim the memory. 3098 */ 3099 static bool can_age_anon_pages(struct pglist_data *pgdat, 3100 struct scan_control *sc) 3101 { 3102 /* Aging the anon LRU is valuable if swap is present: */ 3103 if (total_swap_pages > 0) 3104 return true; 3105 3106 /* Also valuable if anon pages can be demoted: */ 3107 return can_demote(pgdat->node_id, sc); 3108 } 3109 3110 #ifdef CONFIG_LRU_GEN 3111 3112 #ifdef CONFIG_LRU_GEN_ENABLED 3113 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3114 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3115 #else 3116 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3117 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3118 #endif 3119 3120 /****************************************************************************** 3121 * shorthand helpers 3122 ******************************************************************************/ 3123 3124 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3125 3126 #define DEFINE_MAX_SEQ(lruvec) \ 3127 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3128 3129 #define DEFINE_MIN_SEQ(lruvec) \ 3130 unsigned long min_seq[ANON_AND_FILE] = { \ 3131 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3132 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3133 } 3134 3135 #define for_each_gen_type_zone(gen, type, zone) \ 3136 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3137 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3138 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3139 3140 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3141 { 3142 struct pglist_data *pgdat = NODE_DATA(nid); 3143 3144 #ifdef CONFIG_MEMCG 3145 if (memcg) { 3146 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3147 3148 /* for hotadd_new_pgdat() */ 3149 if (!lruvec->pgdat) 3150 lruvec->pgdat = pgdat; 3151 3152 return lruvec; 3153 } 3154 #endif 3155 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3156 3157 return pgdat ? &pgdat->__lruvec : NULL; 3158 } 3159 3160 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3161 { 3162 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3163 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3164 3165 if (!can_demote(pgdat->node_id, sc) && 3166 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3167 return 0; 3168 3169 return mem_cgroup_swappiness(memcg); 3170 } 3171 3172 static int get_nr_gens(struct lruvec *lruvec, int type) 3173 { 3174 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3175 } 3176 3177 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3178 { 3179 /* see the comment on lru_gen_struct */ 3180 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3181 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3182 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3183 } 3184 3185 /****************************************************************************** 3186 * mm_struct list 3187 ******************************************************************************/ 3188 3189 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3190 { 3191 static struct lru_gen_mm_list mm_list = { 3192 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3193 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3194 }; 3195 3196 #ifdef CONFIG_MEMCG 3197 if (memcg) 3198 return &memcg->mm_list; 3199 #endif 3200 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3201 3202 return &mm_list; 3203 } 3204 3205 void lru_gen_add_mm(struct mm_struct *mm) 3206 { 3207 int nid; 3208 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3209 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3210 3211 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3212 #ifdef CONFIG_MEMCG 3213 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3214 mm->lru_gen.memcg = memcg; 3215 #endif 3216 spin_lock(&mm_list->lock); 3217 3218 for_each_node_state(nid, N_MEMORY) { 3219 struct lruvec *lruvec = get_lruvec(memcg, nid); 3220 3221 if (!lruvec) 3222 continue; 3223 3224 /* the first addition since the last iteration */ 3225 if (lruvec->mm_state.tail == &mm_list->fifo) 3226 lruvec->mm_state.tail = &mm->lru_gen.list; 3227 } 3228 3229 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3230 3231 spin_unlock(&mm_list->lock); 3232 } 3233 3234 void lru_gen_del_mm(struct mm_struct *mm) 3235 { 3236 int nid; 3237 struct lru_gen_mm_list *mm_list; 3238 struct mem_cgroup *memcg = NULL; 3239 3240 if (list_empty(&mm->lru_gen.list)) 3241 return; 3242 3243 #ifdef CONFIG_MEMCG 3244 memcg = mm->lru_gen.memcg; 3245 #endif 3246 mm_list = get_mm_list(memcg); 3247 3248 spin_lock(&mm_list->lock); 3249 3250 for_each_node(nid) { 3251 struct lruvec *lruvec = get_lruvec(memcg, nid); 3252 3253 if (!lruvec) 3254 continue; 3255 3256 /* where the last iteration ended (exclusive) */ 3257 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3258 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3259 3260 /* where the current iteration continues (inclusive) */ 3261 if (lruvec->mm_state.head != &mm->lru_gen.list) 3262 continue; 3263 3264 lruvec->mm_state.head = lruvec->mm_state.head->next; 3265 /* the deletion ends the current iteration */ 3266 if (lruvec->mm_state.head == &mm_list->fifo) 3267 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3268 } 3269 3270 list_del_init(&mm->lru_gen.list); 3271 3272 spin_unlock(&mm_list->lock); 3273 3274 #ifdef CONFIG_MEMCG 3275 mem_cgroup_put(mm->lru_gen.memcg); 3276 mm->lru_gen.memcg = NULL; 3277 #endif 3278 } 3279 3280 #ifdef CONFIG_MEMCG 3281 void lru_gen_migrate_mm(struct mm_struct *mm) 3282 { 3283 struct mem_cgroup *memcg; 3284 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3285 3286 VM_WARN_ON_ONCE(task->mm != mm); 3287 lockdep_assert_held(&task->alloc_lock); 3288 3289 /* for mm_update_next_owner() */ 3290 if (mem_cgroup_disabled()) 3291 return; 3292 3293 rcu_read_lock(); 3294 memcg = mem_cgroup_from_task(task); 3295 rcu_read_unlock(); 3296 if (memcg == mm->lru_gen.memcg) 3297 return; 3298 3299 VM_WARN_ON_ONCE(!mm->lru_gen.memcg); 3300 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3301 3302 lru_gen_del_mm(mm); 3303 lru_gen_add_mm(mm); 3304 } 3305 #endif 3306 3307 /* 3308 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3309 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3310 * bits in a bitmap, k is the number of hash functions and n is the number of 3311 * inserted items. 3312 * 3313 * Page table walkers use one of the two filters to reduce their search space. 3314 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3315 * aging uses the double-buffering technique to flip to the other filter each 3316 * time it produces a new generation. For non-leaf entries that have enough 3317 * leaf entries, the aging carries them over to the next generation in 3318 * walk_pmd_range(); the eviction also report them when walking the rmap 3319 * in lru_gen_look_around(). 3320 * 3321 * For future optimizations: 3322 * 1. It's not necessary to keep both filters all the time. The spare one can be 3323 * freed after the RCU grace period and reallocated if needed again. 3324 * 2. And when reallocating, it's worth scaling its size according to the number 3325 * of inserted entries in the other filter, to reduce the memory overhead on 3326 * small systems and false positives on large systems. 3327 * 3. Jenkins' hash function is an alternative to Knuth's. 3328 */ 3329 #define BLOOM_FILTER_SHIFT 15 3330 3331 static inline int filter_gen_from_seq(unsigned long seq) 3332 { 3333 return seq % NR_BLOOM_FILTERS; 3334 } 3335 3336 static void get_item_key(void *item, int *key) 3337 { 3338 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3339 3340 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3341 3342 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3343 key[1] = hash >> BLOOM_FILTER_SHIFT; 3344 } 3345 3346 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3347 { 3348 unsigned long *filter; 3349 int gen = filter_gen_from_seq(seq); 3350 3351 filter = lruvec->mm_state.filters[gen]; 3352 if (filter) { 3353 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3354 return; 3355 } 3356 3357 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3358 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3359 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3360 } 3361 3362 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3363 { 3364 int key[2]; 3365 unsigned long *filter; 3366 int gen = filter_gen_from_seq(seq); 3367 3368 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3369 if (!filter) 3370 return; 3371 3372 get_item_key(item, key); 3373 3374 if (!test_bit(key[0], filter)) 3375 set_bit(key[0], filter); 3376 if (!test_bit(key[1], filter)) 3377 set_bit(key[1], filter); 3378 } 3379 3380 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3381 { 3382 int key[2]; 3383 unsigned long *filter; 3384 int gen = filter_gen_from_seq(seq); 3385 3386 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3387 if (!filter) 3388 return true; 3389 3390 get_item_key(item, key); 3391 3392 return test_bit(key[0], filter) && test_bit(key[1], filter); 3393 } 3394 3395 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3396 { 3397 int i; 3398 int hist; 3399 3400 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3401 3402 if (walk) { 3403 hist = lru_hist_from_seq(walk->max_seq); 3404 3405 for (i = 0; i < NR_MM_STATS; i++) { 3406 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3407 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3408 walk->mm_stats[i] = 0; 3409 } 3410 } 3411 3412 if (NR_HIST_GENS > 1 && last) { 3413 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3414 3415 for (i = 0; i < NR_MM_STATS; i++) 3416 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3417 } 3418 } 3419 3420 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3421 { 3422 int type; 3423 unsigned long size = 0; 3424 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3425 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3426 3427 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3428 return true; 3429 3430 clear_bit(key, &mm->lru_gen.bitmap); 3431 3432 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3433 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3434 get_mm_counter(mm, MM_ANONPAGES) + 3435 get_mm_counter(mm, MM_SHMEMPAGES); 3436 } 3437 3438 if (size < MIN_LRU_BATCH) 3439 return true; 3440 3441 return !mmget_not_zero(mm); 3442 } 3443 3444 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3445 struct mm_struct **iter) 3446 { 3447 bool first = false; 3448 bool last = true; 3449 struct mm_struct *mm = NULL; 3450 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3451 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3452 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3453 3454 /* 3455 * There are four interesting cases for this page table walker: 3456 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3457 * there is nothing left to do. 3458 * 2. It's the first of the current generation, and it needs to reset 3459 * the Bloom filter for the next generation. 3460 * 3. It reaches the end of mm_list, and it needs to increment 3461 * mm_state->seq; the iteration is done. 3462 * 4. It's the last of the current generation, and it needs to reset the 3463 * mm stats counters for the next generation. 3464 */ 3465 spin_lock(&mm_list->lock); 3466 3467 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3468 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3469 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3470 3471 if (walk->max_seq <= mm_state->seq) { 3472 if (!*iter) 3473 last = false; 3474 goto done; 3475 } 3476 3477 if (!mm_state->nr_walkers) { 3478 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3479 3480 mm_state->head = mm_list->fifo.next; 3481 first = true; 3482 } 3483 3484 while (!mm && mm_state->head != &mm_list->fifo) { 3485 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3486 3487 mm_state->head = mm_state->head->next; 3488 3489 /* force scan for those added after the last iteration */ 3490 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3491 mm_state->tail = mm_state->head; 3492 walk->force_scan = true; 3493 } 3494 3495 if (should_skip_mm(mm, walk)) 3496 mm = NULL; 3497 } 3498 3499 if (mm_state->head == &mm_list->fifo) 3500 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3501 done: 3502 if (*iter && !mm) 3503 mm_state->nr_walkers--; 3504 if (!*iter && mm) 3505 mm_state->nr_walkers++; 3506 3507 if (mm_state->nr_walkers) 3508 last = false; 3509 3510 if (*iter || last) 3511 reset_mm_stats(lruvec, walk, last); 3512 3513 spin_unlock(&mm_list->lock); 3514 3515 if (mm && first) 3516 reset_bloom_filter(lruvec, walk->max_seq + 1); 3517 3518 if (*iter) 3519 mmput_async(*iter); 3520 3521 *iter = mm; 3522 3523 return last; 3524 } 3525 3526 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3527 { 3528 bool success = false; 3529 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3530 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3531 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3532 3533 spin_lock(&mm_list->lock); 3534 3535 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3536 3537 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3538 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3539 3540 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3541 reset_mm_stats(lruvec, NULL, true); 3542 success = true; 3543 } 3544 3545 spin_unlock(&mm_list->lock); 3546 3547 return success; 3548 } 3549 3550 /****************************************************************************** 3551 * refault feedback loop 3552 ******************************************************************************/ 3553 3554 /* 3555 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3556 * 3557 * The P term is refaulted/(evicted+protected) from a tier in the generation 3558 * currently being evicted; the I term is the exponential moving average of the 3559 * P term over the generations previously evicted, using the smoothing factor 3560 * 1/2; the D term isn't supported. 3561 * 3562 * The setpoint (SP) is always the first tier of one type; the process variable 3563 * (PV) is either any tier of the other type or any other tier of the same 3564 * type. 3565 * 3566 * The error is the difference between the SP and the PV; the correction is to 3567 * turn off protection when SP>PV or turn on protection when SP<PV. 3568 * 3569 * For future optimizations: 3570 * 1. The D term may discount the other two terms over time so that long-lived 3571 * generations can resist stale information. 3572 */ 3573 struct ctrl_pos { 3574 unsigned long refaulted; 3575 unsigned long total; 3576 int gain; 3577 }; 3578 3579 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3580 struct ctrl_pos *pos) 3581 { 3582 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3583 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3584 3585 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3586 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3587 pos->total = lrugen->avg_total[type][tier] + 3588 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3589 if (tier) 3590 pos->total += lrugen->protected[hist][type][tier - 1]; 3591 pos->gain = gain; 3592 } 3593 3594 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3595 { 3596 int hist, tier; 3597 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3598 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3599 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3600 3601 lockdep_assert_held(&lruvec->lru_lock); 3602 3603 if (!carryover && !clear) 3604 return; 3605 3606 hist = lru_hist_from_seq(seq); 3607 3608 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3609 if (carryover) { 3610 unsigned long sum; 3611 3612 sum = lrugen->avg_refaulted[type][tier] + 3613 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3614 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3615 3616 sum = lrugen->avg_total[type][tier] + 3617 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3618 if (tier) 3619 sum += lrugen->protected[hist][type][tier - 1]; 3620 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3621 } 3622 3623 if (clear) { 3624 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3625 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3626 if (tier) 3627 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3628 } 3629 } 3630 } 3631 3632 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3633 { 3634 /* 3635 * Return true if the PV has a limited number of refaults or a lower 3636 * refaulted/total than the SP. 3637 */ 3638 return pv->refaulted < MIN_LRU_BATCH || 3639 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3640 (sp->refaulted + 1) * pv->total * pv->gain; 3641 } 3642 3643 /****************************************************************************** 3644 * the aging 3645 ******************************************************************************/ 3646 3647 /* promote pages accessed through page tables */ 3648 static int folio_update_gen(struct folio *folio, int gen) 3649 { 3650 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3651 3652 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3653 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3654 3655 do { 3656 /* lru_gen_del_folio() has isolated this page? */ 3657 if (!