1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 81 unsigned int may_writepage:1; 82 83 /* Can mapped pages be reclaimed? */ 84 unsigned int may_unmap:1; 85 86 /* Can pages be swapped as part of reclaim? */ 87 unsigned int may_swap:1; 88 89 /* 90 * Cgroups are not reclaimed below their configured memory.low, 91 * unless we threaten to OOM. If any cgroups are skipped due to 92 * memory.low and nothing was reclaimed, go back for memory.low. 93 */ 94 unsigned int memcg_low_reclaim:1; 95 unsigned int memcg_low_skipped:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Allocation order */ 103 s8 order; 104 105 /* Scan (total_size >> priority) pages at once */ 106 s8 priority; 107 108 /* The highest zone to isolate pages for reclaim from */ 109 s8 reclaim_idx; 110 111 /* This context's GFP mask */ 112 gfp_t gfp_mask; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 120 struct { 121 unsigned int dirty; 122 unsigned int unqueued_dirty; 123 unsigned int congested; 124 unsigned int writeback; 125 unsigned int immediate; 126 unsigned int file_taken; 127 unsigned int taken; 128 } nr; 129 }; 130 131 #ifdef ARCH_HAS_PREFETCH 132 #define prefetch_prev_lru_page(_page, _base, _field) \ 133 do { \ 134 if ((_page)->lru.prev != _base) { \ 135 struct page *prev; \ 136 \ 137 prev = lru_to_page(&(_page->lru)); \ 138 prefetch(&prev->_field); \ 139 } \ 140 } while (0) 141 #else 142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 143 #endif 144 145 #ifdef ARCH_HAS_PREFETCHW 146 #define prefetchw_prev_lru_page(_page, _base, _field) \ 147 do { \ 148 if ((_page)->lru.prev != _base) { \ 149 struct page *prev; \ 150 \ 151 prev = lru_to_page(&(_page->lru)); \ 152 prefetchw(&prev->_field); \ 153 } \ 154 } while (0) 155 #else 156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 157 #endif 158 159 /* 160 * From 0 .. 100. Higher means more swappy. 161 */ 162 int vm_swappiness = 60; 163 /* 164 * The total number of pages which are beyond the high watermark within all 165 * zones. 166 */ 167 unsigned long vm_total_pages; 168 169 static LIST_HEAD(shrinker_list); 170 static DECLARE_RWSEM(shrinker_rwsem); 171 172 #ifdef CONFIG_MEMCG_KMEM 173 174 /* 175 * We allow subsystems to populate their shrinker-related 176 * LRU lists before register_shrinker_prepared() is called 177 * for the shrinker, since we don't want to impose 178 * restrictions on their internal registration order. 179 * In this case shrink_slab_memcg() may find corresponding 180 * bit is set in the shrinkers map. 181 * 182 * This value is used by the function to detect registering 183 * shrinkers and to skip do_shrink_slab() calls for them. 184 */ 185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 186 187 static DEFINE_IDR(shrinker_idr); 188 static int shrinker_nr_max; 189 190 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 191 { 192 int id, ret = -ENOMEM; 193 194 down_write(&shrinker_rwsem); 195 /* This may call shrinker, so it must use down_read_trylock() */ 196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 197 if (id < 0) 198 goto unlock; 199 200 if (id >= shrinker_nr_max) { 201 if (memcg_expand_shrinker_maps(id)) { 202 idr_remove(&shrinker_idr, id); 203 goto unlock; 204 } 205 206 shrinker_nr_max = id + 1; 207 } 208 shrinker->id = id; 209 ret = 0; 210 unlock: 211 up_write(&shrinker_rwsem); 212 return ret; 213 } 214 215 static void unregister_memcg_shrinker(struct shrinker *shrinker) 216 { 217 int id = shrinker->id; 218 219 BUG_ON(id < 0); 220 221 down_write(&shrinker_rwsem); 222 idr_remove(&shrinker_idr, id); 223 up_write(&shrinker_rwsem); 224 } 225 #else /* CONFIG_MEMCG_KMEM */ 226 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 227 { 228 return 0; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 } 234 #endif /* CONFIG_MEMCG_KMEM */ 235 236 #ifdef CONFIG_MEMCG 237 static bool global_reclaim(struct scan_control *sc) 238 { 239 return !sc->target_mem_cgroup; 240 } 241 242 /** 243 * sane_reclaim - is the usual dirty throttling mechanism operational? 244 * @sc: scan_control in question 245 * 246 * The normal page dirty throttling mechanism in balance_dirty_pages() is 247 * completely broken with the legacy memcg and direct stalling in 248 * shrink_page_list() is used for throttling instead, which lacks all the 249 * niceties such as fairness, adaptive pausing, bandwidth proportional 250 * allocation and configurability. 251 * 252 * This function tests whether the vmscan currently in progress can assume 253 * that the normal dirty throttling mechanism is operational. 254 */ 255 static bool sane_reclaim(struct scan_control *sc) 256 { 257 struct mem_cgroup *memcg = sc->target_mem_cgroup; 258 259 if (!memcg) 260 return true; 261 #ifdef CONFIG_CGROUP_WRITEBACK 262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 263 return true; 264 #endif 265 return false; 266 } 267 268 static void set_memcg_congestion(pg_data_t *pgdat, 269 struct mem_cgroup *memcg, 270 bool congested) 271 { 272 struct mem_cgroup_per_node *mn; 273 274 if (!memcg) 275 return; 276 277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 278 WRITE_ONCE(mn->congested, congested); 279 } 280 281 static bool memcg_congested(pg_data_t *pgdat, 282 struct mem_cgroup *memcg) 283 { 284 struct mem_cgroup_per_node *mn; 285 286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 287 return READ_ONCE(mn->congested); 288 289 } 290 #else 291 static bool global_reclaim(struct scan_control *sc) 292 { 293 return true; 294 } 295 296 static bool sane_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static inline void set_memcg_congestion(struct pglist_data *pgdat, 302 struct mem_cgroup *memcg, bool congested) 303 { 304 } 305 306 static inline bool memcg_congested(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg) 308 { 309 return false; 310 311 } 312 #endif 313 314 /* 315 * This misses isolated pages which are not accounted for to save counters. 316 * As the data only determines if reclaim or compaction continues, it is 317 * not expected that isolated pages will be a dominating factor. 318 */ 319 unsigned long zone_reclaimable_pages(struct zone *zone) 320 { 321 unsigned long nr; 322 323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 325 if (get_nr_swap_pages() > 0) 326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 328 329 return nr; 330 } 331 332 /** 333 * lruvec_lru_size - Returns the number of pages on the given LRU list. 334 * @lruvec: lru vector 335 * @lru: lru to use 336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 337 */ 338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 339 { 340 unsigned long lru_size; 341 int zid; 342 343 if (!mem_cgroup_disabled()) 344 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 345 else 346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 347 348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 350 unsigned long size; 351 352 if (!managed_zone(zone)) 353 continue; 354 355 if (!mem_cgroup_disabled()) 356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 357 else 358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 359 NR_ZONE_LRU_BASE + lru); 360 lru_size -= min(size, lru_size); 361 } 362 363 return lru_size; 364 365 } 366 367 /* 368 * Add a shrinker callback to be called from the vm. 369 */ 370 int prealloc_shrinker(struct shrinker *shrinker) 371 { 372 size_t size = sizeof(*shrinker->nr_deferred); 373 374 if (shrinker->flags & SHRINKER_NUMA_AWARE) 375 size *= nr_node_ids; 376 377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 378 if (!shrinker->nr_deferred) 379 return -ENOMEM; 380 381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 382 if (prealloc_memcg_shrinker(shrinker)) 383 goto free_deferred; 384 } 385 386 return 0; 387 388 free_deferred: 389 kfree(shrinker->nr_deferred); 390 shrinker->nr_deferred = NULL; 391 return -ENOMEM; 392 } 393 394 void free_prealloced_shrinker(struct shrinker *shrinker) 395 { 396 if (!shrinker->nr_deferred) 397 return; 398 399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 400 unregister_memcg_shrinker(shrinker); 401 402 kfree(shrinker->nr_deferred); 403 shrinker->nr_deferred = NULL; 404 } 405 406 void register_shrinker_prepared(struct shrinker *shrinker) 407 { 408 down_write(&shrinker_rwsem); 409 list_add_tail(&shrinker->list, &shrinker_list); 410 #ifdef CONFIG_MEMCG_KMEM 411 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 412 idr_replace(&shrinker_idr, shrinker, shrinker->id); 413 #endif 414 up_write(&shrinker_rwsem); 415 } 416 417 int register_shrinker(struct shrinker *shrinker) 418 { 419 int err = prealloc_shrinker(shrinker); 420 421 if (err) 422 return err; 423 register_shrinker_prepared(shrinker); 424 return 0; 425 } 426 EXPORT_SYMBOL(register_shrinker); 427 428 /* 429 * Remove one 430 */ 431 void unregister_shrinker(struct shrinker *shrinker) 432 { 433 if (!shrinker->nr_deferred) 434 return; 435 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 436 unregister_memcg_shrinker(shrinker); 437 down_write(&shrinker_rwsem); 438 list_del(&shrinker->list); 439 up_write(&shrinker_rwsem); 440 kfree(shrinker->nr_deferred); 441 shrinker->nr_deferred = NULL; 442 } 443 EXPORT_SYMBOL(unregister_shrinker); 444 445 #define SHRINK_BATCH 128 446 447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 448 struct shrinker *shrinker, int priority) 449 { 450 unsigned long freed = 0; 451 unsigned long long delta; 452 long total_scan; 453 long freeable; 454 long nr; 455 long new_nr; 456 int nid = shrinkctl->nid; 457 long batch_size = shrinker->batch ? shrinker->batch 458 : SHRINK_BATCH; 459 long scanned = 0, next_deferred; 460 461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 462 nid = 0; 463 464 freeable = shrinker->count_objects(shrinker, shrinkctl); 465 if (freeable == 0 || freeable == SHRINK_EMPTY) 466 return freeable; 467 468 /* 469 * copy the current shrinker scan count into a local variable 470 * and zero it so that other concurrent shrinker invocations 471 * don't also do this scanning work. 472 */ 473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 474 475 total_scan = nr; 476 delta = freeable >> priority; 477 delta *= 4; 478 do_div(delta, shrinker->seeks); 479 total_scan += delta; 480 if (total_scan < 0) { 481 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 482 shrinker->scan_objects, total_scan); 483 total_scan = freeable; 484 next_deferred = nr; 485 } else 486 next_deferred = total_scan; 487 488 /* 489 * We need to avoid excessive windup on filesystem shrinkers 490 * due to large numbers of GFP_NOFS allocations causing the 491 * shrinkers to return -1 all the time. This results in a large 492 * nr being built up so when a shrink that can do some work 493 * comes along it empties the entire cache due to nr >>> 494 * freeable. This is bad for sustaining a working set in 495 * memory. 496 * 497 * Hence only allow the shrinker to scan the entire cache when 498 * a large delta change is calculated directly. 499 */ 500 if (delta < freeable / 4) 501 total_scan = min(total_scan, freeable / 2); 502 503 /* 504 * Avoid risking looping forever due to too large nr value: 505 * never try to free more than twice the estimate number of 506 * freeable entries. 507 */ 508 if (total_scan > freeable * 2) 509 total_scan = freeable * 2; 510 511 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 512 freeable, delta, total_scan, priority); 513 514 /* 515 * Normally, we should not scan less than batch_size objects in one 516 * pass to avoid too frequent shrinker calls, but if the slab has less 517 * than batch_size objects in total and we are really tight on memory, 518 * we will try to reclaim all available objects, otherwise we can end 519 * up failing allocations although there are plenty of reclaimable 520 * objects spread over several slabs with usage less than the 521 * batch_size. 522 * 523 * We detect the "tight on memory" situations by looking at the total 524 * number of objects we want to scan (total_scan). If it is greater 525 * than the total number of objects on slab (freeable), we must be 526 * scanning at high prio and therefore should try to reclaim as much as 527 * possible. 528 */ 529 while (total_scan >= batch_size || 530 total_scan >= freeable) { 531 unsigned long ret; 532 unsigned long nr_to_scan = min(batch_size, total_scan); 533 534 shrinkctl->nr_to_scan = nr_to_scan; 535 shrinkctl->nr_scanned = nr_to_scan; 536 ret = shrinker->scan_objects(shrinker, shrinkctl); 537 if (ret == SHRINK_STOP) 538 break; 539 freed += ret; 540 541 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 542 total_scan -= shrinkctl->nr_scanned; 543 scanned += shrinkctl->nr_scanned; 544 545 cond_resched(); 546 } 547 548 if (next_deferred >= scanned) 549 next_deferred -= scanned; 550 else 551 next_deferred = 0; 552 /* 553 * move the unused scan count back into the shrinker in a 554 * manner that handles concurrent updates. If we exhausted the 555 * scan, there is no need to do an update. 556 */ 557 if (next_deferred > 0) 558 new_nr = atomic_long_add_return(next_deferred, 559 &shrinker->nr_deferred[nid]); 560 else 561 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 562 563 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 564 return freed; 565 } 566 567 #ifdef CONFIG_MEMCG_KMEM 568 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 569 struct mem_cgroup *memcg, int priority) 570 { 571 struct memcg_shrinker_map *map; 572 unsigned long freed = 0; 573 int ret, i; 574 575 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 576 return 0; 577 578 if (!down_read_trylock(&shrinker_rwsem)) 579 return 0; 580 581 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 582 true); 583 if (unlikely(!map)) 584 goto unlock; 585 586 for_each_set_bit(i, map->map, shrinker_nr_max) { 587 struct shrink_control sc = { 588 .gfp_mask = gfp_mask, 589 .nid = nid, 590 .memcg = memcg, 591 }; 592 struct shrinker *shrinker; 593 594 shrinker = idr_find(&shrinker_idr, i); 595 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 596 if (!shrinker) 597 clear_bit(i, map->map); 598 continue; 599 } 600 601 ret = do_shrink_slab(&sc, shrinker, priority); 602 if (ret == SHRINK_EMPTY) { 603 clear_bit(i, map->map); 604 /* 605 * After the shrinker reported that it had no objects to 606 * free, but before we cleared the corresponding bit in 607 * the memcg shrinker map, a new object might have been 608 * added. To make sure, we have the bit set in this 609 * case, we invoke the shrinker one more time and reset 610 * the bit if it reports that it is not empty anymore. 611 * The memory barrier here pairs with the barrier in 612 * memcg_set_shrinker_bit(): 613 * 614 * list_lru_add() shrink_slab_memcg() 615 * list_add_tail() clear_bit() 616 * <MB> <MB> 617 * set_bit() do_shrink_slab() 618 */ 619 smp_mb__after_atomic(); 620 ret = do_shrink_slab(&sc, shrinker, priority); 621 if (ret == SHRINK_EMPTY) 622 ret = 0; 623 else 624 memcg_set_shrinker_bit(memcg, nid, i); 625 } 626 freed += ret; 627 628 if (rwsem_is_contended(&shrinker_rwsem)) { 629 freed = freed ? : 1; 630 break; 631 } 632 } 633 unlock: 634 up_read(&shrinker_rwsem); 635 return freed; 636 } 637 #else /* CONFIG_MEMCG_KMEM */ 638 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 639 struct mem_cgroup *memcg, int priority) 640 { 641 return 0; 642 } 643 #endif /* CONFIG_MEMCG_KMEM */ 644 645 /** 646 * shrink_slab - shrink slab caches 647 * @gfp_mask: allocation context 648 * @nid: node whose slab caches to target 649 * @memcg: memory cgroup whose slab caches to target 650 * @priority: the reclaim priority 651 * 652 * Call the shrink functions to age shrinkable caches. 653 * 654 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 655 * unaware shrinkers will receive a node id of 0 instead. 656 * 657 * @memcg specifies the memory cgroup to target. Unaware shrinkers 658 * are called only if it is the root cgroup. 659 * 660 * @priority is sc->priority, we take the number of objects and >> by priority 661 * in order to get the scan target. 662 * 663 * Returns the number of reclaimed slab objects. 