xref: /openbmc/linux/mm/vmscan.c (revision ef54cf0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 };
120 
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field)			\
123 	do {								\
124 		if ((_page)->lru.prev != _base) {			\
125 			struct page *prev;				\
126 									\
127 			prev = lru_to_page(&(_page->lru));		\
128 			prefetch(&prev->_field);			\
129 		}							\
130 	} while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134 
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field)			\
137 	do {								\
138 		if ((_page)->lru.prev != _base) {			\
139 			struct page *prev;				\
140 									\
141 			prev = lru_to_page(&(_page->lru));		\
142 			prefetchw(&prev->_field);			\
143 		}							\
144 	} while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148 
149 /*
150  * From 0 .. 100.  Higher means more swappy.
151  */
152 int vm_swappiness = 60;
153 /*
154  * The total number of pages which are beyond the high watermark within all
155  * zones.
156  */
157 unsigned long vm_total_pages;
158 
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161 
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 	return !sc->target_mem_cgroup;
166 }
167 
168 /**
169  * sane_reclaim - is the usual dirty throttling mechanism operational?
170  * @sc: scan_control in question
171  *
172  * The normal page dirty throttling mechanism in balance_dirty_pages() is
173  * completely broken with the legacy memcg and direct stalling in
174  * shrink_page_list() is used for throttling instead, which lacks all the
175  * niceties such as fairness, adaptive pausing, bandwidth proportional
176  * allocation and configurability.
177  *
178  * This function tests whether the vmscan currently in progress can assume
179  * that the normal dirty throttling mechanism is operational.
180  */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
184 
185 	if (!memcg)
186 		return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 		return true;
190 #endif
191 	return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 	return true;
197 }
198 
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 	return true;
202 }
203 #endif
204 
205 /*
206  * This misses isolated pages which are not accounted for to save counters.
207  * As the data only determines if reclaim or compaction continues, it is
208  * not expected that isolated pages will be a dominating factor.
209  */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 	unsigned long nr;
213 
214 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 	if (get_nr_swap_pages() > 0)
217 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219 
220 	return nr;
221 }
222 
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224 {
225 	unsigned long nr;
226 
227 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230 
231 	if (get_nr_swap_pages() > 0)
232 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235 
236 	return nr;
237 }
238 
239 /**
240  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
241  * @lruvec: lru vector
242  * @lru: lru to use
243  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244  */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 	unsigned long lru_size;
248 	int zid;
249 
250 	if (!mem_cgroup_disabled())
251 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 	else
253 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254 
255 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 		unsigned long size;
258 
259 		if (!managed_zone(zone))
260 			continue;
261 
262 		if (!mem_cgroup_disabled())
263 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 		else
265 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 				       NR_ZONE_LRU_BASE + lru);
267 		lru_size -= min(size, lru_size);
268 	}
269 
270 	return lru_size;
271 
272 }
273 
274 /*
275  * Add a shrinker callback to be called from the vm.
276  */
277 int register_shrinker(struct shrinker *shrinker)
278 {
279 	size_t size = sizeof(*shrinker->nr_deferred);
280 
281 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 		size *= nr_node_ids;
283 
284 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 	if (!shrinker->nr_deferred)
286 		return -ENOMEM;
287 
288 	down_write(&shrinker_rwsem);
289 	list_add_tail(&shrinker->list, &shrinker_list);
290 	up_write(&shrinker_rwsem);
291 	return 0;
292 }
293 EXPORT_SYMBOL(register_shrinker);
294 
295 /*
296  * Remove one
297  */
298 void unregister_shrinker(struct shrinker *shrinker)
299 {
300 	if (!shrinker->nr_deferred)
301 		return;
302 	down_write(&shrinker_rwsem);
303 	list_del(&shrinker->list);
304 	up_write(&shrinker_rwsem);
305 	kfree(shrinker->nr_deferred);
306 	shrinker->nr_deferred = NULL;
307 }
308 EXPORT_SYMBOL(unregister_shrinker);
309 
310 #define SHRINK_BATCH 128
311 
312 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313 				    struct shrinker *shrinker,
314 				    unsigned long nr_scanned,
315 				    unsigned long nr_eligible)
316 {
317 	unsigned long freed = 0;
318 	unsigned long long delta;
319 	long total_scan;
320 	long freeable;
321 	long nr;
322 	long new_nr;
323 	int nid = shrinkctl->nid;
324 	long batch_size = shrinker->batch ? shrinker->batch
325 					  : SHRINK_BATCH;
326 	long scanned = 0, next_deferred;
327 
328 	freeable = shrinker->count_objects(shrinker, shrinkctl);
329 	if (freeable == 0)
330 		return 0;
331 
332 	/*
333 	 * copy the current shrinker scan count into a local variable
334 	 * and zero it so that other concurrent shrinker invocations
335 	 * don't also do this scanning work.
336 	 */
337 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
338 
339 	total_scan = nr;
340 	delta = (4 * nr_scanned) / shrinker->seeks;
341 	delta *= freeable;
342 	do_div(delta, nr_eligible + 1);
343 	total_scan += delta;
344 	if (total_scan < 0) {
345 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
346 		       shrinker->scan_objects, total_scan);
347 		total_scan = freeable;
348 		next_deferred = nr;
349 	} else
350 		next_deferred = total_scan;
351 
352 	/*
353 	 * We need to avoid excessive windup on filesystem shrinkers
354 	 * due to large numbers of GFP_NOFS allocations causing the
355 	 * shrinkers to return -1 all the time. This results in a large
356 	 * nr being built up so when a shrink that can do some work
357 	 * comes along it empties the entire cache due to nr >>>
358 	 * freeable. This is bad for sustaining a working set in
359 	 * memory.
360 	 *
361 	 * Hence only allow the shrinker to scan the entire cache when
362 	 * a large delta change is calculated directly.
363 	 */
364 	if (delta < freeable / 4)
365 		total_scan = min(total_scan, freeable / 2);
366 
367 	/*
368 	 * Avoid risking looping forever due to too large nr value:
369 	 * never try to free more than twice the estimate number of
370 	 * freeable entries.
371 	 */
372 	if (total_scan > freeable * 2)
373 		total_scan = freeable * 2;
374 
375 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
376 				   nr_scanned, nr_eligible,
377 				   freeable, delta, total_scan);
378 
379 	/*
380 	 * Normally, we should not scan less than batch_size objects in one
381 	 * pass to avoid too frequent shrinker calls, but if the slab has less
382 	 * than batch_size objects in total and we are really tight on memory,
383 	 * we will try to reclaim all available objects, otherwise we can end
384 	 * up failing allocations although there are plenty of reclaimable
385 	 * objects spread over several slabs with usage less than the
386 	 * batch_size.
387 	 *
388 	 * We detect the "tight on memory" situations by looking at the total
389 	 * number of objects we want to scan (total_scan). If it is greater
390 	 * than the total number of objects on slab (freeable), we must be
391 	 * scanning at high prio and therefore should try to reclaim as much as
392 	 * possible.
393 	 */
394 	while (total_scan >= batch_size ||
395 	       total_scan >= freeable) {
396 		unsigned long ret;
397 		unsigned long nr_to_scan = min(batch_size, total_scan);
398 
399 		shrinkctl->nr_to_scan = nr_to_scan;
400 		shrinkctl->nr_scanned = nr_to_scan;
401 		ret = shrinker->scan_objects(shrinker, shrinkctl);
402 		if (ret == SHRINK_STOP)
403 			break;
404 		freed += ret;
405 
406 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 		total_scan -= shrinkctl->nr_scanned;
408 		scanned += shrinkctl->nr_scanned;
409 
410 		cond_resched();
411 	}
412 
413 	if (next_deferred >= scanned)
414 		next_deferred -= scanned;
415 	else
416 		next_deferred = 0;
417 	/*
418 	 * move the unused scan count back into the shrinker in a
419 	 * manner that handles concurrent updates. If we exhausted the
420 	 * scan, there is no need to do an update.
421 	 */
422 	if (next_deferred > 0)
423 		new_nr = atomic_long_add_return(next_deferred,
424 						&shrinker->nr_deferred[nid]);
425 	else
426 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
427 
428 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 	return freed;
430 }
431 
432 /**
433  * shrink_slab - shrink slab caches
434  * @gfp_mask: allocation context
435  * @nid: node whose slab caches to target
436  * @memcg: memory cgroup whose slab caches to target
437  * @nr_scanned: pressure numerator
438  * @nr_eligible: pressure denominator
439  *
440  * Call the shrink functions to age shrinkable caches.