(old_flags & LRU_GEN_MASK)) { 3658 /* for shrink_folio_list() */ 3659 new_flags = old_flags | BIT(PG_referenced); 3660 continue; 3661 } 3662 3663 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3664 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3665 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3666 3667 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3668 } 3669 3670 /* protect pages accessed multiple times through file descriptors */ 3671 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3672 { 3673 int type = folio_is_file_lru(folio); 3674 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3675 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3676 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3677 3678 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3679 3680 do { 3681 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3682 /* folio_update_gen() has promoted this page? */ 3683 if (new_gen >= 0 && new_gen != old_gen) 3684 return new_gen; 3685 3686 new_gen = (old_gen + 1) % MAX_NR_GENS; 3687 3688 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3689 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3690 /* for folio_end_writeback() */ 3691 if (reclaiming) 3692 new_flags |= BIT(PG_reclaim); 3693 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3694 3695 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3696 3697 return new_gen; 3698 } 3699 3700 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3701 int old_gen, int new_gen) 3702 { 3703 int type = folio_is_file_lru(folio); 3704 int zone = folio_zonenum(folio); 3705 int delta = folio_nr_pages(folio); 3706 3707 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3708 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3709 3710 walk->batched++; 3711 3712 walk->nr_pages[old_gen][type][zone] -= delta; 3713 walk->nr_pages[new_gen][type][zone] += delta; 3714 } 3715 3716 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3717 { 3718 int gen, type, zone; 3719 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3720 3721 walk->batched = 0; 3722 3723 for_each_gen_type_zone(gen, type, zone) { 3724 enum lru_list lru = type * LRU_INACTIVE_FILE; 3725 int delta = walk->nr_pages[gen][type][zone]; 3726 3727 if (!delta) 3728 continue; 3729 3730 walk->nr_pages[gen][type][zone] = 0; 3731 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3732 lrugen->nr_pages[gen][type][zone] + delta); 3733 3734 if (lru_gen_is_active(lruvec, gen)) 3735 lru += LRU_ACTIVE; 3736 __update_lru_size(lruvec, lru, zone, delta); 3737 } 3738 } 3739 3740 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3741 { 3742 struct address_space *mapping; 3743 struct vm_area_struct *vma = args->vma; 3744 struct lru_gen_mm_walk *walk = args->private; 3745 3746 if (!vma_is_accessible(vma)) 3747 return true; 3748 3749 if (is_vm_hugetlb_page(vma)) 3750 return true; 3751 3752 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ)) 3753 return true; 3754 3755 if (vma == get_gate_vma(vma->vm_mm)) 3756 return true; 3757 3758 if (vma_is_anonymous(vma)) 3759 return !walk->can_swap; 3760 3761 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3762 return true; 3763 3764 mapping = vma->vm_file->f_mapping; 3765 if (mapping_unevictable(mapping)) 3766 return true; 3767 3768 if (shmem_mapping(mapping)) 3769 return !walk->can_swap; 3770 3771 /* to exclude special mappings like dax, etc. */ 3772 return !mapping->a_ops->read_folio; 3773 } 3774 3775 /* 3776 * Some userspace memory allocators map many single-page VMAs. Instead of 3777 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3778 * table to reduce zigzags and improve cache performance. 3779 */ 3780 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3781 unsigned long *vm_start, unsigned long *vm_end) 3782 { 3783 unsigned long start = round_up(*vm_end, size); 3784 unsigned long end = (start | ~mask) + 1; 3785 VMA_ITERATOR(vmi, args->mm, start); 3786 3787 VM_WARN_ON_ONCE(mask & size); 3788 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3789 3790 for_each_vma(vmi, args->vma) { 3791 if (end && end <= args->vma->vm_start) 3792 return false; 3793 3794 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3795 continue; 3796 3797 *vm_start = max(start, args->vma->vm_start); 3798 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3799 3800 return true; 3801 } 3802 3803 return false; 3804 } 3805 3806 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3807 { 3808 unsigned long pfn = pte_pfn(pte); 3809 3810 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3811 3812 if (!pte_present(pte) || is_zero_pfn(pfn)) 3813 return -1; 3814 3815 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3816 return -1; 3817 3818 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3819 return -1; 3820 3821 return pfn; 3822 } 3823 3824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3825 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3826 { 3827 unsigned long pfn = pmd_pfn(pmd); 3828 3829 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3830 3831 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3832 return -1; 3833 3834 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3835 return -1; 3836 3837 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3838 return -1; 3839 3840 return pfn; 3841 } 3842 #endif 3843 3844 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3845 struct pglist_data *pgdat, bool can_swap) 3846 { 3847 struct folio *folio; 3848 3849 /* try to avoid unnecessary memory loads */ 3850 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3851 return NULL; 3852 3853 folio = pfn_folio(pfn); 3854 if (folio_nid(folio) != pgdat->node_id) 3855 return NULL; 3856 3857 if (folio_memcg_rcu(folio) != memcg) 3858 return NULL; 3859 3860 /* file VMAs can contain anon pages from COW */ 3861 if (!folio_is_file_lru(folio) && !can_swap) 3862 return NULL; 3863 3864 return folio; 3865 } 3866 3867 static bool suitable_to_scan(int total, int young) 3868 { 3869 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3870 3871 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3872 return young * n >= total; 3873 } 3874 3875 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3876 struct mm_walk *args) 3877 { 3878 int i; 3879 pte_t *pte; 3880 spinlock_t *ptl; 3881 unsigned long addr; 3882 int total = 0; 3883 int young = 0; 3884 struct lru_gen_mm_walk *walk = args->private; 3885 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3886 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3887 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3888 3889 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3890 3891 ptl = pte_lockptr(args->mm, pmd); 3892 if (!spin_trylock(ptl)) 3893 return false; 3894 3895 arch_enter_lazy_mmu_mode(); 3896 3897 pte = pte_offset_map(pmd, start & PMD_MASK); 3898 restart: 3899 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3900 unsigned long pfn; 3901 struct folio *folio; 3902 3903 total++; 3904 walk->mm_stats[MM_LEAF_TOTAL]++; 3905 3906 pfn = get_pte_pfn(pte[i], args->vma, addr); 3907 if (pfn == -1) 3908 continue; 3909 3910 if (!pte_young(pte[i])) { 3911 walk->mm_stats[MM_LEAF_OLD]++; 3912 continue; 3913 } 3914 3915 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3916 if (!folio) 3917 continue; 3918 3919 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3920 VM_WARN_ON_ONCE(true); 3921 3922 young++; 3923 walk->mm_stats[MM_LEAF_YOUNG]++; 3924 3925 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3926 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3927 !folio_test_swapcache(folio))) 3928 folio_mark_dirty(folio); 3929 3930 old_gen = folio_update_gen(folio, new_gen); 3931 if (old_gen >= 0 && old_gen != new_gen) 3932 update_batch_size(walk, folio, old_gen, new_gen); 3933 } 3934 3935 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3936 goto restart; 3937 3938 pte_unmap(pte); 3939 3940 arch_leave_lazy_mmu_mode(); 3941 spin_unlock(ptl); 3942 3943 return suitable_to_scan(total, young); 3944 } 3945 3946 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3947 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 3948 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 3949 { 3950 int i; 3951 pmd_t *pmd; 3952 spinlock_t *ptl; 3953 struct lru_gen_mm_walk *walk = args->private; 3954 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3955 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3956 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3957 3958 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3959 3960 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3961 if (*start == -1) { 3962 *start = next; 3963 return; 3964 } 3965 3966 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start); 3967 if (i && i <= MIN_LRU_BATCH) { 3968 __set_bit(i - 1, bitmap); 3969 return; 3970 } 3971 3972 pmd = pmd_offset(pud, *start); 3973 3974 ptl = pmd_lockptr(args->mm, pmd); 3975 if (!spin_trylock(ptl)) 3976 goto done; 3977 3978 arch_enter_lazy_mmu_mode(); 3979 3980 do { 3981 unsigned long pfn; 3982 struct folio *folio; 3983 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start; 3984 3985 pfn = get_pmd_pfn(pmd[i], vma, addr); 3986 if (pfn == -1) 3987 goto next; 3988 3989 if (!pmd_trans_huge(pmd[i])) { 3990 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && 3991 get_cap(LRU_GEN_NONLEAF_YOUNG)) 3992 pmdp_test_and_clear_young(vma, addr, pmd + i); 3993 goto next; 3994 } 3995 3996 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3997 if (!folio) 3998 goto next; 3999 4000 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4001 goto next; 4002 4003 walk->mm_stats[MM_LEAF_YOUNG]++; 4004 4005 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4006 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4007 !folio_test_swapcache(folio))) 4008 folio_mark_dirty(folio); 4009 4010 old_gen = folio_update_gen(folio, new_gen); 4011 if (old_gen >= 0 && old_gen != new_gen) 4012 update_batch_size(walk, folio, old_gen, new_gen); 4013 next: 4014 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4015 } while (i <= MIN_LRU_BATCH); 4016 4017 arch_leave_lazy_mmu_mode(); 4018 spin_unlock(ptl); 4019 done: 4020 *start = -1; 4021 bitmap_zero(bitmap, MIN_LRU_BATCH); 4022 } 4023 #else 4024 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 4025 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 4026 { 4027 } 4028 #endif 4029 4030 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4031 struct mm_walk *args) 4032 { 4033 int i; 4034 pmd_t *pmd; 4035 unsigned long next; 4036 unsigned long addr; 4037 struct vm_area_struct *vma; 4038 unsigned long pos = -1; 4039 struct lru_gen_mm_walk *walk = args->private; 4040 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4041 4042 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4043 4044 /* 4045 * Finish an entire PMD in two passes: the first only reaches to PTE 4046 * tables to avoid taking the PMD lock; the second, if necessary, takes 4047 * the PMD lock to clear the accessed bit in PMD entries. 4048 */ 4049 pmd = pmd_offset(pud, start & PUD_MASK); 4050 restart: 4051 /* walk_pte_range() may call get_next_vma() */ 4052 vma = args->vma; 4053 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4054 pmd_t val = pmd_read_atomic(pmd + i); 4055 4056 /* for pmd_read_atomic() */ 4057 barrier(); 4058 4059 next = pmd_addr_end(addr, end); 4060 4061 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4062 walk->mm_stats[MM_LEAF_TOTAL]++; 4063 continue; 4064 } 4065 4066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4067 if (pmd_trans_huge(val)) { 4068 unsigned long pfn = pmd_pfn(val); 4069 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4070 4071 walk->mm_stats[MM_LEAF_TOTAL]++; 4072 4073 if (!pmd_young(val)) { 4074 walk->mm_stats[MM_LEAF_OLD]++; 4075 continue; 4076 } 4077 4078 /* try to avoid unnecessary memory loads */ 4079 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4080 continue; 4081 4082 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4083 continue; 4084 } 4085 #endif 4086 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4087 4088 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 4089 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4090 if (!pmd_young(val)) 4091 continue; 4092 4093 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4094 } 4095 #endif 4096 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4097 continue; 4098 4099 walk->mm_stats[MM_NONLEAF_FOUND]++; 4100 4101 if (!walk_pte_range(&val, addr, next, args)) 4102 continue; 4103 4104 walk->mm_stats[MM_NONLEAF_ADDED]++; 4105 4106 /* carry over to the next generation */ 4107 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4108 } 4109 4110 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos); 4111 4112 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4113 goto restart; 4114 } 4115 4116 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4117 struct mm_walk *args) 4118 { 4119 int i; 4120 pud_t *pud; 4121 unsigned long addr; 4122 unsigned long next; 4123 struct lru_gen_mm_walk *walk = args->private; 4124 4125 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4126 4127 pud = pud_offset(p4d, start & P4D_MASK); 4128 restart: 4129 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4130 pud_t val = READ_ONCE(pud[i]); 4131 4132 next = pud_addr_end(addr, end); 4133 4134 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4135 continue; 4136 4137 walk_pmd_range(&val, addr, next, args); 4138 4139 /* a racy check to curtail the waiting time */ 4140 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4141 return 1; 4142 4143 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4144 end = (addr | ~PUD_MASK) + 1; 4145 goto done; 4146 } 4147 } 4148 4149 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4150 goto restart; 4151 4152 end = round_up(end, P4D_SIZE); 4153 done: 4154 if (!end || !args->vma) 4155 return 1; 4156 4157 walk->next_addr = max(end, args->vma->vm_start); 4158 4159 return -EAGAIN; 4160 } 4161 4162 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4163 { 4164 static const struct mm_walk_ops mm_walk_ops = { 4165 .test_walk = should_skip_vma, 4166 .p4d_entry = walk_pud_range, 4167 }; 4168 4169 int err; 4170 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4171 4172 walk->next_addr = FIRST_USER_ADDRESS; 4173 4174 do { 4175 err = -EBUSY; 4176 4177 /* folio_update_gen() requires stable folio_memcg() */ 4178 if (!mem_cgroup_trylock_pages(memcg)) 4179 break; 4180 4181 /* the caller might be holding the lock for write */ 4182 if (mmap_read_trylock(mm)) { 4183 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4184 4185 mmap_read_unlock(mm); 4186 } 4187 4188 mem_cgroup_unlock_pages(); 4189 4190 if (walk->batched) { 4191 spin_lock_irq(&lruvec->lru_lock); 4192 reset_batch_size(lruvec, walk); 4193 spin_unlock_irq(&lruvec->lru_lock); 4194 } 4195 4196 cond_resched(); 4197 } while (err == -EAGAIN); 4198 } 4199 4200 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat) 4201 { 4202 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4203 4204 if (pgdat && current_is_kswapd()) { 4205 VM_WARN_ON_ONCE(walk); 4206 4207 walk = &pgdat->mm_walk; 4208 } else if (!pgdat && !walk) { 4209 VM_WARN_ON_ONCE(current_is_kswapd()); 4210 4211 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4212 } 4213 4214 current->reclaim_state->mm_walk = walk; 4215 4216 return walk; 4217 } 4218 4219 static void clear_mm_walk(void) 4220 { 4221 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4222 4223 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4224 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4225 4226 current->reclaim_state->mm_walk = NULL; 4227 4228 if (!current_is_kswapd()) 4229 kfree(walk); 4230 } 4231 4232 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4233 { 4234 int zone; 4235 int remaining = MAX_LRU_BATCH; 4236 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4237 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4238 4239 if (type == LRU_GEN_ANON && !can_swap) 4240 goto done; 4241 4242 /* prevent cold/hot inversion if force_scan is true */ 4243 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4244 struct list_head *head = &lrugen->lists[old_gen][type][zone]; 4245 4246 while (!list_empty(head)) { 4247 struct folio *folio = lru_to_folio(head); 4248 4249 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4250 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4251 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4252 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4253 4254 new_gen = folio_inc_gen(lruvec, folio, false); 4255 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]); 4256 4257 if (!--remaining) 4258 return false; 4259 } 4260 } 4261 done: 4262 reset_ctrl_pos(lruvec, type, true); 4263 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4264 4265 return true; 4266 } 4267 4268 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4269 { 4270 int gen, type, zone; 4271 bool success = false; 4272 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4273 DEFINE_MIN_SEQ(lruvec); 4274 4275 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4276 4277 /* find the oldest populated generation */ 4278 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4279 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4280 gen = lru_gen_from_seq(min_seq[type]); 4281 4282 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4283 if (!list_empty(&lrugen->lists[gen][type][zone])) 4284 goto next; 4285 } 4286 4287 min_seq[type]++; 4288 } 4289 next: 4290 ; 4291 } 4292 4293 /* see the comment on lru_gen_struct */ 4294 if (can_swap) { 4295 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4296 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4297 } 4298 4299 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4300 if (min_seq[type] == lrugen->min_seq[type]) 4301 continue; 4302 4303 reset_ctrl_pos(lruvec, type, true); 4304 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4305 success = true; 4306 } 4307 4308 return success; 4309 } 4310 4311 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4312 { 4313 int prev, next; 4314 int type, zone; 4315 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4316 4317 spin_lock_irq(&lruvec->lru_lock); 4318 4319 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4320 4321 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4322 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4323 continue; 4324 4325 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4326 4327 while (!inc_min_seq(lruvec, type, can_swap)) { 4328 spin_unlock_irq(&lruvec->lru_lock); 4329 cond_resched(); 4330 spin_lock_irq(&lruvec->lru_lock); 4331 } 4332 } 4333 4334 /* 4335 * Update the active/inactive LRU sizes for compatibility. Both sides of 4336 * the current max_seq need to be covered, since max_seq+1 can overlap 4337 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4338 * overlap, cold/hot inversion happens. 