xref: /openbmc/linux/mm/vmscan.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45 
46 #include <linux/swapops.h>
47 
48 #include "internal.h"
49 
50 struct scan_control {
51 	/* Incremented by the number of inactive pages that were scanned */
52 	unsigned long nr_scanned;
53 
54 	/* This context's GFP mask */
55 	gfp_t gfp_mask;
56 
57 	int may_writepage;
58 
59 	/* Can pages be swapped as part of reclaim? */
60 	int may_swap;
61 
62 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 	 * In this context, it doesn't matter that we scan the
65 	 * whole list at once. */
66 	int swap_cluster_max;
67 
68 	int swappiness;
69 
70 	int all_unreclaimable;
71 
72 	int order;
73 
74 	/* Which cgroup do we reclaim from */
75 	struct mem_cgroup *mem_cgroup;
76 
77 	/* Pluggable isolate pages callback */
78 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 			unsigned long *scanned, int order, int mode,
80 			struct zone *z, struct mem_cgroup *mem_cont,
81 			int active);
82 };
83 
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85 
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field)			\
88 	do {								\
89 		if ((_page)->lru.prev != _base) {			\
90 			struct page *prev;				\
91 									\
92 			prev = lru_to_page(&(_page->lru));		\
93 			prefetch(&prev->_field);			\
94 		}							\
95 	} while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99 
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetchw(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 /*
115  * From 0 .. 100.  Higher means more swappy.
116  */
117 int vm_swappiness = 60;
118 long vm_total_pages;	/* The total number of pages which the VM controls */
119 
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122 
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc)	(1)
127 #endif
128 
129 /*
130  * Add a shrinker callback to be called from the vm
131  */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134 	shrinker->nr = 0;
135 	down_write(&shrinker_rwsem);
136 	list_add_tail(&shrinker->list, &shrinker_list);
137 	up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140 
141 /*
142  * Remove one
143  */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146 	down_write(&shrinker_rwsem);
147 	list_del(&shrinker->list);
148 	up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151 
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encountered mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 			unsigned long lru_pages)
174 {
175 	struct shrinker *shrinker;
176 	unsigned long ret = 0;
177 
178 	if (scanned == 0)
179 		scanned = SWAP_CLUSTER_MAX;
180 
181 	if (!down_read_trylock(&shrinker_rwsem))
182 		return 1;	/* Assume we'll be able to shrink next time */
183 
184 	list_for_each_entry(shrinker, &shrinker_list, list) {
185 		unsigned long long delta;
186 		unsigned long total_scan;
187 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188 
189 		delta = (4 * scanned) / shrinker->seeks;
190 		delta *= max_pass;
191 		do_div(delta, lru_pages + 1);
192 		shrinker->nr += delta;
193 		if (shrinker->nr < 0) {
194 			printk(KERN_ERR "%s: nr=%ld\n",
195 					__func__, shrinker->nr);
196 			shrinker->nr = max_pass;
197 		}
198 
199 		/*
200 		 * Avoid risking looping forever due to too large nr value:
201 		 * never try to free more than twice the estimate number of
202 		 * freeable entries.
203 		 */
204 		if (shrinker->nr > max_pass * 2)
205 			shrinker->nr = max_pass * 2;
206 
207 		total_scan = shrinker->nr;
208 		shrinker->nr = 0;
209 
210 		while (total_scan >= SHRINK_BATCH) {
211 			long this_scan = SHRINK_BATCH;
212 			int shrink_ret;
213 			int nr_before;
214 
215 			nr_before = (*shrinker->shrink)(0, gfp_mask);
216 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 			if (shrink_ret == -1)
218 				break;
219 			if (shrink_ret < nr_before)
220 				ret += nr_before - shrink_ret;
221 			count_vm_events(SLABS_SCANNED, this_scan);
222 			total_scan -= this_scan;
223 
224 			cond_resched();
225 		}
226 
227 		shrinker->nr += total_scan;
228 	}
229 	up_read(&shrinker_rwsem);
230 	return ret;
231 }
232 
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236 	struct address_space *mapping;
237 
238 	/* Page is in somebody's page tables. */
239 	if (page_mapped(page))
240 		return 1;
241 
242 	/* Be more reluctant to reclaim swapcache than pagecache */
243 	if (PageSwapCache(page))
244 		return 1;
245 
246 	mapping = page_mapping(page);
247 	if (!mapping)
248 		return 0;
249 
250 	/* File is mmap'd by somebody? */
251 	return mapping_mapped(mapping);
252 }
253 
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256 	return page_count(page) - !!PagePrivate(page) == 2;
257 }
258 
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261 	if (current->flags & PF_SWAPWRITE)
262 		return 1;
263 	if (!bdi_write_congested(bdi))
264 		return 1;
265 	if (bdi == current->backing_dev_info)
266 		return 1;
267 	return 0;
268 }
269 
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283 				struct page *page, int error)
284 {
285 	lock_page(page);
286 	if (page_mapping(page) == mapping)
287 		mapping_set_error(mapping, error);
288 	unlock_page(page);
289 }
290 
291 /* Request for sync pageout. */
292 enum pageout_io {
293 	PAGEOUT_IO_ASYNC,
294 	PAGEOUT_IO_SYNC,
295 };
296 
297 /* possible outcome of pageout() */
298 typedef enum {
299 	/* failed to write page out, page is locked */
300 	PAGE_KEEP,
301 	/* move page to the active list, page is locked */
302 	PAGE_ACTIVATE,
303 	/* page has been sent to the disk successfully, page is unlocked */
304 	PAGE_SUCCESS,
305 	/* page is clean and locked */
306 	PAGE_CLEAN,
307 } pageout_t;
308 
309 /*
310  * pageout is called by shrink_page_list() for each dirty page.
311  * Calls ->writepage().
312  */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 						enum pageout_io sync_writeback)
315 {
316 	/*
317 	 * If the page is dirty, only perform writeback if that write
318 	 * will be non-blocking.  To prevent this allocation from being
319 	 * stalled by pagecache activity.  But note that there may be
320 	 * stalls if we need to run get_block().  We could test
321 	 * PagePrivate for that.
322 	 *
323 	 * If this process is currently in generic_file_write() against
324 	 * this page's queue, we can perform writeback even if that
325 	 * will block.
326 	 *
327 	 * If the page is swapcache, write it back even if that would
328 	 * block, for some throttling. This happens by accident, because
329 	 * swap_backing_dev_info is bust: it doesn't reflect the
330 	 * congestion state of the swapdevs.  Easy to fix, if needed.
331 	 * See swapfile.c:page_queue_congested().
332 	 */
333 	if (!is_page_cache_freeable(page))
334 		return PAGE_KEEP;
335 	if (!mapping) {
336 		/*
337 		 * Some data journaling orphaned pages can have
338 		 * page->mapping == NULL while being dirty with clean buffers.
339 		 */
340 		if (PagePrivate(page)) {
341 			if (try_to_free_buffers(page)) {
342 				ClearPageDirty(page);
343 				printk("%s: orphaned page\n", __func__);
344 				return PAGE_CLEAN;
345 			}
346 		}
347 		return PAGE_KEEP;
348 	}
349 	if (mapping->a_ops->writepage == NULL)
350 		return PAGE_ACTIVATE;
351 	if (!may_write_to_queue(mapping->backing_dev_info))
352 		return PAGE_KEEP;
353 
354 	if (clear_page_dirty_for_io(page)) {
355 		int res;
356 		struct writeback_control wbc = {
357 			.sync_mode = WB_SYNC_NONE,
358 			.nr_to_write = SWAP_CLUSTER_MAX,
359 			.range_start = 0,
360 			.range_end = LLONG_MAX,
361 			.nonblocking = 1,
362 			.for_reclaim = 1,
363 		};
364 
365 		SetPageReclaim(page);
366 		res = mapping->a_ops->writepage(page, &wbc);
367 		if (res < 0)
368 			handle_write_error(mapping, page, res);
369 		if (res == AOP_WRITEPAGE_ACTIVATE) {
370 			ClearPageReclaim(page);
371 			return PAGE_ACTIVATE;
372 		}
373 
374 		/*
375 		 * Wait on writeback if requested to. This happens when
376 		 * direct reclaiming a large contiguous area and the
377 		 * first attempt to free a range of pages fails.