441  *
442  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443  * unaware shrinkers will receive a node id of 0 instead.
444  *
445  * @memcg specifies the memory cgroup to target. If it is not NULL,
446  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447  * objects from the memory cgroup specified. Otherwise, only unaware
448  * shrinkers are called.
449  *
450  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451  * the available objects should be scanned.  Page reclaim for example
452  * passes the number of pages scanned and the number of pages on the
453  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454  * when it encountered mapped pages.  The ratio is further biased by
455  * the ->seeks setting of the shrink function, which indicates the
456  * cost to recreate an object relative to that of an LRU page.
457  *
458  * Returns the number of reclaimed slab objects.
459  */
460 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
461 				 struct mem_cgroup *memcg,
462 				 unsigned long nr_scanned,
463 				 unsigned long nr_eligible)
464 {
465 	struct shrinker *shrinker;
466 	unsigned long freed = 0;
467 
468 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
469 		return 0;
470 
471 	if (nr_scanned == 0)
472 		nr_scanned = SWAP_CLUSTER_MAX;
473 
474 	if (!down_read_trylock(&shrinker_rwsem)) {
475 		/*
476 		 * If we would return 0, our callers would understand that we
477 		 * have nothing else to shrink and give up trying. By returning
478 		 * 1 we keep it going and assume we'll be able to shrink next
479 		 * time.
480 		 */
481 		freed = 1;
482 		goto out;
483 	}
484 
485 	list_for_each_entry(shrinker, &shrinker_list, list) {
486 		struct shrink_control sc = {
487 			.gfp_mask = gfp_mask,
488 			.nid = nid,
489 			.memcg = memcg,
490 		};
491 
492 		/*
493 		 * If kernel memory accounting is disabled, we ignore
494 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 		 * passing NULL for memcg.
496 		 */
497 		if (memcg_kmem_enabled() &&
498 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
499 			continue;
500 
501 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 			sc.nid = 0;
503 
504 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
505 	}
506 
507 	up_read(&shrinker_rwsem);
508 out:
509 	cond_resched();
510 	return freed;
511 }
512 
513 void drop_slab_node(int nid)
514 {
515 	unsigned long freed;
516 
517 	do {
518 		struct mem_cgroup *memcg = NULL;
519 
520 		freed = 0;
521 		do {
522 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
523 					     1000, 1000);
524 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
525 	} while (freed > 10);
526 }
527 
528 void drop_slab(void)
529 {
530 	int nid;
531 
532 	for_each_online_node(nid)
533 		drop_slab_node(nid);
534 }
535 
536 static inline int is_page_cache_freeable(struct page *page)
537 {
538 	/*
539 	 * A freeable page cache page is referenced only by the caller
540 	 * that isolated the page, the page cache radix tree and
541 	 * optional buffer heads at page->private.
542 	 */
543 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
544 		HPAGE_PMD_NR : 1;
545 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
546 }
547 
548 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
549 {
550 	if (current->flags & PF_SWAPWRITE)
551 		return 1;
552 	if (!inode_write_congested(inode))
553 		return 1;
554 	if (inode_to_bdi(inode) == current->backing_dev_info)
555 		return 1;
556 	return 0;
557 }
558 
559 /*
560  * We detected a synchronous write error writing a page out.  Probably
561  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
562  * fsync(), msync() or close().
563  *
564  * The tricky part is that after writepage we cannot touch the mapping: nothing
565  * prevents it from being freed up.  But we have a ref on the page and once
566  * that page is locked, the mapping is pinned.
567  *
568  * We're allowed to run sleeping lock_page() here because we know the caller has
569  * __GFP_FS.
570  */
571 static void handle_write_error(struct address_space *mapping,
572 				struct page *page, int error)
573 {
574 	lock_page(page);
575 	if (page_mapping(page) == mapping)
576 		mapping_set_error(mapping, error);
577 	unlock_page(page);
578 }
579 
580 /* possible outcome of pageout() */
581 typedef enum {
582 	/* failed to write page out, page is locked */
583 	PAGE_KEEP,
584 	/* move page to the active list, page is locked */
585 	PAGE_ACTIVATE,
586 	/* page has been sent to the disk successfully, page is unlocked */
587 	PAGE_SUCCESS,
588 	/* page is clean and locked */
589 	PAGE_CLEAN,
590 } pageout_t;
591 
592 /*
593  * pageout is called by shrink_page_list() for each dirty page.
594  * Calls ->writepage().
595  */
596 static pageout_t pageout(struct page *page, struct address_space *mapping,
597 			 struct scan_control *sc)
598 {
599 	/*
600 	 * If the page is dirty, only perform writeback if that write
601 	 * will be non-blocking.  To prevent this allocation from being
602 	 * stalled by pagecache activity.  But note that there may be
603 	 * stalls if we need to run get_block().  We could test
604 	 * PagePrivate for that.
605 	 *
606 	 * If this process is currently in __generic_file_write_iter() against
607 	 * this page's queue, we can perform writeback even if that
608 	 * will block.
609 	 *
610 	 * If the page is swapcache, write it back even if that would
611 	 * block, for some throttling. This happens by accident, because
612 	 * swap_backing_dev_info is bust: it doesn't reflect the
613 	 * congestion state of the swapdevs.  Easy to fix, if needed.
614 	 */
615 	if (!is_page_cache_freeable(page))
616 		return PAGE_KEEP;
617 	if (!mapping) {
618 		/*
619 		 * Some data journaling orphaned pages can have
620 		 * page->mapping == NULL while being dirty with clean buffers.
621 		 */
622 		if (page_has_private(page)) {
623 			if (try_to_free_buffers(page)) {
624 				ClearPageDirty(page);
625 				pr_info("%s: orphaned page\n", __func__);
626 				return PAGE_CLEAN;
627 			}
628 		}
629 		return PAGE_KEEP;
630 	}
631 	if (mapping->a_ops->writepage == NULL)
632 		return PAGE_ACTIVATE;
633 	if (!may_write_to_inode(mapping->host, sc))
634 		return PAGE_KEEP;
635 
636 	if (clear_page_dirty_for_io(page)) {
637 		int res;
638 		struct writeback_control wbc = {
639 			.sync_mode = WB_SYNC_NONE,
640 			.nr_to_write = SWAP_CLUSTER_MAX,
641 			.range_start = 0,
642 			.range_end = LLONG_MAX,
643 			.for_reclaim = 1,
644 		};
645 
646 		SetPageReclaim(page);
647 		res = mapping->a_ops->writepage(page, &wbc);
648 		if (res < 0)
649 			handle_write_error(mapping, page, res);
650 		if (res == AOP_WRITEPAGE_ACTIVATE) {
651 			ClearPageReclaim(page);
652 			return PAGE_ACTIVATE;
653 		}
654 
655 		if (!PageWriteback(page)) {
656 			/* synchronous write or broken a_ops? */
657 			ClearPageReclaim(page);
658 		}
659 		trace_mm_vmscan_writepage(page);
660 		inc_node_page_state(page, NR_VMSCAN_WRITE);
661 		return PAGE_SUCCESS;
662 	}
663 
664 	return PAGE_CLEAN;
665 }
666 
667 /*
668  * Same as remove_mapping, but if the page is removed from the mapping, it
669  * gets returned with a refcount of 0.
670  */
671 static int __remove_mapping(struct address_space *mapping, struct page *page,
672 			    bool reclaimed)
673 {
674 	unsigned long flags;
675 	int refcount;
676 
677 	BUG_ON(!PageLocked(page));
678 	BUG_ON(mapping != page_mapping(page));
679 
680 	spin_lock_irqsave(&mapping->tree_lock, flags);
681 	/*
682 	 * The non racy check for a busy page.