664 */ 665 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 666 struct mem_cgroup *memcg, 667 int priority) 668 { 669 struct shrinker *shrinker; 670 unsigned long freed = 0; 671 int ret; 672 673 if (!mem_cgroup_is_root(memcg)) 674 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 675 676 if (!down_read_trylock(&shrinker_rwsem)) 677 goto out; 678 679 list_for_each_entry(shrinker, &shrinker_list, list) { 680 struct shrink_control sc = { 681 .gfp_mask = gfp_mask, 682 .nid = nid, 683 .memcg = memcg, 684 }; 685 686 ret = do_shrink_slab(&sc, shrinker, priority); 687 if (ret == SHRINK_EMPTY) 688 ret = 0; 689 freed += ret; 690 /* 691 * Bail out if someone want to register a new shrinker to 692 * prevent the regsitration from being stalled for long periods 693 * by parallel ongoing shrinking. 694 */ 695 if (rwsem_is_contended(&shrinker_rwsem)) { 696 freed = freed ? : 1; 697 break; 698 } 699 } 700 701 up_read(&shrinker_rwsem); 702 out: 703 cond_resched(); 704 return freed; 705 } 706 707 void drop_slab_node(int nid) 708 { 709 unsigned long freed; 710 711 do { 712 struct mem_cgroup *memcg = NULL; 713 714 freed = 0; 715 memcg = mem_cgroup_iter(NULL, NULL, NULL); 716 do { 717 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 718 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 719 } while (freed > 10); 720 } 721 722 void drop_slab(void) 723 { 724 int nid; 725 726 for_each_online_node(nid) 727 drop_slab_node(nid); 728 } 729 730 static inline int is_page_cache_freeable(struct page *page) 731 { 732 /* 733 * A freeable page cache page is referenced only by the caller 734 * that isolated the page, the page cache radix tree and 735 * optional buffer heads at page->private. 736 */ 737 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 738 HPAGE_PMD_NR : 1; 739 return page_count(page) - page_has_private(page) == 1 + radix_pins; 740 } 741 742 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 743 { 744 if (current->flags & PF_SWAPWRITE) 745 return 1; 746 if (!inode_write_congested(inode)) 747 return 1; 748 if (inode_to_bdi(inode) == current->backing_dev_info) 749 return 1; 750 return 0; 751 } 752 753 /* 754 * We detected a synchronous write error writing a page out. Probably 755 * -ENOSPC. We need to propagate that into the address_space for a subsequent 756 * fsync(), msync() or close(). 757 * 758 * The tricky part is that after writepage we cannot touch the mapping: nothing 759 * prevents it from being freed up. But we have a ref on the page and once 760 * that page is locked, the mapping is pinned. 761 * 762 * We're allowed to run sleeping lock_page() here because we know the caller has 763 * __GFP_FS. 764 */ 765 static void handle_write_error(struct address_space *mapping, 766 struct page *page, int error) 767 { 768 lock_page(page); 769 if (page_mapping(page) == mapping) 770 mapping_set_error(mapping, error); 771 unlock_page(page); 772 } 773 774 /* possible outcome of pageout() */ 775 typedef enum { 776 /* failed to write page out, page is locked */ 777 PAGE_KEEP, 778 /* move page to the active list, page is locked */ 779 PAGE_ACTIVATE, 780 /* page has been sent to the disk successfully, page is unlocked */ 781 PAGE_SUCCESS, 782 /* page is clean and locked */ 783 PAGE_CLEAN, 784 } pageout_t; 785 786 /* 787 * pageout is called by shrink_page_list() for each dirty page. 788 * Calls ->writepage(). 789 */ 790 static pageout_t pageout(struct page *page, struct address_space *mapping, 791 struct scan_control *sc) 792 { 793 /* 794 * If the page is dirty, only perform writeback if that write 795 * will be non-blocking. To prevent this allocation from being 796 * stalled by pagecache activity. But note that there may be 797 * stalls if we need to run get_block(). We could test 798 * PagePrivate for that. 799 * 800 * If this process is currently in __generic_file_write_iter() against 801 * this page's queue, we can perform writeback even if that 802 * will block. 803 * 804 * If the page is swapcache, write it back even if that would 805 * block, for some throttling. This happens by accident, because 806 * swap_backing_dev_info is bust: it doesn't reflect the 807 * congestion state of the swapdevs. Easy to fix, if needed. 808 */ 809 if (!is_page_cache_freeable(page)) 810 return PAGE_KEEP; 811 if (!mapping) { 812 /* 813 * Some data journaling orphaned pages can have 814 * page->mapping == NULL while being dirty with clean buffers. 815 */ 816 if (page_has_private(page)) { 817 if (try_to_free_buffers(page)) { 818 ClearPageDirty(page); 819 pr_info("%s: orphaned page\n", __func__); 820 return PAGE_CLEAN; 821 } 822 } 823 return PAGE_KEEP; 824 } 825 if (mapping->a_ops->writepage == NULL) 826 return PAGE_ACTIVATE; 827 if (!may_write_to_inode(mapping->host, sc)) 828 return PAGE_KEEP; 829 830 if (clear_page_dirty_for_io(page)) { 831 int res; 832 struct writeback_control wbc = { 833 .sync_mode = WB_SYNC_NONE, 834 .nr_to_write = SWAP_CLUSTER_MAX, 835 .range_start = 0, 836 .range_end = LLONG_MAX, 837 .for_reclaim = 1, 838 }; 839 840 SetPageReclaim(page); 841 res = mapping->a_ops->writepage(page, &wbc); 842 if (res < 0) 843 handle_write_error(mapping, page, res); 844 if (res == AOP_WRITEPAGE_ACTIVATE) { 845 ClearPageReclaim(page); 846 return PAGE_ACTIVATE; 847 } 848 849 if (!PageWriteback(page)) { 850 /* synchronous write or broken a_ops? */ 851 ClearPageReclaim(page); 852 } 853 trace_mm_vmscan_writepage(page); 854 inc_node_page_state(page, NR_VMSCAN_WRITE); 855 return PAGE_SUCCESS; 856 } 857 858 return PAGE_CLEAN; 859 } 860 861 /* 862 * Same as remove_mapping, but if the page is removed from the mapping, it 863 * gets returned with a refcount of 0. 864 */ 865 static int __remove_mapping(struct address_space *mapping, struct page *page, 866 bool reclaimed) 867 { 868 unsigned long flags; 869 int refcount; 870 871 BUG_ON(!PageLocked(page)); 872 BUG_ON(mapping != page_mapping(page)); 873 874 xa_lock_irqsave(&mapping->i_pages, flags); 875 /* 876 * The non racy check for a busy page. 877 * 878 * Must be careful with the order of the tests. When someone has 879 * a ref to the page, it may be possible that they dirty it then 880 * drop the reference. So if PageDirty is tested before page_count 881 * here, then the following race may occur: 882 * 883 * get_user_pages(&page); 884 * [user mapping goes away] 885 * write_to(page); 886 * !PageDirty(page) [good] 887 * SetPageDirty(page); 888 * put_page(page); 889 * !page_count(page) [good, discard it] 890 * 891 * [oops, our write_to data is lost] 892 * 893 * Reversing the order of the tests ensures such a situation cannot 894 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 895 * load is not satisfied before that of page->_refcount. 896 * 897 * Note that if SetPageDirty is always performed via set_page_dirty, 898 * and thus under the i_pages lock, then this ordering is not required. 899 */ 900 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 901 refcount = 1 + HPAGE_PMD_NR; 902 else 903 refcount = 2; 904 if (!page_ref_freeze(page, refcount)) 905 goto cannot_free; 906 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 907 if (unlikely(PageDirty(page))) { 908 page_ref_unfreeze(page, refcount); 909 goto cannot_free; 910 } 911 912 if (PageSwapCache(page)) { 913 swp_entry_t swap = { .val = page_private(page) }; 914 mem_cgroup_swapout(page, swap); 915 __delete_from_swap_cache(page); 916 xa_unlock_irqrestore(&mapping->i_pages, flags); 917 put_swap_page(page, swap); 918 } else { 919 void (*freepage)(struct page *); 920 void *shadow = NULL; 921 922 freepage = mapping->a_ops->freepage; 923 /* 924 * Remember a shadow entry for reclaimed file cache in 925 * order to detect refaults, thus thrashing, later on. 926 * 927 * But don't store shadows in an address space that is 928 * already exiting. This is not just an optizimation, 929 * inode reclaim needs to empty out the radix tree or 930 * the nodes are lost. Don't plant shadows behind its 931 * back. 932 * 933 * We also don't store shadows for DAX mappings because the 934 * only page cache pages found in these are zero pages 935 * covering holes, and because we don't want to mix DAX 936 * exceptional entries and shadow exceptional entries in the 937 * same address_space. 938 */ 939 if (reclaimed && page_is_file_cache(page) && 940 !mapping_exiting(mapping) && !dax_mapping(mapping)) 941 shadow = workingset_eviction(mapping, page); 942 __delete_from_page_cache(page, shadow); 943 xa_unlock_irqrestore(&mapping->i_pages, flags); 944 945 if (freepage != NULL) 946 freepage(page); 947 } 948 949 return 1; 950 951 cannot_free: 952 xa_unlock_irqrestore(&mapping->i_pages, flags); 953 return 0; 954 } 955 956 /* 957 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 958 * someone else has a ref on the page, abort and return 0. If it was 959 * successfully detached, return 1. Assumes the caller has a single ref on 960 * this page. 961 */ 962 int remove_mapping(struct address_space *mapping, struct page *page) 963 { 964 if (__remove_mapping(mapping, page, false)) { 965 /* 966 * Unfreezing the refcount with 1 rather than 2 effectively 967 * drops the pagecache ref for us without requiring another 968 * atomic operation. 969 */ 970 page_ref_unfreeze(page, 1); 971 return 1; 972 } 973 return 0; 974 } 975 976 /** 977 * putback_lru_page - put previously isolated page onto appropriate LRU list 978 * @page: page to be put back to appropriate lru list 979 * 980 * Add previously isolated @page to appropriate LRU list. 981 * Page may still be unevictable for other reasons. 982 * 983 * lru_lock must not be held, interrupts must be enabled. 984 */ 985 void putback_lru_page(struct page *page) 986 { 987 lru_cache_add(page); 988 put_page(page); /* drop ref from isolate */ 989 } 990 991 enum page_references { 992 PAGEREF_RECLAIM, 993 PAGEREF_RECLAIM_CLEAN, 994 PAGEREF_KEEP, 995 PAGEREF_ACTIVATE, 996 }; 997 998 static enum page_references page_check_references(struct page *page, 999 struct scan_control *sc) 1000 { 1001 int referenced_ptes, referenced_page; 1002 unsigned long vm_flags; 1003 1004 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1005 &vm_flags); 1006 referenced_page = TestClearPageReferenced(page); 1007 1008 /* 1009 * Mlock lost the isolation race with us. Let try_to_unmap() 1010 * move the page to the unevictable list. 1011 */ 1012 if (vm_flags & VM_LOCKED) 1013 return PAGEREF_RECLAIM; 1014 1015 if (referenced_ptes) { 1016 if (PageSwapBacked(page)) 1017 return PAGEREF_ACTIVATE; 1018 /* 1019 * All mapped pages start out with page table 1020 * references from the instantiating fault, so we need 1021 * to look twice if a mapped file page is used more 1022 * than once. 1023 * 1024 * Mark it and spare it for another trip around the 1025 * inactive list. Another page table reference will 1026 * lead to its activation. 1027 * 1028 * Note: the mark is set for activated pages as well 1029 * so that recently deactivated but used pages are 1030 * quickly recovered. 1031 */ 1032 SetPageReferenced(page); 1033 1034 if (referenced_page || referenced_ptes > 1) 1035 return PAGEREF_ACTIVATE; 1036 1037 /* 1038 * Activate file-backed executable pages after first usage. 1039 */ 1040 if (vm_flags & VM_EXEC) 1041 return PAGEREF_ACTIVATE; 1042 1043 return PAGEREF_KEEP; 1044 } 1045 1046 /* Reclaim if clean, defer dirty pages to writeback */ 1047 if (referenced_page && !PageSwapBacked(page)) 1048 return PAGEREF_RECLAIM_CLEAN; 1049 1050 return PAGEREF_RECLAIM; 1051 } 1052 1053 /* Check if a page is dirty or under writeback */ 1054 static void page_check_dirty_writeback(struct page *page, 1055 bool *dirty, bool *writeback) 1056 { 1057 struct address_space *mapping; 1058 1059 /* 1060 * Anonymous pages are not handled by flushers and must be written 1061 * from reclaim context. Do not stall reclaim based on them 1062 */ 1063 if (!page_is_file_cache(page) || 1064 (PageAnon(page) && !PageSwapBacked(page))) { 1065 *dirty = false; 1066 *writeback = false; 1067 return; 1068 } 1069 1070 /* By default assume that the page flags are accurate */ 1071 *dirty = PageDirty(page); 1072 *writeback = PageWriteback(page); 1073 1074 /* Verify dirty/writeback state if the filesystem supports it */ 1075 if (!page_has_private(page)) 1076 return; 1077 1078 mapping = page_mapping(page); 1079 if (mapping && mapping->a_ops->is_dirty_writeback) 1080 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1081 } 1082 1083 /* 1084 * shrink_page_list() returns the number of reclaimed pages 1085 */ 1086 static unsigned long shrink_page_list(struct list_head *page_list, 1087 struct pglist_data *pgdat, 1088 struct scan_control *sc, 1089 enum ttu_flags ttu_flags, 1090 struct reclaim_stat *stat, 1091 bool force_reclaim) 1092 { 1093 LIST_HEAD(ret_pages); 1094 LIST_HEAD(free_pages); 1095 int pgactivate = 0; 1096 unsigned nr_unqueued_dirty = 0; 1097 unsigned nr_dirty = 0; 1098 unsigned nr_congested = 0; 1099 unsigned nr_reclaimed = 0; 1100 unsigned nr_writeback = 0; 1101 unsigned nr_immediate = 0; 1102 unsigned nr_ref_keep = 0; 1103 unsigned nr_unmap_fail = 0; 1104 1105 cond_resched(); 1106 1107 while (!list_empty(page_list)) { 1108 struct address_space *mapping; 1109 struct page *page; 1110 int may_enter_fs; 1111 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1112 bool dirty, writeback; 1113 1114 cond_resched(); 1115 1116 page = lru_to_page(page_list); 1117 list_del(&page->lru); 1118 1119 if (!trylock_page(page)) 1120 goto keep; 1121 1122 VM_BUG_ON_PAGE(PageActive(page), page); 1123 1124 sc->nr_scanned++; 1125 1126 if (unlikely(!page_evictable(page))) 1127 goto activate_locked; 1128 1129 if (!sc->may_unmap && page_mapped(page)) 1130 goto keep_locked; 1131 1132 /* Double the slab pressure for mapped and swapcache pages */ 1133 if ((page_mapped(page) || PageSwapCache(page)) && 1134 !(PageAnon(page) && !PageSwapBacked(page))) 1135 sc->nr_scanned++; 1136 1137 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1138 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1139 1140 /* 1141 * The number of dirty pages determines if a node is marked 1142 * reclaim_congested which affects wait_iff_congested. kswapd 1143 * will stall and start writing pages if the tail of the LRU 1144 * is all dirty unqueued pages. 1145 */ 1146 page_check_dirty_writeback(page, &dirty, &writeback); 1147 if (dirty || writeback) 1148 nr_dirty++; 1149 1150 if (dirty && !writeback) 1151 nr_unqueued_dirty++; 1152 1153 /* 1154 * Treat this page as congested if the underlying BDI is or if 1155 * pages are cycling through the LRU so quickly that the 1156 * pages marked for immediate reclaim are making it to the 1157 * end of the LRU a second time. 1158 */ 1159 mapping = page_mapping(page); 1160 if (((dirty || writeback) && mapping && 1161 inode_write_congested(mapping->host)) || 1162 (writeback && PageReclaim(page))) 1163 nr_congested++; 1164 1165 /* 1166 * If a page at the tail of the LRU is under writeback, there 1167 * are three cases to consider. 1168 * 1169 * 1) If reclaim is encountering an excessive number of pages 1170 * under writeback and this page is both under writeback and 1171 * PageReclaim then it indicates that pages are being queued 1172 * for IO but are being recycled through the LRU before the 1173 * IO can complete. Waiting on the page itself risks an 1174 * indefinite stall if it is impossible to writeback the 1175 * page due to IO error or disconnected storage so instead 1176 * note that the LRU is being scanned too quickly and the 1177 * caller can stall after page list has been processed. 1178 * 1179 * 2) Global or new memcg reclaim encounters a page that is 1180 * not marked for immediate reclaim, or the caller does not 1181 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1182 * not to fs). In this case mark the page for immediate 1183 * reclaim and continue scanning. 1184 * 1185 * Require may_enter_fs because we would wait on fs, which 1186 * may not have submitted IO yet. And the loop driver might 1187 * enter reclaim, and deadlock if it waits on a page for 1188 * which it is needed to do the write (loop masks off 1189 * __GFP_IO|__GFP_FS for this reason); but more thought 1190 * would probably show more reasons. 1191 * 1192 * 3) Legacy memcg encounters a page that is already marked 1193 * PageReclaim. memcg does not have any dirty pages 1194 * throttling so we could easily OOM just because too many 1195 * pages are in writeback and there is nothing else to 1196 * reclaim. Wait for the writeback to complete. 