378 		 */
379 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 			wait_on_page_writeback(page);
381 
382 		if (!PageWriteback(page)) {
383 			/* synchronous write or broken a_ops? */
384 			ClearPageReclaim(page);
385 		}
386 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 		return PAGE_SUCCESS;
388 	}
389 
390 	return PAGE_CLEAN;
391 }
392 
393 /*
394  * Same as remove_mapping, but if the page is removed from the mapping, it
395  * gets returned with a refcount of 0.
396  */
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
398 {
399 	BUG_ON(!PageLocked(page));
400 	BUG_ON(mapping != page_mapping(page));
401 
402 	spin_lock_irq(&mapping->tree_lock);
403 	/*
404 	 * The non racy check for a busy page.
405 	 *
406 	 * Must be careful with the order of the tests. When someone has
407 	 * a ref to the page, it may be possible that they dirty it then
408 	 * drop the reference. So if PageDirty is tested before page_count
409 	 * here, then the following race may occur:
410 	 *
411 	 * get_user_pages(&page);
412 	 * [user mapping goes away]
413 	 * write_to(page);
414 	 *				!PageDirty(page)    [good]
415 	 * SetPageDirty(page);
416 	 * put_page(page);
417 	 *				!page_count(page)   [good, discard it]
418 	 *
419 	 * [oops, our write_to data is lost]
420 	 *
421 	 * Reversing the order of the tests ensures such a situation cannot
422 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 	 * load is not satisfied before that of page->_count.
424 	 *
425 	 * Note that if SetPageDirty is always performed via set_page_dirty,
426 	 * and thus under tree_lock, then this ordering is not required.
427 	 */
428 	if (!page_freeze_refs(page, 2))
429 		goto cannot_free;
430 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 	if (unlikely(PageDirty(page))) {
432 		page_unfreeze_refs(page, 2);
433 		goto cannot_free;
434 	}
435 
436 	if (PageSwapCache(page)) {
437 		swp_entry_t swap = { .val = page_private(page) };
438 		__delete_from_swap_cache(page);
439 		spin_unlock_irq(&mapping->tree_lock);
440 		swap_free(swap);
441 	} else {
442 		__remove_from_page_cache(page);
443 		spin_unlock_irq(&mapping->tree_lock);
444 	}
445 
446 	return 1;
447 
448 cannot_free:
449 	spin_unlock_irq(&mapping->tree_lock);
450 	return 0;
451 }
452 
453 /*
454  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
455  * someone else has a ref on the page, abort and return 0.  If it was
456  * successfully detached, return 1.  Assumes the caller has a single ref on
457  * this page.
458  */
459 int remove_mapping(struct address_space *mapping, struct page *page)
460 {
461 	if (__remove_mapping(mapping, page)) {
462 		/*
463 		 * Unfreezing the refcount with 1 rather than 2 effectively
464 		 * drops the pagecache ref for us without requiring another
465 		 * atomic operation.
466 		 */
467 		page_unfreeze_refs(page, 1);
468 		return 1;
469 	}
470 	return 0;
471 }
472 
473 /*
474  * shrink_page_list() returns the number of reclaimed pages
475  */
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 					struct scan_control *sc,
478 					enum pageout_io sync_writeback)
479 {
480 	LIST_HEAD(ret_pages);
481 	struct pagevec freed_pvec;
482 	int pgactivate = 0;
483 	unsigned long nr_reclaimed = 0;
484 
485 	cond_resched();
486 
487 	pagevec_init(&freed_pvec, 1);
488 	while (!list_empty(page_list)) {
489 		struct address_space *mapping;
490 		struct page *page;
491 		int may_enter_fs;
492 		int referenced;
493 
494 		cond_resched();
495 
496 		page = lru_to_page(page_list);
497 		list_del(&page->lru);
498 
499 		if (TestSetPageLocked(page))
500 			goto keep;
501 
502 		VM_BUG_ON(PageActive(page));
503 
504 		sc->nr_scanned++;
505 
506 		if (!sc->may_swap && page_mapped(page))
507 			goto keep_locked;
508 
509 		/* Double the slab pressure for mapped and swapcache pages */
510 		if (page_mapped(page) || PageSwapCache(page))
511 			sc->nr_scanned++;
512 
513 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
515 
516 		if (PageWriteback(page)) {
517 			/*
518 			 * Synchronous reclaim is performed in two passes,
519 			 * first an asynchronous pass over the list to
520 			 * start parallel writeback, and a second synchronous
521 			 * pass to wait for the IO to complete.  Wait here
522 			 * for any page for which writeback has already
523 			 * started.
524 			 */
525 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 				wait_on_page_writeback(page);
527 			else
528 				goto keep_locked;
529 		}
530 
531 		referenced = page_referenced(page, 1, sc->mem_cgroup);
532 		/* In active use or really unfreeable?  Activate it. */
533 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 					referenced && page_mapping_inuse(page))
535 			goto activate_locked;
536 
537 #ifdef CONFIG_SWAP
538 		/*
539 		 * Anonymous process memory has backing store?
540 		 * Try to allocate it some swap space here.
541 		 */
542 		if (PageAnon(page) && !PageSwapCache(page))
543 			if (!add_to_swap(page, GFP_ATOMIC))
544 				goto activate_locked;
545 #endif /* CONFIG_SWAP */
546 
547 		mapping = page_mapping(page);
548 
549 		/*
550 		 * The page is mapped into the page tables of one or more
551 		 * processes. Try to unmap it here.
552 		 */
553 		if (page_mapped(page) && mapping) {
554 			switch (try_to_unmap(page, 0)) {
555 			case SWAP_FAIL:
556 				goto activate_locked;
557 			case SWAP_AGAIN:
558 				goto keep_locked;
559 			case SWAP_SUCCESS:
560 				; /* try to free the page below */
561 			}
562 		}
563 
564 		if (PageDirty(page)) {
565 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 				goto keep_locked;
567 			if (!may_enter_fs)
568 				goto keep_locked;
569 			if (!sc->may_writepage)
570 				goto keep_locked;
571 
572 			/* Page is dirty, try to write it out here */
573 			switch (pageout(page, mapping, sync_writeback)) {
574 			case PAGE_KEEP:
575 				goto keep_locked;
576 			case PAGE_ACTIVATE:
577 				goto activate_locked;
578 			case PAGE_SUCCESS:
579 				if (PageWriteback(page) || PageDirty(page))
580 					goto keep;
581 				/*
582 				 * A synchronous write - probably a ramdisk.  Go
583 				 * ahead and try to reclaim the page.
584 				 */
585 				if (TestSetPageLocked(page))
586 					goto keep;
587 				if (PageDirty(page) || PageWriteback(page))
588 					goto keep_locked;
589 				mapping = page_mapping(page);
590 			case PAGE_CLEAN:
591 				; /* try to free the page below */
592 			}
593 		}
594 
595 		/*
596 		 * If the page has buffers, try to free the buffer mappings
597 		 * associated with this page. If we succeed we try to free
598 		 * the page as well.
599 		 *
600 		 * We do this even if the page is PageDirty().
601 		 * try_to_release_page() does not perform I/O, but it is
602 		 * possible for a page to have PageDirty set, but it is actually
603 		 * clean (all its buffers are clean).  This happens if the
604 		 * buffers were written out directly, with submit_bh(). ext3
605 		 * will do this, as well as the blockdev mapping.
606 		 * try_to_release_page() will discover that cleanness and will
607 		 * drop the buffers and mark the page clean - it can be freed.
608 		 *
609 		 * Rarely, pages can have buffers and no ->mapping.  These are
610 		 * the pages which were not successfully invalidated in
611 		 * truncate_complete_page().  We try to drop those buffers here
612 		 * and if that worked, and the page is no longer mapped into
613 		 * process address space (page_count == 1) it can be freed.
614 		 * Otherwise, leave the page on the LRU so it is swappable.
615 		 */
616 		if (PagePrivate(page)) {
617 			if (!try_to_release_page(page, sc->gfp_mask))
618 				goto activate_locked;
619 			if (!mapping && page_count(page) == 1) {
620 				unlock_page(page);
621 				if (put_page_testzero(page))
622 					goto free_it;
623 				else {
624 					/*
625 					 * rare race with speculative reference.