683 	 *
684 	 * Must be careful with the order of the tests. When someone has
685 	 * a ref to the page, it may be possible that they dirty it then
686 	 * drop the reference. So if PageDirty is tested before page_count
687 	 * here, then the following race may occur:
688 	 *
689 	 * get_user_pages(&page);
690 	 * [user mapping goes away]
691 	 * write_to(page);
692 	 *				!PageDirty(page)    [good]
693 	 * SetPageDirty(page);
694 	 * put_page(page);
695 	 *				!page_count(page)   [good, discard it]
696 	 *
697 	 * [oops, our write_to data is lost]
698 	 *
699 	 * Reversing the order of the tests ensures such a situation cannot
700 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
701 	 * load is not satisfied before that of page->_refcount.
702 	 *
703 	 * Note that if SetPageDirty is always performed via set_page_dirty,
704 	 * and thus under tree_lock, then this ordering is not required.
705 	 */
706 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
707 		refcount = 1 + HPAGE_PMD_NR;
708 	else
709 		refcount = 2;
710 	if (!page_ref_freeze(page, refcount))
711 		goto cannot_free;
712 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
713 	if (unlikely(PageDirty(page))) {
714 		page_ref_unfreeze(page, refcount);
715 		goto cannot_free;
716 	}
717 
718 	if (PageSwapCache(page)) {
719 		swp_entry_t swap = { .val = page_private(page) };
720 		mem_cgroup_swapout(page, swap);
721 		__delete_from_swap_cache(page);
722 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 		put_swap_page(page, swap);
724 	} else {
725 		void (*freepage)(struct page *);
726 		void *shadow = NULL;
727 
728 		freepage = mapping->a_ops->freepage;
729 		/*
730 		 * Remember a shadow entry for reclaimed file cache in
731 		 * order to detect refaults, thus thrashing, later on.
732 		 *
733 		 * But don't store shadows in an address space that is
734 		 * already exiting.  This is not just an optizimation,
735 		 * inode reclaim needs to empty out the radix tree or
736 		 * the nodes are lost.  Don't plant shadows behind its
737 		 * back.
738 		 *
739 		 * We also don't store shadows for DAX mappings because the
740 		 * only page cache pages found in these are zero pages
741 		 * covering holes, and because we don't want to mix DAX
742 		 * exceptional entries and shadow exceptional entries in the
743 		 * same page_tree.
744 		 */
745 		if (reclaimed && page_is_file_cache(page) &&
746 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
747 			shadow = workingset_eviction(mapping, page);
748 		__delete_from_page_cache(page, shadow);
749 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
750 
751 		if (freepage != NULL)
752 			freepage(page);
753 	}
754 
755 	return 1;
756 
757 cannot_free:
758 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
759 	return 0;
760 }
761 
762 /*
763  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
764  * someone else has a ref on the page, abort and return 0.  If it was
765  * successfully detached, return 1.  Assumes the caller has a single ref on
766  * this page.
767  */
768 int remove_mapping(struct address_space *mapping, struct page *page)
769 {
770 	if (__remove_mapping(mapping, page, false)) {
771 		/*
772 		 * Unfreezing the refcount with 1 rather than 2 effectively
773 		 * drops the pagecache ref for us without requiring another
774 		 * atomic operation.
775 		 */
776 		page_ref_unfreeze(page, 1);
777 		return 1;
778 	}
779 	return 0;
780 }
781 
782 /**
783  * putback_lru_page - put previously isolated page onto appropriate LRU list
784  * @page: page to be put back to appropriate lru list
785  *
786  * Add previously isolated @page to appropriate LRU list.
787  * Page may still be unevictable for other reasons.
788  *
789  * lru_lock must not be held, interrupts must be enabled.
790  */
791 void putback_lru_page(struct page *page)
792 {
793 	bool is_unevictable;
794 	int was_unevictable = PageUnevictable(page);
795 
796 	VM_BUG_ON_PAGE(PageLRU(page), page);
797 
798 redo:
799 	ClearPageUnevictable(page);
800 
801 	if (page_evictable(page)) {
802 		/*
803 		 * For evictable pages, we can use the cache.
804 		 * In event of a race, worst case is we end up with an
805 		 * unevictable page on [in]active list.
806 		 * We know how to handle that.
807 		 */
808 		is_unevictable = false;
809 		lru_cache_add(page);
810 	} else {
811 		/*
812 		 * Put unevictable pages directly on zone's unevictable
813 		 * list.
814 		 */
815 		is_unevictable = true;
816 		add_page_to_unevictable_list(page);
817 		/*
818 		 * When racing with an mlock or AS_UNEVICTABLE clearing
819 		 * (page is unlocked) make sure that if the other thread
820 		 * does not observe our setting of PG_lru and fails
821 		 * isolation/check_move_unevictable_pages,
822 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
823 		 * the page back to the evictable list.
824 		 *
825 		 * The other side is TestClearPageMlocked() or shmem_lock().
826 		 */
827 		smp_mb();
828 	}
829 
830 	/*
831 	 * page's status can change while we move it among lru. If an evictable
832 	 * page is on unevictable list, it never be freed. To avoid that,
833 	 * check after we added it to the list, again.
834 	 */
835 	if (is_unevictable && page_evictable(page)) {
836 		if (!isolate_lru_page(page)) {
837 			put_page(page);
838 			goto redo;
839 		}
840 		/* This means someone else dropped this page from LRU
841 		 * So, it will be freed or putback to LRU again. There is
842 		 * nothing to do here.
843 		 */
844 	}
845 
846 	if (was_unevictable && !is_unevictable)
847 		count_vm_event(UNEVICTABLE_PGRESCUED);
848 	else if (!was_unevictable && is_unevictable)
849 		count_vm_event(UNEVICTABLE_PGCULLED);
850 
851 	put_page(page);		/* drop ref from isolate */
852 }
853 
854 enum page_references {
855 	PAGEREF_RECLAIM,
856 	PAGEREF_RECLAIM_CLEAN,
857 	PAGEREF_KEEP,
858 	PAGEREF_ACTIVATE,
859 };
860 
861 static enum page_references page_check_references(struct page *page,
862 						  struct scan_control *sc)
863 {
864 	int referenced_ptes, referenced_page;
865 	unsigned long vm_flags;
866 
867 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
868 					  &vm_flags);
869 	referenced_page = TestClearPageReferenced(page);
870 
871 	/*
872 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
873 	 * move the page to the unevictable list.
874 	 */
875 	if (vm_flags & VM_LOCKED)
876 		return PAGEREF_RECLAIM;
877 
878 	if (referenced_ptes) {
879 		if (PageSwapBacked(page))
880 			return PAGEREF_ACTIVATE;
881 		/*
882 		 * All mapped pages start out with page table
883 		 * references from the instantiating fault, so we need
884 		 * to look twice if a mapped file page is used more
885 		 * than once.
886 		 *
887 		 * Mark it and spare it for another trip around the
888 		 * inactive list.  Another page table reference will
889 		 * lead to its activation.
890 		 *
891 		 * Note: the mark is set for activated pages as well
892 		 * so that recently deactivated but used pages are
893 		 * quickly recovered.
894 		 */
895 		SetPageReferenced(page);
896 
897 		if (referenced_page || referenced_ptes > 1)
898 			return PAGEREF_ACTIVATE;
899 
900 		/*
901 		 * Activate file-backed executable pages after first usage.