4339 */ 4340 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4341 next = lru_gen_from_seq(lrugen->max_seq + 1); 4342 4343 for (type = 0; type < ANON_AND_FILE; type++) { 4344 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4345 enum lru_list lru = type * LRU_INACTIVE_FILE; 4346 long delta = lrugen->nr_pages[prev][type][zone] - 4347 lrugen->nr_pages[next][type][zone]; 4348 4349 if (!delta) 4350 continue; 4351 4352 __update_lru_size(lruvec, lru, zone, delta); 4353 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4354 } 4355 } 4356 4357 for (type = 0; type < ANON_AND_FILE; type++) 4358 reset_ctrl_pos(lruvec, type, false); 4359 4360 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4361 /* make sure preceding modifications appear */ 4362 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4363 4364 spin_unlock_irq(&lruvec->lru_lock); 4365 } 4366 4367 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4368 struct scan_control *sc, bool can_swap, bool force_scan) 4369 { 4370 bool success; 4371 struct lru_gen_mm_walk *walk; 4372 struct mm_struct *mm = NULL; 4373 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4374 4375 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4376 4377 /* see the comment in iterate_mm_list() */ 4378 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4379 success = false; 4380 goto done; 4381 } 4382 4383 /* 4384 * If the hardware doesn't automatically set the accessed bit, fallback 4385 * to lru_gen_look_around(), which only clears the accessed bit in a 4386 * handful of PTEs. Spreading the work out over a period of time usually 4387 * is less efficient, but it avoids bursty page faults. 4388 */ 4389 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) { 4390 success = iterate_mm_list_nowalk(lruvec, max_seq); 4391 goto done; 4392 } 4393 4394 walk = set_mm_walk(NULL); 4395 if (!walk) { 4396 success = iterate_mm_list_nowalk(lruvec, max_seq); 4397 goto done; 4398 } 4399 4400 walk->lruvec = lruvec; 4401 walk->max_seq = max_seq; 4402 walk->can_swap = can_swap; 4403 walk->force_scan = force_scan; 4404 4405 do { 4406 success = iterate_mm_list(lruvec, walk, &mm); 4407 if (mm) 4408 walk_mm(lruvec, mm, walk); 4409 4410 cond_resched(); 4411 } while (mm); 4412 done: 4413 if (!success) { 4414 if (sc->priority <= DEF_PRIORITY - 2) 4415 wait_event_killable(lruvec->mm_state.wait, 4416 max_seq < READ_ONCE(lrugen->max_seq)); 4417 4418 return max_seq < READ_ONCE(lrugen->max_seq); 4419 } 4420 4421 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4422 4423 inc_max_seq(lruvec, can_swap, force_scan); 4424 /* either this sees any waiters or they will see updated max_seq */ 4425 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4426 wake_up_all(&lruvec->mm_state.wait); 4427 4428 return true; 4429 } 4430 4431 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq, 4432 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4433 { 4434 int gen, type, zone; 4435 unsigned long old = 0; 4436 unsigned long young = 0; 4437 unsigned long total = 0; 4438 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4439 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4440 4441 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4442 unsigned long seq; 4443 4444 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4445 unsigned long size = 0; 4446 4447 gen = lru_gen_from_seq(seq); 4448 4449 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4450 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4451 4452 total += size; 4453 if (seq == max_seq) 4454 young += size; 4455 else if (seq + MIN_NR_GENS == max_seq) 4456 old += size; 4457 } 4458 } 4459 4460 /* try to scrape all its memory if this memcg was deleted */ 4461 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4462 4463 /* 4464 * The aging tries to be lazy to reduce the overhead, while the eviction 4465 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4466 * ideal number of generations is MIN_NR_GENS+1. 4467 */ 4468 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) 4469 return true; 4470 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4471 return false; 4472 4473 /* 4474 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4475 * of the total number of pages for each generation. A reasonable range 4476 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4477 * aging cares about the upper bound of hot pages, while the eviction 4478 * cares about the lower bound of cold pages. 4479 */ 4480 if (young * MIN_NR_GENS > total) 4481 return true; 4482 if (old * (MIN_NR_GENS + 2) < total) 4483 return true; 4484 4485 return false; 4486 } 4487 4488 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl) 4489 { 4490 bool need_aging; 4491 unsigned long nr_to_scan; 4492 int swappiness = get_swappiness(lruvec, sc); 4493 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4494 DEFINE_MAX_SEQ(lruvec); 4495 DEFINE_MIN_SEQ(lruvec); 4496 4497 VM_WARN_ON_ONCE(sc->memcg_low_reclaim); 4498 4499 mem_cgroup_calculate_protection(NULL, memcg); 4500 4501 if (mem_cgroup_below_min(memcg)) 4502 return false; 4503 4504 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan); 4505 4506 if (min_ttl) { 4507 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4508 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4509 4510 if (time_is_after_jiffies(birth + min_ttl)) 4511 return false; 4512 4513 /* the size is likely too small to be helpful */ 4514 if (!nr_to_scan && sc->priority != DEF_PRIORITY) 4515 return false; 4516 } 4517 4518 if (need_aging) 4519 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false); 4520 4521 return true; 4522 } 4523 4524 /* to protect the working set of the last N jiffies */ 4525 static unsigned long lru_gen_min_ttl __read_mostly; 4526 4527 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4528 { 4529 struct mem_cgroup *memcg; 4530 bool success = false; 4531 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4532 4533 VM_WARN_ON_ONCE(!current_is_kswapd()); 4534 4535 sc->last_reclaimed = sc->nr_reclaimed; 4536 4537 /* 4538 * To reduce the chance of going into the aging path, which can be 4539 * costly, optimistically skip it if the flag below was cleared in the 4540 * eviction path. This improves the overall performance when multiple 4541 * memcgs are available. 4542 */ 4543 if (!sc->memcgs_need_aging) { 4544 sc->memcgs_need_aging = true; 4545 return; 4546 } 4547 4548 set_mm_walk(pgdat); 4549 4550 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4551 do { 4552 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4553 4554 if (age_lruvec(lruvec, sc, min_ttl)) 4555 success = true; 4556 4557 cond_resched(); 4558 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4559 4560 clear_mm_walk(); 4561 4562 /* check the order to exclude compaction-induced reclaim */ 4563 if (success || !min_ttl || sc->order) 4564 return; 4565 4566 /* 4567 * The main goal is to OOM kill if every generation from all memcgs is 4568 * younger than min_ttl. However, another possibility is all memcgs are 4569 * either below min or empty. 4570 */ 4571 if (mutex_trylock(&oom_lock)) { 4572 struct oom_control oc = { 4573 .gfp_mask = sc->gfp_mask, 4574 }; 4575 4576 out_of_memory(&oc); 4577 4578 mutex_unlock(&oom_lock); 4579 } 4580 } 4581 4582 /* 4583 * This function exploits spatial locality when shrink_folio_list() walks the 4584 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4585 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4586 * the PTE table to the Bloom filter. This forms a feedback loop between the 4587 * eviction and the aging. 4588 */ 4589 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4590 { 4591 int i; 4592 pte_t *pte; 4593 unsigned long start; 4594 unsigned long end; 4595 unsigned long addr; 4596 struct lru_gen_mm_walk *walk; 4597 int young = 0; 4598 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4599 struct folio *folio = pfn_folio(pvmw->pfn); 4600 struct mem_cgroup *memcg = folio_memcg(folio); 4601 struct pglist_data *pgdat = folio_pgdat(folio); 4602 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4603 DEFINE_MAX_SEQ(lruvec); 4604 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4605 4606 lockdep_assert_held(pvmw->ptl); 4607 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4608 4609 if (spin_is_contended(pvmw->ptl)) 4610 return; 4611 4612 /* avoid taking the LRU lock under the PTL when possible */ 4613 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4614 4615 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start); 4616 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4617 4618 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4619 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4620 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4621 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2) 4622 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4623 else { 4624 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2; 4625 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2; 4626 } 4627 } 4628 4629 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE; 4630 4631 rcu_read_lock(); 4632 arch_enter_lazy_mmu_mode(); 4633 4634 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4635 unsigned long pfn; 4636 4637 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4638 if (pfn == -1) 4639 continue; 4640 4641 if (!pte_young(pte[i])) 4642 continue; 4643 4644 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4645 if (!folio) 4646 continue; 4647 4648 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4649 VM_WARN_ON_ONCE(true); 4650 4651 young++; 4652 4653 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4654 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4655 !folio_test_swapcache(folio))) 4656 folio_mark_dirty(folio); 4657 4658 old_gen = folio_lru_gen(folio); 4659 if (old_gen < 0) 4660 folio_set_referenced(folio); 4661 else if (old_gen != new_gen) 4662 __set_bit(i, bitmap); 4663 } 4664 4665 arch_leave_lazy_mmu_mode(); 4666 rcu_read_unlock(); 4667 4668 /* feedback from rmap walkers to page table walkers */ 4669 if (suitable_to_scan(i, young)) 4670 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4671 4672 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) { 4673 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4674 folio = pfn_folio(pte_pfn(pte[i])); 4675 folio_activate(folio); 4676 } 4677 return; 4678 } 4679 4680 /* folio_update_gen() requires stable folio_memcg() */ 4681 if (!mem_cgroup_trylock_pages(memcg)) 4682 return; 4683 4684 if (!walk) { 4685 spin_lock_irq(&lruvec->lru_lock); 4686 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq); 4687 } 4688 4689 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4690 folio = pfn_folio(pte_pfn(pte[i])); 4691 if (folio_memcg_rcu(folio) != memcg) 4692 continue; 4693 4694 old_gen = folio_update_gen(folio, new_gen); 4695 if (old_gen < 0 || old_gen == new_gen) 4696 continue; 4697 4698 if (walk) 4699 update_batch_size(walk, folio, old_gen, new_gen); 4700 else 4701 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 4702 } 4703 4704 if (!walk) 4705 spin_unlock_irq(&lruvec->lru_lock); 4706 4707 mem_cgroup_unlock_pages(); 4708 } 4709 4710 /****************************************************************************** 4711 * the eviction 4712 ******************************************************************************/ 4713 4714 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4715 { 4716 bool success; 4717 int gen = folio_lru_gen(folio); 4718 int type = folio_is_file_lru(folio); 4719 int zone = folio_zonenum(folio); 4720 int delta = folio_nr_pages(folio); 4721 int refs = folio_lru_refs(folio); 4722 int tier = lru_tier_from_refs(refs); 4723 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4724 4725 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4726 4727 /* unevictable */ 4728 if (!folio_evictable(folio)) { 4729 success = lru_gen_del_folio(lruvec, folio, true); 4730 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4731 folio_set_unevictable(folio); 4732 lruvec_add_folio(lruvec, folio); 4733 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4734 return true; 4735 } 4736 4737 /* dirty lazyfree */ 4738 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4739 success = lru_gen_del_folio(lruvec, folio, true); 4740 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4741 folio_set_swapbacked(folio); 4742 lruvec_add_folio_tail(lruvec, folio); 4743 return true; 4744 } 4745 4746 /* promoted */ 4747 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4748 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4749 return true; 4750 } 4751 4752 /* protected */ 4753 if (tier > tier_idx) { 4754 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4755 4756 gen = folio_inc_gen(lruvec, folio, false); 4757 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]); 4758 4759 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4760 lrugen->protected[hist][type][tier - 1] + delta); 4761 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4762 return true; 4763 } 4764 4765 /* waiting for writeback */ 4766 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4767 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4768 gen = folio_inc_gen(lruvec, folio, true); 4769 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4770 return true; 4771 } 4772 4773 return false; 4774 } 4775 4776 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4777 { 4778 bool success; 4779 4780 /* unmapping inhibited */ 4781 if (!sc->may_unmap && folio_mapped(folio)) 4782 return false; 4783 4784 /* swapping inhibited */ 4785 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) && 4786 (folio_test_dirty(folio) || 4787 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4788 return false; 4789 4790 /* raced with release_pages() */ 4791 if (!folio_try_get(folio)) 4792 return false; 4793 4794 /* raced with another isolation */ 4795 if (!folio_test_clear_lru(folio)) { 4796 folio_put(folio); 4797 return false; 4798 } 4799 4800 /* see the comment on MAX_NR_TIERS */ 4801 if (!folio_test_referenced(folio)) 4802 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4803 4804 /* for shrink_folio_list() */ 4805 folio_clear_reclaim(folio); 4806 folio_clear_referenced(folio); 4807 4808 success = lru_gen_del_folio(lruvec, folio, true); 4809 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4810 4811 return true; 4812 } 4813 4814 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4815 int type, int tier, struct list_head *list) 4816 { 4817 int gen, zone; 4818 enum vm_event_item item; 4819 int sorted = 0; 4820 int scanned = 0; 4821 int isolated = 0; 4822 int remaining = MAX_LRU_BATCH; 4823 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4824 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4825 4826 VM_WARN_ON_ONCE(!list_empty(list)); 4827 4828 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4829 return 0; 4830 4831 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4832 4833 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4834 LIST_HEAD(moved); 4835 int skipped = 0; 4836 struct list_head *head = &lrugen->lists[gen][type][zone]; 4837 4838 while (!list_empty(head)) { 4839 struct folio *folio = lru_to_folio(head); 4840 int delta = folio_nr_pages(folio); 4841 4842 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4843 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4844 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4845 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4846 4847 scanned += delta; 4848 4849 if (sort_folio(lruvec, folio, tier)) 4850 sorted += delta; 4851 else if (isolate_folio(lruvec, folio, sc)) { 4852 list_add(&folio->lru, list); 4853 isolated += delta; 4854 } else { 4855 list_move(&folio->lru, &moved); 4856 skipped += delta; 4857 } 4858 4859 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4860 break; 4861 } 4862 4863 if (skipped) { 4864 list_splice(&moved, head); 4865 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4866 } 4867 4868 if (!remaining || isolated >= MIN_LRU_BATCH) 4869 break; 4870 } 4871 4872 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 4873 if (!cgroup_reclaim(sc)) { 4874 __count_vm_events(item, isolated); 4875 __count_vm_events(PGREFILL, sorted); 4876 } 4877 __count_memcg_events(memcg, item, isolated); 4878 __count_memcg_events(memcg, PGREFILL, sorted); 4879 __count_vm_events(PGSCAN_ANON + type, isolated); 4880 4881 /* 4882 * There might not be eligible pages due to reclaim_idx, may_unmap and 4883 * may_writepage. Check the remaining to prevent livelock if it's not 4884 * making progress. 