626 					 * the speculative reference will free
627 					 * this page shortly, so we may
628 					 * increment nr_reclaimed here (and
629 					 * leave it off the LRU).
630 					 */
631 					nr_reclaimed++;
632 					continue;
633 				}
634 			}
635 		}
636 
637 		if (!mapping || !__remove_mapping(mapping, page))
638 			goto keep_locked;
639 
640 		unlock_page(page);
641 free_it:
642 		nr_reclaimed++;
643 		if (!pagevec_add(&freed_pvec, page)) {
644 			__pagevec_free(&freed_pvec);
645 			pagevec_reinit(&freed_pvec);
646 		}
647 		continue;
648 
649 activate_locked:
650 		SetPageActive(page);
651 		pgactivate++;
652 keep_locked:
653 		unlock_page(page);
654 keep:
655 		list_add(&page->lru, &ret_pages);
656 		VM_BUG_ON(PageLRU(page));
657 	}
658 	list_splice(&ret_pages, page_list);
659 	if (pagevec_count(&freed_pvec))
660 		__pagevec_free(&freed_pvec);
661 	count_vm_events(PGACTIVATE, pgactivate);
662 	return nr_reclaimed;
663 }
664 
665 /* LRU Isolation modes. */
666 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
667 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
668 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
669 
670 /*
671  * Attempt to remove the specified page from its LRU.  Only take this page
672  * if it is of the appropriate PageActive status.  Pages which are being
673  * freed elsewhere are also ignored.
674  *
675  * page:	page to consider
676  * mode:	one of the LRU isolation modes defined above
677  *
678  * returns 0 on success, -ve errno on failure.
679  */
680 int __isolate_lru_page(struct page *page, int mode)
681 {
682 	int ret = -EINVAL;
683 
684 	/* Only take pages on the LRU. */
685 	if (!PageLRU(page))
686 		return ret;
687 
688 	/*
689 	 * When checking the active state, we need to be sure we are
690 	 * dealing with comparible boolean values.  Take the logical not
691 	 * of each.
692 	 */
693 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
694 		return ret;
695 
696 	ret = -EBUSY;
697 	if (likely(get_page_unless_zero(page))) {
698 		/*
699 		 * Be careful not to clear PageLRU until after we're
700 		 * sure the page is not being freed elsewhere -- the
701 		 * page release code relies on it.
702 		 */
703 		ClearPageLRU(page);
704 		ret = 0;
705 	}
706 
707 	return ret;
708 }
709 
710 /*
711  * zone->lru_lock is heavily contended.  Some of the functions that
712  * shrink the lists perform better by taking out a batch of pages
713  * and working on them outside the LRU lock.
714  *
715  * For pagecache intensive workloads, this function is the hottest
716  * spot in the kernel (apart from copy_*_user functions).
717  *
718  * Appropriate locks must be held before calling this function.
719  *
720  * @nr_to_scan:	The number of pages to look through on the list.
721  * @src:	The LRU list to pull pages off.
722  * @dst:	The temp list to put pages on to.
723  * @scanned:	The number of pages that were scanned.
724  * @order:	The caller's attempted allocation order
725  * @mode:	One of the LRU isolation modes
726  *
727  * returns how many pages were moved onto *@dst.
728  */
729 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
730 		struct list_head *src, struct list_head *dst,
731 		unsigned long *scanned, int order, int mode)
732 {
733 	unsigned long nr_taken = 0;
734 	unsigned long scan;
735 
736 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
737 		struct page *page;
738 		unsigned long pfn;
739 		unsigned long end_pfn;
740 		unsigned long page_pfn;
741 		int zone_id;
742 
743 		page = lru_to_page(src);
744 		prefetchw_prev_lru_page(page, src, flags);
745 
746 		VM_BUG_ON(!PageLRU(page));
747 
748 		switch (__isolate_lru_page(page, mode)) {
749 		case 0:
750 			list_move(&page->lru, dst);
751 			nr_taken++;
752 			break;
753 
754 		case -EBUSY:
755 			/* else it is being freed elsewhere */
756 			list_move(&page->lru, src);
757 			continue;
758 
759 		default:
760 			BUG();
761 		}
762 
763 		if (!order)
764 			continue;
765 
766 		/*
767 		 * Attempt to take all pages in the order aligned region
768 		 * surrounding the tag page.  Only take those pages of
769 		 * the same active state as that tag page.  We may safely
770 		 * round the target page pfn down to the requested order
771 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
772 		 * where that page is in a different zone we will detect
773 		 * it from its zone id and abort this block scan.
774 		 */
775 		zone_id = page_zone_id(page);
776 		page_pfn = page_to_pfn(page);
777 		pfn = page_pfn & ~((1 << order) - 1);
778 		end_pfn = pfn + (1 << order);
779 		for (; pfn < end_pfn; pfn++) {
780 			struct page *cursor_page;
781 
782 			/* The target page is in the block, ignore it. */
783 			if (unlikely(pfn == page_pfn))
784 				continue;
785 
786 			/* Avoid holes within the zone. */
787 			if (unlikely(!pfn_valid_within(pfn)))
788 				break;
789 
790 			cursor_page = pfn_to_page(pfn);
791 			/* Check that we have not crossed a zone boundary. */
792 			if (unlikely(page_zone_id(cursor_page) != zone_id))
793 				continue;
794 			switch (__isolate_lru_page(cursor_page, mode)) {
795 			case 0:
796 				list_move(&cursor_page->lru, dst);
797 				nr_taken++;
798 				scan++;
799 				break;
800 
801 			case -EBUSY:
802 				/* else it is being freed elsewhere */
803 				list_move(&cursor_page->lru, src);
804 			default:
805 				break;
806 			}
807 		}
808 	}
809 
810 	*scanned = scan;
811 	return nr_taken;
812 }
813 
814 static unsigned long isolate_pages_global(unsigned long nr,
815 					struct list_head *dst,
816 					unsigned long *scanned, int order,
817 					int mode, struct zone *z,
818 					struct mem_cgroup *mem_cont,
819 					int active)
820 {
821 	if (active)
822 		return isolate_lru_pages(nr, &z->active_list, dst,
823 						scanned, order, mode);
824 	else
825 		return isolate_lru_pages(nr, &z->inactive_list, dst,
826 						scanned, order, mode);
827 }
828 
829 /*
830  * clear_active_flags() is a helper for shrink_active_list(), clearing
831  * any active bits from the pages in the list.
832  */
833 static unsigned long clear_active_flags(struct list_head *page_list)
834 {
835 	int nr_active = 0;
836 	struct page *page;
837 
838 	list_for_each_entry(page, page_list, lru)
839 		if (PageActive(page)) {
840 			ClearPageActive(page);
841 			nr_active++;
842 		}
843 
844 	return nr_active;
845 }
846 
847 /*
848  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
849  * of reclaimed pages
850  */
851 static unsigned long shrink_inactive_list(unsigned long max_scan,
852 				struct zone *zone, struct scan_control *sc)
853 {
854 	LIST_HEAD(page_list);
855 	struct pagevec pvec;
856 	unsigned long nr_scanned = 0;
857 	unsigned long nr_reclaimed = 0;
858 
859 	pagevec_init(&pvec, 1);
860 
861 	lru_add_drain();
862 	spin_lock_irq(&zone->lru_lock);
863 	do {
864 		struct page *page;
865 		unsigned long nr_taken;
866 		unsigned long nr_scan;
867 		unsigned long nr_freed;
868 		unsigned long nr_active;
869 
870 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
871 			     &page_list, &nr_scan, sc->order,
872 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
873 					     ISOLATE_BOTH : ISOLATE_INACTIVE,
874 				zone, sc->mem_cgroup, 0);
875 		nr_active = clear_active_flags(&page_list);
876 		__count_vm_events(PGDEACTIVATE, nr_active);
877 
878 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
879 		__mod_zone_page_state(zone, NR_INACTIVE,
880 						-(nr_taken - nr_active));
881 		if (scan_global_lru(sc))
882 			zone->pages_scanned += nr_scan;
883 		spin_unlock_irq(&zone->lru_lock);
884 
885 		nr_scanned += nr_scan;
886 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
887 
888 		/*
889 		 * If we are direct reclaiming for contiguous pages and we do
890 		 * not reclaim everything in the list, try again and wait
891 		 * for IO to complete. This will stall high-order allocations
892 		 * but that should be acceptable to the caller
893 		 */
894 		if (nr_freed < nr_taken && !current_is_kswapd() &&
895 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
896 			congestion_wait(WRITE, HZ/10);
897 
898 			/*
899 			 * The attempt at page out may have made some
900 			 * of the pages active, mark them inactive again.