1197 * 1198 * In cases 1) and 2) we activate the pages to get them out of 1199 * the way while we continue scanning for clean pages on the 1200 * inactive list and refilling from the active list. The 1201 * observation here is that waiting for disk writes is more 1202 * expensive than potentially causing reloads down the line. 1203 * Since they're marked for immediate reclaim, they won't put 1204 * memory pressure on the cache working set any longer than it 1205 * takes to write them to disk. 1206 */ 1207 if (PageWriteback(page)) { 1208 /* Case 1 above */ 1209 if (current_is_kswapd() && 1210 PageReclaim(page) && 1211 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1212 nr_immediate++; 1213 goto activate_locked; 1214 1215 /* Case 2 above */ 1216 } else if (sane_reclaim(sc) || 1217 !PageReclaim(page) || !may_enter_fs) { 1218 /* 1219 * This is slightly racy - end_page_writeback() 1220 * might have just cleared PageReclaim, then 1221 * setting PageReclaim here end up interpreted 1222 * as PageReadahead - but that does not matter 1223 * enough to care. What we do want is for this 1224 * page to have PageReclaim set next time memcg 1225 * reclaim reaches the tests above, so it will 1226 * then wait_on_page_writeback() to avoid OOM; 1227 * and it's also appropriate in global reclaim. 1228 */ 1229 SetPageReclaim(page); 1230 nr_writeback++; 1231 goto activate_locked; 1232 1233 /* Case 3 above */ 1234 } else { 1235 unlock_page(page); 1236 wait_on_page_writeback(page); 1237 /* then go back and try same page again */ 1238 list_add_tail(&page->lru, page_list); 1239 continue; 1240 } 1241 } 1242 1243 if (!force_reclaim) 1244 references = page_check_references(page, sc); 1245 1246 switch (references) { 1247 case PAGEREF_ACTIVATE: 1248 goto activate_locked; 1249 case PAGEREF_KEEP: 1250 nr_ref_keep++; 1251 goto keep_locked; 1252 case PAGEREF_RECLAIM: 1253 case PAGEREF_RECLAIM_CLEAN: 1254 ; /* try to reclaim the page below */ 1255 } 1256 1257 /* 1258 * Anonymous process memory has backing store? 1259 * Try to allocate it some swap space here. 1260 * Lazyfree page could be freed directly 1261 */ 1262 if (PageAnon(page) && PageSwapBacked(page)) { 1263 if (!PageSwapCache(page)) { 1264 if (!(sc->gfp_mask & __GFP_IO)) 1265 goto keep_locked; 1266 if (PageTransHuge(page)) { 1267 /* cannot split THP, skip it */ 1268 if (!can_split_huge_page(page, NULL)) 1269 goto activate_locked; 1270 /* 1271 * Split pages without a PMD map right 1272 * away. Chances are some or all of the 1273 * tail pages can be freed without IO. 1274 */ 1275 if (!compound_mapcount(page) && 1276 split_huge_page_to_list(page, 1277 page_list)) 1278 goto activate_locked; 1279 } 1280 if (!add_to_swap(page)) { 1281 if (!PageTransHuge(page)) 1282 goto activate_locked; 1283 /* Fallback to swap normal pages */ 1284 if (split_huge_page_to_list(page, 1285 page_list)) 1286 goto activate_locked; 1287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1288 count_vm_event(THP_SWPOUT_FALLBACK); 1289 #endif 1290 if (!add_to_swap(page)) 1291 goto activate_locked; 1292 } 1293 1294 may_enter_fs = 1; 1295 1296 /* Adding to swap updated mapping */ 1297 mapping = page_mapping(page); 1298 } 1299 } else if (unlikely(PageTransHuge(page))) { 1300 /* Split file THP */ 1301 if (split_huge_page_to_list(page, page_list)) 1302 goto keep_locked; 1303 } 1304 1305 /* 1306 * The page is mapped into the page tables of one or more 1307 * processes. Try to unmap it here. 1308 */ 1309 if (page_mapped(page)) { 1310 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1311 1312 if (unlikely(PageTransHuge(page))) 1313 flags |= TTU_SPLIT_HUGE_PMD; 1314 if (!try_to_unmap(page, flags)) { 1315 nr_unmap_fail++; 1316 goto activate_locked; 1317 } 1318 } 1319 1320 if (PageDirty(page)) { 1321 /* 1322 * Only kswapd can writeback filesystem pages 1323 * to avoid risk of stack overflow. But avoid 1324 * injecting inefficient single-page IO into 1325 * flusher writeback as much as possible: only 1326 * write pages when we've encountered many 1327 * dirty pages, and when we've already scanned 1328 * the rest of the LRU for clean pages and see 1329 * the same dirty pages again (PageReclaim). 1330 */ 1331 if (page_is_file_cache(page) && 1332 (!current_is_kswapd() || !PageReclaim(page) || 1333 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1334 /* 1335 * Immediately reclaim when written back. 1336 * Similar in principal to deactivate_page() 1337 * except we already have the page isolated 1338 * and know it's dirty 1339 */ 1340 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1341 SetPageReclaim(page); 1342 1343 goto activate_locked; 1344 } 1345 1346 if (references == PAGEREF_RECLAIM_CLEAN) 1347 goto keep_locked; 1348 if (!may_enter_fs) 1349 goto keep_locked; 1350 if (!sc->may_writepage) 1351 goto keep_locked; 1352 1353 /* 1354 * Page is dirty. Flush the TLB if a writable entry 1355 * potentially exists to avoid CPU writes after IO 1356 * starts and then write it out here. 1357 */ 1358 try_to_unmap_flush_dirty(); 1359 switch (pageout(page, mapping, sc)) { 1360 case PAGE_KEEP: 1361 goto keep_locked; 1362 case PAGE_ACTIVATE: 1363 goto activate_locked; 1364 case PAGE_SUCCESS: 1365 if (PageWriteback(page)) 1366 goto keep; 1367 if (PageDirty(page)) 1368 goto keep; 1369 1370 /* 1371 * A synchronous write - probably a ramdisk. Go 1372 * ahead and try to reclaim the page. 1373 */ 1374 if (!trylock_page(page)) 1375 goto keep; 1376 if (PageDirty(page) || PageWriteback(page)) 1377 goto keep_locked; 1378 mapping = page_mapping(page); 1379 case PAGE_CLEAN: 1380 ; /* try to free the page below */ 1381 } 1382 } 1383 1384 /* 1385 * If the page has buffers, try to free the buffer mappings 1386 * associated with this page. If we succeed we try to free 1387 * the page as well. 1388 * 1389 * We do this even if the page is PageDirty(). 1390 * try_to_release_page() does not perform I/O, but it is 1391 * possible for a page to have PageDirty set, but it is actually 1392 * clean (all its buffers are clean). This happens if the 1393 * buffers were written out directly, with submit_bh(). ext3 1394 * will do this, as well as the blockdev mapping. 1395 * try_to_release_page() will discover that cleanness and will 1396 * drop the buffers and mark the page clean - it can be freed. 1397 * 1398 * Rarely, pages can have buffers and no ->mapping. These are 1399 * the pages which were not successfully invalidated in 1400 * truncate_complete_page(). We try to drop those buffers here 1401 * and if that worked, and the page is no longer mapped into 1402 * process address space (page_count == 1) it can be freed. 1403 * Otherwise, leave the page on the LRU so it is swappable. 1404 */ 1405 if (page_has_private(page)) { 1406 if (!try_to_release_page(page, sc->gfp_mask)) 1407 goto activate_locked; 1408 if (!mapping && page_count(page) == 1) { 1409 unlock_page(page); 1410 if (put_page_testzero(page)) 1411 goto free_it; 1412 else { 1413 /* 1414 * rare race with speculative reference. 1415 * the speculative reference will free 1416 * this page shortly, so we may 1417 * increment nr_reclaimed here (and 1418 * leave it off the LRU). 1419 */ 1420 nr_reclaimed++; 1421 continue; 1422 } 1423 } 1424 } 1425 1426 if (PageAnon(page) && !PageSwapBacked(page)) { 1427 /* follow __remove_mapping for reference */ 1428 if (!page_ref_freeze(page, 1)) 1429 goto keep_locked; 1430 if (PageDirty(page)) { 1431 page_ref_unfreeze(page, 1); 1432 goto keep_locked; 1433 } 1434 1435 count_vm_event(PGLAZYFREED); 1436 count_memcg_page_event(page, PGLAZYFREED); 1437 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1438 goto keep_locked; 1439 /* 1440 * At this point, we have no other references and there is 1441 * no way to pick any more up (removed from LRU, removed 1442 * from pagecache). Can use non-atomic bitops now (and 1443 * we obviously don't have to worry about waking up a process 1444 * waiting on the page lock, because there are no references. 1445 */ 1446 __ClearPageLocked(page); 1447 free_it: 1448 nr_reclaimed++; 1449 1450 /* 1451 * Is there need to periodically free_page_list? It would 1452 * appear not as the counts should be low 1453 */ 1454 if (unlikely(PageTransHuge(page))) { 1455 mem_cgroup_uncharge(page); 1456 (*get_compound_page_dtor(page))(page); 1457 } else 1458 list_add(&page->lru, &free_pages); 1459 continue; 1460 1461 activate_locked: 1462 /* Not a candidate for swapping, so reclaim swap space. */ 1463 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1464 PageMlocked(page))) 1465 try_to_free_swap(page); 1466 VM_BUG_ON_PAGE(PageActive(page), page); 1467 if (!PageMlocked(page)) { 1468 SetPageActive(page); 1469 pgactivate++; 1470 count_memcg_page_event(page, PGACTIVATE); 1471 } 1472 keep_locked: 1473 unlock_page(page); 1474 keep: 1475 list_add(&page->lru, &ret_pages); 1476 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1477 } 1478 1479 mem_cgroup_uncharge_list(&free_pages); 1480 try_to_unmap_flush(); 1481 free_unref_page_list(&free_pages); 1482 1483 list_splice(&ret_pages, page_list); 1484 count_vm_events(PGACTIVATE, pgactivate); 1485 1486 if (stat) { 1487 stat->nr_dirty = nr_dirty; 1488 stat->nr_congested = nr_congested; 1489 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1490 stat->nr_writeback = nr_writeback; 1491 stat->nr_immediate = nr_immediate; 1492 stat->nr_activate = pgactivate; 1493 stat->nr_ref_keep = nr_ref_keep; 1494 stat->nr_unmap_fail = nr_unmap_fail; 1495 } 1496 return nr_reclaimed; 1497 } 1498 1499 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1500 struct list_head *page_list) 1501 { 1502 struct scan_control sc = { 1503 .gfp_mask = GFP_KERNEL, 1504 .priority = DEF_PRIORITY, 1505 .may_unmap = 1, 1506 }; 1507 unsigned long ret; 1508 struct page *page, *next; 1509 LIST_HEAD(clean_pages); 1510 1511 list_for_each_entry_safe(page, next, page_list, lru) { 1512 if (page_is_file_cache(page) && !PageDirty(page) && 1513 !__PageMovable(page)) { 1514 ClearPageActive(page); 1515 list_move(&page->lru, &clean_pages); 1516 } 1517 } 1518 1519 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1520 TTU_IGNORE_ACCESS, NULL, true); 1521 list_splice(&clean_pages, page_list); 1522 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1523 return ret; 1524 } 1525 1526 /* 1527 * Attempt to remove the specified page from its LRU. Only take this page 1528 * if it is of the appropriate PageActive status. Pages which are being 1529 * freed elsewhere are also ignored. 1530 * 1531 * page: page to consider 1532 * mode: one of the LRU isolation modes defined above 1533 * 1534 * returns 0 on success, -ve errno on failure. 1535 */ 1536 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1537 { 1538 int ret = -EINVAL; 1539 1540 /* Only take pages on the LRU. */ 1541 if (!PageLRU(page)) 1542 return ret; 1543 1544 /* Compaction should not handle unevictable pages but CMA can do so */ 1545 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1546 return ret; 1547 1548 ret = -EBUSY; 1549 1550 /* 1551 * To minimise LRU disruption, the caller can indicate that it only 1552 * wants to isolate pages it will be able to operate on without 1553 * blocking - clean pages for the most part. 1554 * 1555 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1556 * that it is possible to migrate without blocking 1557 */ 1558 if (mode & ISOLATE_ASYNC_MIGRATE) { 1559 /* All the caller can do on PageWriteback is block */ 1560 if (PageWriteback(page)) 1561 return ret; 1562 1563 if (PageDirty(page)) { 1564 struct address_space *mapping; 1565 bool migrate_dirty; 1566 1567 /* 1568 * Only pages without mappings or that have a 1569 * ->migratepage callback are possible to migrate 1570 * without blocking. However, we can be racing with 1571 * truncation so it's necessary to lock the page 1572 * to stabilise the mapping as truncation holds 1573 * the page lock until after the page is removed 1574 * from the page cache. 1575 */ 1576 if (!trylock_page(page)) 1577 return ret; 1578 1579 mapping = page_mapping(page); 1580 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1581 unlock_page(page); 1582 if (!migrate_dirty) 1583 return ret; 1584 } 1585 } 1586 1587 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1588 return ret; 1589 1590 if (likely(get_page_unless_zero(page))) { 1591 /* 1592 * Be careful not to clear PageLRU until after we're 1593 * sure the page is not being freed elsewhere -- the 1594 * page release code relies on it. 1595 */ 1596 ClearPageLRU(page); 1597 ret = 0; 1598 } 1599 1600 return ret; 1601 } 1602 1603 1604 /* 1605 * Update LRU sizes after isolating pages. The LRU size updates must 1606 * be complete before mem_cgroup_update_lru_size due to a santity check. 1607 */ 1608 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1609 enum lru_list lru, unsigned long *nr_zone_taken) 1610 { 1611 int zid; 1612 1613 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1614 if (!nr_zone_taken[zid]) 1615 continue; 1616 1617 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1618 #ifdef CONFIG_MEMCG 1619 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1620 #endif 1621 } 1622 1623 } 1624 1625 /* 1626 * zone_lru_lock is heavily contended. Some of the functions that 1627 * shrink the lists perform better by taking out a batch of pages 1628 * and working on them outside the LRU lock. 1629 * 1630 * For pagecache intensive workloads, this function is the hottest 1631 * spot in the kernel (apart from copy_*_user functions). 1632 * 1633 * Appropriate locks must be held before calling this function. 1634 * 1635 * @nr_to_scan: The number of eligible pages to look through on the list. 1636 * @lruvec: The LRU vector to pull pages from. 1637 * @dst: The temp list to put pages on to. 1638 * @nr_scanned: The number of pages that were scanned. 1639 * @sc: The scan_control struct for this reclaim session 1640 * @mode: One of the LRU isolation modes 1641 * @lru: LRU list id for isolating 1642 * 1643 * returns how many pages were moved onto *@dst. 1644 */ 1645 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1646 struct lruvec *lruvec, struct list_head *dst, 1647 unsigned long *nr_scanned, struct scan_control *sc, 1648 isolate_mode_t mode, enum lru_list lru) 1649 { 1650 struct list_head *src = &lruvec->lists[lru]; 1651 unsigned long nr_taken = 0; 1652 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1653 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1654 unsigned long skipped = 0; 1655 unsigned long scan, total_scan, nr_pages; 1656 LIST_HEAD(pages_skipped); 1657 1658 scan = 0; 1659 for (total_scan = 0; 1660 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1661 total_scan++) { 1662 struct page *page; 1663 1664 page = lru_to_page(src); 1665 prefetchw_prev_lru_page(page, src, flags); 1666 1667 VM_BUG_ON_PAGE(!PageLRU(page), page); 1668 1669 if (page_zonenum(page) > sc->reclaim_idx) { 1670 list_move(&page->lru, &pages_skipped); 1671 nr_skipped[page_zonenum(page)]++; 1672 continue; 1673 } 1674 1675 /* 1676 * Do not count skipped pages because that makes the function 1677 * return with no isolated pages if the LRU mostly contains 1678 * ineligible pages. This causes the VM to not reclaim any 1679 * pages, triggering a premature OOM. 1680 */ 1681 scan++; 1682 switch (__isolate_lru_page(page, mode)) { 1683 case 0: 1684 nr_pages = hpage_nr_pages(page); 1685 nr_taken += nr_pages; 1686 nr_zone_taken[page_zonenum(page)] += nr_pages; 1687 list_move(&page->lru, dst); 1688 break; 1689 1690 case -EBUSY: 1691 /* else it is being freed elsewhere */ 1692 list_move(&page->lru, src); 1693 continue; 1694 1695 default: 1696 BUG(); 1697 } 1698 } 1699 1700 /* 1701 * Splice any skipped pages to the start of the LRU list. Note that 1702 * this disrupts the LRU order when reclaiming for lower zones but 1703 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1704 * scanning would soon rescan the same pages to skip and put the 1705 * system at risk of premature OOM. 1706 */ 1707 if (!list_empty(&pages_skipped)) { 1708 int zid; 1709 1710 list_splice(&pages_skipped, src); 1711 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1712 if (!nr_skipped[zid]) 1713 continue; 1714 1715 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1716 skipped += nr_skipped[zid]; 1717 } 1718 } 1719 *nr_scanned = total_scan; 1720 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1721 total_scan, skipped, nr_taken, mode, lru); 1722 update_lru_sizes(lruvec, lru, nr_zone_taken); 1723 return nr_taken; 1724 } 1725 1726 /** 1727 * isolate_lru_page - tries to isolate a page from its LRU list 1728 * @page: page to isolate from its LRU list 1729 * 1730 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1731 * vmstat statistic corresponding to whatever LRU list the page was on. 1732 * 1733 * Returns 0 if the page was removed from an LRU list. 1734 * Returns -EBUSY if the page was not on an LRU list. 1735 * 1736 * The returned page will have PageLRU() cleared. If it was found on 1737 * the active list, it will have PageActive set. If it was found on 1738 * the unevictable list, it will have the PageUnevictable bit set. That flag 1739 * may need to be cleared by the caller before letting the page go. 1740 * 1741 * The vmstat statistic corresponding to the list on which the page was 1742 * found will be decremented. 