902 		 */
903 		if (vm_flags & VM_EXEC)
904 			return PAGEREF_ACTIVATE;
905 
906 		return PAGEREF_KEEP;
907 	}
908 
909 	/* Reclaim if clean, defer dirty pages to writeback */
910 	if (referenced_page && !PageSwapBacked(page))
911 		return PAGEREF_RECLAIM_CLEAN;
912 
913 	return PAGEREF_RECLAIM;
914 }
915 
916 /* Check if a page is dirty or under writeback */
917 static void page_check_dirty_writeback(struct page *page,
918 				       bool *dirty, bool *writeback)
919 {
920 	struct address_space *mapping;
921 
922 	/*
923 	 * Anonymous pages are not handled by flushers and must be written
924 	 * from reclaim context. Do not stall reclaim based on them
925 	 */
926 	if (!page_is_file_cache(page) ||
927 	    (PageAnon(page) && !PageSwapBacked(page))) {
928 		*dirty = false;
929 		*writeback = false;
930 		return;
931 	}
932 
933 	/* By default assume that the page flags are accurate */
934 	*dirty = PageDirty(page);
935 	*writeback = PageWriteback(page);
936 
937 	/* Verify dirty/writeback state if the filesystem supports it */
938 	if (!page_has_private(page))
939 		return;
940 
941 	mapping = page_mapping(page);
942 	if (mapping && mapping->a_ops->is_dirty_writeback)
943 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
944 }
945 
946 struct reclaim_stat {
947 	unsigned nr_dirty;
948 	unsigned nr_unqueued_dirty;
949 	unsigned nr_congested;
950 	unsigned nr_writeback;
951 	unsigned nr_immediate;
952 	unsigned nr_activate;
953 	unsigned nr_ref_keep;
954 	unsigned nr_unmap_fail;
955 };
956 
957 /*
958  * shrink_page_list() returns the number of reclaimed pages
959  */
960 static unsigned long shrink_page_list(struct list_head *page_list,
961 				      struct pglist_data *pgdat,
962 				      struct scan_control *sc,
963 				      enum ttu_flags ttu_flags,
964 				      struct reclaim_stat *stat,
965 				      bool force_reclaim)
966 {
967 	LIST_HEAD(ret_pages);
968 	LIST_HEAD(free_pages);
969 	int pgactivate = 0;
970 	unsigned nr_unqueued_dirty = 0;
971 	unsigned nr_dirty = 0;
972 	unsigned nr_congested = 0;
973 	unsigned nr_reclaimed = 0;
974 	unsigned nr_writeback = 0;
975 	unsigned nr_immediate = 0;
976 	unsigned nr_ref_keep = 0;
977 	unsigned nr_unmap_fail = 0;
978 
979 	cond_resched();
980 
981 	while (!list_empty(page_list)) {
982 		struct address_space *mapping;
983 		struct page *page;
984 		int may_enter_fs;
985 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
986 		bool dirty, writeback;
987 
988 		cond_resched();
989 
990 		page = lru_to_page(page_list);
991 		list_del(&page->lru);
992 
993 		if (!trylock_page(page))
994 			goto keep;
995 
996 		VM_BUG_ON_PAGE(PageActive(page), page);
997 
998 		sc->nr_scanned++;
999 
1000 		if (unlikely(!page_evictable(page)))
1001 			goto activate_locked;
1002 
1003 		if (!sc->may_unmap && page_mapped(page))
1004 			goto keep_locked;
1005 
1006 		/* Double the slab pressure for mapped and swapcache pages */
1007 		if ((page_mapped(page) || PageSwapCache(page)) &&
1008 		    !(PageAnon(page) && !PageSwapBacked(page)))
1009 			sc->nr_scanned++;
1010 
1011 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1012 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1013 
1014 		/*
1015 		 * The number of dirty pages determines if a zone is marked
1016 		 * reclaim_congested which affects wait_iff_congested. kswapd
1017 		 * will stall and start writing pages if the tail of the LRU
1018 		 * is all dirty unqueued pages.
1019 		 */
1020 		page_check_dirty_writeback(page, &dirty, &writeback);
1021 		if (dirty || writeback)
1022 			nr_dirty++;
1023 
1024 		if (dirty && !writeback)
1025 			nr_unqueued_dirty++;
1026 
1027 		/*
1028 		 * Treat this page as congested if the underlying BDI is or if
1029 		 * pages are cycling through the LRU so quickly that the
1030 		 * pages marked for immediate reclaim are making it to the
1031 		 * end of the LRU a second time.
1032 		 */
1033 		mapping = page_mapping(page);
1034 		if (((dirty || writeback) && mapping &&
1035 		     inode_write_congested(mapping->host)) ||
1036 		    (writeback && PageReclaim(page)))
1037 			nr_congested++;
1038 
1039 		/*
1040 		 * If a page at the tail of the LRU is under writeback, there
1041 		 * are three cases to consider.
1042 		 *
1043 		 * 1) If reclaim is encountering an excessive number of pages
1044 		 *    under writeback and this page is both under writeback and
1045 		 *    PageReclaim then it indicates that pages are being queued
1046 		 *    for IO but are being recycled through the LRU before the
1047 		 *    IO can complete. Waiting on the page itself risks an
1048 		 *    indefinite stall if it is impossible to writeback the
1049 		 *    page due to IO error or disconnected storage so instead
1050 		 *    note that the LRU is being scanned too quickly and the
1051 		 *    caller can stall after page list has been processed.
1052 		 *
1053 		 * 2) Global or new memcg reclaim encounters a page that is
1054 		 *    not marked for immediate reclaim, or the caller does not
1055 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1056 		 *    not to fs). In this case mark the page for immediate
1057 		 *    reclaim and continue scanning.
1058 		 *
1059 		 *    Require may_enter_fs because we would wait on fs, which
1060 		 *    may not have submitted IO yet. And the loop driver might
1061 		 *    enter reclaim, and deadlock if it waits on a page for
1062 		 *    which it is needed to do the write (loop masks off
1063 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1064 		 *    would probably show more reasons.
1065 		 *
1066 		 * 3) Legacy memcg encounters a page that is already marked
1067 		 *    PageReclaim. memcg does not have any dirty pages
1068 		 *    throttling so we could easily OOM just because too many
1069 		 *    pages are in writeback and there is nothing else to
1070 		 *    reclaim. Wait for the writeback to complete.
1071 		 *
1072 		 * In cases 1) and 2) we activate the pages to get them out of
1073 		 * the way while we continue scanning for clean pages on the
1074 		 * inactive list and refilling from the active list. The
1075 		 * observation here is that waiting for disk writes is more
1076 		 * expensive than potentially causing reloads down the line.
1077 		 * Since they're marked for immediate reclaim, they won't put
1078 		 * memory pressure on the cache working set any longer than it
1079 		 * takes to write them to disk.
1080 		 */
1081 		if (PageWriteback(page)) {
1082 			/* Case 1 above */
1083 			if (current_is_kswapd() &&
1084 			    PageReclaim(page) &&
1085 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1086 				nr_immediate++;
1087 				goto activate_locked;
1088 
1089 			/* Case 2 above */
1090 			} else if (sane_reclaim(sc) ||
1091 			    !PageReclaim(page) || !may_enter_fs) {
1092 				/*
1093 				 * This is slightly racy - end_page_writeback()
1094 				 * might have just cleared PageReclaim, then
1095 				 * setting PageReclaim here end up interpreted
1096 				 * as PageReadahead - but that does not matter
1097 				 * enough to care.  What we do want is for this
1098 				 * page to have PageReclaim set next time memcg
1099 				 * reclaim reaches the tests above, so it will
1100 				 * then wait_on_page_writeback() to avoid OOM;
1101 				 * and it's also appropriate in global reclaim.
1102 				 */
1103 				SetPageReclaim(page);
1104 				nr_writeback++;
1105 				goto activate_locked;
1106 
1107 			/* Case 3 above */
1108 			} else {
1109 				unlock_page(page);
1110 				wait_on_page_writeback(page);
1111 				/* then go back and try same page again */
1112 				list_add_tail(&page->lru, page_list);
1113 				continue;
1114 			}
1115 		}
1116 
1117 		if (!force_reclaim)
1118 			references = page_check_references(page, sc);
1119 
1120 		switch (references) {
1121 		case PAGEREF_ACTIVATE:
1122 			goto activate_locked;
1123 		case PAGEREF_KEEP:
1124 			nr_ref_keep++;
1125 			goto keep_locked;
1126 		case PAGEREF_RECLAIM:
1127 		case PAGEREF_RECLAIM_CLEAN:
1128 			; /* try to reclaim the page below */
1129 		}
1130 
1131 		/*
1132 		 * Anonymous process memory has backing store?
1133 		 * Try to allocate it some swap space here.
1134 		 * Lazyfree page could be freed directly
1135 		 */
1136 		if (PageAnon(page) && PageSwapBacked(page)) {
1137 			if (!PageSwapCache(page)) {
1138 				if (!(sc->gfp_mask & __GFP_IO))
1139 					goto keep_locked;
1140 				if (PageTransHuge(page)) {
1141 					/* cannot split THP, skip it */
1142 					if (!can_split_huge_page(page, NULL))
1143 						goto activate_locked;
1144 					/*
1145 					 * Split pages without a PMD map right
1146 					 * away. Chances are some or all of the
1147 					 * tail pages can be freed without IO.