901 			 */
902 			nr_active = clear_active_flags(&page_list);
903 			count_vm_events(PGDEACTIVATE, nr_active);
904 
905 			nr_freed += shrink_page_list(&page_list, sc,
906 							PAGEOUT_IO_SYNC);
907 		}
908 
909 		nr_reclaimed += nr_freed;
910 		local_irq_disable();
911 		if (current_is_kswapd()) {
912 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
913 			__count_vm_events(KSWAPD_STEAL, nr_freed);
914 		} else if (scan_global_lru(sc))
915 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
916 
917 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
918 
919 		if (nr_taken == 0)
920 			goto done;
921 
922 		spin_lock(&zone->lru_lock);
923 		/*
924 		 * Put back any unfreeable pages.
925 		 */
926 		while (!list_empty(&page_list)) {
927 			page = lru_to_page(&page_list);
928 			VM_BUG_ON(PageLRU(page));
929 			SetPageLRU(page);
930 			list_del(&page->lru);
931 			if (PageActive(page))
932 				add_page_to_active_list(zone, page);
933 			else
934 				add_page_to_inactive_list(zone, page);
935 			if (!pagevec_add(&pvec, page)) {
936 				spin_unlock_irq(&zone->lru_lock);
937 				__pagevec_release(&pvec);
938 				spin_lock_irq(&zone->lru_lock);
939 			}
940 		}
941   	} while (nr_scanned < max_scan);
942 	spin_unlock(&zone->lru_lock);
943 done:
944 	local_irq_enable();
945 	pagevec_release(&pvec);
946 	return nr_reclaimed;
947 }
948 
949 /*
950  * We are about to scan this zone at a certain priority level.  If that priority
951  * level is smaller (ie: more urgent) than the previous priority, then note
952  * that priority level within the zone.  This is done so that when the next
953  * process comes in to scan this zone, it will immediately start out at this
954  * priority level rather than having to build up its own scanning priority.
955  * Here, this priority affects only the reclaim-mapped threshold.
956  */
957 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
958 {
959 	if (priority < zone->prev_priority)
960 		zone->prev_priority = priority;
961 }
962 
963 static inline int zone_is_near_oom(struct zone *zone)
964 {
965 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
966 				+ zone_page_state(zone, NR_INACTIVE))*3;
967 }
968 
969 /*
970  * Determine we should try to reclaim mapped pages.
971  * This is called only when sc->mem_cgroup is NULL.
972  */
973 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
974 				int priority)
975 {
976 	long mapped_ratio;
977 	long distress;
978 	long swap_tendency;
979 	long imbalance;
980 	int reclaim_mapped = 0;
981 	int prev_priority;
982 
983 	if (scan_global_lru(sc) && zone_is_near_oom(zone))
984 		return 1;
985 	/*
986 	 * `distress' is a measure of how much trouble we're having
987 	 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
988 	 */
989 	if (scan_global_lru(sc))
990 		prev_priority = zone->prev_priority;
991 	else
992 		prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
993 
994 	distress = 100 >> min(prev_priority, priority);
995 
996 	/*
997 	 * The point of this algorithm is to decide when to start
998 	 * reclaiming mapped memory instead of just pagecache.  Work out
999 	 * how much memory
1000 	 * is mapped.
1001 	 */
1002 	if (scan_global_lru(sc))
1003 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
1004 				global_page_state(NR_ANON_PAGES)) * 100) /
1005 					vm_total_pages;
1006 	else
1007 		mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
1008 
1009 	/*
1010 	 * Now decide how much we really want to unmap some pages.  The
1011 	 * mapped ratio is downgraded - just because there's a lot of
1012 	 * mapped memory doesn't necessarily mean that page reclaim
1013 	 * isn't succeeding.
1014 	 *
1015 	 * The distress ratio is important - we don't want to start
1016 	 * going oom.
1017 	 *
1018 	 * A 100% value of vm_swappiness overrides this algorithm
1019 	 * altogether.
1020 	 */
1021 	swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
1022 
1023 	/*
1024 	 * If there's huge imbalance between active and inactive
1025 	 * (think active 100 times larger than inactive) we should
1026 	 * become more permissive, or the system will take too much
1027 	 * cpu before it start swapping during memory pressure.
1028 	 * Distress is about avoiding early-oom, this is about
1029 	 * making swappiness graceful despite setting it to low
1030 	 * values.
1031 	 *
1032 	 * Avoid div by zero with nr_inactive+1, and max resulting
1033 	 * value is vm_total_pages.
1034 	 */
1035 	if (scan_global_lru(sc)) {
1036 		imbalance  = zone_page_state(zone, NR_ACTIVE);
1037 		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1038 	} else
1039 		imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1040 
1041 	/*
1042 	 * Reduce the effect of imbalance if swappiness is low,
1043 	 * this means for a swappiness very low, the imbalance
1044 	 * must be much higher than 100 for this logic to make
1045 	 * the difference.
1046 	 *
1047 	 * Max temporary value is vm_total_pages*100.
1048 	 */
1049 	imbalance *= (vm_swappiness + 1);
1050 	imbalance /= 100;
1051 
1052 	/*
1053 	 * If not much of the ram is mapped, makes the imbalance
1054 	 * less relevant, it's high priority we refill the inactive
1055 	 * list with mapped pages only in presence of high ratio of
1056 	 * mapped pages.
1057 	 *
1058 	 * Max temporary value is vm_total_pages*100.
1059 	 */
1060 	imbalance *= mapped_ratio;
1061 	imbalance /= 100;
1062 
1063 	/* apply imbalance feedback to swap_tendency */
1064 	swap_tendency += imbalance;
1065 
1066 	/*
1067 	 * Now use this metric to decide whether to start moving mapped
1068 	 * memory onto the inactive list.
1069 	 */
1070 	if (swap_tendency >= 100)
1071 		reclaim_mapped = 1;
1072 
1073 	return reclaim_mapped;
1074 }
1075 
1076 /*
1077  * This moves pages from the active list to the inactive list.
1078  *
1079  * We move them the other way if the page is referenced by one or more
1080  * processes, from rmap.
1081  *
1082  * If the pages are mostly unmapped, the processing is fast and it is
1083  * appropriate to hold zone->lru_lock across the whole operation.  But if
1084  * the pages are mapped, the processing is slow (page_referenced()) so we
1085  * should drop zone->lru_lock around each page.  It's impossible to balance
1086  * this, so instead we remove the pages from the LRU while processing them.
1087  * It is safe to rely on PG_active against the non-LRU pages in here because
1088  * nobody will play with that bit on a non-LRU page.
1089  *
1090  * The downside is that we have to touch page->_count against each page.
1091  * But we had to alter page->flags anyway.
1092  */
1093 
1094 
1095 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1096 				struct scan_control *sc, int priority)
1097 {
1098 	unsigned long pgmoved;
1099 	int pgdeactivate = 0;
1100 	unsigned long pgscanned;
1101 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1102 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1103 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1104 	struct page *page;
1105 	struct pagevec pvec;
1106 	int reclaim_mapped = 0;
1107 
1108 	if (sc->may_swap)
1109 		reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1110 
1111 	lru_add_drain();
1112 	spin_lock_irq(&zone->lru_lock);
1113 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1114 					ISOLATE_ACTIVE, zone,
1115 					sc->mem_cgroup, 1);
1116 	/*
1117 	 * zone->pages_scanned is used for detect zone's oom
1118 	 * mem_cgroup remembers nr_scan by itself.