1743 * 1744 * Restrictions: 1745 * 1746 * (1) Must be called with an elevated refcount on the page. This is a 1747 * fundamentnal difference from isolate_lru_pages (which is called 1748 * without a stable reference). 1749 * (2) the lru_lock must not be held. 1750 * (3) interrupts must be enabled. 1751 */ 1752 int isolate_lru_page(struct page *page) 1753 { 1754 int ret = -EBUSY; 1755 1756 VM_BUG_ON_PAGE(!page_count(page), page); 1757 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1758 1759 if (PageLRU(page)) { 1760 struct zone *zone = page_zone(page); 1761 struct lruvec *lruvec; 1762 1763 spin_lock_irq(zone_lru_lock(zone)); 1764 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1765 if (PageLRU(page)) { 1766 int lru = page_lru(page); 1767 get_page(page); 1768 ClearPageLRU(page); 1769 del_page_from_lru_list(page, lruvec, lru); 1770 ret = 0; 1771 } 1772 spin_unlock_irq(zone_lru_lock(zone)); 1773 } 1774 return ret; 1775 } 1776 1777 /* 1778 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1779 * then get resheduled. When there are massive number of tasks doing page 1780 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1781 * the LRU list will go small and be scanned faster than necessary, leading to 1782 * unnecessary swapping, thrashing and OOM. 1783 */ 1784 static int too_many_isolated(struct pglist_data *pgdat, int file, 1785 struct scan_control *sc) 1786 { 1787 unsigned long inactive, isolated; 1788 1789 if (current_is_kswapd()) 1790 return 0; 1791 1792 if (!sane_reclaim(sc)) 1793 return 0; 1794 1795 if (file) { 1796 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1797 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1798 } else { 1799 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1800 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1801 } 1802 1803 /* 1804 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1805 * won't get blocked by normal direct-reclaimers, forming a circular 1806 * deadlock. 1807 */ 1808 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1809 inactive >>= 3; 1810 1811 return isolated > inactive; 1812 } 1813 1814 static noinline_for_stack void 1815 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1816 { 1817 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1818 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1819 LIST_HEAD(pages_to_free); 1820 1821 /* 1822 * Put back any unfreeable pages. 1823 */ 1824 while (!list_empty(page_list)) { 1825 struct page *page = lru_to_page(page_list); 1826 int lru; 1827 1828 VM_BUG_ON_PAGE(PageLRU(page), page); 1829 list_del(&page->lru); 1830 if (unlikely(!page_evictable(page))) { 1831 spin_unlock_irq(&pgdat->lru_lock); 1832 putback_lru_page(page); 1833 spin_lock_irq(&pgdat->lru_lock); 1834 continue; 1835 } 1836 1837 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1838 1839 SetPageLRU(page); 1840 lru = page_lru(page); 1841 add_page_to_lru_list(page, lruvec, lru); 1842 1843 if (is_active_lru(lru)) { 1844 int file = is_file_lru(lru); 1845 int numpages = hpage_nr_pages(page); 1846 reclaim_stat->recent_rotated[file] += numpages; 1847 } 1848 if (put_page_testzero(page)) { 1849 __ClearPageLRU(page); 1850 __ClearPageActive(page); 1851 del_page_from_lru_list(page, lruvec, lru); 1852 1853 if (unlikely(PageCompound(page))) { 1854 spin_unlock_irq(&pgdat->lru_lock); 1855 mem_cgroup_uncharge(page); 1856 (*get_compound_page_dtor(page))(page); 1857 spin_lock_irq(&pgdat->lru_lock); 1858 } else 1859 list_add(&page->lru, &pages_to_free); 1860 } 1861 } 1862 1863 /* 1864 * To save our caller's stack, now use input list for pages to free. 1865 */ 1866 list_splice(&pages_to_free, page_list); 1867 } 1868 1869 /* 1870 * If a kernel thread (such as nfsd for loop-back mounts) services 1871 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1872 * In that case we should only throttle if the backing device it is 1873 * writing to is congested. In other cases it is safe to throttle. 1874 */ 1875 static int current_may_throttle(void) 1876 { 1877 return !(current->flags & PF_LESS_THROTTLE) || 1878 current->backing_dev_info == NULL || 1879 bdi_write_congested(current->backing_dev_info); 1880 } 1881 1882 /* 1883 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1884 * of reclaimed pages 1885 */ 1886 static noinline_for_stack unsigned long 1887 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1888 struct scan_control *sc, enum lru_list lru) 1889 { 1890 LIST_HEAD(page_list); 1891 unsigned long nr_scanned; 1892 unsigned long nr_reclaimed = 0; 1893 unsigned long nr_taken; 1894 struct reclaim_stat stat = {}; 1895 isolate_mode_t isolate_mode = 0; 1896 int file = is_file_lru(lru); 1897 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1898 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1899 bool stalled = false; 1900 1901 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1902 if (stalled) 1903 return 0; 1904 1905 /* wait a bit for the reclaimer. */ 1906 msleep(100); 1907 stalled = true; 1908 1909 /* We are about to die and free our memory. Return now. */ 1910 if (fatal_signal_pending(current)) 1911 return SWAP_CLUSTER_MAX; 1912 } 1913 1914 lru_add_drain(); 1915 1916 if (!sc->may_unmap) 1917 isolate_mode |= ISOLATE_UNMAPPED; 1918 1919 spin_lock_irq(&pgdat->lru_lock); 1920 1921 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1922 &nr_scanned, sc, isolate_mode, lru); 1923 1924 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1925 reclaim_stat->recent_scanned[file] += nr_taken; 1926 1927 if (current_is_kswapd()) { 1928 if (global_reclaim(sc)) 1929 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1930 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1931 nr_scanned); 1932 } else { 1933 if (global_reclaim(sc)) 1934 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1935 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1936 nr_scanned); 1937 } 1938 spin_unlock_irq(&pgdat->lru_lock); 1939 1940 if (nr_taken == 0) 1941 return 0; 1942 1943 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1944 &stat, false); 1945 1946 spin_lock_irq(&pgdat->lru_lock); 1947 1948 if (current_is_kswapd()) { 1949 if (global_reclaim(sc)) 1950 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1951 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1952 nr_reclaimed); 1953 } else { 1954 if (global_reclaim(sc)) 1955 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1956 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1957 nr_reclaimed); 1958 } 1959 1960 putback_inactive_pages(lruvec, &page_list); 1961 1962 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1963 1964 spin_unlock_irq(&pgdat->lru_lock); 1965 1966 mem_cgroup_uncharge_list(&page_list); 1967 free_unref_page_list(&page_list); 1968 1969 /* 1970 * If dirty pages are scanned that are not queued for IO, it 1971 * implies that flushers are not doing their job. This can 1972 * happen when memory pressure pushes dirty pages to the end of 1973 * the LRU before the dirty limits are breached and the dirty 1974 * data has expired. It can also happen when the proportion of 1975 * dirty pages grows not through writes but through memory 1976 * pressure reclaiming all the clean cache. And in some cases, 1977 * the flushers simply cannot keep up with the allocation 1978 * rate. Nudge the flusher threads in case they are asleep. 1979 */ 1980 if (stat.nr_unqueued_dirty == nr_taken) 1981 wakeup_flusher_threads(WB_REASON_VMSCAN); 1982 1983 sc->nr.dirty += stat.nr_dirty; 1984 sc->nr.congested += stat.nr_congested; 1985 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1986 sc->nr.writeback += stat.nr_writeback; 1987 sc->nr.immediate += stat.nr_immediate; 1988 sc->nr.taken += nr_taken; 1989 if (file) 1990 sc->nr.file_taken += nr_taken; 1991 1992 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1993 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1994 return nr_reclaimed; 1995 } 1996 1997 /* 1998 * This moves pages from the active list to the inactive list. 1999 * 2000 * We move them the other way if the page is referenced by one or more 2001 * processes, from rmap. 2002 * 2003 * If the pages are mostly unmapped, the processing is fast and it is 2004 * appropriate to hold zone_lru_lock across the whole operation. But if 2005 * the pages are mapped, the processing is slow (page_referenced()) so we 2006 * should drop zone_lru_lock around each page. It's impossible to balance 2007 * this, so instead we remove the pages from the LRU while processing them. 2008 * It is safe to rely on PG_active against the non-LRU pages in here because 2009 * nobody will play with that bit on a non-LRU page. 2010 * 2011 * The downside is that we have to touch page->_refcount against each page. 2012 * But we had to alter page->flags anyway. 2013 * 2014 * Returns the number of pages moved to the given lru. 2015 */ 2016 2017 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 2018 struct list_head *list, 2019 struct list_head *pages_to_free, 2020 enum lru_list lru) 2021 { 2022 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2023 struct page *page; 2024 int nr_pages; 2025 int nr_moved = 0; 2026 2027 while (!list_empty(list)) { 2028 page = lru_to_page(list); 2029 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2030 2031 VM_BUG_ON_PAGE(PageLRU(page), page); 2032 SetPageLRU(page); 2033 2034 nr_pages = hpage_nr_pages(page); 2035 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 2036 list_move(&page->lru, &lruvec->lists[lru]); 2037 2038 if (put_page_testzero(page)) { 2039 __ClearPageLRU(page); 2040 __ClearPageActive(page); 2041 del_page_from_lru_list(page, lruvec, lru); 2042 2043 if (unlikely(PageCompound(page))) { 2044 spin_unlock_irq(&pgdat->lru_lock); 2045 mem_cgroup_uncharge(page); 2046 (*get_compound_page_dtor(page))(page); 2047 spin_lock_irq(&pgdat->lru_lock); 2048 } else 2049 list_add(&page->lru, pages_to_free); 2050 } else { 2051 nr_moved += nr_pages; 2052 } 2053 } 2054 2055 if (!is_active_lru(lru)) { 2056 __count_vm_events(PGDEACTIVATE, nr_moved); 2057 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 2058 nr_moved); 2059 } 2060 2061 return nr_moved; 2062 } 2063 2064 static void shrink_active_list(unsigned long nr_to_scan, 2065 struct lruvec *lruvec, 2066 struct scan_control *sc, 2067 enum lru_list lru) 2068 { 2069 unsigned long nr_taken; 2070 unsigned long nr_scanned; 2071 unsigned long vm_flags; 2072 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2073 LIST_HEAD(l_active); 2074 LIST_HEAD(l_inactive); 2075 struct page *page; 2076 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2077 unsigned nr_deactivate, nr_activate; 2078 unsigned nr_rotated = 0; 2079 isolate_mode_t isolate_mode = 0; 2080 int file = is_file_lru(lru); 2081 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2082 2083 lru_add_drain(); 2084 2085 if (!sc->may_unmap) 2086 isolate_mode |= ISOLATE_UNMAPPED; 2087 2088 spin_lock_irq(&pgdat->lru_lock); 2089 2090 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2091 &nr_scanned, sc, isolate_mode, lru); 2092 2093 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2094 reclaim_stat->recent_scanned[file] += nr_taken; 2095 2096 __count_vm_events(PGREFILL, nr_scanned); 2097 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2098 2099 spin_unlock_irq(&pgdat->lru_lock); 2100 2101 while (!list_empty(&l_hold)) { 2102 cond_resched(); 2103 page = lru_to_page(&l_hold); 2104 list_del(&page->lru); 2105 2106 if (unlikely(!page_evictable(page))) { 2107 putback_lru_page(page); 2108 continue; 2109 } 2110 2111 if (unlikely(buffer_heads_over_limit)) { 2112 if (page_has_private(page) && trylock_page(page)) { 2113 if (page_has_private(page)) 2114 try_to_release_page(page, 0); 2115 unlock_page(page); 2116 } 2117 } 2118 2119 if (page_referenced(page, 0, sc->target_mem_cgroup, 2120 &vm_flags)) { 2121 nr_rotated += hpage_nr_pages(page); 2122 /* 2123 * Identify referenced, file-backed active pages and 2124 * give them one more trip around the active list. So 2125 * that executable code get better chances to stay in 2126 * memory under moderate memory pressure. Anon pages 2127 * are not likely to be evicted by use-once streaming 2128 * IO, plus JVM can create lots of anon VM_EXEC pages, 2129 * so we ignore them here. 2130 */ 2131 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2132 list_add(&page->lru, &l_active); 2133 continue; 2134 } 2135 } 2136 2137 ClearPageActive(page); /* we are de-activating */ 2138 list_add(&page->lru, &l_inactive); 2139 } 2140 2141 /* 2142 * Move pages back to the lru list. 2143 */ 2144 spin_lock_irq(&pgdat->lru_lock); 2145 /* 2146 * Count referenced pages from currently used mappings as rotated, 2147 * even though only some of them are actually re-activated. This 2148 * helps balance scan pressure between file and anonymous pages in 2149 * get_scan_count. 2150 */ 2151 reclaim_stat->recent_rotated[file] += nr_rotated; 2152 2153 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2154 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2155 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2156 spin_unlock_irq(&pgdat->lru_lock); 2157 2158 mem_cgroup_uncharge_list(&l_hold); 2159 free_unref_page_list(&l_hold); 2160 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2161 nr_deactivate, nr_rotated, sc->priority, file); 2162 } 2163 2164 /* 2165 * The inactive anon list should be small enough that the VM never has 2166 * to do too much work. 2167 * 2168 * The inactive file list should be small enough to leave most memory 2169 * to the established workingset on the scan-resistant active list, 2170 * but large enough to avoid thrashing the aggregate readahead window. 2171 * 2172 * Both inactive lists should also be large enough that each inactive 2173 * page has a chance to be referenced again before it is reclaimed. 2174 * 2175 * If that fails and refaulting is observed, the inactive list grows. 2176 * 2177 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2178 * on this LRU, maintained by the pageout code. An inactive_ratio 2179 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2180 * 2181 * total target max 2182 * memory ratio inactive 2183 * ------------------------------------- 2184 * 10MB 1 5MB 2185 * 100MB 1 50MB 2186 * 1GB 3 250MB 2187 * 10GB 10 0.9GB 2188 * 100GB 31 3GB 2189 * 1TB 101 10GB 2190 * 10TB 320 32GB 2191 */ 2192 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2193 struct mem_cgroup *memcg, 2194 struct scan_control *sc, bool actual_reclaim) 2195 { 2196 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2197 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2198 enum lru_list inactive_lru = file * LRU_FILE; 2199 unsigned long inactive, active; 2200 unsigned long inactive_ratio; 2201 unsigned long refaults; 2202 unsigned long gb; 2203 2204 /* 2205 * If we don't have swap space, anonymous page deactivation 2206 * is pointless. 2207 */ 2208 if (!file && !total_swap_pages) 2209 return false; 2210 2211 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2212 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2213 2214 if (memcg) 2215 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2216 else 2217 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2218 2219 /* 2220 * When refaults are being observed, it means a new workingset 2221 * is being established. Disable active list protection to get 2222 * rid of the stale workingset quickly. 