1148 					 */
1149 					if (!compound_mapcount(page) &&
1150 					    split_huge_page_to_list(page,
1151 								    page_list))
1152 						goto activate_locked;
1153 				}
1154 				if (!add_to_swap(page)) {
1155 					if (!PageTransHuge(page))
1156 						goto activate_locked;
1157 					/* Fallback to swap normal pages */
1158 					if (split_huge_page_to_list(page,
1159 								    page_list))
1160 						goto activate_locked;
1161 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1162 					count_vm_event(THP_SWPOUT_FALLBACK);
1163 #endif
1164 					if (!add_to_swap(page))
1165 						goto activate_locked;
1166 				}
1167 
1168 				may_enter_fs = 1;
1169 
1170 				/* Adding to swap updated mapping */
1171 				mapping = page_mapping(page);
1172 			}
1173 		} else if (unlikely(PageTransHuge(page))) {
1174 			/* Split file THP */
1175 			if (split_huge_page_to_list(page, page_list))
1176 				goto keep_locked;
1177 		}
1178 
1179 		/*
1180 		 * The page is mapped into the page tables of one or more
1181 		 * processes. Try to unmap it here.
1182 		 */
1183 		if (page_mapped(page)) {
1184 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1185 
1186 			if (unlikely(PageTransHuge(page)))
1187 				flags |= TTU_SPLIT_HUGE_PMD;
1188 			if (!try_to_unmap(page, flags)) {
1189 				nr_unmap_fail++;
1190 				goto activate_locked;
1191 			}
1192 		}
1193 
1194 		if (PageDirty(page)) {
1195 			/*
1196 			 * Only kswapd can writeback filesystem pages
1197 			 * to avoid risk of stack overflow. But avoid
1198 			 * injecting inefficient single-page IO into
1199 			 * flusher writeback as much as possible: only
1200 			 * write pages when we've encountered many
1201 			 * dirty pages, and when we've already scanned
1202 			 * the rest of the LRU for clean pages and see
1203 			 * the same dirty pages again (PageReclaim).
1204 			 */
1205 			if (page_is_file_cache(page) &&
1206 			    (!current_is_kswapd() || !PageReclaim(page) ||
1207 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1208 				/*
1209 				 * Immediately reclaim when written back.
1210 				 * Similar in principal to deactivate_page()
1211 				 * except we already have the page isolated
1212 				 * and know it's dirty
1213 				 */
1214 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1215 				SetPageReclaim(page);
1216 
1217 				goto activate_locked;
1218 			}
1219 
1220 			if (references == PAGEREF_RECLAIM_CLEAN)
1221 				goto keep_locked;
1222 			if (!may_enter_fs)
1223 				goto keep_locked;
1224 			if (!sc->may_writepage)
1225 				goto keep_locked;
1226 
1227 			/*
1228 			 * Page is dirty. Flush the TLB if a writable entry
1229 			 * potentially exists to avoid CPU writes after IO
1230 			 * starts and then write it out here.
1231 			 */
1232 			try_to_unmap_flush_dirty();
1233 			switch (pageout(page, mapping, sc)) {
1234 			case PAGE_KEEP:
1235 				goto keep_locked;
1236 			case PAGE_ACTIVATE:
1237 				goto activate_locked;
1238 			case PAGE_SUCCESS:
1239 				if (PageWriteback(page))
1240 					goto keep;
1241 				if (PageDirty(page))
1242 					goto keep;
1243 
1244 				/*
1245 				 * A synchronous write - probably a ramdisk.  Go
1246 				 * ahead and try to reclaim the page.
1247 				 */
1248 				if (!trylock_page(page))
1249 					goto keep;
1250 				if (PageDirty(page) || PageWriteback(page))
1251 					goto keep_locked;
1252 				mapping = page_mapping(page);
1253 			case PAGE_CLEAN:
1254 				; /* try to free the page below */
1255 			}
1256 		}
1257 
1258 		/*
1259 		 * If the page has buffers, try to free the buffer mappings
1260 		 * associated with this page. If we succeed we try to free
1261 		 * the page as well.
1262 		 *
1263 		 * We do this even if the page is PageDirty().
1264 		 * try_to_release_page() does not perform I/O, but it is
1265 		 * possible for a page to have PageDirty set, but it is actually
1266 		 * clean (all its buffers are clean).  This happens if the
1267 		 * buffers were written out directly, with submit_bh(). ext3
1268 		 * will do this, as well as the blockdev mapping.
1269 		 * try_to_release_page() will discover that cleanness and will
1270 		 * drop the buffers and mark the page clean - it can be freed.
1271 		 *
1272 		 * Rarely, pages can have buffers and no ->mapping.  These are
1273 		 * the pages which were not successfully invalidated in
1274 		 * truncate_complete_page().  We try to drop those buffers here
1275 		 * and if that worked, and the page is no longer mapped into
1276 		 * process address space (page_count == 1) it can be freed.
1277 		 * Otherwise, leave the page on the LRU so it is swappable.
1278 		 */
1279 		if (page_has_private(page)) {
1280 			if (!try_to_release_page(page, sc->gfp_mask))
1281 				goto activate_locked;
1282 			if (!mapping && page_count(page) == 1) {
1283 				unlock_page(page);
1284 				if (put_page_testzero(page))
1285 					goto free_it;
1286 				else {
1287 					/*
1288 					 * rare race with speculative reference.
1289 					 * the speculative reference will free
1290 					 * this page shortly, so we may
1291 					 * increment nr_reclaimed here (and
1292 					 * leave it off the LRU).
1293 					 */
1294 					nr_reclaimed++;
1295 					continue;
1296 				}
1297 			}
1298 		}
1299 
1300 		if (PageAnon(page) && !PageSwapBacked(page)) {
1301 			/* follow __remove_mapping for reference */
1302 			if (!page_ref_freeze(page, 1))
1303 				goto keep_locked;
1304 			if (PageDirty(page)) {
1305 				page_ref_unfreeze(page, 1);
1306 				goto keep_locked;
1307 			}
1308 
1309 			count_vm_event(PGLAZYFREED);
1310 			count_memcg_page_event(page, PGLAZYFREED);
1311 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1312 			goto keep_locked;
1313 		/*
1314 		 * At this point, we have no other references and there is
1315 		 * no way to pick any more up (removed from LRU, removed
1316 		 * from pagecache). Can use non-atomic bitops now (and
1317 		 * we obviously don't have to worry about waking up a process
1318 		 * waiting on the page lock, because there are no references.
1319 		 */
1320 		__ClearPageLocked(page);
1321 free_it:
1322 		nr_reclaimed++;
1323 
1324 		/*
1325 		 * Is there need to periodically free_page_list? It would
1326 		 * appear not as the counts should be low
1327 		 */
1328 		if (unlikely(PageTransHuge(page))) {
1329 			mem_cgroup_uncharge(page);
1330 			(*get_compound_page_dtor(page))(page);
1331 		} else
1332 			list_add(&page->lru, &free_pages);
1333 		continue;
1334 
1335 activate_locked:
1336 		/* Not a candidate for swapping, so reclaim swap space. */
1337 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1338 						PageMlocked(page)))
1339 			try_to_free_swap(page);
1340 		VM_BUG_ON_PAGE(PageActive(page), page);
1341 		if (!PageMlocked(page)) {
1342 			SetPageActive(page);
1343 			pgactivate++;
1344 			count_memcg_page_event(page, PGACTIVATE);
1345 		}
1346 keep_locked:
1347 		unlock_page(page);
1348 keep:
1349 		list_add(&page->lru, &ret_pages);
1350 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1351 	}
1352 
1353 	mem_cgroup_uncharge_list(&free_pages);
1354 	try_to_unmap_flush();
1355 	free_unref_page_list(&free_pages);
1356 
1357 	list_splice(&ret_pages, page_list);
1358 	count_vm_events(PGACTIVATE, pgactivate);
1359 
1360 	if (stat) {
1361 		stat->nr_dirty = nr_dirty;
1362 		stat->nr_congested = nr_congested;
1363 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1364 		stat->nr_writeback = nr_writeback;
1365 		stat->nr_immediate = nr_immediate;
1366 		stat->nr_activate = pgactivate;
1367 		stat->nr_ref_keep = nr_ref_keep;
1368 		stat->nr_unmap_fail = nr_unmap_fail;
1369 	}
1370 	return nr_reclaimed;
1371 }
1372 
1373 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1374 					    struct list_head *page_list)
1375 {
1376 	struct scan_control sc = {
1377 		.gfp_mask = GFP_KERNEL,
1378 		.priority = DEF_PRIORITY,
1379 		.may_unmap = 1,
1380 	};
1381 	unsigned long ret;
1382 	struct page *page, *next;
1383 	LIST_HEAD(clean_pages);
1384 
1385 	list_for_each_entry_safe(page, next, page_list, lru) {
1386 		if (page_is_file_cache(page) && !PageDirty(page) &&
1387 		    !__PageMovable(page)) {
1388 			ClearPageActive(page);
1389 			list_move(&page->lru, &clean_pages);
1390 		}
1391 	}
1392 
1393 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1394 			TTU_IGNORE_ACCESS, NULL, true);
1395 	list_splice(&clean_pages, page_list);
1396 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1397 	return ret;
1398 }
1399 
1400 /*
1401  * Attempt to remove the specified page from its LRU.  Only take this page
1402  * if it is of the appropriate PageActive status.  Pages which are being
1403  * freed elsewhere are also ignored.