1119 	 */
1120 	if (scan_global_lru(sc))
1121 		zone->pages_scanned += pgscanned;
1122 
1123 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1124 	spin_unlock_irq(&zone->lru_lock);
1125 
1126 	while (!list_empty(&l_hold)) {
1127 		cond_resched();
1128 		page = lru_to_page(&l_hold);
1129 		list_del(&page->lru);
1130 		if (page_mapped(page)) {
1131 			if (!reclaim_mapped ||
1132 			    (total_swap_pages == 0 && PageAnon(page)) ||
1133 			    page_referenced(page, 0, sc->mem_cgroup)) {
1134 				list_add(&page->lru, &l_active);
1135 				continue;
1136 			}
1137 		}
1138 		list_add(&page->lru, &l_inactive);
1139 	}
1140 
1141 	pagevec_init(&pvec, 1);
1142 	pgmoved = 0;
1143 	spin_lock_irq(&zone->lru_lock);
1144 	while (!list_empty(&l_inactive)) {
1145 		page = lru_to_page(&l_inactive);
1146 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1147 		VM_BUG_ON(PageLRU(page));
1148 		SetPageLRU(page);
1149 		VM_BUG_ON(!PageActive(page));
1150 		ClearPageActive(page);
1151 
1152 		list_move(&page->lru, &zone->inactive_list);
1153 		mem_cgroup_move_lists(page, false);
1154 		pgmoved++;
1155 		if (!pagevec_add(&pvec, page)) {
1156 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1157 			spin_unlock_irq(&zone->lru_lock);
1158 			pgdeactivate += pgmoved;
1159 			pgmoved = 0;
1160 			if (buffer_heads_over_limit)
1161 				pagevec_strip(&pvec);
1162 			__pagevec_release(&pvec);
1163 			spin_lock_irq(&zone->lru_lock);
1164 		}
1165 	}
1166 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1167 	pgdeactivate += pgmoved;
1168 	if (buffer_heads_over_limit) {
1169 		spin_unlock_irq(&zone->lru_lock);
1170 		pagevec_strip(&pvec);
1171 		spin_lock_irq(&zone->lru_lock);
1172 	}
1173 
1174 	pgmoved = 0;
1175 	while (!list_empty(&l_active)) {
1176 		page = lru_to_page(&l_active);
1177 		prefetchw_prev_lru_page(page, &l_active, flags);
1178 		VM_BUG_ON(PageLRU(page));
1179 		SetPageLRU(page);
1180 		VM_BUG_ON(!PageActive(page));
1181 
1182 		list_move(&page->lru, &zone->active_list);
1183 		mem_cgroup_move_lists(page, true);
1184 		pgmoved++;
1185 		if (!pagevec_add(&pvec, page)) {
1186 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1187 			pgmoved = 0;
1188 			spin_unlock_irq(&zone->lru_lock);
1189 			__pagevec_release(&pvec);
1190 			spin_lock_irq(&zone->lru_lock);
1191 		}
1192 	}
1193 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1194 
1195 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1196 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1197 	spin_unlock_irq(&zone->lru_lock);
1198 
1199 	pagevec_release(&pvec);
1200 }
1201 
1202 /*
1203  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1204  */
1205 static unsigned long shrink_zone(int priority, struct zone *zone,
1206 				struct scan_control *sc)
1207 {
1208 	unsigned long nr_active;
1209 	unsigned long nr_inactive;
1210 	unsigned long nr_to_scan;
1211 	unsigned long nr_reclaimed = 0;
1212 
1213 	if (scan_global_lru(sc)) {
1214 		/*
1215 		 * Add one to nr_to_scan just to make sure that the kernel
1216 		 * will slowly sift through the active list.
1217 		 */
1218 		zone->nr_scan_active +=
1219 			(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1220 		nr_active = zone->nr_scan_active;
1221 		zone->nr_scan_inactive +=
1222 			(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1223 		nr_inactive = zone->nr_scan_inactive;
1224 		if (nr_inactive >= sc->swap_cluster_max)
1225 			zone->nr_scan_inactive = 0;
1226 		else
1227 			nr_inactive = 0;
1228 
1229 		if (nr_active >= sc->swap_cluster_max)
1230 			zone->nr_scan_active = 0;
1231 		else
1232 			nr_active = 0;
1233 	} else {
1234 		/*
1235 		 * This reclaim occurs not because zone memory shortage but
1236 		 * because memory controller hits its limit.
1237 		 * Then, don't modify zone reclaim related data.
1238 		 */
1239 		nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1240 					zone, priority);
1241 
1242 		nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1243 					zone, priority);
1244 	}
1245 
1246 
1247 	while (nr_active || nr_inactive) {
1248 		if (nr_active) {
1249 			nr_to_scan = min(nr_active,
1250 					(unsigned long)sc->swap_cluster_max);
1251 			nr_active -= nr_to_scan;
1252 			shrink_active_list(nr_to_scan, zone, sc, priority);
1253 		}
1254 
1255 		if (nr_inactive) {
1256 			nr_to_scan = min(nr_inactive,
1257 					(unsigned long)sc->swap_cluster_max);
1258 			nr_inactive -= nr_to_scan;
1259 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1260 								sc);
1261 		}
1262 	}
1263 
1264 	throttle_vm_writeout(sc->gfp_mask);
1265 	return nr_reclaimed;
1266 }
1267 
1268 /*
1269  * This is the direct reclaim path, for page-allocating processes.  We only
1270  * try to reclaim pages from zones which will satisfy the caller's allocation
1271  * request.
1272  *
1273  * We reclaim from a zone even if that zone is over pages_high.  Because:
1274  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1275  *    allocation or
1276  * b) The zones may be over pages_high but they must go *over* pages_high to
1277  *    satisfy the `incremental min' zone defense algorithm.
1278  *
1279  * Returns the number of reclaimed pages.
1280  *
1281  * If a zone is deemed to be full of pinned pages then just give it a light
1282  * scan then give up on it.
1283  */
1284 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1285 					struct scan_control *sc)
1286 {
1287 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1288 	unsigned long nr_reclaimed = 0;
1289 	struct zoneref *z;
1290 	struct zone *zone;
1291 
1292 	sc->all_unreclaimable = 1;
1293 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1294 		if (!populated_zone(zone))
1295 			continue;
1296 		/*
1297 		 * Take care memory controller reclaiming has small influence
1298 		 * to global LRU.
1299 		 */
1300 		if (scan_global_lru(sc)) {
1301 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1302 				continue;
1303 			note_zone_scanning_priority(zone, priority);
1304 
1305 			if (zone_is_all_unreclaimable(zone) &&
1306 						priority != DEF_PRIORITY)
1307 				continue;	/* Let kswapd poll it */
1308 			sc->all_unreclaimable = 0;
1309 		} else {
1310 			/*
1311 			 * Ignore cpuset limitation here. We just want to reduce
1312 			 * # of used pages by us regardless of memory shortage.
1313 			 */
1314 			sc->all_unreclaimable = 0;
1315 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1316 							priority);
1317 		}
1318 
1319 		nr_reclaimed += shrink_zone(priority, zone, sc);
1320 	}
1321 
1322 	return nr_reclaimed;
1323 }
1324 
1325 /*
1326  * This is the main entry point to direct page reclaim.
1327  *
1328  * If a full scan of the inactive list fails to free enough memory then we
1329  * are "out of memory" and something needs to be killed.
1330  *
1331  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1332  * high - the zone may be full of dirty or under-writeback pages, which this
1333  * caller can't do much about.  We kick pdflush and take explicit naps in the
1334  * hope that some of these pages can be written.  But if the allocating task
1335  * holds filesystem locks which prevent writeout this might not work, and the
1336  * allocation attempt will fail.
1337  *
1338  * returns:	0, if no pages reclaimed
1339  * 		else, the number of pages reclaimed
1340  */
1341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1342 					struct scan_control *sc)
1343 {
1344 	int priority;
1345 	unsigned long ret = 0;
1346 	unsigned long total_scanned = 0;
1347 	unsigned long nr_reclaimed = 0;
1348 	struct reclaim_state *reclaim_state = current->reclaim_state;
1349 	unsigned long lru_pages = 0;
1350 	struct zoneref *z;
1351 	struct zone *zone;
1352 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1353 
1354 	delayacct_freepages_start();
1355 
1356 	if (scan_global_lru(sc))
1357 		count_vm_event(ALLOCSTALL);
1358 	/*
1359 	 * mem_cgroup will not do shrink_slab.