2223 */ 2224 if (file && actual_reclaim && lruvec->refaults != refaults) { 2225 inactive_ratio = 0; 2226 } else { 2227 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2228 if (gb) 2229 inactive_ratio = int_sqrt(10 * gb); 2230 else 2231 inactive_ratio = 1; 2232 } 2233 2234 if (actual_reclaim) 2235 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2236 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2237 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2238 inactive_ratio, file); 2239 2240 return inactive * inactive_ratio < active; 2241 } 2242 2243 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2244 struct lruvec *lruvec, struct mem_cgroup *memcg, 2245 struct scan_control *sc) 2246 { 2247 if (is_active_lru(lru)) { 2248 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2249 memcg, sc, true)) 2250 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2251 return 0; 2252 } 2253 2254 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2255 } 2256 2257 enum scan_balance { 2258 SCAN_EQUAL, 2259 SCAN_FRACT, 2260 SCAN_ANON, 2261 SCAN_FILE, 2262 }; 2263 2264 /* 2265 * Determine how aggressively the anon and file LRU lists should be 2266 * scanned. The relative value of each set of LRU lists is determined 2267 * by looking at the fraction of the pages scanned we did rotate back 2268 * onto the active list instead of evict. 2269 * 2270 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2271 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2272 */ 2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2274 struct scan_control *sc, unsigned long *nr, 2275 unsigned long *lru_pages) 2276 { 2277 int swappiness = mem_cgroup_swappiness(memcg); 2278 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2279 u64 fraction[2]; 2280 u64 denominator = 0; /* gcc */ 2281 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2282 unsigned long anon_prio, file_prio; 2283 enum scan_balance scan_balance; 2284 unsigned long anon, file; 2285 unsigned long ap, fp; 2286 enum lru_list lru; 2287 2288 /* If we have no swap space, do not bother scanning anon pages. */ 2289 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2290 scan_balance = SCAN_FILE; 2291 goto out; 2292 } 2293 2294 /* 2295 * Global reclaim will swap to prevent OOM even with no 2296 * swappiness, but memcg users want to use this knob to 2297 * disable swapping for individual groups completely when 2298 * using the memory controller's swap limit feature would be 2299 * too expensive. 2300 */ 2301 if (!global_reclaim(sc) && !swappiness) { 2302 scan_balance = SCAN_FILE; 2303 goto out; 2304 } 2305 2306 /* 2307 * Do not apply any pressure balancing cleverness when the 2308 * system is close to OOM, scan both anon and file equally 2309 * (unless the swappiness setting disagrees with swapping). 2310 */ 2311 if (!sc->priority && swappiness) { 2312 scan_balance = SCAN_EQUAL; 2313 goto out; 2314 } 2315 2316 /* 2317 * Prevent the reclaimer from falling into the cache trap: as 2318 * cache pages start out inactive, every cache fault will tip 2319 * the scan balance towards the file LRU. And as the file LRU 2320 * shrinks, so does the window for rotation from references. 2321 * This means we have a runaway feedback loop where a tiny 2322 * thrashing file LRU becomes infinitely more attractive than 2323 * anon pages. Try to detect this based on file LRU size. 2324 */ 2325 if (global_reclaim(sc)) { 2326 unsigned long pgdatfile; 2327 unsigned long pgdatfree; 2328 int z; 2329 unsigned long total_high_wmark = 0; 2330 2331 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2332 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2333 node_page_state(pgdat, NR_INACTIVE_FILE); 2334 2335 for (z = 0; z < MAX_NR_ZONES; z++) { 2336 struct zone *zone = &pgdat->node_zones[z]; 2337 if (!managed_zone(zone)) 2338 continue; 2339 2340 total_high_wmark += high_wmark_pages(zone); 2341 } 2342 2343 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2344 /* 2345 * Force SCAN_ANON if there are enough inactive 2346 * anonymous pages on the LRU in eligible zones. 2347 * Otherwise, the small LRU gets thrashed. 2348 */ 2349 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2350 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2351 >> sc->priority) { 2352 scan_balance = SCAN_ANON; 2353 goto out; 2354 } 2355 } 2356 } 2357 2358 /* 2359 * If there is enough inactive page cache, i.e. if the size of the 2360 * inactive list is greater than that of the active list *and* the 2361 * inactive list actually has some pages to scan on this priority, we 2362 * do not reclaim anything from the anonymous working set right now. 2363 * Without the second condition we could end up never scanning an 2364 * lruvec even if it has plenty of old anonymous pages unless the 2365 * system is under heavy pressure. 2366 */ 2367 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2368 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2369 scan_balance = SCAN_FILE; 2370 goto out; 2371 } 2372 2373 scan_balance = SCAN_FRACT; 2374 2375 /* 2376 * With swappiness at 100, anonymous and file have the same priority. 2377 * This scanning priority is essentially the inverse of IO cost. 2378 */ 2379 anon_prio = swappiness; 2380 file_prio = 200 - anon_prio; 2381 2382 /* 2383 * OK, so we have swap space and a fair amount of page cache 2384 * pages. We use the recently rotated / recently scanned 2385 * ratios to determine how valuable each cache is. 2386 * 2387 * Because workloads change over time (and to avoid overflow) 2388 * we keep these statistics as a floating average, which ends 2389 * up weighing recent references more than old ones. 2390 * 2391 * anon in [0], file in [1] 2392 */ 2393 2394 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2395 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2396 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2397 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2398 2399 spin_lock_irq(&pgdat->lru_lock); 2400 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2401 reclaim_stat->recent_scanned[0] /= 2; 2402 reclaim_stat->recent_rotated[0] /= 2; 2403 } 2404 2405 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2406 reclaim_stat->recent_scanned[1] /= 2; 2407 reclaim_stat->recent_rotated[1] /= 2; 2408 } 2409 2410 /* 2411 * The amount of pressure on anon vs file pages is inversely 2412 * proportional to the fraction of recently scanned pages on 2413 * each list that were recently referenced and in active use. 2414 */ 2415 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2416 ap /= reclaim_stat->recent_rotated[0] + 1; 2417 2418 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2419 fp /= reclaim_stat->recent_rotated[1] + 1; 2420 spin_unlock_irq(&pgdat->lru_lock); 2421 2422 fraction[0] = ap; 2423 fraction[1] = fp; 2424 denominator = ap + fp + 1; 2425 out: 2426 *lru_pages = 0; 2427 for_each_evictable_lru(lru) { 2428 int file = is_file_lru(lru); 2429 unsigned long size; 2430 unsigned long scan; 2431 2432 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2433 scan = size >> sc->priority; 2434 /* 2435 * If the cgroup's already been deleted, make sure to 2436 * scrape out the remaining cache. 2437 */ 2438 if (!scan && !mem_cgroup_online(memcg)) 2439 scan = min(size, SWAP_CLUSTER_MAX); 2440 2441 switch (scan_balance) { 2442 case SCAN_EQUAL: 2443 /* Scan lists relative to size */ 2444 break; 2445 case SCAN_FRACT: 2446 /* 2447 * Scan types proportional to swappiness and 2448 * their relative recent reclaim efficiency. 2449 */ 2450 scan = div64_u64(scan * fraction[file], 2451 denominator); 2452 break; 2453 case SCAN_FILE: 2454 case SCAN_ANON: 2455 /* Scan one type exclusively */ 2456 if ((scan_balance == SCAN_FILE) != file) { 2457 size = 0; 2458 scan = 0; 2459 } 2460 break; 2461 default: 2462 /* Look ma, no brain */ 2463 BUG(); 2464 } 2465 2466 *lru_pages += size; 2467 nr[lru] = scan; 2468 } 2469 } 2470 2471 /* 2472 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2473 */ 2474 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2475 struct scan_control *sc, unsigned long *lru_pages) 2476 { 2477 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2478 unsigned long nr[NR_LRU_LISTS]; 2479 unsigned long targets[NR_LRU_LISTS]; 2480 unsigned long nr_to_scan; 2481 enum lru_list lru; 2482 unsigned long nr_reclaimed = 0; 2483 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2484 struct blk_plug plug; 2485 bool scan_adjusted; 2486 2487 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2488 2489 /* Record the original scan target for proportional adjustments later */ 2490 memcpy(targets, nr, sizeof(nr)); 2491 2492 /* 2493 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2494 * event that can occur when there is little memory pressure e.g. 2495 * multiple streaming readers/writers. Hence, we do not abort scanning 2496 * when the requested number of pages are reclaimed when scanning at 2497 * DEF_PRIORITY on the assumption that the fact we are direct 2498 * reclaiming implies that kswapd is not keeping up and it is best to 2499 * do a batch of work at once. For memcg reclaim one check is made to 2500 * abort proportional reclaim if either the file or anon lru has already 2501 * dropped to zero at the first pass. 2502 */ 2503 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2504 sc->priority == DEF_PRIORITY); 2505 2506 blk_start_plug(&plug); 2507 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2508 nr[LRU_INACTIVE_FILE]) { 2509 unsigned long nr_anon, nr_file, percentage; 2510 unsigned long nr_scanned; 2511 2512 for_each_evictable_lru(lru) { 2513 if (nr[lru]) { 2514 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2515 nr[lru] -= nr_to_scan; 2516 2517 nr_reclaimed += shrink_list(lru, nr_to_scan, 2518 lruvec, memcg, sc); 2519 } 2520 } 2521 2522 cond_resched(); 2523 2524 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2525 continue; 2526 2527 /* 2528 * For kswapd and memcg, reclaim at least the number of pages 2529 * requested. Ensure that the anon and file LRUs are scanned 2530 * proportionally what was requested by get_scan_count(). We 2531 * stop reclaiming one LRU and reduce the amount scanning 2532 * proportional to the original scan target. 2533 */ 2534 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2535 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2536 2537 /* 2538 * It's just vindictive to attack the larger once the smaller 2539 * has gone to zero. And given the way we stop scanning the 2540 * smaller below, this makes sure that we only make one nudge 2541 * towards proportionality once we've got nr_to_reclaim. 2542 */ 2543 if (!nr_file || !nr_anon) 2544 break; 2545 2546 if (nr_file > nr_anon) { 2547 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2548 targets[LRU_ACTIVE_ANON] + 1; 2549 lru = LRU_BASE; 2550 percentage = nr_anon * 100 / scan_target; 2551 } else { 2552 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2553 targets[LRU_ACTIVE_FILE] + 1; 2554 lru = LRU_FILE; 2555 percentage = nr_file * 100 / scan_target; 2556 } 2557 2558 /* Stop scanning the smaller of the LRU */ 2559 nr[lru] = 0; 2560 nr[lru + LRU_ACTIVE] = 0; 2561 2562 /* 2563 * Recalculate the other LRU scan count based on its original 2564 * scan target and the percentage scanning already complete 2565 */ 2566 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2567 nr_scanned = targets[lru] - nr[lru]; 2568 nr[lru] = targets[lru] * (100 - percentage) / 100; 2569 nr[lru] -= min(nr[lru], nr_scanned); 2570 2571 lru += LRU_ACTIVE; 2572 nr_scanned = targets[lru] - nr[lru]; 2573 nr[lru] = targets[lru] * (100 - percentage) / 100; 2574 nr[lru] -= min(nr[lru], nr_scanned); 2575 2576 scan_adjusted = true; 2577 } 2578 blk_finish_plug(&plug); 2579 sc->nr_reclaimed += nr_reclaimed; 2580 2581 /* 2582 * Even if we did not try to evict anon pages at all, we want to 2583 * rebalance the anon lru active/inactive ratio. 2584 */ 2585 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2586 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2587 sc, LRU_ACTIVE_ANON); 2588 } 2589 2590 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2591 static bool in_reclaim_compaction(struct scan_control *sc) 2592 { 2593 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2594 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2595 sc->priority < DEF_PRIORITY - 2)) 2596 return true; 2597 2598 return false; 2599 } 2600 2601 /* 2602 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2603 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2604 * true if more pages should be reclaimed such that when the page allocator 2605 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2606 * It will give up earlier than that if there is difficulty reclaiming pages. 2607 */ 2608 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2609 unsigned long nr_reclaimed, 2610 unsigned long nr_scanned, 2611 struct scan_control *sc) 2612 { 2613 unsigned long pages_for_compaction; 2614 unsigned long inactive_lru_pages; 2615 int z; 2616 2617 /* If not in reclaim/compaction mode, stop */ 2618 if (!in_reclaim_compaction(sc)) 2619 return false; 2620 2621 /* Consider stopping depending on scan and reclaim activity */ 2622 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2623 /* 2624 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2625 * full LRU list has been scanned and we are still failing 2626 * to reclaim pages. This full LRU scan is potentially 2627 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2628 */ 2629 if (!nr_reclaimed && !nr_scanned) 2630 return false; 2631 } else { 2632 /* 2633 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2634 * fail without consequence, stop if we failed to reclaim 2635 * any pages from the last SWAP_CLUSTER_MAX number of 2636 * pages that were scanned. This will return to the 2637 * caller faster at the risk reclaim/compaction and 2638 * the resulting allocation attempt fails 2639 */ 2640 if (!nr_reclaimed) 2641 return false; 2642 } 2643 2644 /* 2645 * If we have not reclaimed enough pages for compaction and the 2646 * inactive lists are large enough, continue reclaiming 2647 */ 2648 pages_for_compaction = compact_gap(sc->order); 2649 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2650 if (get_nr_swap_pages() > 0) 2651 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2652 if (sc->nr_reclaimed < pages_for_compaction && 2653 inactive_lru_pages > pages_for_compaction) 2654 return true; 2655 2656 /* If compaction would go ahead or the allocation would succeed, stop */ 2657 for (z = 0; z <= sc->reclaim_idx; z++) { 2658 struct zone *zone = &pgdat->node_zones[z]; 2659 if (!managed_zone(zone)) 2660 continue; 2661 2662 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2663 case COMPACT_SUCCESS: 2664 case COMPACT_CONTINUE: 2665 return false; 2666 default: 2667 /* check next zone */ 2668 ; 2669 } 2670 } 2671 return true; 2672 } 2673 2674 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2675 { 2676 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2677 (memcg && memcg_congested(pgdat, memcg)); 2678 } 2679 2680 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2681 { 2682 struct reclaim_state *reclaim_state = current->reclaim_state; 2683 unsigned long nr_reclaimed, nr_scanned; 2684 bool reclaimable = false; 2685 2686 do { 2687 struct mem_cgroup *root = sc->target_mem_cgroup; 2688 struct mem_cgroup_reclaim_cookie reclaim = { 2689 .pgdat = pgdat, 2690 .priority = sc->priority, 2691 }; 2692 unsigned long node_lru_pages = 0; 2693 struct mem_cgroup *memcg; 2694 2695 memset(&sc->nr, 0, sizeof(sc->nr)); 2696 2697 nr_reclaimed = sc->nr_reclaimed; 2698 nr_scanned = sc->nr_scanned; 2699 2700 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2701 do { 2702 unsigned long lru_pages; 2703 unsigned long reclaimed; 2704 unsigned long scanned; 2705 2706 switch (mem_cgroup_protected(root, memcg)) { 2707 case MEMCG_PROT_MIN: 2708 /* 2709 * Hard protection. 