4885 */ 4886 return isolated || !remaining ? scanned : 0; 4887 } 4888 4889 static int get_tier_idx(struct lruvec *lruvec, int type) 4890 { 4891 int tier; 4892 struct ctrl_pos sp, pv; 4893 4894 /* 4895 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4896 * This value is chosen because any other tier would have at least twice 4897 * as many refaults as the first tier. 4898 */ 4899 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4900 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4901 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4902 if (!positive_ctrl_err(&sp, &pv)) 4903 break; 4904 } 4905 4906 return tier - 1; 4907 } 4908 4909 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4910 { 4911 int type, tier; 4912 struct ctrl_pos sp, pv; 4913 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4914 4915 /* 4916 * Compare the first tier of anon with that of file to determine which 4917 * type to scan. Also need to compare other tiers of the selected type 4918 * with the first tier of the other type to determine the last tier (of 4919 * the selected type) to evict. 4920 */ 4921 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4922 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4923 type = positive_ctrl_err(&sp, &pv); 4924 4925 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4926 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4927 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4928 if (!positive_ctrl_err(&sp, &pv)) 4929 break; 4930 } 4931 4932 *tier_idx = tier - 1; 4933 4934 return type; 4935 } 4936 4937 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4938 int *type_scanned, struct list_head *list) 4939 { 4940 int i; 4941 int type; 4942 int scanned; 4943 int tier = -1; 4944 DEFINE_MIN_SEQ(lruvec); 4945 4946 /* 4947 * Try to make the obvious choice first. When anon and file are both 4948 * available from the same generation, interpret swappiness 1 as file 4949 * first and 200 as anon first. 4950 */ 4951 if (!swappiness) 4952 type = LRU_GEN_FILE; 4953 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4954 type = LRU_GEN_ANON; 4955 else if (swappiness == 1) 4956 type = LRU_GEN_FILE; 4957 else if (swappiness == 200) 4958 type = LRU_GEN_ANON; 4959 else 4960 type = get_type_to_scan(lruvec, swappiness, &tier); 4961 4962 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4963 if (tier < 0) 4964 tier = get_tier_idx(lruvec, type); 4965 4966 scanned = scan_folios(lruvec, sc, type, tier, list); 4967 if (scanned) 4968 break; 4969 4970 type = !type; 4971 tier = -1; 4972 } 4973 4974 *type_scanned = type; 4975 4976 return scanned; 4977 } 4978 4979 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4980 bool *need_swapping) 4981 { 4982 int type; 4983 int scanned; 4984 int reclaimed; 4985 LIST_HEAD(list); 4986 LIST_HEAD(clean); 4987 struct folio *folio; 4988 struct folio *next; 4989 enum vm_event_item item; 4990 struct reclaim_stat stat; 4991 struct lru_gen_mm_walk *walk; 4992 bool skip_retry = false; 4993 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4994 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4995 4996 spin_lock_irq(&lruvec->lru_lock); 4997 4998 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4999 5000 scanned += try_to_inc_min_seq(lruvec, swappiness); 5001 5002 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5003 scanned = 0; 5004 5005 spin_unlock_irq(&lruvec->lru_lock); 5006 5007 if (list_empty(&list)) 5008 return scanned; 5009 retry: 5010 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5011 sc->nr_reclaimed += reclaimed; 5012 5013 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5014 if (!folio_evictable(folio)) { 5015 list_del(&folio->lru); 5016 folio_putback_lru(folio); 5017 continue; 5018 } 5019 5020 if (folio_test_reclaim(folio) && 5021 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5022 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5023 if (folio_test_workingset(folio)) 5024 folio_set_referenced(folio); 5025 continue; 5026 } 5027 5028 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5029 folio_mapped(folio) || folio_test_locked(folio) || 5030 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5031 /* don't add rejected folios to the oldest generation */ 5032 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5033 BIT(PG_active)); 5034 continue; 5035 } 5036 5037 /* retry folios that may have missed folio_rotate_reclaimable() */ 5038 list_move(&folio->lru, &clean); 5039 sc->nr_scanned -= folio_nr_pages(folio); 5040 } 5041 5042 spin_lock_irq(&lruvec->lru_lock); 5043 5044 move_folios_to_lru(lruvec, &list); 5045 5046 walk = current->reclaim_state->mm_walk; 5047 if (walk && walk->batched) 5048 reset_batch_size(lruvec, walk); 5049 5050 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 5051 if (!cgroup_reclaim(sc)) 5052 __count_vm_events(item, reclaimed); 5053 __count_memcg_events(memcg, item, reclaimed); 5054 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5055 5056 spin_unlock_irq(&lruvec->lru_lock); 5057 5058 mem_cgroup_uncharge_list(&list); 5059 free_unref_page_list(&list); 5060 5061 INIT_LIST_HEAD(&list); 5062 list_splice_init(&clean, &list); 5063 5064 if (!list_empty(&list)) { 5065 skip_retry = true; 5066 goto retry; 5067 } 5068 5069 if (need_swapping && type == LRU_GEN_ANON) 5070 *need_swapping = true; 5071 5072 return scanned; 5073 } 5074 5075 /* 5076 * For future optimizations: 5077 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5078 * reclaim. 5079 */ 5080 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, 5081 bool can_swap, bool *need_aging) 5082 { 5083 unsigned long nr_to_scan; 5084 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5085 DEFINE_MAX_SEQ(lruvec); 5086 DEFINE_MIN_SEQ(lruvec); 5087 5088 if (mem_cgroup_below_min(memcg) || 5089 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim)) 5090 return 0; 5091 5092 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan); 5093 if (!*need_aging) 5094 return nr_to_scan; 5095 5096 /* skip the aging path at the default priority */ 5097 if (sc->priority == DEF_PRIORITY) 5098 goto done; 5099 5100 /* leave the work to lru_gen_age_node() */ 5101 if (current_is_kswapd()) 5102 return 0; 5103 5104 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false)) 5105 return nr_to_scan; 5106 done: 5107 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0; 5108 } 5109 5110 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq, 5111 struct scan_control *sc, bool need_swapping) 5112 { 5113 int i; 5114 DEFINE_MAX_SEQ(lruvec); 5115 5116 if (!current_is_kswapd()) { 5117 /* age each memcg at most once to ensure fairness */ 5118 if (max_seq - seq > 1) 5119 return true; 5120 5121 /* over-swapping can increase allocation latency */ 5122 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping) 5123 return true; 5124 5125 /* give this thread a chance to exit and free its memory */ 5126 if (fatal_signal_pending(current)) { 5127 sc->nr_reclaimed += MIN_LRU_BATCH; 5128 return true; 5129 } 5130 5131 if (cgroup_reclaim(sc)) 5132 return false; 5133 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim) 5134 return false; 5135 5136 /* keep scanning at low priorities to ensure fairness */ 5137 if (sc->priority > DEF_PRIORITY - 2) 5138 return false; 5139 5140 /* 5141 * A minimum amount of work was done under global memory pressure. For 5142 * kswapd, it may be overshooting. For direct reclaim, the allocation 5143 * may succeed if all suitable zones are somewhat safe. In either case, 5144 * it's better to stop now, and restart later if necessary. 5145 */ 5146 for (i = 0; i <= sc->reclaim_idx; i++) { 5147 unsigned long wmark; 5148 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 5149 5150 if (!managed_zone(zone)) 5151 continue; 5152 5153 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone); 5154 if (wmark > zone_page_state(zone, NR_FREE_PAGES)) 5155 return false; 5156 } 5157 5158 sc->nr_reclaimed += MIN_LRU_BATCH; 5159 5160 return true; 5161 } 5162 5163 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5164 { 5165 struct blk_plug plug; 5166 bool need_aging = false; 5167 bool need_swapping = false; 5168 unsigned long scanned = 0; 5169 unsigned long reclaimed = sc->nr_reclaimed; 5170 DEFINE_MAX_SEQ(lruvec); 5171 5172 lru_add_drain(); 5173 5174 blk_start_plug(&plug); 5175 5176 set_mm_walk(lruvec_pgdat(lruvec)); 5177 5178 while (true) { 5179 int delta; 5180 int swappiness; 5181 unsigned long nr_to_scan; 5182 5183 if (sc->may_swap) 5184 swappiness = get_swappiness(lruvec, sc); 5185 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc)) 5186 swappiness = 1; 5187 else 5188 swappiness = 0; 5189 5190 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging); 5191 if (!nr_to_scan) 5192 goto done; 5193 5194 delta = evict_folios(lruvec, sc, swappiness, &need_swapping); 5195 if (!delta) 5196 goto done; 5197 5198 scanned += delta; 5199 if (scanned >= nr_to_scan) 5200 break; 5201 5202 if (should_abort_scan(lruvec, max_seq, sc, need_swapping)) 5203 break; 5204 5205 cond_resched(); 5206 } 5207 5208 /* see the comment in lru_gen_age_node() */ 5209 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging) 5210 sc->memcgs_need_aging = false; 5211 done: 5212 clear_mm_walk(); 5213 5214 blk_finish_plug(&plug); 5215 } 5216 5217 /****************************************************************************** 5218 * state change 5219 ******************************************************************************/ 5220 5221 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5222 { 5223 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5224 5225 if (lrugen->enabled) { 5226 enum lru_list lru; 5227 5228 for_each_evictable_lru(lru) { 5229 if (!list_empty(&lruvec->lists[lru])) 5230 return false; 5231 } 5232 } else { 5233 int gen, type, zone; 5234 5235 for_each_gen_type_zone(gen, type, zone) { 5236 if (!list_empty(&lrugen->lists[gen][type][zone])) 5237 return false; 5238 } 5239 } 5240 5241 return true; 5242 } 5243 5244 static bool fill_evictable(struct lruvec *lruvec) 5245 { 5246 enum lru_list lru; 5247 int remaining = MAX_LRU_BATCH; 5248 5249 for_each_evictable_lru(lru) { 5250 int type = is_file_lru(lru); 5251 bool active = is_active_lru(lru); 5252 struct list_head *head = &lruvec->lists[lru]; 5253 5254 while (!list_empty(head)) { 5255 bool success; 5256 struct folio *folio = lru_to_folio(head); 5257 5258 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5259 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5260 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5261 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5262 5263 lruvec_del_folio(lruvec, folio); 5264 success = lru_gen_add_folio(lruvec, folio, false); 5265 VM_WARN_ON_ONCE(!success); 5266 5267 if (!--remaining) 5268 return false; 5269 } 5270 } 5271 5272 return true; 5273 } 5274 5275 static bool drain_evictable(struct lruvec *lruvec) 5276 { 5277 int gen, type, zone; 5278 int remaining = MAX_LRU_BATCH; 5279 5280 for_each_gen_type_zone(gen, type, zone) { 5281 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone]; 5282 5283 while (!list_empty(head)) { 5284 bool success; 5285 struct folio *folio = lru_to_folio(head); 5286 5287 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5288 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5289 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5290 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5291 5292 success = lru_gen_del_folio(lruvec, folio, false); 5293 VM_WARN_ON_ONCE(!success); 5294 lruvec_add_folio(lruvec, folio); 5295 5296 if (!--remaining) 5297 return false; 5298 } 5299 } 5300 5301 return true; 5302 } 5303 5304 static void lru_gen_change_state(bool enabled) 5305 { 5306 static DEFINE_MUTEX(state_mutex); 5307 5308 struct mem_cgroup *memcg; 5309 5310 cgroup_lock(); 5311 cpus_read_lock(); 5312 get_online_mems(); 5313 mutex_lock(&state_mutex); 5314 5315 if (enabled == lru_gen_enabled()) 5316 goto unlock; 5317 5318 if (enabled) 5319 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5320 else 5321 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5322 5323 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5324 do { 5325 int nid; 5326 5327 for_each_node(nid) { 5328 struct lruvec *lruvec = get_lruvec(memcg, nid); 5329 5330 if (!lruvec) 5331 continue; 5332 5333 spin_lock_irq(&lruvec->lru_lock); 5334 5335 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5336 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5337 5338 lruvec->lrugen.enabled = enabled; 5339 5340 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5341 spin_unlock_irq(&lruvec->lru_lock); 5342 cond_resched(); 5343 spin_lock_irq(&lruvec->lru_lock); 5344 } 5345 5346 spin_unlock_irq(&lruvec->lru_lock); 5347 } 5348 5349 cond_resched(); 5350 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5351 unlock: 5352 mutex_unlock(&state_mutex); 5353 put_online_mems(); 5354 cpus_read_unlock(); 5355 cgroup_unlock(); 5356 } 5357 5358 /****************************************************************************** 5359 * sysfs interface 5360 ******************************************************************************/ 5361 5362 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5363 { 5364 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5365 } 5366 5367 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5368 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5369 const char *buf, size_t len) 5370 { 5371 unsigned int msecs; 5372 5373 if (kstrtouint(buf, 0, &msecs)) 5374 return -EINVAL; 5375 5376 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5377 5378 return len; 5379 } 5380 5381 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5382 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5383 ); 5384 5385 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5386 { 5387 unsigned int caps = 0; 5388 5389 if (get_cap(LRU_GEN_CORE)) 5390 caps |= BIT(LRU_GEN_CORE); 5391 5392 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5393 caps |= BIT(LRU_GEN_MM_WALK); 5394 5395 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5396 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5397 5398 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps); 5399 } 5400 5401 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5402 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5403 const char *buf, size_t len) 5404 { 5405 int i; 5406 unsigned int caps; 5407 5408 if (tolower(*buf) == 'n') 5409 caps = 0; 5410 else if (tolower(*buf) == 'y') 5411 caps = -1; 5412 else if (kstrtouint(buf, 0, &caps)) 5413 return -EINVAL; 5414 5415 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5416 bool enabled = caps & BIT(i); 5417 5418 if (i == LRU_GEN_CORE) 5419 lru_gen_change_state(enabled); 5420 else if (enabled) 5421 static_branch_enable(&lru_gen_caps[i]); 5422 else 5423 static_branch_disable(&lru_gen_caps[i]); 5424 } 5425 5426 return len; 5427 } 5428 5429 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5430 enabled, 0644, show_enabled, store_enabled 5431 ); 5432 5433 static struct attribute *lru_gen_attrs[] = { 5434 &lru_gen_min_ttl_attr.attr, 5435 &lru_gen_enabled_attr.attr, 5436 NULL 5437 }; 5438 5439 static struct attribute_group lru_gen_attr_group = { 5440 .name = "lru_gen", 5441 .attrs = lru_gen_attrs, 5442 }; 5443 5444 /****************************************************************************** 5445 * debugfs interface 5446 ******************************************************************************/ 5447 5448 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5449 { 5450 struct mem_cgroup *memcg; 5451 loff_t nr_to_skip = *pos; 5452 5453 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5454 if (!m->private) 5455 return ERR_PTR(-ENOMEM); 5456 5457 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5458 do { 5459 int nid; 5460 5461 for_each_node_state(nid, N_MEMORY) { 5462 if (!nr_to_skip--) 5463 return get_lruvec(memcg, nid); 5464 } 5465 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5466 5467 return NULL; 5468 } 5469 5470 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5471 { 5472 if (!IS_ERR_OR_NULL(v)) 5473 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5474 5475 kvfree(m->private); 5476 m->private = NULL; 5477 } 5478 5479 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5480 { 5481 int nid = lruvec_pgdat(v)->node_id; 5482 struct mem_cgroup *memcg = lruvec_memcg(v); 5483 5484 ++*pos; 5485 5486 nid = next_memory_node(nid); 5487 if (nid == MAX_NUMNODES) { 5488 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5489 if (!memcg) 5490 return NULL; 5491 5492 nid = first_memory_node; 5493 } 5494 5495 return get_lruvec(memcg, nid); 5496 } 5497 5498 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5499 unsigned long max_seq, unsigned long *min_seq, 5500 unsigned long seq) 5501 { 5502 int i; 5503 int type, tier; 5504 int hist = lru_hist_from_seq(seq); 5505 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5506 5507 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5508 seq_printf(m, " %10d", tier); 5509 for (type = 0; type < ANON_AND_FILE; type++) { 5510 const char *s = " "; 5511 unsigned long n[3] = {}; 5512 5513 if (seq == max_seq) { 5514 s = "RT "; 5515 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5516 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5517 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5518 s = "rep"; 5519 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5520 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5521 if (tier) 5522 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5523 } 5524 5525 for (i = 0; i < 3; i++) 5526 seq_printf(m, " %10lu%c", n[i], s[i]); 5527 } 5528 seq_putc(m, '\n'); 5529 } 5530 5531 seq_puts(m, " "); 5532 for (i = 0; i < NR_MM_STATS; i++) { 