1360 	 */
1361 	if (scan_global_lru(sc)) {
1362 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1363 
1364 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365 				continue;
1366 
1367 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1368 					+ zone_page_state(zone, NR_INACTIVE);
1369 		}
1370 	}
1371 
1372 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1373 		sc->nr_scanned = 0;
1374 		if (!priority)
1375 			disable_swap_token();
1376 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1377 		/*
1378 		 * Don't shrink slabs when reclaiming memory from
1379 		 * over limit cgroups
1380 		 */
1381 		if (scan_global_lru(sc)) {
1382 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1383 			if (reclaim_state) {
1384 				nr_reclaimed += reclaim_state->reclaimed_slab;
1385 				reclaim_state->reclaimed_slab = 0;
1386 			}
1387 		}
1388 		total_scanned += sc->nr_scanned;
1389 		if (nr_reclaimed >= sc->swap_cluster_max) {
1390 			ret = nr_reclaimed;
1391 			goto out;
1392 		}
1393 
1394 		/*
1395 		 * Try to write back as many pages as we just scanned.  This
1396 		 * tends to cause slow streaming writers to write data to the
1397 		 * disk smoothly, at the dirtying rate, which is nice.   But
1398 		 * that's undesirable in laptop mode, where we *want* lumpy
1399 		 * writeout.  So in laptop mode, write out the whole world.
1400 		 */
1401 		if (total_scanned > sc->swap_cluster_max +
1402 					sc->swap_cluster_max / 2) {
1403 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1404 			sc->may_writepage = 1;
1405 		}
1406 
1407 		/* Take a nap, wait for some writeback to complete */
1408 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1409 			congestion_wait(WRITE, HZ/10);
1410 	}
1411 	/* top priority shrink_caches still had more to do? don't OOM, then */
1412 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1413 		ret = nr_reclaimed;
1414 out:
1415 	/*
1416 	 * Now that we've scanned all the zones at this priority level, note
1417 	 * that level within the zone so that the next thread which performs
1418 	 * scanning of this zone will immediately start out at this priority
1419 	 * level.  This affects only the decision whether or not to bring
1420 	 * mapped pages onto the inactive list.
1421 	 */
1422 	if (priority < 0)
1423 		priority = 0;
1424 
1425 	if (scan_global_lru(sc)) {
1426 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1427 
1428 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1429 				continue;
1430 
1431 			zone->prev_priority = priority;
1432 		}
1433 	} else
1434 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1435 
1436 	delayacct_freepages_end();
1437 
1438 	return ret;
1439 }
1440 
1441 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1442 								gfp_t gfp_mask)
1443 {
1444 	struct scan_control sc = {
1445 		.gfp_mask = gfp_mask,
1446 		.may_writepage = !laptop_mode,
1447 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1448 		.may_swap = 1,
1449 		.swappiness = vm_swappiness,
1450 		.order = order,
1451 		.mem_cgroup = NULL,
1452 		.isolate_pages = isolate_pages_global,
1453 	};
1454 
1455 	return do_try_to_free_pages(zonelist, &sc);
1456 }
1457 
1458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1459 
1460 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1461 						gfp_t gfp_mask)
1462 {
1463 	struct scan_control sc = {
1464 		.may_writepage = !laptop_mode,
1465 		.may_swap = 1,
1466 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1467 		.swappiness = vm_swappiness,
1468 		.order = 0,
1469 		.mem_cgroup = mem_cont,
1470 		.isolate_pages = mem_cgroup_isolate_pages,
1471 	};
1472 	struct zonelist *zonelist;
1473 
1474 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1475 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1476 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1477 	return do_try_to_free_pages(zonelist, &sc);
1478 }
1479 #endif
1480 
1481 /*
1482  * For kswapd, balance_pgdat() will work across all this node's zones until
1483  * they are all at pages_high.
1484  *
1485  * Returns the number of pages which were actually freed.
1486  *
1487  * There is special handling here for zones which are full of pinned pages.
1488  * This can happen if the pages are all mlocked, or if they are all used by
1489  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1490  * What we do is to detect the case where all pages in the zone have been
1491  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1492  * dead and from now on, only perform a short scan.  Basically we're polling
1493  * the zone for when the problem goes away.
1494  *
1495  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1496  * zones which have free_pages > pages_high, but once a zone is found to have
1497  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1498  * of the number of free pages in the lower zones.  This interoperates with
1499  * the page allocator fallback scheme to ensure that aging of pages is balanced
1500  * across the zones.
1501  */
1502 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1503 {
1504 	int all_zones_ok;
1505 	int priority;
1506 	int i;
1507 	unsigned long total_scanned;
1508 	unsigned long nr_reclaimed;
1509 	struct reclaim_state *reclaim_state = current->reclaim_state;
1510 	struct scan_control sc = {
1511 		.gfp_mask = GFP_KERNEL,
1512 		.may_swap = 1,
1513 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1514 		.swappiness = vm_swappiness,
1515 		.order = order,
1516 		.mem_cgroup = NULL,
1517 		.isolate_pages = isolate_pages_global,
1518 	};
1519 	/*
1520 	 * temp_priority is used to remember the scanning priority at which
1521 	 * this zone was successfully refilled to free_pages == pages_high.
1522 	 */
1523 	int temp_priority[MAX_NR_ZONES];
1524 
1525 loop_again:
1526 	total_scanned = 0;
1527 	nr_reclaimed = 0;
1528 	sc.may_writepage = !laptop_mode;
1529 	count_vm_event(PAGEOUTRUN);
1530 
1531 	for (i = 0; i < pgdat->nr_zones; i++)
1532 		temp_priority[i] = DEF_PRIORITY;
1533 
1534 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1535 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1536 		unsigned long lru_pages = 0;
1537 
1538 		/* The swap token gets in the way of swapout... */
1539 		if (!priority)
1540 			disable_swap_token();
1541 
1542 		all_zones_ok = 1;
1543 
1544 		/*
1545 		 * Scan in the highmem->dma direction for the highest
1546 		 * zone which needs scanning
1547 		 */
1548 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1549 			struct zone *zone = pgdat->node_zones + i;
1550 
1551 			if (!populated_zone(zone))
1552 				continue;
1553 
1554 			if (zone_is_all_unreclaimable(zone) &&
1555 			    priority != DEF_PRIORITY)
1556 				continue;
1557 
1558 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1559 					       0, 0)) {
1560 				end_zone = i;
1561 				break;
1562 			}
1563 		}
1564 		if (i < 0)
1565 			goto out;
1566 
1567 		for (i = 0; i <= end_zone; i++) {
1568 			struct zone *zone = pgdat->node_zones + i;
1569 
1570 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1571 					+ zone_page_state(zone, NR_INACTIVE);
1572 		}
1573 
1574 		/*
1575 		 * Now scan the zone in the dma->highmem direction, stopping
1576 		 * at the last zone which needs scanning.
1577 		 *
1578 		 * We do this because the page allocator works in the opposite
1579 		 * direction.  This prevents the page allocator from allocating
1580 		 * pages behind kswapd's direction of progress, which would
1581 		 * cause too much scanning of the lower zones.
1582 		 */
1583 		for (i = 0; i <= end_zone; i++) {
1584 			struct zone *zone = pgdat->node_zones + i;
1585 			int nr_slab;
1586 
1587 			if (!populated_zone(zone))
1588 				continue;
1589 
1590 			if (zone_is_all_unreclaimable(zone) &&
1591 					priority != DEF_PRIORITY)
1592 				continue;
1593 
1594 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1595 					       end_zone, 0))
1596 				all_zones_ok = 0;
1597 			temp_priority[i] = priority;
1598 			sc.nr_scanned = 0;
1599 			note_zone_scanning_priority(zone, priority);
1600 			/*
1601 			 * We put equal pressure on every zone, unless one
1602 			 * zone has way too many pages free already.