2710 * If there is no reclaimable memory, OOM. 2711 */ 2712 continue; 2713 case MEMCG_PROT_LOW: 2714 /* 2715 * Soft protection. 2716 * Respect the protection only as long as 2717 * there is an unprotected supply 2718 * of reclaimable memory from other cgroups. 2719 */ 2720 if (!sc->memcg_low_reclaim) { 2721 sc->memcg_low_skipped = 1; 2722 continue; 2723 } 2724 memcg_memory_event(memcg, MEMCG_LOW); 2725 break; 2726 case MEMCG_PROT_NONE: 2727 break; 2728 } 2729 2730 reclaimed = sc->nr_reclaimed; 2731 scanned = sc->nr_scanned; 2732 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2733 node_lru_pages += lru_pages; 2734 2735 shrink_slab(sc->gfp_mask, pgdat->node_id, 2736 memcg, sc->priority); 2737 2738 /* Record the group's reclaim efficiency */ 2739 vmpressure(sc->gfp_mask, memcg, false, 2740 sc->nr_scanned - scanned, 2741 sc->nr_reclaimed - reclaimed); 2742 2743 /* 2744 * Direct reclaim and kswapd have to scan all memory 2745 * cgroups to fulfill the overall scan target for the 2746 * node. 2747 * 2748 * Limit reclaim, on the other hand, only cares about 2749 * nr_to_reclaim pages to be reclaimed and it will 2750 * retry with decreasing priority if one round over the 2751 * whole hierarchy is not sufficient. 2752 */ 2753 if (!global_reclaim(sc) && 2754 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2755 mem_cgroup_iter_break(root, memcg); 2756 break; 2757 } 2758 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2759 2760 if (reclaim_state) { 2761 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2762 reclaim_state->reclaimed_slab = 0; 2763 } 2764 2765 /* Record the subtree's reclaim efficiency */ 2766 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2767 sc->nr_scanned - nr_scanned, 2768 sc->nr_reclaimed - nr_reclaimed); 2769 2770 if (sc->nr_reclaimed - nr_reclaimed) 2771 reclaimable = true; 2772 2773 if (current_is_kswapd()) { 2774 /* 2775 * If reclaim is isolating dirty pages under writeback, 2776 * it implies that the long-lived page allocation rate 2777 * is exceeding the page laundering rate. Either the 2778 * global limits are not being effective at throttling 2779 * processes due to the page distribution throughout 2780 * zones or there is heavy usage of a slow backing 2781 * device. The only option is to throttle from reclaim 2782 * context which is not ideal as there is no guarantee 2783 * the dirtying process is throttled in the same way 2784 * balance_dirty_pages() manages. 2785 * 2786 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2787 * count the number of pages under pages flagged for 2788 * immediate reclaim and stall if any are encountered 2789 * in the nr_immediate check below. 2790 */ 2791 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2792 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2793 2794 /* 2795 * Tag a node as congested if all the dirty pages 2796 * scanned were backed by a congested BDI and 2797 * wait_iff_congested will stall. 2798 */ 2799 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2800 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2801 2802 /* Allow kswapd to start writing pages during reclaim.*/ 2803 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2804 set_bit(PGDAT_DIRTY, &pgdat->flags); 2805 2806 /* 2807 * If kswapd scans pages marked marked for immediate 2808 * reclaim and under writeback (nr_immediate), it 2809 * implies that pages are cycling through the LRU 2810 * faster than they are written so also forcibly stall. 2811 */ 2812 if (sc->nr.immediate) 2813 congestion_wait(BLK_RW_ASYNC, HZ/10); 2814 } 2815 2816 /* 2817 * Legacy memcg will stall in page writeback so avoid forcibly 2818 * stalling in wait_iff_congested(). 2819 */ 2820 if (!global_reclaim(sc) && sane_reclaim(sc) && 2821 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2822 set_memcg_congestion(pgdat, root, true); 2823 2824 /* 2825 * Stall direct reclaim for IO completions if underlying BDIs 2826 * and node is congested. Allow kswapd to continue until it 2827 * starts encountering unqueued dirty pages or cycling through 2828 * the LRU too quickly. 2829 */ 2830 if (!sc->hibernation_mode && !current_is_kswapd() && 2831 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2832 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2833 2834 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2835 sc->nr_scanned - nr_scanned, sc)); 2836 2837 /* 2838 * Kswapd gives up on balancing particular nodes after too 2839 * many failures to reclaim anything from them and goes to 2840 * sleep. On reclaim progress, reset the failure counter. A 2841 * successful direct reclaim run will revive a dormant kswapd. 2842 */ 2843 if (reclaimable) 2844 pgdat->kswapd_failures = 0; 2845 2846 return reclaimable; 2847 } 2848 2849 /* 2850 * Returns true if compaction should go ahead for a costly-order request, or 2851 * the allocation would already succeed without compaction. Return false if we 2852 * should reclaim first. 2853 */ 2854 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2855 { 2856 unsigned long watermark; 2857 enum compact_result suitable; 2858 2859 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2860 if (suitable == COMPACT_SUCCESS) 2861 /* Allocation should succeed already. Don't reclaim. */ 2862 return true; 2863 if (suitable == COMPACT_SKIPPED) 2864 /* Compaction cannot yet proceed. Do reclaim. */ 2865 return false; 2866 2867 /* 2868 * Compaction is already possible, but it takes time to run and there 2869 * are potentially other callers using the pages just freed. So proceed 2870 * with reclaim to make a buffer of free pages available to give 2871 * compaction a reasonable chance of completing and allocating the page. 2872 * Note that we won't actually reclaim the whole buffer in one attempt 2873 * as the target watermark in should_continue_reclaim() is lower. But if 2874 * we are already above the high+gap watermark, don't reclaim at all. 2875 */ 2876 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2877 2878 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2879 } 2880 2881 /* 2882 * This is the direct reclaim path, for page-allocating processes. We only 2883 * try to reclaim pages from zones which will satisfy the caller's allocation 2884 * request. 2885 * 2886 * If a zone is deemed to be full of pinned pages then just give it a light 2887 * scan then give up on it. 2888 */ 2889 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2890 { 2891 struct zoneref *z; 2892 struct zone *zone; 2893 unsigned long nr_soft_reclaimed; 2894 unsigned long nr_soft_scanned; 2895 gfp_t orig_mask; 2896 pg_data_t *last_pgdat = NULL; 2897 2898 /* 2899 * If the number of buffer_heads in the machine exceeds the maximum 2900 * allowed level, force direct reclaim to scan the highmem zone as 2901 * highmem pages could be pinning lowmem pages storing buffer_heads 2902 */ 2903 orig_mask = sc->gfp_mask; 2904 if (buffer_heads_over_limit) { 2905 sc->gfp_mask |= __GFP_HIGHMEM; 2906 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2907 } 2908 2909 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2910 sc->reclaim_idx, sc->nodemask) { 2911 /* 2912 * Take care memory controller reclaiming has small influence 2913 * to global LRU. 2914 */ 2915 if (global_reclaim(sc)) { 2916 if (!cpuset_zone_allowed(zone, 2917 GFP_KERNEL | __GFP_HARDWALL)) 2918 continue; 2919 2920 /* 2921 * If we already have plenty of memory free for 2922 * compaction in this zone, don't free any more. 2923 * Even though compaction is invoked for any 2924 * non-zero order, only frequent costly order 2925 * reclamation is disruptive enough to become a 2926 * noticeable problem, like transparent huge 2927 * page allocations. 2928 */ 2929 if (IS_ENABLED(CONFIG_COMPACTION) && 2930 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2931 compaction_ready(zone, sc)) { 2932 sc->compaction_ready = true; 2933 continue; 2934 } 2935 2936 /* 2937 * Shrink each node in the zonelist once. If the 2938 * zonelist is ordered by zone (not the default) then a 2939 * node may be shrunk multiple times but in that case 2940 * the user prefers lower zones being preserved. 2941 */ 2942 if (zone->zone_pgdat == last_pgdat) 2943 continue; 2944 2945 /* 2946 * This steals pages from memory cgroups over softlimit 2947 * and returns the number of reclaimed pages and 2948 * scanned pages. This works for global memory pressure 2949 * and balancing, not for a memcg's limit. 2950 */ 2951 nr_soft_scanned = 0; 2952 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2953 sc->order, sc->gfp_mask, 2954 &nr_soft_scanned); 2955 sc->nr_reclaimed += nr_soft_reclaimed; 2956 sc->nr_scanned += nr_soft_scanned; 2957 /* need some check for avoid more shrink_zone() */ 2958 } 2959 2960 /* See comment about same check for global reclaim above */ 2961 if (zone->zone_pgdat == last_pgdat) 2962 continue; 2963 last_pgdat = zone->zone_pgdat; 2964 shrink_node(zone->zone_pgdat, sc); 2965 } 2966 2967 /* 2968 * Restore to original mask to avoid the impact on the caller if we 2969 * promoted it to __GFP_HIGHMEM. 2970 */ 2971 sc->gfp_mask = orig_mask; 2972 } 2973 2974 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2975 { 2976 struct mem_cgroup *memcg; 2977 2978 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2979 do { 2980 unsigned long refaults; 2981 struct lruvec *lruvec; 2982 2983 if (memcg) 2984 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2985 else 2986 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2987 2988 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2989 lruvec->refaults = refaults; 2990 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2991 } 2992 2993 /* 2994 * This is the main entry point to direct page reclaim. 2995 * 2996 * If a full scan of the inactive list fails to free enough memory then we 2997 * are "out of memory" and something needs to be killed. 2998 * 2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3000 * high - the zone may be full of dirty or under-writeback pages, which this 3001 * caller can't do much about. We kick the writeback threads and take explicit 3002 * naps in the hope that some of these pages can be written. But if the 3003 * allocating task holds filesystem locks which prevent writeout this might not 3004 * work, and the allocation attempt will fail. 3005 * 3006 * returns: 0, if no pages reclaimed 3007 * else, the number of pages reclaimed 3008 */ 3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3010 struct scan_control *sc) 3011 { 3012 int initial_priority = sc->priority; 3013 pg_data_t *last_pgdat; 3014 struct zoneref *z; 3015 struct zone *zone; 3016 retry: 3017 delayacct_freepages_start(); 3018 3019 if (global_reclaim(sc)) 3020 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3021 3022 do { 3023 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3024 sc->priority); 3025 sc->nr_scanned = 0; 3026 shrink_zones(zonelist, sc); 3027 3028 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3029 break; 3030 3031 if (sc->compaction_ready) 3032 break; 3033 3034 /* 3035 * If we're getting trouble reclaiming, start doing 3036 * writepage even in laptop mode. 3037 */ 3038 if (sc->priority < DEF_PRIORITY - 2) 3039 sc->may_writepage = 1; 3040 } while (--sc->priority >= 0); 3041 3042 last_pgdat = NULL; 3043 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3044 sc->nodemask) { 3045 if (zone->zone_pgdat == last_pgdat) 3046 continue; 3047 last_pgdat = zone->zone_pgdat; 3048 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3049 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3050 } 3051 3052 delayacct_freepages_end(); 3053 3054 if (sc->nr_reclaimed) 3055 return sc->nr_reclaimed; 3056 3057 /* Aborted reclaim to try compaction? don't OOM, then */ 3058 if (sc->compaction_ready) 3059 return 1; 3060 3061 /* Untapped cgroup reserves? Don't OOM, retry. */ 3062 if (sc->memcg_low_skipped) { 3063 sc->priority = initial_priority; 3064 sc->memcg_low_reclaim = 1; 3065 sc->memcg_low_skipped = 0; 3066 goto retry; 3067 } 3068 3069 return 0; 3070 } 3071 3072 static bool allow_direct_reclaim(pg_data_t *pgdat) 3073 { 3074 struct zone *zone; 3075 unsigned long pfmemalloc_reserve = 0; 3076 unsigned long free_pages = 0; 3077 int i; 3078 bool wmark_ok; 3079 3080 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3081 return true; 3082 3083 for (i = 0; i <= ZONE_NORMAL; i++) { 3084 zone = &pgdat->node_zones[i]; 3085 if (!managed_zone(zone)) 3086 continue; 3087 3088 if (!zone_reclaimable_pages(zone)) 3089 continue; 3090 3091 pfmemalloc_reserve += min_wmark_pages(zone); 3092 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3093 } 3094 3095 /* If there are no reserves (unexpected config) then do not throttle */ 3096 if (!pfmemalloc_reserve) 3097 return true; 3098 3099 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3100 3101 /* kswapd must be awake if processes are being throttled */ 3102 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3103 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3104 (enum zone_type)ZONE_NORMAL); 3105 wake_up_interruptible(&pgdat->kswapd_wait); 3106 } 3107 3108 return wmark_ok; 3109 } 3110 3111 /* 3112 * Throttle direct reclaimers if backing storage is backed by the network 3113 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3114 * depleted. kswapd will continue to make progress and wake the processes 3115 * when the low watermark is reached. 3116 * 3117 * Returns true if a fatal signal was delivered during throttling. If this 3118 * happens, the page allocator should not consider triggering the OOM killer. 3119 */ 3120 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3121 nodemask_t *nodemask) 3122 { 3123 struct zoneref *z; 3124 struct zone *zone; 3125 pg_data_t *pgdat = NULL; 3126 3127 /* 3128 * Kernel threads should not be throttled as they may be indirectly 3129 * responsible for cleaning pages necessary for reclaim to make forward 3130 * progress. kjournald for example may enter direct reclaim while 3131 * committing a transaction where throttling it could forcing other 3132 * processes to block on log_wait_commit(). 3133 */ 3134 if (current->flags & PF_KTHREAD) 3135 goto out; 3136 3137 /* 3138 * If a fatal signal is pending, this process should not throttle. 3139 * It should return quickly so it can exit and free its memory 3140 */ 3141 if (fatal_signal_pending(current)) 3142 goto out; 3143 3144 /* 3145 * Check if the pfmemalloc reserves are ok by finding the first node 3146 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3147 * GFP_KERNEL will be required for allocating network buffers when 3148 * swapping over the network so ZONE_HIGHMEM is unusable. 3149 * 3150 * Throttling is based on the first usable node and throttled processes 3151 * wait on a queue until kswapd makes progress and wakes them. There 3152 * is an affinity then between processes waking up and where reclaim 3153 * progress has been made assuming the process wakes on the same node. 3154 * More importantly, processes running on remote nodes will not compete 3155 * for remote pfmemalloc reserves and processes on different nodes 3156 * should make reasonable progress. 3157 */ 3158 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3159 gfp_zone(gfp_mask), nodemask) { 3160 if (zone_idx(zone) > ZONE_NORMAL) 3161 continue; 3162 3163 /* Throttle based on the first usable node */ 3164 pgdat = zone->zone_pgdat; 3165 if (allow_direct_reclaim(pgdat)) 3166 goto out; 3167 break; 3168 } 3169 3170 /* If no zone was usable by the allocation flags then do not throttle */ 3171 if (!pgdat) 3172 goto out; 3173 3174 /* Account for the throttling */ 3175 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3176 3177 /* 3178 * If the caller cannot enter the filesystem, it's possible that it 3179 * is due to the caller holding an FS lock or performing a journal 3180 * transaction in the case of a filesystem like ext[3|4]. In this case, 3181 * it is not safe to block on pfmemalloc_wait as kswapd could be 3182 * blocked waiting on the same lock. Instead, throttle for up to a 3183 * second before continuing. 3184 */ 3185 if (!