5533 const char *s = " "; 5534 unsigned long n = 0; 5535 5536 if (seq == max_seq && NR_HIST_GENS == 1) { 5537 s = "LOYNFA"; 5538 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5539 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5540 s = "loynfa"; 5541 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5542 } 5543 5544 seq_printf(m, " %10lu%c", n, s[i]); 5545 } 5546 seq_putc(m, '\n'); 5547 } 5548 5549 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5550 static int lru_gen_seq_show(struct seq_file *m, void *v) 5551 { 5552 unsigned long seq; 5553 bool full = !debugfs_real_fops(m->file)->write; 5554 struct lruvec *lruvec = v; 5555 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5556 int nid = lruvec_pgdat(lruvec)->node_id; 5557 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5558 DEFINE_MAX_SEQ(lruvec); 5559 DEFINE_MIN_SEQ(lruvec); 5560 5561 if (nid == first_memory_node) { 5562 const char *path = memcg ? m->private : ""; 5563 5564 #ifdef CONFIG_MEMCG 5565 if (memcg) 5566 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5567 #endif 5568 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5569 } 5570 5571 seq_printf(m, " node %5d\n", nid); 5572 5573 if (!full) 5574 seq = min_seq[LRU_GEN_ANON]; 5575 else if (max_seq >= MAX_NR_GENS) 5576 seq = max_seq - MAX_NR_GENS + 1; 5577 else 5578 seq = 0; 5579 5580 for (; seq <= max_seq; seq++) { 5581 int type, zone; 5582 int gen = lru_gen_from_seq(seq); 5583 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5584 5585 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5586 5587 for (type = 0; type < ANON_AND_FILE; type++) { 5588 unsigned long size = 0; 5589 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5590 5591 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5592 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5593 5594 seq_printf(m, " %10lu%c", size, mark); 5595 } 5596 5597 seq_putc(m, '\n'); 5598 5599 if (full) 5600 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5601 } 5602 5603 return 0; 5604 } 5605 5606 static const struct seq_operations lru_gen_seq_ops = { 5607 .start = lru_gen_seq_start, 5608 .stop = lru_gen_seq_stop, 5609 .next = lru_gen_seq_next, 5610 .show = lru_gen_seq_show, 5611 }; 5612 5613 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5614 bool can_swap, bool force_scan) 5615 { 5616 DEFINE_MAX_SEQ(lruvec); 5617 DEFINE_MIN_SEQ(lruvec); 5618 5619 if (seq < max_seq) 5620 return 0; 5621 5622 if (seq > max_seq) 5623 return -EINVAL; 5624 5625 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5626 return -ERANGE; 5627 5628 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5629 5630 return 0; 5631 } 5632 5633 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5634 int swappiness, unsigned long nr_to_reclaim) 5635 { 5636 DEFINE_MAX_SEQ(lruvec); 5637 5638 if (seq + MIN_NR_GENS > max_seq) 5639 return -EINVAL; 5640 5641 sc->nr_reclaimed = 0; 5642 5643 while (!signal_pending(current)) { 5644 DEFINE_MIN_SEQ(lruvec); 5645 5646 if (seq < min_seq[!swappiness]) 5647 return 0; 5648 5649 if (sc->nr_reclaimed >= nr_to_reclaim) 5650 return 0; 5651 5652 if (!evict_folios(lruvec, sc, swappiness, NULL)) 5653 return 0; 5654 5655 cond_resched(); 5656 } 5657 5658 return -EINTR; 5659 } 5660 5661 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5662 struct scan_control *sc, int swappiness, unsigned long opt) 5663 { 5664 struct lruvec *lruvec; 5665 int err = -EINVAL; 5666 struct mem_cgroup *memcg = NULL; 5667 5668 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5669 return -EINVAL; 5670 5671 if (!mem_cgroup_disabled()) { 5672 rcu_read_lock(); 5673 memcg = mem_cgroup_from_id(memcg_id); 5674 #ifdef CONFIG_MEMCG 5675 if (memcg && !css_tryget(&memcg->css)) 5676 memcg = NULL; 5677 #endif 5678 rcu_read_unlock(); 5679 5680 if (!memcg) 5681 return -EINVAL; 5682 } 5683 5684 if (memcg_id != mem_cgroup_id(memcg)) 5685 goto done; 5686 5687 lruvec = get_lruvec(memcg, nid); 5688 5689 if (swappiness < 0) 5690 swappiness = get_swappiness(lruvec, sc); 5691 else if (swappiness > 200) 5692 goto done; 5693 5694 switch (cmd) { 5695 case '+': 5696 err = run_aging(lruvec, seq, sc, swappiness, opt); 5697 break; 5698 case '-': 5699 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5700 break; 5701 } 5702 done: 5703 mem_cgroup_put(memcg); 5704 5705 return err; 5706 } 5707 5708 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5709 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5710 size_t len, loff_t *pos) 5711 { 5712 void *buf; 5713 char *cur, *next; 5714 unsigned int flags; 5715 struct blk_plug plug; 5716 int err = -EINVAL; 5717 struct scan_control sc = { 5718 .may_writepage = true, 5719 .may_unmap = true, 5720 .may_swap = true, 5721 .reclaim_idx = MAX_NR_ZONES - 1, 5722 .gfp_mask = GFP_KERNEL, 5723 }; 5724 5725 buf = kvmalloc(len + 1, GFP_KERNEL); 5726 if (!buf) 5727 return -ENOMEM; 5728 5729 if (copy_from_user(buf, src, len)) { 5730 kvfree(buf); 5731 return -EFAULT; 5732 } 5733 5734 set_task_reclaim_state(current, &sc.reclaim_state); 5735 flags = memalloc_noreclaim_save(); 5736 blk_start_plug(&plug); 5737 if (!set_mm_walk(NULL)) { 5738 err = -ENOMEM; 5739 goto done; 5740 } 5741 5742 next = buf; 5743 next[len] = '\0'; 5744 5745 while ((cur = strsep(&next, ",;\n"))) { 5746 int n; 5747 int end; 5748 char cmd; 5749 unsigned int memcg_id; 5750 unsigned int nid; 5751 unsigned long seq; 5752 unsigned int swappiness = -1; 5753 unsigned long opt = -1; 5754 5755 cur = skip_spaces(cur); 5756 if (!*cur) 5757 continue; 5758 5759 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5760 &seq, &end, &swappiness, &end, &opt, &end); 5761 if (n < 4 || cur[end]) { 5762 err = -EINVAL; 5763 break; 5764 } 5765 5766 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5767 if (err) 5768 break; 5769 } 5770 done: 5771 clear_mm_walk(); 5772 blk_finish_plug(&plug); 5773 memalloc_noreclaim_restore(flags); 5774 set_task_reclaim_state(current, NULL); 5775 5776 kvfree(buf); 5777 5778 return err ? : len; 5779 } 5780 5781 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5782 { 5783 return seq_open(file, &lru_gen_seq_ops); 5784 } 5785 5786 static const struct file_operations lru_gen_rw_fops = { 5787 .open = lru_gen_seq_open, 5788 .read = seq_read, 5789 .write = lru_gen_seq_write, 5790 .llseek = seq_lseek, 5791 .release = seq_release, 5792 }; 5793 5794 static const struct file_operations lru_gen_ro_fops = { 5795 .open = lru_gen_seq_open, 5796 .read = seq_read, 5797 .llseek = seq_lseek, 5798 .release = seq_release, 5799 }; 5800 5801 /****************************************************************************** 5802 * initialization 5803 ******************************************************************************/ 5804 5805 void lru_gen_init_lruvec(struct lruvec *lruvec) 5806 { 5807 int i; 5808 int gen, type, zone; 5809 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5810 5811 lrugen->max_seq = MIN_NR_GENS + 1; 5812 lrugen->enabled = lru_gen_enabled(); 5813 5814 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5815 lrugen->timestamps[i] = jiffies; 5816 5817 for_each_gen_type_zone(gen, type, zone) 5818 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]); 5819 5820 lruvec->mm_state.seq = MIN_NR_GENS; 5821 init_waitqueue_head(&lruvec->mm_state.wait); 5822 } 5823 5824 #ifdef CONFIG_MEMCG 5825 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5826 { 5827 INIT_LIST_HEAD(&memcg->mm_list.fifo); 5828 spin_lock_init(&memcg->mm_list.lock); 5829 } 5830 5831 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5832 { 5833 int i; 5834 int nid; 5835 5836 for_each_node(nid) { 5837 struct lruvec *lruvec = get_lruvec(memcg, nid); 5838 5839 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5840 sizeof(lruvec->lrugen.nr_pages))); 5841 5842 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5843 bitmap_free(lruvec->mm_state.filters[i]); 5844 lruvec->mm_state.filters[i] = NULL; 5845 } 5846 } 5847 } 5848 #endif 5849 5850 static int __init init_lru_gen(void) 5851 { 5852 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5853 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5854 5855 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5856 pr_err("lru_gen: failed to create sysfs group\n"); 5857 5858 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5859 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5860 5861 return 0; 5862 }; 5863 late_initcall(init_lru_gen); 5864 5865 #else /* !CONFIG_LRU_GEN */ 5866 5867 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5868 { 5869 } 5870 5871 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5872 { 5873 } 5874 5875 #endif /* CONFIG_LRU_GEN */ 5876 5877 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5878 { 5879 unsigned long nr[NR_LRU_LISTS]; 5880 unsigned long targets[NR_LRU_LISTS]; 5881 unsigned long nr_to_scan; 5882 enum lru_list lru; 5883 unsigned long nr_reclaimed = 0; 5884 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5885 bool proportional_reclaim; 5886 struct blk_plug plug; 5887 5888 if (lru_gen_enabled()) { 5889 lru_gen_shrink_lruvec(lruvec, sc); 5890 return; 5891 } 5892 5893 get_scan_count(lruvec, sc, nr); 5894 5895 /* Record the original scan target for proportional adjustments later */ 5896 memcpy(targets, nr, sizeof(nr)); 5897 5898 /* 5899 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5900 * event that can occur when there is little memory pressure e.g. 5901 * multiple streaming readers/writers. Hence, we do not abort scanning 5902 * when the requested number of pages are reclaimed when scanning at 5903 * DEF_PRIORITY on the assumption that the fact we are direct 5904 * reclaiming implies that kswapd is not keeping up and it is best to 5905 * do a batch of work at once. For memcg reclaim one check is made to 5906 * abort proportional reclaim if either the file or anon lru has already 5907 * dropped to zero at the first pass. 5908 */ 5909 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5910 sc->priority == DEF_PRIORITY); 5911 5912 blk_start_plug(&plug); 5913 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5914 nr[LRU_INACTIVE_FILE]) { 5915 unsigned long nr_anon, nr_file, percentage; 5916 unsigned long nr_scanned; 5917 5918 for_each_evictable_lru(lru) { 5919 if (nr[lru]) { 5920 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5921 nr[lru] -= nr_to_scan; 5922 5923 nr_reclaimed += shrink_list(lru, nr_to_scan, 5924 lruvec, sc); 5925 } 5926 } 5927 5928 cond_resched(); 5929 5930 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5931 continue; 5932 5933 /* 5934 * For kswapd and memcg, reclaim at least the number of pages 5935 * requested. Ensure that the anon and file LRUs are scanned 5936 * proportionally what was requested by get_scan_count(). We 5937 * stop reclaiming one LRU and reduce the amount scanning 5938 * proportional to the original scan target. 5939 */ 5940 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5941 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5942 5943 /* 5944 * It's just vindictive to attack the larger once the smaller 5945 * has gone to zero. And given the way we stop scanning the 5946 * smaller below, this makes sure that we only make one nudge 5947 * towards proportionality once we've got nr_to_reclaim. 5948 */ 5949 if (!nr_file || !nr_anon) 5950 break; 5951 5952 if (nr_file > nr_anon) { 5953 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5954 targets[LRU_ACTIVE_ANON] + 1; 5955 lru = LRU_BASE; 5956 percentage = nr_anon * 100 / scan_target; 5957 } else { 5958 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5959 targets[LRU_ACTIVE_FILE] + 1; 5960 lru = LRU_FILE; 5961 percentage = nr_file * 100 / scan_target; 5962 } 5963 5964 /* Stop scanning the smaller of the LRU */ 5965 nr[lru] = 0; 5966 nr[lru + LRU_ACTIVE] = 0; 5967 5968 /* 5969 * Recalculate the other LRU scan count based on its original 5970 * scan target and the percentage scanning already complete 5971 */ 5972 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5973 nr_scanned = targets[lru] - nr[lru]; 5974 nr[lru] = targets[lru] * (100 - percentage) / 100; 5975 nr[lru] -= min(nr[lru], nr_scanned); 5976 5977 lru += LRU_ACTIVE; 5978 nr_scanned = targets[lru] - nr[lru]; 5979 nr[lru] = targets[lru] * (100 - percentage) / 100; 5980 nr[lru] -= min(nr[lru], nr_scanned); 5981 } 5982 blk_finish_plug(&plug); 5983 sc->nr_reclaimed += nr_reclaimed; 5984 5985 /* 5986 * Even if we did not try to evict anon pages at all, we want to 5987 * rebalance the anon lru active/inactive ratio. 5988 */ 5989 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5990 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5991 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5992 sc, LRU_ACTIVE_ANON); 5993 } 5994 5995 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5996 static bool in_reclaim_compaction(struct scan_control *sc) 5997 { 5998 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 5999 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6000 sc->priority < DEF_PRIORITY - 2)) 6001 return true; 6002 6003 return false; 6004 } 6005 6006 /* 6007 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6008 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6009 * true if more pages should be reclaimed such that when the page allocator 6010 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6011 * It will give up earlier than that if there is difficulty reclaiming pages. 6012 */ 6013 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6014 unsigned long nr_reclaimed, 6015 struct scan_control *sc) 6016 { 6017 unsigned long pages_for_compaction; 6018 unsigned long inactive_lru_pages; 6019 int z; 6020 6021 /* If not in reclaim/compaction mode, stop */ 6022 if (!in_reclaim_compaction(sc)) 6023 return false; 6024 6025 /* 6026 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6027 * number of pages that were scanned. This will return to the caller 6028 * with the risk reclaim/compaction and the resulting allocation attempt 6029 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6030 * allocations through requiring that the full LRU list has been scanned 6031 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6032 * scan, but that approximation was wrong, and there were corner cases 6033 * where always a non-zero amount of pages were scanned. 6034 */ 6035 if (!nr_reclaimed) 6036 return false; 6037 6038 /* If compaction would go ahead or the allocation would succeed, stop */ 6039 for (z = 0; z <= sc->reclaim_idx; z++) { 6040 struct zone *zone = &pgdat->node_zones[z]; 6041 if (!managed_zone(zone)) 6042 continue; 6043 6044 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6045 case COMPACT_SUCCESS: 6046 case COMPACT_CONTINUE: 6047 return false; 6048 default: 6049 /* check next zone */ 6050 ; 6051 } 6052 } 6053 6054 /* 6055 * If we have not reclaimed enough pages for compaction and the 6056 * inactive lists are large enough, continue reclaiming 6057 */ 6058 pages_for_compaction = compact_gap(sc->order); 6059 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6060 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6061 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6062 6063 return inactive_lru_pages > pages_for_compaction; 6064 } 6065 6066 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6067 { 6068 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6069 struct mem_cgroup *memcg; 6070 6071 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6072 do { 6073 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6074 unsigned long reclaimed; 6075 unsigned long scanned; 6076 6077 /* 6078 * This loop can become CPU-bound when target memcgs 6079 * aren't eligible for reclaim - either because they 6080 * don't have any reclaimable pages, or because their 6081 * memory is explicitly protected. Avoid soft lockups. 6082 */ 6083 cond_resched(); 6084 6085 mem_cgroup_calculate_protection(target_memcg, memcg); 6086 6087 if (mem_cgroup_below_min(memcg)) { 6088 /* 6089 * Hard protection. 6090 * If there is no reclaimable memory, OOM. 6091 */ 6092 continue; 6093 } else if (mem_cgroup_below_low(memcg)) { 6094 /* 6095 * Soft protection. 6096 * Respect the protection only as long as 6097 * there is an unprotected supply 6098 * of reclaimable memory from other cgroups. 6099 */ 6100 if (!sc->memcg_low_reclaim) { 6101 sc->memcg_low_skipped = 1; 6102 continue; 6103 } 6104 memcg_memory_event(memcg, MEMCG_LOW); 6105 } 6106 6107 reclaimed = sc->nr_reclaimed; 6108 scanned = sc->nr_scanned; 6109 6110 shrink_lruvec(lruvec, sc); 6111 6112 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6113 sc->priority); 6114 6115 /* Record the group's reclaim efficiency */ 6116 if (!sc->proactive) 6117 vmpressure(sc->gfp_mask, memcg, false, 6118 sc->nr_scanned - scanned, 6119 sc->nr_reclaimed - reclaimed); 6120 6121 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6122 } 6123 6124 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6125 { 6126 struct reclaim_state *reclaim_state = current->reclaim_state; 6127 unsigned long nr_reclaimed, nr_scanned; 6128 struct lruvec *target_lruvec; 6129 bool reclaimable = false; 6130 6131 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6132 6133 again: 6134 memset(&sc->nr, 0, sizeof(sc->nr)); 6135 6136 nr_reclaimed = sc->nr_reclaimed; 6137 nr_scanned = sc->nr_scanned; 6138 6139 prepare_scan_count(pgdat, sc); 6140 6141 shrink_node_memcgs(pgdat, sc); 6142 6143 if (reclaim_state) { 6144 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6145 reclaim_state->reclaimed_slab = 0; 6146 } 6147 6148 /* Record the subtree's reclaim efficiency */ 6149 if (!sc->proactive) 6150 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6151 sc->nr_scanned - nr_scanned, 6152 sc->nr_reclaimed - nr_reclaimed); 6153 6154 if (sc->nr_reclaimed - nr_reclaimed) 6155 reclaimable = true; 6156 6157 if (current_is_kswapd()) { 6158 /* 6159 * If reclaim is isolating dirty pages under writeback, 6160 * it implies that the long-lived page allocation rate 6161 * is exceeding the page laundering rate. Either the 6162 * global limits are not being effective at throttling 6163 * processes due to the page distribution throughout 6164 * zones or there is heavy usage of a slow backing 6165 * device. The only option is to throttle from reclaim 6166 * context which is not ideal as there is no guarantee 6167 * the dirtying process is throttled in the same way 6168 * balance_dirty_pages() manages. 