1603 			 */
1604 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1605 						end_zone, 0))
1606 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1607 			reclaim_state->reclaimed_slab = 0;
1608 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1609 						lru_pages);
1610 			nr_reclaimed += reclaim_state->reclaimed_slab;
1611 			total_scanned += sc.nr_scanned;
1612 			if (zone_is_all_unreclaimable(zone))
1613 				continue;
1614 			if (nr_slab == 0 && zone->pages_scanned >=
1615 				(zone_page_state(zone, NR_ACTIVE)
1616 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1617 					zone_set_flag(zone,
1618 						      ZONE_ALL_UNRECLAIMABLE);
1619 			/*
1620 			 * If we've done a decent amount of scanning and
1621 			 * the reclaim ratio is low, start doing writepage
1622 			 * even in laptop mode
1623 			 */
1624 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1625 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1626 				sc.may_writepage = 1;
1627 		}
1628 		if (all_zones_ok)
1629 			break;		/* kswapd: all done */
1630 		/*
1631 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1632 		 * another pass across the zones.
1633 		 */
1634 		if (total_scanned && priority < DEF_PRIORITY - 2)
1635 			congestion_wait(WRITE, HZ/10);
1636 
1637 		/*
1638 		 * We do this so kswapd doesn't build up large priorities for
1639 		 * example when it is freeing in parallel with allocators. It
1640 		 * matches the direct reclaim path behaviour in terms of impact
1641 		 * on zone->*_priority.
1642 		 */
1643 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1644 			break;
1645 	}
1646 out:
1647 	/*
1648 	 * Note within each zone the priority level at which this zone was
1649 	 * brought into a happy state.  So that the next thread which scans this
1650 	 * zone will start out at that priority level.
1651 	 */
1652 	for (i = 0; i < pgdat->nr_zones; i++) {
1653 		struct zone *zone = pgdat->node_zones + i;
1654 
1655 		zone->prev_priority = temp_priority[i];
1656 	}
1657 	if (!all_zones_ok) {
1658 		cond_resched();
1659 
1660 		try_to_freeze();
1661 
1662 		goto loop_again;
1663 	}
1664 
1665 	return nr_reclaimed;
1666 }
1667 
1668 /*
1669  * The background pageout daemon, started as a kernel thread
1670  * from the init process.
1671  *
1672  * This basically trickles out pages so that we have _some_
1673  * free memory available even if there is no other activity
1674  * that frees anything up. This is needed for things like routing
1675  * etc, where we otherwise might have all activity going on in
1676  * asynchronous contexts that cannot page things out.
1677  *
1678  * If there are applications that are active memory-allocators
1679  * (most normal use), this basically shouldn't matter.
1680  */
1681 static int kswapd(void *p)
1682 {
1683 	unsigned long order;
1684 	pg_data_t *pgdat = (pg_data_t*)p;
1685 	struct task_struct *tsk = current;
1686 	DEFINE_WAIT(wait);
1687 	struct reclaim_state reclaim_state = {
1688 		.reclaimed_slab = 0,
1689 	};
1690 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1691 
1692 	if (!cpus_empty(*cpumask))
1693 		set_cpus_allowed_ptr(tsk, cpumask);
1694 	current->reclaim_state = &reclaim_state;
1695 
1696 	/*
1697 	 * Tell the memory management that we're a "memory allocator",
1698 	 * and that if we need more memory we should get access to it
1699 	 * regardless (see "__alloc_pages()"). "kswapd" should
1700 	 * never get caught in the normal page freeing logic.
1701 	 *
1702 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1703 	 * you need a small amount of memory in order to be able to
1704 	 * page out something else, and this flag essentially protects
1705 	 * us from recursively trying to free more memory as we're
1706 	 * trying to free the first piece of memory in the first place).
1707 	 */
1708 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1709 	set_freezable();
1710 
1711 	order = 0;
1712 	for ( ; ; ) {
1713 		unsigned long new_order;
1714 
1715 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1716 		new_order = pgdat->kswapd_max_order;
1717 		pgdat->kswapd_max_order = 0;
1718 		if (order < new_order) {
1719 			/*
1720 			 * Don't sleep if someone wants a larger 'order'
1721 			 * allocation
1722 			 */
1723 			order = new_order;
1724 		} else {
1725 			if (!freezing(current))
1726 				schedule();
1727 
1728 			order = pgdat->kswapd_max_order;
1729 		}
1730 		finish_wait(&pgdat->kswapd_wait, &wait);
1731 
1732 		if (!try_to_freeze()) {
1733 			/* We can speed up thawing tasks if we don't call
1734 			 * balance_pgdat after returning from the refrigerator
1735 			 */
1736 			balance_pgdat(pgdat, order);
1737 		}
1738 	}
1739 	return 0;
1740 }
1741 
1742 /*
1743  * A zone is low on free memory, so wake its kswapd task to service it.
1744  */
1745 void wakeup_kswapd(struct zone *zone, int order)
1746 {
1747 	pg_data_t *pgdat;
1748 
1749 	if (!populated_zone(zone))
1750 		return;
1751 
1752 	pgdat = zone->zone_pgdat;
1753 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1754 		return;
1755 	if (pgdat->kswapd_max_order < order)
1756 		pgdat->kswapd_max_order = order;
1757 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1758 		return;
1759 	if (!waitqueue_active(&pgdat->kswapd_wait))
1760 		return;
1761 	wake_up_interruptible(&pgdat->kswapd_wait);
1762 }
1763 
1764 #ifdef CONFIG_PM
1765 /*
1766  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1767  * from LRU lists system-wide, for given pass and priority, and returns the
1768  * number of reclaimed pages
1769  *
1770  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1771  */
1772 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1773 				      int pass, struct scan_control *sc)
1774 {
1775 	struct zone *zone;
1776 	unsigned long nr_to_scan, ret = 0;
1777 
1778 	for_each_zone(zone) {
1779 
1780 		if (!populated_zone(zone))
1781 			continue;
1782 
1783 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1784 			continue;
1785 
1786 		/* For pass = 0 we don't shrink the active list */
1787 		if (pass > 0) {
1788 			zone->nr_scan_active +=
1789 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1790 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1791 				zone->nr_scan_active = 0;
1792 				nr_to_scan = min(nr_pages,
1793 					zone_page_state(zone, NR_ACTIVE));
1794 				shrink_active_list(nr_to_scan, zone, sc, prio);
1795 			}
1796 		}
1797 
1798 		zone->nr_scan_inactive +=
1799 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1800 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1801 			zone->nr_scan_inactive = 0;
1802 			nr_to_scan = min(nr_pages,
1803 				zone_page_state(zone, NR_INACTIVE));
1804 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1805 			if (ret >= nr_pages)
1806 				return ret;
1807 		}
1808 	}
1809 
1810 	return ret;
1811 }
1812 
1813 static unsigned long count_lru_pages(void)
1814 {
1815 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1816 }
1817 
1818 /*
1819  * Try to free `nr_pages' of memory, system-wide, and return the number of
1820  * freed pages.