1404  *
1405  * page:	page to consider
1406  * mode:	one of the LRU isolation modes defined above
1407  *
1408  * returns 0 on success, -ve errno on failure.
1409  */
1410 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1411 {
1412 	int ret = -EINVAL;
1413 
1414 	/* Only take pages on the LRU. */
1415 	if (!PageLRU(page))
1416 		return ret;
1417 
1418 	/* Compaction should not handle unevictable pages but CMA can do so */
1419 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1420 		return ret;
1421 
1422 	ret = -EBUSY;
1423 
1424 	/*
1425 	 * To minimise LRU disruption, the caller can indicate that it only
1426 	 * wants to isolate pages it will be able to operate on without
1427 	 * blocking - clean pages for the most part.
1428 	 *
1429 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1430 	 * that it is possible to migrate without blocking
1431 	 */
1432 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1433 		/* All the caller can do on PageWriteback is block */
1434 		if (PageWriteback(page))
1435 			return ret;
1436 
1437 		if (PageDirty(page)) {
1438 			struct address_space *mapping;
1439 
1440 			/*
1441 			 * Only pages without mappings or that have a
1442 			 * ->migratepage callback are possible to migrate
1443 			 * without blocking
1444 			 */
1445 			mapping = page_mapping(page);
1446 			if (mapping && !mapping->a_ops->migratepage)
1447 				return ret;
1448 		}
1449 	}
1450 
1451 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1452 		return ret;
1453 
1454 	if (likely(get_page_unless_zero(page))) {
1455 		/*
1456 		 * Be careful not to clear PageLRU until after we're
1457 		 * sure the page is not being freed elsewhere -- the
1458 		 * page release code relies on it.
1459 		 */
1460 		ClearPageLRU(page);
1461 		ret = 0;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 
1468 /*
1469  * Update LRU sizes after isolating pages. The LRU size updates must
1470  * be complete before mem_cgroup_update_lru_size due to a santity check.
1471  */
1472 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1473 			enum lru_list lru, unsigned long *nr_zone_taken)
1474 {
1475 	int zid;
1476 
1477 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 		if (!nr_zone_taken[zid])
1479 			continue;
1480 
1481 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1482 #ifdef CONFIG_MEMCG
1483 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1484 #endif
1485 	}
1486 
1487 }
1488 
1489 /*
1490  * zone_lru_lock is heavily contended.  Some of the functions that
1491  * shrink the lists perform better by taking out a batch of pages
1492  * and working on them outside the LRU lock.
1493  *
1494  * For pagecache intensive workloads, this function is the hottest
1495  * spot in the kernel (apart from copy_*_user functions).
1496  *
1497  * Appropriate locks must be held before calling this function.
1498  *
1499  * @nr_to_scan:	The number of eligible pages to look through on the list.
1500  * @lruvec:	The LRU vector to pull pages from.
1501  * @dst:	The temp list to put pages on to.
1502  * @nr_scanned:	The number of pages that were scanned.
1503  * @sc:		The scan_control struct for this reclaim session
1504  * @mode:	One of the LRU isolation modes
1505  * @lru:	LRU list id for isolating
1506  *
1507  * returns how many pages were moved onto *@dst.
1508  */
1509 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1510 		struct lruvec *lruvec, struct list_head *dst,
1511 		unsigned long *nr_scanned, struct scan_control *sc,
1512 		isolate_mode_t mode, enum lru_list lru)
1513 {
1514 	struct list_head *src = &lruvec->lists[lru];
1515 	unsigned long nr_taken = 0;
1516 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1517 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1518 	unsigned long skipped = 0;
1519 	unsigned long scan, total_scan, nr_pages;
1520 	LIST_HEAD(pages_skipped);
1521 
1522 	scan = 0;
1523 	for (total_scan = 0;
1524 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1525 	     total_scan++) {
1526 		struct page *page;
1527 
1528 		page = lru_to_page(src);
1529 		prefetchw_prev_lru_page(page, src, flags);
1530 
1531 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1532 
1533 		if (page_zonenum(page) > sc->reclaim_idx) {
1534 			list_move(&page->lru, &pages_skipped);
1535 			nr_skipped[page_zonenum(page)]++;
1536 			continue;
1537 		}
1538 
1539 		/*
1540 		 * Do not count skipped pages because that makes the function
1541 		 * return with no isolated pages if the LRU mostly contains
1542 		 * ineligible pages.  This causes the VM to not reclaim any
1543 		 * pages, triggering a premature OOM.
1544 		 */
1545 		scan++;
1546 		switch (__isolate_lru_page(page, mode)) {
1547 		case 0:
1548 			nr_pages = hpage_nr_pages(page);
1549 			nr_taken += nr_pages;
1550 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1551 			list_move(&page->lru, dst);
1552 			break;
1553 
1554 		case -EBUSY:
1555 			/* else it is being freed elsewhere */
1556 			list_move(&page->lru, src);
1557 			continue;
1558 
1559 		default:
1560 			BUG();
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Splice any skipped pages to the start of the LRU list. Note that
1566 	 * this disrupts the LRU order when reclaiming for lower zones but
1567 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1568 	 * scanning would soon rescan the same pages to skip and put the
1569 	 * system at risk of premature OOM.
1570 	 */
1571 	if (!list_empty(&pages_skipped)) {
1572 		int zid;
1573 
1574 		list_splice(&pages_skipped, src);
1575 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1576 			if (!nr_skipped[zid])
1577 				continue;
1578 
1579 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1580 			skipped += nr_skipped[zid];
1581 		}
1582 	}
1583 	*nr_scanned = total_scan;
1584 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1585 				    total_scan, skipped, nr_taken, mode, lru);
1586 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1587 	return nr_taken;
1588 }
1589 
1590 /**
1591  * isolate_lru_page - tries to isolate a page from its LRU list
1592  * @page: page to isolate from its LRU list
1593  *
1594  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1595  * vmstat statistic corresponding to whatever LRU list the page was on.
1596  *
1597  * Returns 0 if the page was removed from an LRU list.
1598  * Returns -EBUSY if the page was not on an LRU list.
1599  *
1600  * The returned page will have PageLRU() cleared.  If it was found on
1601  * the active list, it will have PageActive set.  If it was found on
1602  * the unevictable list, it will have the PageUnevictable bit set. That flag
1603  * may need to be cleared by the caller before letting the page go.
1604  *
1605  * The vmstat statistic corresponding to the list on which the page was
1606  * found will be decremented.
1607  *
1608  * Restrictions:
1609  * (1) Must be called with an elevated refcount on the page. This is a
1610  *     fundamentnal difference from isolate_lru_pages (which is called
1611  *     without a stable reference).
1612  * (2) the lru_lock must not be held.
1613  * (3) interrupts must be enabled.