6169 * 6170 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6171 * count the number of pages under pages flagged for 6172 * immediate reclaim and stall if any are encountered 6173 * in the nr_immediate check below. 6174 */ 6175 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6176 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6177 6178 /* Allow kswapd to start writing pages during reclaim.*/ 6179 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6180 set_bit(PGDAT_DIRTY, &pgdat->flags); 6181 6182 /* 6183 * If kswapd scans pages marked for immediate 6184 * reclaim and under writeback (nr_immediate), it 6185 * implies that pages are cycling through the LRU 6186 * faster than they are written so forcibly stall 6187 * until some pages complete writeback. 6188 */ 6189 if (sc->nr.immediate) 6190 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6191 } 6192 6193 /* 6194 * Tag a node/memcg as congested if all the dirty pages were marked 6195 * for writeback and immediate reclaim (counted in nr.congested). 6196 * 6197 * Legacy memcg will stall in page writeback so avoid forcibly 6198 * stalling in reclaim_throttle(). 6199 */ 6200 if ((current_is_kswapd() || 6201 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6202 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6203 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6204 6205 /* 6206 * Stall direct reclaim for IO completions if the lruvec is 6207 * node is congested. Allow kswapd to continue until it 6208 * starts encountering unqueued dirty pages or cycling through 6209 * the LRU too quickly. 6210 */ 6211 if (!current_is_kswapd() && current_may_throttle() && 6212 !sc->hibernation_mode && 6213 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6214 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6215 6216 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6217 sc)) 6218 goto again; 6219 6220 /* 6221 * Kswapd gives up on balancing particular nodes after too 6222 * many failures to reclaim anything from them and goes to 6223 * sleep. On reclaim progress, reset the failure counter. A 6224 * successful direct reclaim run will revive a dormant kswapd. 6225 */ 6226 if (reclaimable) 6227 pgdat->kswapd_failures = 0; 6228 } 6229 6230 /* 6231 * Returns true if compaction should go ahead for a costly-order request, or 6232 * the allocation would already succeed without compaction. Return false if we 6233 * should reclaim first. 6234 */ 6235 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6236 { 6237 unsigned long watermark; 6238 enum compact_result suitable; 6239 6240 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6241 if (suitable == COMPACT_SUCCESS) 6242 /* Allocation should succeed already. Don't reclaim. */ 6243 return true; 6244 if (suitable == COMPACT_SKIPPED) 6245 /* Compaction cannot yet proceed. Do reclaim. */ 6246 return false; 6247 6248 /* 6249 * Compaction is already possible, but it takes time to run and there 6250 * are potentially other callers using the pages just freed. So proceed 6251 * with reclaim to make a buffer of free pages available to give 6252 * compaction a reasonable chance of completing and allocating the page. 6253 * Note that we won't actually reclaim the whole buffer in one attempt 6254 * as the target watermark in should_continue_reclaim() is lower. But if 6255 * we are already above the high+gap watermark, don't reclaim at all. 6256 */ 6257 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6258 6259 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6260 } 6261 6262 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6263 { 6264 /* 6265 * If reclaim is making progress greater than 12% efficiency then 6266 * wake all the NOPROGRESS throttled tasks. 6267 */ 6268 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6269 wait_queue_head_t *wqh; 6270 6271 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6272 if (waitqueue_active(wqh)) 6273 wake_up(wqh); 6274 6275 return; 6276 } 6277 6278 /* 6279 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6280 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6281 * under writeback and marked for immediate reclaim at the tail of the 6282 * LRU. 6283 */ 6284 if (current_is_kswapd() || cgroup_reclaim(sc)) 6285 return; 6286 6287 /* Throttle if making no progress at high prioities. */ 6288 if (sc->priority == 1 && !sc->nr_reclaimed) 6289 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6290 } 6291 6292 /* 6293 * This is the direct reclaim path, for page-allocating processes. We only 6294 * try to reclaim pages from zones which will satisfy the caller's allocation 6295 * request. 6296 * 6297 * If a zone is deemed to be full of pinned pages then just give it a light 6298 * scan then give up on it. 6299 */ 6300 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6301 { 6302 struct zoneref *z; 6303 struct zone *zone; 6304 unsigned long nr_soft_reclaimed; 6305 unsigned long nr_soft_scanned; 6306 gfp_t orig_mask; 6307 pg_data_t *last_pgdat = NULL; 6308 pg_data_t *first_pgdat = NULL; 6309 6310 /* 6311 * If the number of buffer_heads in the machine exceeds the maximum 6312 * allowed level, force direct reclaim to scan the highmem zone as 6313 * highmem pages could be pinning lowmem pages storing buffer_heads 6314 */ 6315 orig_mask = sc->gfp_mask; 6316 if (buffer_heads_over_limit) { 6317 sc->gfp_mask |= __GFP_HIGHMEM; 6318 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6319 } 6320 6321 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6322 sc->reclaim_idx, sc->nodemask) { 6323 /* 6324 * Take care memory controller reclaiming has small influence 6325 * to global LRU. 6326 */ 6327 if (!cgroup_reclaim(sc)) { 6328 if (!cpuset_zone_allowed(zone, 6329 GFP_KERNEL | __GFP_HARDWALL)) 6330 continue; 6331 6332 /* 6333 * If we already have plenty of memory free for 6334 * compaction in this zone, don't free any more. 6335 * Even though compaction is invoked for any 6336 * non-zero order, only frequent costly order 6337 * reclamation is disruptive enough to become a 6338 * noticeable problem, like transparent huge 6339 * page allocations. 6340 */ 6341 if (IS_ENABLED(CONFIG_COMPACTION) && 6342 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6343 compaction_ready(zone, sc)) { 6344 sc->compaction_ready = true; 6345 continue; 6346 } 6347 6348 /* 6349 * Shrink each node in the zonelist once. If the 6350 * zonelist is ordered by zone (not the default) then a 6351 * node may be shrunk multiple times but in that case 6352 * the user prefers lower zones being preserved. 6353 */ 6354 if (zone->zone_pgdat == last_pgdat) 6355 continue; 6356 6357 /* 6358 * This steals pages from memory cgroups over softlimit 6359 * and returns the number of reclaimed pages and 6360 * scanned pages. This works for global memory pressure 6361 * and balancing, not for a memcg's limit. 6362 */ 6363 nr_soft_scanned = 0; 6364 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6365 sc->order, sc->gfp_mask, 6366 &nr_soft_scanned); 6367 sc->nr_reclaimed += nr_soft_reclaimed; 6368 sc->nr_scanned += nr_soft_scanned; 6369 /* need some check for avoid more shrink_zone() */ 6370 } 6371 6372 if (!first_pgdat) 6373 first_pgdat = zone->zone_pgdat; 6374 6375 /* See comment about same check for global reclaim above */ 6376 if (zone->zone_pgdat == last_pgdat) 6377 continue; 6378 last_pgdat = zone->zone_pgdat; 6379 shrink_node(zone->zone_pgdat, sc); 6380 } 6381 6382 if (first_pgdat) 6383 consider_reclaim_throttle(first_pgdat, sc); 6384 6385 /* 6386 * Restore to original mask to avoid the impact on the caller if we 6387 * promoted it to __GFP_HIGHMEM. 6388 */ 6389 sc->gfp_mask = orig_mask; 6390 } 6391 6392 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6393 { 6394 struct lruvec *target_lruvec; 6395 unsigned long refaults; 6396 6397 if (lru_gen_enabled()) 6398 return; 6399 6400 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6401 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6402 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6403 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6404 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6405 } 6406 6407 /* 6408 * This is the main entry point to direct page reclaim. 6409 * 6410 * If a full scan of the inactive list fails to free enough memory then we 6411 * are "out of memory" and something needs to be killed. 6412 * 6413 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6414 * high - the zone may be full of dirty or under-writeback pages, which this 6415 * caller can't do much about. We kick the writeback threads and take explicit 6416 * naps in the hope that some of these pages can be written. But if the 6417 * allocating task holds filesystem locks which prevent writeout this might not 6418 * work, and the allocation attempt will fail. 6419 * 6420 * returns: 0, if no pages reclaimed 6421 * else, the number of pages reclaimed 6422 */ 6423 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6424 struct scan_control *sc) 6425 { 6426 int initial_priority = sc->priority; 6427 pg_data_t *last_pgdat; 6428 struct zoneref *z; 6429 struct zone *zone; 6430 retry: 6431 delayacct_freepages_start(); 6432 6433 if (!cgroup_reclaim(sc)) 6434 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6435 6436 do { 6437 if (!sc->proactive) 6438 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6439 sc->priority); 6440 sc->nr_scanned = 0; 6441 shrink_zones(zonelist, sc); 6442 6443 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6444 break; 6445 6446 if (sc->compaction_ready) 6447 break; 6448 6449 /* 6450 * If we're getting trouble reclaiming, start doing 6451 * writepage even in laptop mode. 6452 */ 6453 if (sc->priority < DEF_PRIORITY - 2) 6454 sc->may_writepage = 1; 6455 } while (--sc->priority >= 0); 6456 6457 last_pgdat = NULL; 6458 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6459 sc->nodemask) { 6460 if (zone->zone_pgdat == last_pgdat) 6461 continue; 6462 last_pgdat = zone->zone_pgdat; 6463 6464 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6465 6466 if (cgroup_reclaim(sc)) { 6467 struct lruvec *lruvec; 6468 6469 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6470 zone->zone_pgdat); 6471 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6472 } 6473 } 6474 6475 delayacct_freepages_end(); 6476 6477 if (sc->nr_reclaimed) 6478 return sc->nr_reclaimed; 6479 6480 /* Aborted reclaim to try compaction? don't OOM, then */ 6481 if (sc->compaction_ready) 6482 return 1; 6483 6484 /* 6485 * We make inactive:active ratio decisions based on the node's 6486 * composition of memory, but a restrictive reclaim_idx or a 6487 * memory.low cgroup setting can exempt large amounts of 6488 * memory from reclaim. Neither of which are very common, so 6489 * instead of doing costly eligibility calculations of the 6490 * entire cgroup subtree up front, we assume the estimates are 6491 * good, and retry with forcible deactivation if that fails. 6492 */ 6493 if (sc->skipped_deactivate) { 6494 sc->priority = initial_priority; 6495 sc->force_deactivate = 1; 6496 sc->skipped_deactivate = 0; 6497 goto retry; 6498 } 6499 6500 /* Untapped cgroup reserves? Don't OOM, retry. */ 6501 if (sc->memcg_low_skipped) { 6502 sc->priority = initial_priority; 6503 sc->force_deactivate = 0; 6504 sc->memcg_low_reclaim = 1; 6505 sc->memcg_low_skipped = 0; 6506 goto retry; 6507 } 6508 6509 return 0; 6510 } 6511 6512 static bool allow_direct_reclaim(pg_data_t *pgdat) 6513 { 6514 struct zone *zone; 6515 unsigned long pfmemalloc_reserve = 0; 6516 unsigned long free_pages = 0; 6517 int i; 6518 bool wmark_ok; 6519 6520 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6521 return true; 6522 6523 for (i = 0; i <= ZONE_NORMAL; i++) { 6524 zone = &pgdat->node_zones[i]; 6525 if (!managed_zone(zone)) 6526 continue; 6527 6528 if (!zone_reclaimable_pages(zone)) 6529 continue; 6530 6531 pfmemalloc_reserve += min_wmark_pages(zone); 6532 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6533 } 6534 6535 /* If there are no reserves (unexpected config) then do not throttle */ 6536 if (!pfmemalloc_reserve) 6537 return true; 6538 6539 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6540 6541 /* kswapd must be awake if processes are being throttled */ 6542 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6543 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6544 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6545 6546 wake_up_interruptible(&pgdat->kswapd_wait); 6547 } 6548 6549 return wmark_ok; 6550 } 6551 6552 /* 6553 * Throttle direct reclaimers if backing storage is backed by the network 6554 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6555 * depleted. kswapd will continue to make progress and wake the processes 6556 * when the low watermark is reached. 6557 * 6558 * Returns true if a fatal signal was delivered during throttling. If this 6559 * happens, the page allocator should not consider triggering the OOM killer. 6560 */ 6561 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6562 nodemask_t *nodemask) 6563 { 6564 struct zoneref *z; 6565 struct zone *zone; 6566 pg_data_t *pgdat = NULL; 6567 6568 /* 6569 * Kernel threads should not be throttled as they may be indirectly 6570 * responsible for cleaning pages necessary for reclaim to make forward 6571 * progress. kjournald for example may enter direct reclaim while 6572 * committing a transaction where throttling it could forcing other 6573 * processes to block on log_wait_commit(). 6574 */ 6575 if (current->flags & PF_KTHREAD) 6576 goto out; 6577 6578 /* 6579 * If a fatal signal is pending, this process should not throttle. 6580 * It should return quickly so it can exit and free its memory 6581 */ 6582 if (fatal_signal_pending(current)) 6583 goto out; 6584 6585 /* 6586 * Check if the pfmemalloc reserves are ok by finding the first node 6587 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6588 * GFP_KERNEL will be required for allocating network buffers when 6589 * swapping over the network so ZONE_HIGHMEM is unusable. 6590 * 6591 * Throttling is based on the first usable node and throttled processes 6592 * wait on a queue until kswapd makes progress and wakes them. There 6593 * is an affinity then between processes waking up and where reclaim 6594 * progress has been made assuming the process wakes on the same node. 6595 * More importantly, processes running on remote nodes will not compete 6596 * for remote pfmemalloc reserves and processes on different nodes 6597 * should make reasonable progress. 6598 */ 6599 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6600 gfp_zone(gfp_mask), nodemask) { 6601 if (zone_idx(zone) > ZONE_NORMAL) 6602 continue; 6603 6604 /* Throttle based on the first usable node */ 6605 pgdat = zone->zone_pgdat; 6606 if (allow_direct_reclaim(pgdat)) 6607 goto out; 6608 break; 6609 } 6610 6611 /* If no zone was usable by the allocation flags then do not throttle */ 6612 if (!pgdat) 6613 goto out; 6614 6615 /* Account for the throttling */ 6616 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6617 6618 /* 6619 * If the caller cannot enter the filesystem, it's possible that it 6620 * is due to the caller holding an FS lock or performing a journal 6621 * transaction in the case of a filesystem like ext[3|4]. In this case, 6622 * it is not safe to block on pfmemalloc_wait as kswapd could be 6623 * blocked waiting on the same lock. Instead, throttle for up to a 6624 * second before continuing. 6625 */ 6626 if (!(gfp_mask & __GFP_FS)) 6627 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6628 allow_direct_reclaim(pgdat), HZ); 6629 else 6630 /* Throttle until kswapd wakes the process */ 6631 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6632 allow_direct_reclaim(pgdat)); 6633 6634 if (fatal_signal_pending(current)) 6635 return true; 6636 6637 out: 6638 return false; 6639 } 6640 6641 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6642 gfp_t gfp_mask, nodemask_t *nodemask) 6643 { 6644 unsigned long nr_reclaimed; 6645 struct scan_control sc = { 6646 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6647 .gfp_mask = current_gfp_context(gfp_mask), 6648 .reclaim_idx = gfp_zone(gfp_mask), 6649 .order = order, 6650 .nodemask = nodemask, 6651 .priority = DEF_PRIORITY, 6652 .may_writepage = !laptop_mode, 6653 .may_unmap = 1, 6654 .may_swap = 1, 6655 }; 6656 6657 /* 6658 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6659 * Confirm they are large enough for max values. 6660 */ 6661 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6662 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6663 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6664 6665 /* 6666 * Do not enter reclaim if fatal signal was delivered while throttled. 6667 * 1 is returned so that the page allocator does not OOM kill at this 6668 * point. 