1821  *
1822  * Rather than trying to age LRUs the aim is to preserve the overall
1823  * LRU order by reclaiming preferentially
1824  * inactive > active > active referenced > active mapped
1825  */
1826 unsigned long shrink_all_memory(unsigned long nr_pages)
1827 {
1828 	unsigned long lru_pages, nr_slab;
1829 	unsigned long ret = 0;
1830 	int pass;
1831 	struct reclaim_state reclaim_state;
1832 	struct scan_control sc = {
1833 		.gfp_mask = GFP_KERNEL,
1834 		.may_swap = 0,
1835 		.swap_cluster_max = nr_pages,
1836 		.may_writepage = 1,
1837 		.swappiness = vm_swappiness,
1838 		.isolate_pages = isolate_pages_global,
1839 	};
1840 
1841 	current->reclaim_state = &reclaim_state;
1842 
1843 	lru_pages = count_lru_pages();
1844 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1845 	/* If slab caches are huge, it's better to hit them first */
1846 	while (nr_slab >= lru_pages) {
1847 		reclaim_state.reclaimed_slab = 0;
1848 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1849 		if (!reclaim_state.reclaimed_slab)
1850 			break;
1851 
1852 		ret += reclaim_state.reclaimed_slab;
1853 		if (ret >= nr_pages)
1854 			goto out;
1855 
1856 		nr_slab -= reclaim_state.reclaimed_slab;
1857 	}
1858 
1859 	/*
1860 	 * We try to shrink LRUs in 5 passes:
1861 	 * 0 = Reclaim from inactive_list only
1862 	 * 1 = Reclaim from active list but don't reclaim mapped
1863 	 * 2 = 2nd pass of type 1
1864 	 * 3 = Reclaim mapped (normal reclaim)
1865 	 * 4 = 2nd pass of type 3
1866 	 */
1867 	for (pass = 0; pass < 5; pass++) {
1868 		int prio;
1869 
1870 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1871 		if (pass > 2) {
1872 			sc.may_swap = 1;
1873 			sc.swappiness = 100;
1874 		}
1875 
1876 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1877 			unsigned long nr_to_scan = nr_pages - ret;
1878 
1879 			sc.nr_scanned = 0;
1880 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1881 			if (ret >= nr_pages)
1882 				goto out;
1883 
1884 			reclaim_state.reclaimed_slab = 0;
1885 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1886 					count_lru_pages());
1887 			ret += reclaim_state.reclaimed_slab;
1888 			if (ret >= nr_pages)
1889 				goto out;
1890 
1891 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1892 				congestion_wait(WRITE, HZ / 10);
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * If ret = 0, we could not shrink LRUs, but there may be something
1898 	 * in slab caches
1899 	 */
1900 	if (!ret) {
1901 		do {
1902 			reclaim_state.reclaimed_slab = 0;
1903 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1904 			ret += reclaim_state.reclaimed_slab;
1905 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1906 	}
1907 
1908 out:
1909 	current->reclaim_state = NULL;
1910 
1911 	return ret;
1912 }
1913 #endif
1914 
1915 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1916    not required for correctness.  So if the last cpu in a node goes
1917    away, we get changed to run anywhere: as the first one comes back,
1918    restore their cpu bindings. */
1919 static int __devinit cpu_callback(struct notifier_block *nfb,
1920 				  unsigned long action, void *hcpu)
1921 {
1922 	int nid;
1923 
1924 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1925 		for_each_node_state(nid, N_HIGH_MEMORY) {
1926 			pg_data_t *pgdat = NODE_DATA(nid);
1927 			node_to_cpumask_ptr(mask, pgdat->node_id);
1928 
1929 			if (any_online_cpu(*mask) < nr_cpu_ids)
1930 				/* One of our CPUs online: restore mask */
1931 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
1932 		}
1933 	}
1934 	return NOTIFY_OK;
1935 }
1936 
1937 /*
1938  * This kswapd start function will be called by init and node-hot-add.
1939  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1940  */
1941 int kswapd_run(int nid)
1942 {
1943 	pg_data_t *pgdat = NODE_DATA(nid);
1944 	int ret = 0;
1945 
1946 	if (pgdat->kswapd)
1947 		return 0;
1948 
1949 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1950 	if (IS_ERR(pgdat->kswapd)) {
1951 		/* failure at boot is fatal */
1952 		BUG_ON(system_state == SYSTEM_BOOTING);
1953 		printk("Failed to start kswapd on node %d\n",nid);
1954 		ret = -1;
1955 	}
1956 	return ret;
1957 }
1958 
1959 static int __init kswapd_init(void)
1960 {
1961 	int nid;
1962 
1963 	swap_setup();
1964 	for_each_node_state(nid, N_HIGH_MEMORY)
1965  		kswapd_run(nid);
1966 	hotcpu_notifier(cpu_callback, 0);
1967 	return 0;
1968 }
1969 
1970 module_init(kswapd_init)
1971 
1972 #ifdef CONFIG_NUMA
1973 /*
1974  * Zone reclaim mode
1975  *
1976  * If non-zero call zone_reclaim when the number of free pages falls below
1977  * the watermarks.
1978  */
1979 int zone_reclaim_mode __read_mostly;
1980 
1981 #define RECLAIM_OFF 0
1982 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1983 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1984 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1985 
1986 /*
1987  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1988  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1989  * a zone.
1990  */
1991 #define ZONE_RECLAIM_PRIORITY 4
1992 
1993 /*
1994  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1995  * occur.
1996  */
1997 int sysctl_min_unmapped_ratio = 1;
1998 
1999 /*
2000  * If the number of slab pages in a zone grows beyond this percentage then
2001  * slab reclaim needs to occur.
2002  */
2003 int sysctl_min_slab_ratio = 5;
2004 
2005 /*
2006  * Try to free up some pages from this zone through reclaim.
2007  */
2008 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2009 {
2010 	/* Minimum pages needed in order to stay on node */
2011 	const unsigned long nr_pages = 1 << order;
2012 	struct task_struct *p = current;
2013 	struct reclaim_state reclaim_state;
2014 	int priority;
2015 	unsigned long nr_reclaimed = 0;
2016 	struct scan_control sc = {
2017 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2018 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2019 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2020 					SWAP_CLUSTER_MAX),
2021 		.gfp_mask = gfp_mask,
2022 		.swappiness = vm_swappiness,
2023 		.isolate_pages = isolate_pages_global,
2024 	};
2025 	unsigned long slab_reclaimable;
2026 
2027 	disable_swap_token();
2028 	cond_resched();
2029 	/*
2030 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2031 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2032 	 * and RECLAIM_SWAP.
2033 	 */
2034 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2035 	reclaim_state.reclaimed_slab = 0;
2036 	p->reclaim_state = &reclaim_state;
2037 
2038 	if (zone_page_state(zone, NR_FILE_PAGES) -
2039 		zone_page_state(zone, NR_FILE_MAPPED) >
2040 		zone->min_unmapped_pages) {
2041 		/*
2042 		 * Free memory by calling shrink zone with increasing
2043 		 * priorities until we have enough memory freed.
2044 		 */
2045 		priority = ZONE_RECLAIM_PRIORITY;
2046 		do {
2047 			note_zone_scanning_priority(zone, priority);
2048 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2049 			priority--;
2050 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2051 	}
2052 
2053 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2054 	if (slab_reclaimable > zone->min_slab_pages) {
2055 		/*
2056 		 * shrink_slab() does not currently allow us to determine how
2057 		 * many pages were freed in this zone. So we take the current
2058 		 * number of slab pages and shake the slab until it is reduced
2059 		 * by the same nr_pages that we used for reclaiming unmapped
2060 		 * pages.
2061 		 *
2062 		 * Note that shrink_slab will free memory on all zones and may
2063 		 * take a long time.
2064 		 */
2065 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2066 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2067 				slab_reclaimable - nr_pages)
2068 			;
2069 
2070 		/*
2071 		 * Update nr_reclaimed by the number of slab pages we
2072 		 * reclaimed from this zone.
2073 		 */
2074 		nr_reclaimed += slab_reclaimable -
2075 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2076 	}
2077 
2078 	p->reclaim_state = NULL;
2079 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2080 	return nr_reclaimed >= nr_pages;
2081 }
2082 
2083 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2084 {
2085 	int node_id;
2086 	int ret;
2087 
2088 	/*
2089 	 * Zone reclaim reclaims unmapped file backed pages and
2090 	 * slab pages if we are over the defined limits.
2091 	 *
2092 	 * A small portion of unmapped file backed pages is needed for
2093 	 * file I/O otherwise pages read by file I/O will be immediately
2094 	 * thrown out if the zone is overallocated. So we do not reclaim
2095 	 * if less than a specified percentage of the zone is used by
2096 	 * unmapped file backed pages.
2097 	 */
2098 	if (zone_page_state(zone, NR_FILE_PAGES) -
2099 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2100 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2101 			<= zone->min_slab_pages)
2102 		return 0;
2103 
2104 	if (zone_is_all_unreclaimable(zone))
2105 		return 0;
2106 
2107 	/*
2108 	 * Do not scan if the allocation should not be delayed.
2109 	 */
2110 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2111 			return 0;
2112 
2113 	/*
2114 	 * Only run zone reclaim on the local zone or on zones that do not
2115 	 * have associated processors. This will favor the local processor
2116 	 * over remote processors and spread off node memory allocations
2117 	 * as wide as possible.
2118 	 */
2119 	node_id = zone_to_nid(zone);
2120 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2121 		return 0;
2122 
2123 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2124 		return 0;
2125 	ret = __zone_reclaim(zone, gfp_mask, order);
2126 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2127 
2128 	return ret;
2129 }
2130 #endif
2131