1614  */
1615 int isolate_lru_page(struct page *page)
1616 {
1617 	int ret = -EBUSY;
1618 
1619 	VM_BUG_ON_PAGE(!page_count(page), page);
1620 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1621 
1622 	if (PageLRU(page)) {
1623 		struct zone *zone = page_zone(page);
1624 		struct lruvec *lruvec;
1625 
1626 		spin_lock_irq(zone_lru_lock(zone));
1627 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1628 		if (PageLRU(page)) {
1629 			int lru = page_lru(page);
1630 			get_page(page);
1631 			ClearPageLRU(page);
1632 			del_page_from_lru_list(page, lruvec, lru);
1633 			ret = 0;
1634 		}
1635 		spin_unlock_irq(zone_lru_lock(zone));
1636 	}
1637 	return ret;
1638 }
1639 
1640 /*
1641  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1642  * then get resheduled. When there are massive number of tasks doing page
1643  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1644  * the LRU list will go small and be scanned faster than necessary, leading to
1645  * unnecessary swapping, thrashing and OOM.
1646  */
1647 static int too_many_isolated(struct pglist_data *pgdat, int file,
1648 		struct scan_control *sc)
1649 {
1650 	unsigned long inactive, isolated;
1651 
1652 	if (current_is_kswapd())
1653 		return 0;
1654 
1655 	if (!sane_reclaim(sc))
1656 		return 0;
1657 
1658 	if (file) {
1659 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1660 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1661 	} else {
1662 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1663 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1664 	}
1665 
1666 	/*
1667 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1668 	 * won't get blocked by normal direct-reclaimers, forming a circular
1669 	 * deadlock.
1670 	 */
1671 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1672 		inactive >>= 3;
1673 
1674 	return isolated > inactive;
1675 }
1676 
1677 static noinline_for_stack void
1678 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1679 {
1680 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1681 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1682 	LIST_HEAD(pages_to_free);
1683 
1684 	/*
1685 	 * Put back any unfreeable pages.
1686 	 */
1687 	while (!list_empty(page_list)) {
1688 		struct page *page = lru_to_page(page_list);
1689 		int lru;
1690 
1691 		VM_BUG_ON_PAGE(PageLRU(page), page);
1692 		list_del(&page->lru);
1693 		if (unlikely(!page_evictable(page))) {
1694 			spin_unlock_irq(&pgdat->lru_lock);
1695 			putback_lru_page(page);
1696 			spin_lock_irq(&pgdat->lru_lock);
1697 			continue;
1698 		}
1699 
1700 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1701 
1702 		SetPageLRU(page);
1703 		lru = page_lru(page);
1704 		add_page_to_lru_list(page, lruvec, lru);
1705 
1706 		if (is_active_lru(lru)) {
1707 			int file = is_file_lru(lru);
1708 			int numpages = hpage_nr_pages(page);
1709 			reclaim_stat->recent_rotated[file] += numpages;
1710 		}
1711 		if (put_page_testzero(page)) {
1712 			__ClearPageLRU(page);
1713 			__ClearPageActive(page);
1714 			del_page_from_lru_list(page, lruvec, lru);
1715 
1716 			if (unlikely(PageCompound(page))) {
1717 				spin_unlock_irq(&pgdat->lru_lock);
1718 				mem_cgroup_uncharge(page);
1719 				(*get_compound_page_dtor(page))(page);
1720 				spin_lock_irq(&pgdat->lru_lock);
1721 			} else
1722 				list_add(&page->lru, &pages_to_free);
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * To save our caller's stack, now use input list for pages to free.
1728 	 */
1729 	list_splice(&pages_to_free, page_list);
1730 }
1731 
1732 /*
1733  * If a kernel thread (such as nfsd for loop-back mounts) services
1734  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1735  * In that case we should only throttle if the backing device it is
1736  * writing to is congested.  In other cases it is safe to throttle.
1737  */
1738 static int current_may_throttle(void)
1739 {
1740 	return !(current->flags & PF_LESS_THROTTLE) ||
1741 		current->backing_dev_info == NULL ||
1742 		bdi_write_congested(current->backing_dev_info);
1743 }
1744 
1745 /*
1746  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1747  * of reclaimed pages
1748  */
1749 static noinline_for_stack unsigned long
1750 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1751 		     struct scan_control *sc, enum lru_list lru)
1752 {
1753 	LIST_HEAD(page_list);
1754 	unsigned long nr_scanned;
1755 	unsigned long nr_reclaimed = 0;
1756 	unsigned long nr_taken;
1757 	struct reclaim_stat stat = {};
1758 	isolate_mode_t isolate_mode = 0;
1759 	int file = is_file_lru(lru);
1760 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1761 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1762 	bool stalled = false;
1763 
1764 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1765 		if (stalled)
1766 			return 0;
1767 
1768 		/* wait a bit for the reclaimer. */
1769 		msleep(100);
1770 		stalled = true;
1771 
1772 		/* We are about to die and free our memory. Return now. */
1773 		if (fatal_signal_pending(current))
1774 			return SWAP_CLUSTER_MAX;
1775 	}
1776 
1777 	lru_add_drain();
1778 
1779 	if (!sc->may_unmap)
1780 		isolate_mode |= ISOLATE_UNMAPPED;
1781 
1782 	spin_lock_irq(&pgdat->lru_lock);
1783 
1784 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1785 				     &nr_scanned, sc, isolate_mode, lru);
1786 
1787 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1788 	reclaim_stat->recent_scanned[file] += nr_taken;
1789 
1790 	if (current_is_kswapd()) {
1791 		if (global_reclaim(sc))
1792 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1793 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1794 				   nr_scanned);
1795 	} else {
1796 		if (global_reclaim(sc))
1797 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1798 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1799 				   nr_scanned);
1800 	}
1801 	spin_unlock_irq(&pgdat->lru_lock);
1802 
1803 	if (nr_taken == 0)
1804 		return 0;
1805 
1806 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1807 				&stat, false);
1808 
1809 	spin_lock_irq(&pgdat->lru_lock);
1810 
1811 	if (current_is_kswapd()) {
1812 		if (global_reclaim(sc))
1813 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1814 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1815 				   nr_reclaimed);
1816 	} else {
1817 		if (global_reclaim(sc))
1818 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1819 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1820 				   nr_reclaimed);
1821 	}
1822 
1823 	putback_inactive_pages(lruvec, &page_list);
1824 
1825 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1826 
1827 	spin_unlock_irq(&pgdat->lru_lock);
1828 
1829 	mem_cgroup_uncharge_list(&page_list);
1830 	free_unref_page_list(&page_list);
1831 
1832 	/*
1833 	 * If reclaim is isolating dirty pages under writeback, it implies
1834 	 * that the long-lived page allocation rate is exceeding the page
1835 	 * laundering rate. Either the global limits are not being effective
1836 	 * at throttling processes due to the page distribution throughout
1837 	 * zones or there is heavy usage of a slow backing device. The
1838 	 * only option is to throttle from reclaim context which is not ideal
1839 	 * as there is no guarantee the dirtying process is throttled in the
1840 	 * same way balance_dirty_pages() manages.
1841 	 *
1842 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1843 	 * of pages under pages flagged for immediate reclaim and stall if any
1844 	 * are encountered in the nr_immediate check below.
1845 	 */
1846 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1847 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1848 
1849 	/*
1850 	 * Legacy memcg will stall in page writeback so avoid forcibly
1851 	 * stalling here.
1852 	 */
1853 	if (sane_reclaim(sc)) {
1854 		/*
1855 		 * Tag a zone as congested if all the dirty pages scanned were
1856 		 * backed by a congested BDI and wait_iff_congested will stall.
1857 		 */
1858 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1859 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1860 
1861 		/*
1862 		 * If dirty pages are scanned that are not queued for IO, it
1863 		 * implies that flushers are not doing their job. This can
1864 		 * happen when memory pressure pushes dirty pages to the end of
1865 		 * the LRU before the dirty limits are breached and the dirty
1866 		 * data has expired. It can also happen when the proportion of
1867 		 * dirty pages grows not through writes but through memory
1868 		 * pressure reclaiming all the clean cache. And in some cases,
1869 		 * the flushers simply cannot keep up with the allocation
1870 		 * rate. Nudge the flusher threads in case they are asleep, but
1871 		 * also allow kswapd to start writing pages during reclaim.
1872 		 */
1873 		if (stat.nr_unqueued_dirty == nr_taken) {
1874 			wakeup_flusher_threads(WB_REASON_VMSCAN);
1875 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1876 		}
1877 
1878 		/*
1879 		 * If kswapd scans pages marked marked for immediate
1880 		 * reclaim and under writeback (nr_immediate), it implies
1881 		 * that pages are cycling through the LRU faster than
1882 		 * they are written so also forcibly stall.