6669 */ 6670 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6671 return 1; 6672 6673 set_task_reclaim_state(current, &sc.reclaim_state); 6674 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6675 6676 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6677 6678 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6679 set_task_reclaim_state(current, NULL); 6680 6681 return nr_reclaimed; 6682 } 6683 6684 #ifdef CONFIG_MEMCG 6685 6686 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6687 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6688 gfp_t gfp_mask, bool noswap, 6689 pg_data_t *pgdat, 6690 unsigned long *nr_scanned) 6691 { 6692 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6693 struct scan_control sc = { 6694 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6695 .target_mem_cgroup = memcg, 6696 .may_writepage = !laptop_mode, 6697 .may_unmap = 1, 6698 .reclaim_idx = MAX_NR_ZONES - 1, 6699 .may_swap = !noswap, 6700 }; 6701 6702 WARN_ON_ONCE(!current->reclaim_state); 6703 6704 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6705 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6706 6707 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6708 sc.gfp_mask); 6709 6710 /* 6711 * NOTE: Although we can get the priority field, using it 6712 * here is not a good idea, since it limits the pages we can scan. 6713 * if we don't reclaim here, the shrink_node from balance_pgdat 6714 * will pick up pages from other mem cgroup's as well. We hack 6715 * the priority and make it zero. 6716 */ 6717 shrink_lruvec(lruvec, &sc); 6718 6719 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6720 6721 *nr_scanned = sc.nr_scanned; 6722 6723 return sc.nr_reclaimed; 6724 } 6725 6726 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6727 unsigned long nr_pages, 6728 gfp_t gfp_mask, 6729 unsigned int reclaim_options) 6730 { 6731 unsigned long nr_reclaimed; 6732 unsigned int noreclaim_flag; 6733 struct scan_control sc = { 6734 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6735 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6736 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6737 .reclaim_idx = MAX_NR_ZONES - 1, 6738 .target_mem_cgroup = memcg, 6739 .priority = DEF_PRIORITY, 6740 .may_writepage = !laptop_mode, 6741 .may_unmap = 1, 6742 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6743 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6744 }; 6745 /* 6746 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6747 * equal pressure on all the nodes. This is based on the assumption that 6748 * the reclaim does not bail out early. 6749 */ 6750 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6751 6752 set_task_reclaim_state(current, &sc.reclaim_state); 6753 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6754 noreclaim_flag = memalloc_noreclaim_save(); 6755 6756 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6757 6758 memalloc_noreclaim_restore(noreclaim_flag); 6759 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6760 set_task_reclaim_state(current, NULL); 6761 6762 return nr_reclaimed; 6763 } 6764 #endif 6765 6766 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6767 { 6768 struct mem_cgroup *memcg; 6769 struct lruvec *lruvec; 6770 6771 if (lru_gen_enabled()) { 6772 lru_gen_age_node(pgdat, sc); 6773 return; 6774 } 6775 6776 if (!can_age_anon_pages(pgdat, sc)) 6777 return; 6778 6779 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6780 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6781 return; 6782 6783 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6784 do { 6785 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6786 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6787 sc, LRU_ACTIVE_ANON); 6788 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6789 } while (memcg); 6790 } 6791 6792 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6793 { 6794 int i; 6795 struct zone *zone; 6796 6797 /* 6798 * Check for watermark boosts top-down as the higher zones 6799 * are more likely to be boosted. Both watermarks and boosts 6800 * should not be checked at the same time as reclaim would 6801 * start prematurely when there is no boosting and a lower 6802 * zone is balanced. 6803 */ 6804 for (i = highest_zoneidx; i >= 0; i--) { 6805 zone = pgdat->node_zones + i; 6806 if (!managed_zone(zone)) 6807 continue; 6808 6809 if (zone->watermark_boost) 6810 return true; 6811 } 6812 6813 return false; 6814 } 6815 6816 /* 6817 * Returns true if there is an eligible zone balanced for the request order 6818 * and highest_zoneidx 6819 */ 6820 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6821 { 6822 int i; 6823 unsigned long mark = -1; 6824 struct zone *zone; 6825 6826 /* 6827 * Check watermarks bottom-up as lower zones are more likely to 6828 * meet watermarks. 6829 */ 6830 for (i = 0; i <= highest_zoneidx; i++) { 6831 zone = pgdat->node_zones + i; 6832 6833 if (!managed_zone(zone)) 6834 continue; 6835 6836 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6837 mark = wmark_pages(zone, WMARK_PROMO); 6838 else 6839 mark = high_wmark_pages(zone); 6840 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6841 return true; 6842 } 6843 6844 /* 6845 * If a node has no managed zone within highest_zoneidx, it does not 6846 * need balancing by definition. This can happen if a zone-restricted 6847 * allocation tries to wake a remote kswapd. 6848 */ 6849 if (mark == -1) 6850 return true; 6851 6852 return false; 6853 } 6854 6855 /* Clear pgdat state for congested, dirty or under writeback. */ 6856 static void clear_pgdat_congested(pg_data_t *pgdat) 6857 { 6858 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6859 6860 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6861 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6862 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6863 } 6864 6865 /* 6866 * Prepare kswapd for sleeping. This verifies that there are no processes 6867 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6868 * 6869 * Returns true if kswapd is ready to sleep 6870 */ 6871 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6872 int highest_zoneidx) 6873 { 6874 /* 6875 * The throttled processes are normally woken up in balance_pgdat() as 6876 * soon as allow_direct_reclaim() is true. But there is a potential 6877 * race between when kswapd checks the watermarks and a process gets 6878 * throttled. There is also a potential race if processes get 6879 * throttled, kswapd wakes, a large process exits thereby balancing the 6880 * zones, which causes kswapd to exit balance_pgdat() before reaching 6881 * the wake up checks. If kswapd is going to sleep, no process should 6882 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6883 * the wake up is premature, processes will wake kswapd and get 6884 * throttled again. The difference from wake ups in balance_pgdat() is 6885 * that here we are under prepare_to_wait(). 6886 */ 6887 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6888 wake_up_all(&pgdat->pfmemalloc_wait); 6889 6890 /* Hopeless node, leave it to direct reclaim */ 6891 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6892 return true; 6893 6894 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6895 clear_pgdat_congested(pgdat); 6896 return true; 6897 } 6898 6899 return false; 6900 } 6901 6902 /* 6903 * kswapd shrinks a node of pages that are at or below the highest usable 6904 * zone that is currently unbalanced. 6905 * 6906 * Returns true if kswapd scanned at least the requested number of pages to 6907 * reclaim or if the lack of progress was due to pages under writeback. 6908 * This is used to determine if the scanning priority needs to be raised. 6909 */ 6910 static bool kswapd_shrink_node(pg_data_t *pgdat, 6911 struct scan_control *sc) 6912 { 6913 struct zone *zone; 6914 int z; 6915 6916 /* Reclaim a number of pages proportional to the number of zones */ 6917 sc->nr_to_reclaim = 0; 6918 for (z = 0; z <= sc->reclaim_idx; z++) { 6919 zone = pgdat->node_zones + z; 6920 if (!managed_zone(zone)) 6921 continue; 6922 6923 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6924 } 6925 6926 /* 6927 * Historically care was taken to put equal pressure on all zones but 6928 * now pressure is applied based on node LRU order. 6929 */ 6930 shrink_node(pgdat, sc); 6931 6932 /* 6933 * Fragmentation may mean that the system cannot be rebalanced for 6934 * high-order allocations. If twice the allocation size has been 6935 * reclaimed then recheck watermarks only at order-0 to prevent 6936 * excessive reclaim. Assume that a process requested a high-order 6937 * can direct reclaim/compact. 6938 */ 6939 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6940 sc->order = 0; 6941 6942 return sc->nr_scanned >= sc->nr_to_reclaim; 6943 } 6944 6945 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6946 static inline void 6947 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6948 { 6949 int i; 6950 struct zone *zone; 6951 6952 for (i = 0; i <= highest_zoneidx; i++) { 6953 zone = pgdat->node_zones + i; 6954 6955 if (!managed_zone(zone)) 6956 continue; 6957 6958 if (active) 6959 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6960 else 6961 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6962 } 6963 } 6964 6965 static inline void 6966 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6967 { 6968 update_reclaim_active(pgdat, highest_zoneidx, true); 6969 } 6970 6971 static inline void 6972 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6973 { 6974 update_reclaim_active(pgdat, highest_zoneidx, false); 6975 } 6976 6977 /* 6978 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6979 * that are eligible for use by the caller until at least one zone is 6980 * balanced. 6981 * 6982 * Returns the order kswapd finished reclaiming at. 6983 * 6984 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6985 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6986 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6987 * or lower is eligible for reclaim until at least one usable zone is 6988 * balanced. 6989 */ 6990 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6991 { 6992 int i; 6993 unsigned long nr_soft_reclaimed; 6994 unsigned long nr_soft_scanned; 6995 unsigned long pflags; 6996 unsigned long nr_boost_reclaim; 6997 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6998 bool boosted; 6999 struct zone *zone; 7000 struct scan_control sc = { 7001 .gfp_mask = GFP_KERNEL, 7002 .order = order, 7003 .may_unmap = 1, 7004 }; 7005 7006 set_task_reclaim_state(current, &sc.reclaim_state); 7007 psi_memstall_enter(&pflags); 7008 __fs_reclaim_acquire(_THIS_IP_); 7009 7010 count_vm_event(PAGEOUTRUN); 7011 7012 /* 7013 * Account for the reclaim boost. Note that the zone boost is left in 7014 * place so that parallel allocations that are near the watermark will 7015 * stall or direct reclaim until kswapd is finished. 7016 */ 7017 nr_boost_reclaim = 0; 7018 for (i = 0; i <= highest_zoneidx; i++) { 7019 zone = pgdat->node_zones + i; 7020 if (!managed_zone(zone)) 7021 continue; 7022 7023 nr_boost_reclaim += zone->watermark_boost; 7024 zone_boosts[i] = zone->watermark_boost; 7025 } 7026 boosted = nr_boost_reclaim; 7027 7028 restart: 7029 set_reclaim_active(pgdat, highest_zoneidx); 7030 sc.priority = DEF_PRIORITY; 7031 do { 7032 unsigned long nr_reclaimed = sc.nr_reclaimed; 7033 bool raise_priority = true; 7034 bool balanced; 7035 bool ret; 7036 7037 sc.reclaim_idx = highest_zoneidx; 7038 7039 /* 7040 * If the number of buffer_heads exceeds the maximum allowed 7041 * then consider reclaiming from all zones. This has a dual 7042 * purpose -- on 64-bit systems it is expected that 7043 * buffer_heads are stripped during active rotation. On 32-bit 7044 * systems, highmem pages can pin lowmem memory and shrinking 7045 * buffers can relieve lowmem pressure. Reclaim may still not 7046 * go ahead if all eligible zones for the original allocation 7047 * request are balanced to avoid excessive reclaim from kswapd. 7048 */ 7049 if (buffer_heads_over_limit) { 7050 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7051 zone = pgdat->node_zones + i; 7052 if (!managed_zone(zone)) 7053 continue; 7054 7055 sc.reclaim_idx = i; 7056 break; 7057 } 7058 } 7059 7060 /* 7061 * If the pgdat is imbalanced then ignore boosting and preserve 7062 * the watermarks for a later time and restart. Note that the 7063 * zone watermarks will be still reset at the end of balancing 7064 * on the grounds that the normal reclaim should be enough to 7065 * re-evaluate if boosting is required when kswapd next wakes. 7066 */ 7067 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7068 if (!balanced && nr_boost_reclaim) { 7069 nr_boost_reclaim = 0; 7070 goto restart; 7071 } 7072 7073 /* 7074 * If boosting is not active then only reclaim if there are no 7075 * eligible zones. Note that sc.reclaim_idx is not used as 7076 * buffer_heads_over_limit may have adjusted it. 7077 */ 7078 if (!nr_boost_reclaim && balanced) 7079 goto out; 7080 7081 /* Limit the priority of boosting to avoid reclaim writeback */ 7082 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7083 raise_priority = false; 7084 7085 /* 7086 * Do not writeback or swap pages for boosted reclaim. The 7087 * intent is to relieve pressure not issue sub-optimal IO 7088 * from reclaim context. If no pages are reclaimed, the 7089 * reclaim will be aborted. 7090 */ 7091 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7092 sc.may_swap = !nr_boost_reclaim; 7093 7094 /* 7095 * Do some background aging, to give pages a chance to be 7096 * referenced before reclaiming. All pages are rotated 7097 * regardless of classzone as this is about consistent aging. 7098 */ 7099 kswapd_age_node(pgdat, &sc); 7100 7101 /* 7102 * If we're getting trouble reclaiming, start doing writepage 7103 * even in laptop mode. 7104 */ 7105 if (sc.priority < DEF_PRIORITY - 2) 7106 sc.may_writepage = 1; 7107 7108 /* Call soft limit reclaim before calling shrink_node. */ 7109 sc.nr_scanned = 0; 7110 nr_soft_scanned = 0; 7111 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7112 sc.gfp_mask, &nr_soft_scanned); 7113 sc.nr_reclaimed += nr_soft_reclaimed; 7114 7115 /* 7116 * There should be no need to raise the scanning priority if 7117 * enough pages are already being scanned that that high 7118 * watermark would be met at 100% efficiency. 7119 */ 7120 if (kswapd_shrink_node(pgdat, &sc)) 7121 raise_priority = false; 7122 7123 /* 7124 * If the low watermark is met there is no need for processes 7125 * to be throttled on pfmemalloc_wait as they should not be 7126 * able to safely make forward progress. Wake them 7127 */ 7128 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7129 allow_direct_reclaim(pgdat)) 7130 wake_up_all(&pgdat->pfmemalloc_wait); 7131 7132 /* Check if kswapd should be suspending */ 7133 __fs_reclaim_release(_THIS_IP_); 7134 ret = try_to_freeze(); 7135 __fs_reclaim_acquire(_THIS_IP_); 7136 if (ret || kthread_should_stop()) 7137 break; 7138 7139 /* 7140 * Raise priority if scanning rate is too low or there was no 7141 * progress in reclaiming pages 7142 */ 7143 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7144 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7145 7146 /* 7147 * If reclaim made no progress for a boost, stop reclaim as 7148 * IO cannot be queued and it could be an infinite loop in 7149 * extreme circumstances. 7150 */ 7151 if (nr_boost_reclaim && !nr_reclaimed) 7152 break; 7153 7154 if (raise_priority || !nr_reclaimed) 7155 sc.priority--; 7156 } while (sc.priority >= 1); 7157 7158 if (!sc.nr_reclaimed) 7159 pgdat->kswapd_failures++; 7160 7161 out: 7162 clear_reclaim_active(pgdat, highest_zoneidx); 7163 7164 /* If reclaim was boosted, account for the reclaim done in this pass */ 7165 if (boosted) { 7166 unsigned long flags; 7167 7168 for (i = 0; i <= highest_zoneidx; i++) { 7169 if (!zone_boosts[i]) 7170 continue; 7171 7172 /* Increments are under the zone lock */ 7173 zone = pgdat->node_zones + i; 7174 spin_lock_irqsave(&zone->lock, flags); 7175 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7176 spin_unlock_irqrestore(&zone->lock, flags); 7177 } 7178 7179 /* 7180 * As there is now likely space, wakeup kcompact to defragment 7181 * pageblocks. 7182 */ 7183 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7184 } 7185 7186 snapshot_refaults(NULL, pgdat); 7187 __fs_reclaim_release(_THIS_IP_); 7188 psi_memstall_leave(&pflags); 7189 set_task_reclaim_state(current, NULL); 7190 7191 /* 7192 * Return the order kswapd stopped reclaiming at as 7193 * prepare_kswapd_sleep() takes it into account. If another caller 7194 * entered the allocator slow path while kswapd was awake, order will 7195 * remain at the higher level. 7196 */ 7197 return sc.order; 7198 } 7199 7200 /* 7201 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7202 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7203 * not a valid index then either kswapd runs for first time or kswapd couldn't 7204 * sleep after previous reclaim attempt (node is still unbalanced). In that 7205 * case return the zone index of the previous kswapd reclaim cycle. 7206 */ 7207 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7208 enum zone_type prev_highest_zoneidx) 7209 { 7210 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7211 7212 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7213 } 7214 7215 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7216 unsigned int highest_zoneidx) 7217 { 7218 long remaining = 0; 7219 DEFINE_WAIT(wait); 7220 7221 if (freezing(current) || kthread_should_stop()) 7222 return; 7223 7224 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7225 7226 /* 7227 * Try to sleep for a short interval. Note that kcompactd will only be 7228 * woken if it is possible to sleep for a short interval. This is 7229 * deliberate on the assumption that if reclaim cannot keep an 7230 * eligible zone balanced that it's also unlikely that compaction will 7231 * succeed. 