(gfp_mask & __GFP_FS)) { 3186 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3187 allow_direct_reclaim(pgdat), HZ); 3188 3189 goto check_pending; 3190 } 3191 3192 /* Throttle until kswapd wakes the process */ 3193 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3194 allow_direct_reclaim(pgdat)); 3195 3196 check_pending: 3197 if (fatal_signal_pending(current)) 3198 return true; 3199 3200 out: 3201 return false; 3202 } 3203 3204 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3205 gfp_t gfp_mask, nodemask_t *nodemask) 3206 { 3207 unsigned long nr_reclaimed; 3208 struct scan_control sc = { 3209 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3210 .gfp_mask = current_gfp_context(gfp_mask), 3211 .reclaim_idx = gfp_zone(gfp_mask), 3212 .order = order, 3213 .nodemask = nodemask, 3214 .priority = DEF_PRIORITY, 3215 .may_writepage = !laptop_mode, 3216 .may_unmap = 1, 3217 .may_swap = 1, 3218 }; 3219 3220 /* 3221 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3222 * Confirm they are large enough for max values. 3223 */ 3224 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3225 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3226 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3227 3228 /* 3229 * Do not enter reclaim if fatal signal was delivered while throttled. 3230 * 1 is returned so that the page allocator does not OOM kill at this 3231 * point. 3232 */ 3233 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3234 return 1; 3235 3236 trace_mm_vmscan_direct_reclaim_begin(order, 3237 sc.may_writepage, 3238 sc.gfp_mask, 3239 sc.reclaim_idx); 3240 3241 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3242 3243 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3244 3245 return nr_reclaimed; 3246 } 3247 3248 #ifdef CONFIG_MEMCG 3249 3250 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3251 gfp_t gfp_mask, bool noswap, 3252 pg_data_t *pgdat, 3253 unsigned long *nr_scanned) 3254 { 3255 struct scan_control sc = { 3256 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3257 .target_mem_cgroup = memcg, 3258 .may_writepage = !laptop_mode, 3259 .may_unmap = 1, 3260 .reclaim_idx = MAX_NR_ZONES - 1, 3261 .may_swap = !noswap, 3262 }; 3263 unsigned long lru_pages; 3264 3265 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3266 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3267 3268 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3269 sc.may_writepage, 3270 sc.gfp_mask, 3271 sc.reclaim_idx); 3272 3273 /* 3274 * NOTE: Although we can get the priority field, using it 3275 * here is not a good idea, since it limits the pages we can scan. 3276 * if we don't reclaim here, the shrink_node from balance_pgdat 3277 * will pick up pages from other mem cgroup's as well. We hack 3278 * the priority and make it zero. 3279 */ 3280 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3281 3282 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3283 3284 *nr_scanned = sc.nr_scanned; 3285 return sc.nr_reclaimed; 3286 } 3287 3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3289 unsigned long nr_pages, 3290 gfp_t gfp_mask, 3291 bool may_swap) 3292 { 3293 struct zonelist *zonelist; 3294 unsigned long nr_reclaimed; 3295 int nid; 3296 unsigned int noreclaim_flag; 3297 struct scan_control sc = { 3298 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3299 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3300 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3301 .reclaim_idx = MAX_NR_ZONES - 1, 3302 .target_mem_cgroup = memcg, 3303 .priority = DEF_PRIORITY, 3304 .may_writepage = !laptop_mode, 3305 .may_unmap = 1, 3306 .may_swap = may_swap, 3307 }; 3308 3309 /* 3310 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3311 * take care of from where we get pages. So the node where we start the 3312 * scan does not need to be the current node. 3313 */ 3314 nid = mem_cgroup_select_victim_node(memcg); 3315 3316 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3317 3318 trace_mm_vmscan_memcg_reclaim_begin(0, 3319 sc.may_writepage, 3320 sc.gfp_mask, 3321 sc.reclaim_idx); 3322 3323 noreclaim_flag = memalloc_noreclaim_save(); 3324 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3325 memalloc_noreclaim_restore(noreclaim_flag); 3326 3327 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3328 3329 return nr_reclaimed; 3330 } 3331 #endif 3332 3333 static void age_active_anon(struct pglist_data *pgdat, 3334 struct scan_control *sc) 3335 { 3336 struct mem_cgroup *memcg; 3337 3338 if (!total_swap_pages) 3339 return; 3340 3341 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3342 do { 3343 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3344 3345 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3346 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3347 sc, LRU_ACTIVE_ANON); 3348 3349 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3350 } while (memcg); 3351 } 3352 3353 /* 3354 * Returns true if there is an eligible zone balanced for the request order 3355 * and classzone_idx 3356 */ 3357 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3358 { 3359 int i; 3360 unsigned long mark = -1; 3361 struct zone *zone; 3362 3363 for (i = 0; i <= classzone_idx; i++) { 3364 zone = pgdat->node_zones + i; 3365 3366 if (!managed_zone(zone)) 3367 continue; 3368 3369 mark = high_wmark_pages(zone); 3370 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3371 return true; 3372 } 3373 3374 /* 3375 * If a node has no populated zone within classzone_idx, it does not 3376 * need balancing by definition. This can happen if a zone-restricted 3377 * allocation tries to wake a remote kswapd. 3378 */ 3379 if (mark == -1) 3380 return true; 3381 3382 return false; 3383 } 3384 3385 /* Clear pgdat state for congested, dirty or under writeback. */ 3386 static void clear_pgdat_congested(pg_data_t *pgdat) 3387 { 3388 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3389 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3390 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3391 } 3392 3393 /* 3394 * Prepare kswapd for sleeping. This verifies that there are no processes 3395 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3396 * 3397 * Returns true if kswapd is ready to sleep 3398 */ 3399 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3400 { 3401 /* 3402 * The throttled processes are normally woken up in balance_pgdat() as 3403 * soon as allow_direct_reclaim() is true. But there is a potential 3404 * race between when kswapd checks the watermarks and a process gets 3405 * throttled. There is also a potential race if processes get 3406 * throttled, kswapd wakes, a large process exits thereby balancing the 3407 * zones, which causes kswapd to exit balance_pgdat() before reaching 3408 * the wake up checks. If kswapd is going to sleep, no process should 3409 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3410 * the wake up is premature, processes will wake kswapd and get 3411 * throttled again. The difference from wake ups in balance_pgdat() is 3412 * that here we are under prepare_to_wait(). 3413 */ 3414 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3415 wake_up_all(&pgdat->pfmemalloc_wait); 3416 3417 /* Hopeless node, leave it to direct reclaim */ 3418 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3419 return true; 3420 3421 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3422 clear_pgdat_congested(pgdat); 3423 return true; 3424 } 3425 3426 return false; 3427 } 3428 3429 /* 3430 * kswapd shrinks a node of pages that are at or below the highest usable 3431 * zone that is currently unbalanced. 3432 * 3433 * Returns true if kswapd scanned at least the requested number of pages to 3434 * reclaim or if the lack of progress was due to pages under writeback. 3435 * This is used to determine if the scanning priority needs to be raised. 3436 */ 3437 static bool kswapd_shrink_node(pg_data_t *pgdat, 3438 struct scan_control *sc) 3439 { 3440 struct zone *zone; 3441 int z; 3442 3443 /* Reclaim a number of pages proportional to the number of zones */ 3444 sc->nr_to_reclaim = 0; 3445 for (z = 0; z <= sc->reclaim_idx; z++) { 3446 zone = pgdat->node_zones + z; 3447 if (!managed_zone(zone)) 3448 continue; 3449 3450 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3451 } 3452 3453 /* 3454 * Historically care was taken to put equal pressure on all zones but 3455 * now pressure is applied based on node LRU order. 3456 */ 3457 shrink_node(pgdat, sc); 3458 3459 /* 3460 * Fragmentation may mean that the system cannot be rebalanced for 3461 * high-order allocations. If twice the allocation size has been 3462 * reclaimed then recheck watermarks only at order-0 to prevent 3463 * excessive reclaim. Assume that a process requested a high-order 3464 * can direct reclaim/compact. 3465 */ 3466 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3467 sc->order = 0; 3468 3469 return sc->nr_scanned >= sc->nr_to_reclaim; 3470 } 3471 3472 /* 3473 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3474 * that are eligible for use by the caller until at least one zone is 3475 * balanced. 3476 * 3477 * Returns the order kswapd finished reclaiming at. 3478 * 3479 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3480 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3481 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3482 * or lower is eligible for reclaim until at least one usable zone is 3483 * balanced. 3484 */ 3485 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3486 { 3487 int i; 3488 unsigned long nr_soft_reclaimed; 3489 unsigned long nr_soft_scanned; 3490 struct zone *zone; 3491 struct scan_control sc = { 3492 .gfp_mask = GFP_KERNEL, 3493 .order = order, 3494 .priority = DEF_PRIORITY, 3495 .may_writepage = !laptop_mode, 3496 .may_unmap = 1, 3497 .may_swap = 1, 3498 }; 3499 3500 __fs_reclaim_acquire(); 3501 3502 count_vm_event(PAGEOUTRUN); 3503 3504 do { 3505 unsigned long nr_reclaimed = sc.nr_reclaimed; 3506 bool raise_priority = true; 3507 bool ret; 3508 3509 sc.reclaim_idx = classzone_idx; 3510 3511 /* 3512 * If the number of buffer_heads exceeds the maximum allowed 3513 * then consider reclaiming from all zones. This has a dual 3514 * purpose -- on 64-bit systems it is expected that 3515 * buffer_heads are stripped during active rotation. On 32-bit 3516 * systems, highmem pages can pin lowmem memory and shrinking 3517 * buffers can relieve lowmem pressure. Reclaim may still not 3518 * go ahead if all eligible zones for the original allocation 3519 * request are balanced to avoid excessive reclaim from kswapd. 3520 */ 3521 if (buffer_heads_over_limit) { 3522 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3523 zone = pgdat->node_zones + i; 3524 if (!managed_zone(zone)) 3525 continue; 3526 3527 sc.reclaim_idx = i; 3528 break; 3529 } 3530 } 3531 3532 /* 3533 * Only reclaim if there are no eligible zones. Note that 3534 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3535 * have adjusted it. 3536 */ 3537 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3538 goto out; 3539 3540 /* 3541 * Do some background aging of the anon list, to give 3542 * pages a chance to be referenced before reclaiming. All 3543 * pages are rotated regardless of classzone as this is 3544 * about consistent aging. 3545 */ 3546 age_active_anon(pgdat, &sc); 3547 3548 /* 3549 * If we're getting trouble reclaiming, start doing writepage 3550 * even in laptop mode. 3551 */ 3552 if (sc.priority < DEF_PRIORITY - 2) 3553 sc.may_writepage = 1; 3554 3555 /* Call soft limit reclaim before calling shrink_node. */ 3556 sc.nr_scanned = 0; 3557 nr_soft_scanned = 0; 3558 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3559 sc.gfp_mask, &nr_soft_scanned); 3560 sc.nr_reclaimed += nr_soft_reclaimed; 3561 3562 /* 3563 * There should be no need to raise the scanning priority if 3564 * enough pages are already being scanned that that high 3565 * watermark would be met at 100% efficiency. 3566 */ 3567 if (kswapd_shrink_node(pgdat, &sc)) 3568 raise_priority = false; 3569 3570 /* 3571 * If the low watermark is met there is no need for processes 3572 * to be throttled on pfmemalloc_wait as they should not be 3573 * able to safely make forward progress. Wake them 3574 */ 3575 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3576 allow_direct_reclaim(pgdat)) 3577 wake_up_all(&pgdat->pfmemalloc_wait); 3578 3579 /* Check if kswapd should be suspending */ 3580 __fs_reclaim_release(); 3581 ret = try_to_freeze(); 3582 __fs_reclaim_acquire(); 3583 if (ret || kthread_should_stop()) 3584 break; 3585 3586 /* 3587 * Raise priority if scanning rate is too low or there was no 3588 * progress in reclaiming pages 3589 */ 3590 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3591 if (raise_priority || !nr_reclaimed) 3592 sc.priority--; 3593 } while (sc.priority >= 1); 3594 3595 if (!sc.nr_reclaimed) 3596 pgdat->kswapd_failures++; 3597 3598 out: 3599 snapshot_refaults(NULL, pgdat); 3600 __fs_reclaim_release(); 3601 /* 3602 * Return the order kswapd stopped reclaiming at as 3603 * prepare_kswapd_sleep() takes it into account. If another caller 3604 * entered the allocator slow path while kswapd was awake, order will 3605 * remain at the higher level. 3606 */ 3607 return sc.order; 3608 } 3609 3610 /* 3611 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3612 * allocation request woke kswapd for. When kswapd has not woken recently, 3613 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3614 * given classzone and returns it or the highest classzone index kswapd 3615 * was recently woke for. 3616 */ 3617 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3618 enum zone_type classzone_idx) 3619 { 3620 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3621 return classzone_idx; 3622 3623 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3624 } 3625 3626 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3627 unsigned int classzone_idx) 3628 { 3629 long remaining = 0; 3630 DEFINE_WAIT(wait); 3631 3632 if (freezing(current) || kthread_should_stop()) 3633 return; 3634 3635 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3636 3637 /* 3638 * Try to sleep for a short interval. Note that kcompactd will only be 3639 * woken if it is possible to sleep for a short interval. This is 3640 * deliberate on the assumption that if reclaim cannot keep an 3641 * eligible zone balanced that it's also unlikely that compaction will 3642 * succeed. 3643 */ 3644 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3645 /* 3646 * Compaction records what page blocks it recently failed to 3647 * isolate pages from and skips them in the future scanning. 3648 * When kswapd is going to sleep, it is reasonable to assume 3649 * that pages and compaction may succeed so reset the cache. 3650 */ 3651 reset_isolation_suitable(pgdat); 3652 3653 /* 3654 * We have freed the memory, now we should compact it to make 3655 * allocation of the requested order possible. 3656 */ 3657 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3658 3659 remaining = schedule_timeout(HZ/10); 3660 3661 /* 3662 * If woken prematurely then reset kswapd_classzone_idx and 3663 * order. The values will either be from a wakeup request or 3664 * the previous request that slept prematurely. 3665 */ 3666 if (remaining) { 3667 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3668 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3669 } 3670 3671 finish_wait(&pgdat->kswapd_wait, &wait); 3672 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3673 } 3674 3675 /* 3676 * After a short sleep, check if it was a premature sleep. If not, then 3677 * go fully to sleep until explicitly woken up. 3678 */ 3679 if (!remaining && 3680 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3681 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3682 3683 /* 3684 * vmstat counters are not perfectly accurate and the estimated 3685 * value for counters such as NR_FREE_PAGES can deviate from the 3686 * true value by nr_online_cpus * threshold. To avoid the zone 3687 * watermarks being breached while under pressure, we reduce the 3688 * per-cpu vmstat threshold while kswapd is awake and restore 3689 * them before going back to sleep. 