7232 */ 7233 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7234 /* 7235 * Compaction records what page blocks it recently failed to 7236 * isolate pages from and skips them in the future scanning. 7237 * When kswapd is going to sleep, it is reasonable to assume 7238 * that pages and compaction may succeed so reset the cache. 7239 */ 7240 reset_isolation_suitable(pgdat); 7241 7242 /* 7243 * We have freed the memory, now we should compact it to make 7244 * allocation of the requested order possible. 7245 */ 7246 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7247 7248 remaining = schedule_timeout(HZ/10); 7249 7250 /* 7251 * If woken prematurely then reset kswapd_highest_zoneidx and 7252 * order. The values will either be from a wakeup request or 7253 * the previous request that slept prematurely. 7254 */ 7255 if (remaining) { 7256 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7257 kswapd_highest_zoneidx(pgdat, 7258 highest_zoneidx)); 7259 7260 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7261 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7262 } 7263 7264 finish_wait(&pgdat->kswapd_wait, &wait); 7265 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7266 } 7267 7268 /* 7269 * After a short sleep, check if it was a premature sleep. If not, then 7270 * go fully to sleep until explicitly woken up. 7271 */ 7272 if (!remaining && 7273 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7274 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7275 7276 /* 7277 * vmstat counters are not perfectly accurate and the estimated 7278 * value for counters such as NR_FREE_PAGES can deviate from the 7279 * true value by nr_online_cpus * threshold. To avoid the zone 7280 * watermarks being breached while under pressure, we reduce the 7281 * per-cpu vmstat threshold while kswapd is awake and restore 7282 * them before going back to sleep. 7283 */ 7284 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7285 7286 if (!kthread_should_stop()) 7287 schedule(); 7288 7289 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7290 } else { 7291 if (remaining) 7292 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7293 else 7294 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7295 } 7296 finish_wait(&pgdat->kswapd_wait, &wait); 7297 } 7298 7299 /* 7300 * The background pageout daemon, started as a kernel thread 7301 * from the init process. 7302 * 7303 * This basically trickles out pages so that we have _some_ 7304 * free memory available even if there is no other activity 7305 * that frees anything up. This is needed for things like routing 7306 * etc, where we otherwise might have all activity going on in 7307 * asynchronous contexts that cannot page things out. 7308 * 7309 * If there are applications that are active memory-allocators 7310 * (most normal use), this basically shouldn't matter. 7311 */ 7312 static int kswapd(void *p) 7313 { 7314 unsigned int alloc_order, reclaim_order; 7315 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7316 pg_data_t *pgdat = (pg_data_t *)p; 7317 struct task_struct *tsk = current; 7318 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7319 7320 if (!cpumask_empty(cpumask)) 7321 set_cpus_allowed_ptr(tsk, cpumask); 7322 7323 /* 7324 * Tell the memory management that we're a "memory allocator", 7325 * and that if we need more memory we should get access to it 7326 * regardless (see "__alloc_pages()"). "kswapd" should 7327 * never get caught in the normal page freeing logic. 7328 * 7329 * (Kswapd normally doesn't need memory anyway, but sometimes 7330 * you need a small amount of memory in order to be able to 7331 * page out something else, and this flag essentially protects 7332 * us from recursively trying to free more memory as we're 7333 * trying to free the first piece of memory in the first place). 7334 */ 7335 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7336 set_freezable(); 7337 7338 WRITE_ONCE(pgdat->kswapd_order, 0); 7339 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7340 atomic_set(&pgdat->nr_writeback_throttled, 0); 7341 for ( ; ; ) { 7342 bool ret; 7343 7344 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7345 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7346 highest_zoneidx); 7347 7348 kswapd_try_sleep: 7349 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7350 highest_zoneidx); 7351 7352 /* Read the new order and highest_zoneidx */ 7353 alloc_order = READ_ONCE(pgdat->kswapd_order); 7354 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7355 highest_zoneidx); 7356 WRITE_ONCE(pgdat->kswapd_order, 0); 7357 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7358 7359 ret = try_to_freeze(); 7360 if (kthread_should_stop()) 7361 break; 7362 7363 /* 7364 * We can speed up thawing tasks if we don't call balance_pgdat 7365 * after returning from the refrigerator 7366 */ 7367 if (ret) 7368 continue; 7369 7370 /* 7371 * Reclaim begins at the requested order but if a high-order 7372 * reclaim fails then kswapd falls back to reclaiming for 7373 * order-0. If that happens, kswapd will consider sleeping 7374 * for the order it finished reclaiming at (reclaim_order) 7375 * but kcompactd is woken to compact for the original 7376 * request (alloc_order). 7377 */ 7378 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7379 alloc_order); 7380 reclaim_order = balance_pgdat(pgdat, alloc_order, 7381 highest_zoneidx); 7382 if (reclaim_order < alloc_order) 7383 goto kswapd_try_sleep; 7384 } 7385 7386 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7387 7388 return 0; 7389 } 7390 7391 /* 7392 * A zone is low on free memory or too fragmented for high-order memory. If 7393 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7394 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7395 * has failed or is not needed, still wake up kcompactd if only compaction is 7396 * needed. 7397 */ 7398 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7399 enum zone_type highest_zoneidx) 7400 { 7401 pg_data_t *pgdat; 7402 enum zone_type curr_idx; 7403 7404 if (!managed_zone(zone)) 7405 return; 7406 7407 if (!cpuset_zone_allowed(zone, gfp_flags)) 7408 return; 7409 7410 pgdat = zone->zone_pgdat; 7411 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7412 7413 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7414 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7415 7416 if (READ_ONCE(pgdat->kswapd_order) < order) 7417 WRITE_ONCE(pgdat->kswapd_order, order); 7418 7419 if (!waitqueue_active(&pgdat->kswapd_wait)) 7420 return; 7421 7422 /* Hopeless node, leave it to direct reclaim if possible */ 7423 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7424 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7425 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7426 /* 7427 * There may be plenty of free memory available, but it's too 7428 * fragmented for high-order allocations. Wake up kcompactd 7429 * and rely on compaction_suitable() to determine if it's 7430 * needed. If it fails, it will defer subsequent attempts to 7431 * ratelimit its work. 7432 */ 7433 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7434 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7435 return; 7436 } 7437 7438 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7439 gfp_flags); 7440 wake_up_interruptible(&pgdat->kswapd_wait); 7441 } 7442 7443 #ifdef CONFIG_HIBERNATION 7444 /* 7445 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7446 * freed pages. 7447 * 7448 * Rather than trying to age LRUs the aim is to preserve the overall 7449 * LRU order by reclaiming preferentially 7450 * inactive > active > active referenced > active mapped 7451 */ 7452 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7453 { 7454 struct scan_control sc = { 7455 .nr_to_reclaim = nr_to_reclaim, 7456 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7457 .reclaim_idx = MAX_NR_ZONES - 1, 7458 .priority = DEF_PRIORITY, 7459 .may_writepage = 1, 7460 .may_unmap = 1, 7461 .may_swap = 1, 7462 .hibernation_mode = 1, 7463 }; 7464 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7465 unsigned long nr_reclaimed; 7466 unsigned int noreclaim_flag; 7467 7468 fs_reclaim_acquire(sc.gfp_mask); 7469 noreclaim_flag = memalloc_noreclaim_save(); 7470 set_task_reclaim_state(current, &sc.reclaim_state); 7471 7472 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7473 7474 set_task_reclaim_state(current, NULL); 7475 memalloc_noreclaim_restore(noreclaim_flag); 7476 fs_reclaim_release(sc.gfp_mask); 7477 7478 return nr_reclaimed; 7479 } 7480 #endif /* CONFIG_HIBERNATION */ 7481 7482 /* 7483 * This kswapd start function will be called by init and node-hot-add. 7484 */ 7485 void kswapd_run(int nid) 7486 { 7487 pg_data_t *pgdat = NODE_DATA(nid); 7488 7489 pgdat_kswapd_lock(pgdat); 7490 if (!pgdat->kswapd) { 7491 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7492 if (IS_ERR(pgdat->kswapd)) { 7493 /* failure at boot is fatal */ 7494 BUG_ON(system_state < SYSTEM_RUNNING); 7495 pr_err("Failed to start kswapd on node %d\n", nid); 7496 pgdat->kswapd = NULL; 7497 } 7498 } 7499 pgdat_kswapd_unlock(pgdat); 7500 } 7501 7502 /* 7503 * Called by memory hotplug when all memory in a node is offlined. Caller must 7504 * be holding mem_hotplug_begin/done(). 7505 */ 7506 void kswapd_stop(int nid) 7507 { 7508 pg_data_t *pgdat = NODE_DATA(nid); 7509 struct task_struct *kswapd; 7510 7511 pgdat_kswapd_lock(pgdat); 7512 kswapd = pgdat->kswapd; 7513 if (kswapd) { 7514 kthread_stop(kswapd); 7515 pgdat->kswapd = NULL; 7516 } 7517 pgdat_kswapd_unlock(pgdat); 7518 } 7519 7520 static int __init kswapd_init(void) 7521 { 7522 int nid; 7523 7524 swap_setup(); 7525 for_each_node_state(nid, N_MEMORY) 7526 kswapd_run(nid); 7527 return 0; 7528 } 7529 7530 module_init(kswapd_init) 7531 7532 #ifdef CONFIG_NUMA 7533 /* 7534 * Node reclaim mode 7535 * 7536 * If non-zero call node_reclaim when the number of free pages falls below 7537 * the watermarks. 7538 */ 7539 int node_reclaim_mode __read_mostly; 7540 7541 /* 7542 * Priority for NODE_RECLAIM. This determines the fraction of pages 7543 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7544 * a zone. 7545 */ 7546 #define NODE_RECLAIM_PRIORITY 4 7547 7548 /* 7549 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7550 * occur. 7551 */ 7552 int sysctl_min_unmapped_ratio = 1; 7553 7554 /* 7555 * If the number of slab pages in a zone grows beyond this percentage then 7556 * slab reclaim needs to occur. 7557 */ 7558 int sysctl_min_slab_ratio = 5; 7559 7560 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7561 { 7562 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7563 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7564 node_page_state(pgdat, NR_ACTIVE_FILE); 7565 7566 /* 7567 * It's possible for there to be more file mapped pages than 7568 * accounted for by the pages on the file LRU lists because 7569 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7570 */ 7571 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7572 } 7573 7574 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7575 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7576 { 7577 unsigned long nr_pagecache_reclaimable; 7578 unsigned long delta = 0; 7579 7580 /* 7581 * If RECLAIM_UNMAP is set, then all file pages are considered 7582 * potentially reclaimable. Otherwise, we have to worry about 7583 * pages like swapcache and node_unmapped_file_pages() provides 7584 * a better estimate 7585 */ 7586 if (node_reclaim_mode & RECLAIM_UNMAP) 7587 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7588 else 7589 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7590 7591 /* If we can't clean pages, remove dirty pages from consideration */ 7592 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7593 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7594 7595 /* Watch for any possible underflows due to delta */ 7596 if (unlikely(delta > nr_pagecache_reclaimable)) 7597 delta = nr_pagecache_reclaimable; 7598 7599 return nr_pagecache_reclaimable - delta; 7600 } 7601 7602 /* 7603 * Try to free up some pages from this node through reclaim. 7604 */ 7605 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7606 { 7607 /* Minimum pages needed in order to stay on node */ 7608 const unsigned long nr_pages = 1 << order; 7609 struct task_struct *p = current; 7610 unsigned int noreclaim_flag; 7611 struct scan_control sc = { 7612 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7613 .gfp_mask = current_gfp_context(gfp_mask), 7614 .order = order, 7615 .priority = NODE_RECLAIM_PRIORITY, 7616 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7617 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7618 .may_swap = 1, 7619 .reclaim_idx = gfp_zone(gfp_mask), 7620 }; 7621 unsigned long pflags; 7622 7623 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7624 sc.gfp_mask); 7625 7626 cond_resched(); 7627 psi_memstall_enter(&pflags); 7628 fs_reclaim_acquire(sc.gfp_mask); 7629 /* 7630 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7631 */ 7632 noreclaim_flag = memalloc_noreclaim_save(); 7633 set_task_reclaim_state(p, &sc.reclaim_state); 7634 7635 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7636 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7637 /* 7638 * Free memory by calling shrink node with increasing 7639 * priorities until we have enough memory freed. 7640 */ 7641 do { 7642 shrink_node(pgdat, &sc); 7643 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7644 } 7645 7646 set_task_reclaim_state(p, NULL); 7647 memalloc_noreclaim_restore(noreclaim_flag); 7648 fs_reclaim_release(sc.gfp_mask); 7649 psi_memstall_leave(&pflags); 7650 7651 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7652 7653 return sc.nr_reclaimed >= nr_pages; 7654 } 7655 7656 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7657 { 7658 int ret; 7659 7660 /* 7661 * Node reclaim reclaims unmapped file backed pages and 7662 * slab pages if we are over the defined limits. 7663 * 7664 * A small portion of unmapped file backed pages is needed for 7665 * file I/O otherwise pages read by file I/O will be immediately 7666 * thrown out if the node is overallocated. So we do not reclaim 7667 * if less than a specified percentage of the node is used by 7668 * unmapped file backed pages. 7669 */ 7670 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7671 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7672 pgdat->min_slab_pages) 7673 return NODE_RECLAIM_FULL; 7674 7675 /* 7676 * Do not scan if the allocation should not be delayed. 7677 */ 7678 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7679 return NODE_RECLAIM_NOSCAN; 7680 7681 /* 7682 * Only run node reclaim on the local node or on nodes that do not 7683 * have associated processors. This will favor the local processor 7684 * over remote processors and spread off node memory allocations 7685 * as wide as possible. 7686 */ 7687 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7688 return NODE_RECLAIM_NOSCAN; 7689 7690 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7691 return NODE_RECLAIM_NOSCAN; 7692 7693 ret = __node_reclaim(pgdat, gfp_mask, order); 7694 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7695 7696 if (!ret) 7697 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7698 7699 return ret; 7700 } 7701 #endif 7702 7703 void check_move_unevictable_pages(struct pagevec *pvec) 7704 { 7705 struct folio_batch fbatch; 7706 unsigned i; 7707 7708 folio_batch_init(&fbatch); 7709 for (i = 0; i < pvec->nr; i++) { 7710 struct page *page = pvec->pages[i]; 7711 7712 if (PageTransTail(page)) 7713 continue; 7714 folio_batch_add(&fbatch, page_folio(page)); 7715 } 7716 check_move_unevictable_folios(&fbatch); 7717 } 7718 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 7719 7720 /** 7721 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7722 * lru list 7723 * @fbatch: Batch of lru folios to check. 7724 * 7725 * Checks folios for evictability, if an evictable folio is in the unevictable 7726 * lru list, moves it to the appropriate evictable lru list. This function 7727 * should be only used for lru folios. 7728 */ 7729 void check_move_unevictable_folios(struct folio_batch *fbatch) 7730 { 7731 struct lruvec *lruvec = NULL; 7732 int pgscanned = 0; 7733 int pgrescued = 0; 7734 int i; 7735 7736 for (i = 0; i < fbatch->nr; i++) { 7737 struct folio *folio = fbatch->folios[i]; 7738 int nr_pages = folio_nr_pages(folio); 7739 7740 pgscanned += nr_pages; 7741 7742 /* block memcg migration while the folio moves between lrus */ 7743 if (!folio_test_clear_lru(folio)) 7744 continue; 7745 7746 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7747 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7748 lruvec_del_folio(lruvec, folio); 7749 folio_clear_unevictable(folio); 7750 lruvec_add_folio(lruvec, folio); 7751 pgrescued += nr_pages; 7752 } 7753 folio_set_lru(folio); 7754 } 7755 7756 if (lruvec) { 7757 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7758 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7759 unlock_page_lruvec_irq(lruvec); 7760 } else if (pgscanned) { 7761 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7762 } 7763 } 7764 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7765