3690 */ 3691 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3692 3693 if (!kthread_should_stop()) 3694 schedule(); 3695 3696 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3697 } else { 3698 if (remaining) 3699 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3700 else 3701 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3702 } 3703 finish_wait(&pgdat->kswapd_wait, &wait); 3704 } 3705 3706 /* 3707 * The background pageout daemon, started as a kernel thread 3708 * from the init process. 3709 * 3710 * This basically trickles out pages so that we have _some_ 3711 * free memory available even if there is no other activity 3712 * that frees anything up. This is needed for things like routing 3713 * etc, where we otherwise might have all activity going on in 3714 * asynchronous contexts that cannot page things out. 3715 * 3716 * If there are applications that are active memory-allocators 3717 * (most normal use), this basically shouldn't matter. 3718 */ 3719 static int kswapd(void *p) 3720 { 3721 unsigned int alloc_order, reclaim_order; 3722 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3723 pg_data_t *pgdat = (pg_data_t*)p; 3724 struct task_struct *tsk = current; 3725 3726 struct reclaim_state reclaim_state = { 3727 .reclaimed_slab = 0, 3728 }; 3729 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3730 3731 if (!cpumask_empty(cpumask)) 3732 set_cpus_allowed_ptr(tsk, cpumask); 3733 current->reclaim_state = &reclaim_state; 3734 3735 /* 3736 * Tell the memory management that we're a "memory allocator", 3737 * and that if we need more memory we should get access to it 3738 * regardless (see "__alloc_pages()"). "kswapd" should 3739 * never get caught in the normal page freeing logic. 3740 * 3741 * (Kswapd normally doesn't need memory anyway, but sometimes 3742 * you need a small amount of memory in order to be able to 3743 * page out something else, and this flag essentially protects 3744 * us from recursively trying to free more memory as we're 3745 * trying to free the first piece of memory in the first place). 3746 */ 3747 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3748 set_freezable(); 3749 3750 pgdat->kswapd_order = 0; 3751 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3752 for ( ; ; ) { 3753 bool ret; 3754 3755 alloc_order = reclaim_order = pgdat->kswapd_order; 3756 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3757 3758 kswapd_try_sleep: 3759 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3760 classzone_idx); 3761 3762 /* Read the new order and classzone_idx */ 3763 alloc_order = reclaim_order = pgdat->kswapd_order; 3764 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3765 pgdat->kswapd_order = 0; 3766 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3767 3768 ret = try_to_freeze(); 3769 if (kthread_should_stop()) 3770 break; 3771 3772 /* 3773 * We can speed up thawing tasks if we don't call balance_pgdat 3774 * after returning from the refrigerator 3775 */ 3776 if (ret) 3777 continue; 3778 3779 /* 3780 * Reclaim begins at the requested order but if a high-order 3781 * reclaim fails then kswapd falls back to reclaiming for 3782 * order-0. If that happens, kswapd will consider sleeping 3783 * for the order it finished reclaiming at (reclaim_order) 3784 * but kcompactd is woken to compact for the original 3785 * request (alloc_order). 3786 */ 3787 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3788 alloc_order); 3789 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3790 if (reclaim_order < alloc_order) 3791 goto kswapd_try_sleep; 3792 } 3793 3794 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3795 current->reclaim_state = NULL; 3796 3797 return 0; 3798 } 3799 3800 /* 3801 * A zone is low on free memory or too fragmented for high-order memory. If 3802 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3803 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3804 * has failed or is not needed, still wake up kcompactd if only compaction is 3805 * needed. 3806 */ 3807 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3808 enum zone_type classzone_idx) 3809 { 3810 pg_data_t *pgdat; 3811 3812 if (!managed_zone(zone)) 3813 return; 3814 3815 if (!cpuset_zone_allowed(zone, gfp_flags)) 3816 return; 3817 pgdat = zone->zone_pgdat; 3818 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3819 classzone_idx); 3820 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3821 if (!waitqueue_active(&pgdat->kswapd_wait)) 3822 return; 3823 3824 /* Hopeless node, leave it to direct reclaim if possible */ 3825 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3826 pgdat_balanced(pgdat, order, classzone_idx)) { 3827 /* 3828 * There may be plenty of free memory available, but it's too 3829 * fragmented for high-order allocations. Wake up kcompactd 3830 * and rely on compaction_suitable() to determine if it's 3831 * needed. If it fails, it will defer subsequent attempts to 3832 * ratelimit its work. 3833 */ 3834 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3835 wakeup_kcompactd(pgdat, order, classzone_idx); 3836 return; 3837 } 3838 3839 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3840 gfp_flags); 3841 wake_up_interruptible(&pgdat->kswapd_wait); 3842 } 3843 3844 #ifdef CONFIG_HIBERNATION 3845 /* 3846 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3847 * freed pages. 3848 * 3849 * Rather than trying to age LRUs the aim is to preserve the overall 3850 * LRU order by reclaiming preferentially 3851 * inactive > active > active referenced > active mapped 3852 */ 3853 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3854 { 3855 struct reclaim_state reclaim_state; 3856 struct scan_control sc = { 3857 .nr_to_reclaim = nr_to_reclaim, 3858 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3859 .reclaim_idx = MAX_NR_ZONES - 1, 3860 .priority = DEF_PRIORITY, 3861 .may_writepage = 1, 3862 .may_unmap = 1, 3863 .may_swap = 1, 3864 .hibernation_mode = 1, 3865 }; 3866 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3867 struct task_struct *p = current; 3868 unsigned long nr_reclaimed; 3869 unsigned int noreclaim_flag; 3870 3871 fs_reclaim_acquire(sc.gfp_mask); 3872 noreclaim_flag = memalloc_noreclaim_save(); 3873 reclaim_state.reclaimed_slab = 0; 3874 p->reclaim_state = &reclaim_state; 3875 3876 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3877 3878 p->reclaim_state = NULL; 3879 memalloc_noreclaim_restore(noreclaim_flag); 3880 fs_reclaim_release(sc.gfp_mask); 3881 3882 return nr_reclaimed; 3883 } 3884 #endif /* CONFIG_HIBERNATION */ 3885 3886 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3887 not required for correctness. So if the last cpu in a node goes 3888 away, we get changed to run anywhere: as the first one comes back, 3889 restore their cpu bindings. */ 3890 static int kswapd_cpu_online(unsigned int cpu) 3891 { 3892 int nid; 3893 3894 for_each_node_state(nid, N_MEMORY) { 3895 pg_data_t *pgdat = NODE_DATA(nid); 3896 const struct cpumask *mask; 3897 3898 mask = cpumask_of_node(pgdat->node_id); 3899 3900 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3901 /* One of our CPUs online: restore mask */ 3902 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3903 } 3904 return 0; 3905 } 3906 3907 /* 3908 * This kswapd start function will be called by init and node-hot-add. 3909 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3910 */ 3911 int kswapd_run(int nid) 3912 { 3913 pg_data_t *pgdat = NODE_DATA(nid); 3914 int ret = 0; 3915 3916 if (pgdat->kswapd) 3917 return 0; 3918 3919 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3920 if (IS_ERR(pgdat->kswapd)) { 3921 /* failure at boot is fatal */ 3922 BUG_ON(system_state < SYSTEM_RUNNING); 3923 pr_err("Failed to start kswapd on node %d\n", nid); 3924 ret = PTR_ERR(pgdat->kswapd); 3925 pgdat->kswapd = NULL; 3926 } 3927 return ret; 3928 } 3929 3930 /* 3931 * Called by memory hotplug when all memory in a node is offlined. Caller must 3932 * hold mem_hotplug_begin/end(). 3933 */ 3934 void kswapd_stop(int nid) 3935 { 3936 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3937 3938 if (kswapd) { 3939 kthread_stop(kswapd); 3940 NODE_DATA(nid)->kswapd = NULL; 3941 } 3942 } 3943 3944 static int __init kswapd_init(void) 3945 { 3946 int nid, ret; 3947 3948 swap_setup(); 3949 for_each_node_state(nid, N_MEMORY) 3950 kswapd_run(nid); 3951 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3952 "mm/vmscan:online", kswapd_cpu_online, 3953 NULL); 3954 WARN_ON(ret < 0); 3955 return 0; 3956 } 3957 3958 module_init(kswapd_init) 3959 3960 #ifdef CONFIG_NUMA 3961 /* 3962 * Node reclaim mode 3963 * 3964 * If non-zero call node_reclaim when the number of free pages falls below 3965 * the watermarks. 3966 */ 3967 int node_reclaim_mode __read_mostly; 3968 3969 #define RECLAIM_OFF 0 3970 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3971 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3972 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3973 3974 /* 3975 * Priority for NODE_RECLAIM. This determines the fraction of pages 3976 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3977 * a zone. 3978 */ 3979 #define NODE_RECLAIM_PRIORITY 4 3980 3981 /* 3982 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3983 * occur. 3984 */ 3985 int sysctl_min_unmapped_ratio = 1; 3986 3987 /* 3988 * If the number of slab pages in a zone grows beyond this percentage then 3989 * slab reclaim needs to occur. 3990 */ 3991 int sysctl_min_slab_ratio = 5; 3992 3993 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3994 { 3995 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3996 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3997 node_page_state(pgdat, NR_ACTIVE_FILE); 3998 3999 /* 4000 * It's possible for there to be more file mapped pages than 4001 * accounted for by the pages on the file LRU lists because 4002 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4003 */ 4004 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4005 } 4006 4007 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4008 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4009 { 4010 unsigned long nr_pagecache_reclaimable; 4011 unsigned long delta = 0; 4012 4013 /* 4014 * If RECLAIM_UNMAP is set, then all file pages are considered 4015 * potentially reclaimable. Otherwise, we have to worry about 4016 * pages like swapcache and node_unmapped_file_pages() provides 4017 * a better estimate 4018 */ 4019 if (node_reclaim_mode & RECLAIM_UNMAP) 4020 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4021 else 4022 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4023 4024 /* If we can't clean pages, remove dirty pages from consideration */ 4025 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4026 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4027 4028 /* Watch for any possible underflows due to delta */ 4029 if (unlikely(delta > nr_pagecache_reclaimable)) 4030 delta = nr_pagecache_reclaimable; 4031 4032 return nr_pagecache_reclaimable - delta; 4033 } 4034 4035 /* 4036 * Try to free up some pages from this node through reclaim. 4037 */ 4038 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4039 { 4040 /* Minimum pages needed in order to stay on node */ 4041 const unsigned long nr_pages = 1 << order; 4042 struct task_struct *p = current; 4043 struct reclaim_state reclaim_state; 4044 unsigned int noreclaim_flag; 4045 struct scan_control sc = { 4046 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4047 .gfp_mask = current_gfp_context(gfp_mask), 4048 .order = order, 4049 .priority = NODE_RECLAIM_PRIORITY, 4050 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4051 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4052 .may_swap = 1, 4053 .reclaim_idx = gfp_zone(gfp_mask), 4054 }; 4055 4056 cond_resched(); 4057 fs_reclaim_acquire(sc.gfp_mask); 4058 /* 4059 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4060 * and we also need to be able to write out pages for RECLAIM_WRITE 4061 * and RECLAIM_UNMAP. 4062 */ 4063 noreclaim_flag = memalloc_noreclaim_save(); 4064 p->flags |= PF_SWAPWRITE; 4065 reclaim_state.reclaimed_slab = 0; 4066 p->reclaim_state = &reclaim_state; 4067 4068 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4069 /* 4070 * Free memory by calling shrink node with increasing 4071 * priorities until we have enough memory freed. 4072 */ 4073 do { 4074 shrink_node(pgdat, &sc); 4075 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4076 } 4077 4078 p->reclaim_state = NULL; 4079 current->flags &= ~PF_SWAPWRITE; 4080 memalloc_noreclaim_restore(noreclaim_flag); 4081 fs_reclaim_release(sc.gfp_mask); 4082 return sc.nr_reclaimed >= nr_pages; 4083 } 4084 4085 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4086 { 4087 int ret; 4088 4089 /* 4090 * Node reclaim reclaims unmapped file backed pages and 4091 * slab pages if we are over the defined limits. 4092 * 4093 * A small portion of unmapped file backed pages is needed for 4094 * file I/O otherwise pages read by file I/O will be immediately 4095 * thrown out if the node is overallocated. So we do not reclaim 4096 * if less than a specified percentage of the node is used by 4097 * unmapped file backed pages. 4098 */ 4099 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4100 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4101 return NODE_RECLAIM_FULL; 4102 4103 /* 4104 * Do not scan if the allocation should not be delayed. 4105 */ 4106 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4107 return NODE_RECLAIM_NOSCAN; 4108 4109 /* 4110 * Only run node reclaim on the local node or on nodes that do not 4111 * have associated processors. This will favor the local processor 4112 * over remote processors and spread off node memory allocations 4113 * as wide as possible. 4114 */ 4115 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4116 return NODE_RECLAIM_NOSCAN; 4117 4118 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4119 return NODE_RECLAIM_NOSCAN; 4120 4121 ret = __node_reclaim(pgdat, gfp_mask, order); 4122 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4123 4124 if (!ret) 4125 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4126 4127 return ret; 4128 } 4129 #endif 4130 4131 /* 4132 * page_evictable - test whether a page is evictable 4133 * @page: the page to test 4134 * 4135 * Test whether page is evictable--i.e., should be placed on active/inactive 4136 * lists vs unevictable list. 4137 * 4138 * Reasons page might not be evictable: 4139 * (1) page's mapping marked unevictable 4140 * (2) page is part of an mlocked VMA 4141 * 4142 */ 4143 int page_evictable(struct page *page) 4144 { 4145 int ret; 4146 4147 /* Prevent address_space of inode and swap cache from being freed */ 4148 rcu_read_lock(); 4149 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4150 rcu_read_unlock(); 4151 return ret; 4152 } 4153 4154 #ifdef CONFIG_SHMEM 4155 /** 4156 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 4157 * @pages: array of pages to check 4158 * @nr_pages: number of pages to check 4159 * 4160 * Checks pages for evictability and moves them to the appropriate lru list. 4161 * 4162 * This function is only used for SysV IPC SHM_UNLOCK. 4163 */ 4164 void check_move_unevictable_pages(struct page **pages, int nr_pages) 4165 { 4166 struct lruvec *lruvec; 4167 struct pglist_data *pgdat = NULL; 4168 int pgscanned = 0; 4169 int pgrescued = 0; 4170 int i; 4171 4172 for (i = 0; i < nr_pages; i++) { 4173 struct page *page = pages[i]; 4174 struct pglist_data *pagepgdat = page_pgdat(page); 4175 4176 pgscanned++; 4177 if (pagepgdat != pgdat) { 4178 if (pgdat) 4179 spin_unlock_irq(&pgdat->lru_lock); 4180 pgdat = pagepgdat; 4181 spin_lock_irq(&pgdat->lru_lock); 4182 } 4183 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4184 4185 if (!PageLRU(page) || !PageUnevictable(page)) 4186 continue; 4187 4188 if (page_evictable(page)) { 4189 enum lru_list lru = page_lru_base_type(page); 4190 4191 VM_BUG_ON_PAGE(PageActive(page), page); 4192 ClearPageUnevictable(page); 4193 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4194 add_page_to_lru_list(page, lruvec, lru); 4195 pgrescued++; 4196 } 4197 } 4198 4199 if (pgdat) { 4200 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4201 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4202 spin_unlock_irq(&pgdat->lru_lock); 4203 } 4204 } 4205 #endif /* CONFIG_SHMEM */ 4206