1883 		 */
1884 		if (stat.nr_immediate && current_may_throttle())
1885 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1886 	}
1887 
1888 	/*
1889 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1890 	 * is congested. Allow kswapd to continue until it starts encountering
1891 	 * unqueued dirty pages or cycling through the LRU too quickly.
1892 	 */
1893 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1894 	    current_may_throttle())
1895 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1896 
1897 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1898 			nr_scanned, nr_reclaimed,
1899 			stat.nr_dirty,  stat.nr_writeback,
1900 			stat.nr_congested, stat.nr_immediate,
1901 			stat.nr_activate, stat.nr_ref_keep,
1902 			stat.nr_unmap_fail,
1903 			sc->priority, file);
1904 	return nr_reclaimed;
1905 }
1906 
1907 /*
1908  * This moves pages from the active list to the inactive list.
1909  *
1910  * We move them the other way if the page is referenced by one or more
1911  * processes, from rmap.
1912  *
1913  * If the pages are mostly unmapped, the processing is fast and it is
1914  * appropriate to hold zone_lru_lock across the whole operation.  But if
1915  * the pages are mapped, the processing is slow (page_referenced()) so we
1916  * should drop zone_lru_lock around each page.  It's impossible to balance
1917  * this, so instead we remove the pages from the LRU while processing them.
1918  * It is safe to rely on PG_active against the non-LRU pages in here because
1919  * nobody will play with that bit on a non-LRU page.
1920  *
1921  * The downside is that we have to touch page->_refcount against each page.
1922  * But we had to alter page->flags anyway.
1923  *
1924  * Returns the number of pages moved to the given lru.
1925  */
1926 
1927 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1928 				     struct list_head *list,
1929 				     struct list_head *pages_to_free,
1930 				     enum lru_list lru)
1931 {
1932 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933 	struct page *page;
1934 	int nr_pages;
1935 	int nr_moved = 0;
1936 
1937 	while (!list_empty(list)) {
1938 		page = lru_to_page(list);
1939 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1940 
1941 		VM_BUG_ON_PAGE(PageLRU(page), page);
1942 		SetPageLRU(page);
1943 
1944 		nr_pages = hpage_nr_pages(page);
1945 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1946 		list_move(&page->lru, &lruvec->lists[lru]);
1947 
1948 		if (put_page_testzero(page)) {
1949 			__ClearPageLRU(page);
1950 			__ClearPageActive(page);
1951 			del_page_from_lru_list(page, lruvec, lru);
1952 
1953 			if (unlikely(PageCompound(page))) {
1954 				spin_unlock_irq(&pgdat->lru_lock);
1955 				mem_cgroup_uncharge(page);
1956 				(*get_compound_page_dtor(page))(page);
1957 				spin_lock_irq(&pgdat->lru_lock);
1958 			} else
1959 				list_add(&page->lru, pages_to_free);
1960 		} else {
1961 			nr_moved += nr_pages;
1962 		}
1963 	}
1964 
1965 	if (!is_active_lru(lru)) {
1966 		__count_vm_events(PGDEACTIVATE, nr_moved);
1967 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1968 				   nr_moved);
1969 	}
1970 
1971 	return nr_moved;
1972 }
1973 
1974 static void shrink_active_list(unsigned long nr_to_scan,
1975 			       struct lruvec *lruvec,
1976 			       struct scan_control *sc,
1977 			       enum lru_list lru)
1978 {
1979 	unsigned long nr_taken;
1980 	unsigned long nr_scanned;
1981 	unsigned long vm_flags;
1982 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1983 	LIST_HEAD(l_active);
1984 	LIST_HEAD(l_inactive);
1985 	struct page *page;
1986 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 	unsigned nr_deactivate, nr_activate;
1988 	unsigned nr_rotated = 0;
1989 	isolate_mode_t isolate_mode = 0;
1990 	int file = is_file_lru(lru);
1991 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1992 
1993 	lru_add_drain();
1994 
1995 	if (!sc->may_unmap)
1996 		isolate_mode |= ISOLATE_UNMAPPED;
1997 
1998 	spin_lock_irq(&pgdat->lru_lock);
1999 
2000 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2001 				     &nr_scanned, sc, isolate_mode, lru);
2002 
2003 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004 	reclaim_stat->recent_scanned[file] += nr_taken;
2005 
2006 	__count_vm_events(PGREFILL, nr_scanned);
2007 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2008 
2009 	spin_unlock_irq(&pgdat->lru_lock);
2010 
2011 	while (!list_empty(&l_hold)) {
2012 		cond_resched();
2013 		page = lru_to_page(&l_hold);
2014 		list_del(&page->lru);
2015 
2016 		if (unlikely(!page_evictable(page))) {
2017 			putback_lru_page(page);
2018 			continue;
2019 		}
2020 
2021 		if (unlikely(buffer_heads_over_limit)) {
2022 			if (page_has_private(page) && trylock_page(page)) {
2023 				if (page_has_private(page))
2024 					try_to_release_page(page, 0);
2025 				unlock_page(page);
2026 			}
2027 		}
2028 
2029 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2030 				    &vm_flags)) {
2031 			nr_rotated += hpage_nr_pages(page);
2032 			/*
2033 			 * Identify referenced, file-backed active pages and
2034 			 * give them one more trip around the active list. So
2035 			 * that executable code get better chances to stay in
2036 			 * memory under moderate memory pressure.  Anon pages
2037 			 * are not likely to be evicted by use-once streaming
2038 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2039 			 * so we ignore them here.
2040 			 */
2041 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2042 				list_add(&page->lru, &l_active);
2043 				continue;
2044 			}
2045 		}
2046 
2047 		ClearPageActive(page);	/* we are de-activating */
2048 		list_add(&page->lru, &l_inactive);
2049 	}
2050 
2051 	/*
2052 	 * Move pages back to the lru list.
2053 	 */
2054 	spin_lock_irq(&pgdat->lru_lock);
2055 	/*
2056 	 * Count referenced pages from currently used mappings as rotated,
2057 	 * even though only some of them are actually re-activated.  This
2058 	 * helps balance scan pressure between file and anonymous pages in
2059 	 * get_scan_count.
2060 	 */
2061 	reclaim_stat->recent_rotated[file] += nr_rotated;
2062 
2063 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2064 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2065 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2066 	spin_unlock_irq(&pgdat->lru_lock);
2067 
2068 	mem_cgroup_uncharge_list(&l_hold);
2069 	free_unref_page_list(&l_hold);
2070 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2071 			nr_deactivate, nr_rotated, sc->priority, file);
2072 }
2073 
2074 /*
2075  * The inactive anon list should be small enough that the VM never has
2076  * to do too much work.
2077  *
2078  * The inactive file list should be small enough to leave most memory
2079  * to the established workingset on the scan-resistant active list,
2080  * but large enough to avoid thrashing the aggregate readahead window.
2081  *
2082  * Both inactive lists should also be large enough that each inactive
2083  * page has a chance to be referenced again before it is reclaimed.
2084  *
2085  * If that fails and refaulting is observed, the inactive list grows.
2086  *
2087  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2088  * on this LRU, maintained by the pageout code. An inactive_ratio
2089  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2090  *
2091  * total     target    max
2092  * memory    ratio     inactive
2093  * -------------------------------------
2094  *   10MB       1         5MB
2095  *  100MB       1        50MB
2096  *    1GB       3       250MB
2097  *   10GB      10       0.9GB
2098  *  100GB      31         3GB
2099  *    1TB     101        10GB
2100  *   10TB     320        32GB
2101  */
2102 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2103 				 struct mem_cgroup *memcg,
2104 				 struct scan_control *sc, bool actual_reclaim)
2105 {
2106 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2107 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2108 	enum lru_list inactive_lru = file * LRU_FILE;
2109 	unsigned long inactive, active;
2110 	unsigned long inactive_ratio;
2111 	unsigned long refaults;
2112 	unsigned long gb;
2113 
2114 	/*
2115 	 * If we don't have swap space, anonymous page deactivation
2116 	 * is pointless.
2117 	 */
2118 	if (!file && !total_swap_pages)
2119 		return false;
2120 
2121 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2122 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2123 
2124 	if (memcg)
2125 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2126 	else
2127 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2128 
2129 	/*
2130 	 * When refaults are being observed, it means a new workingset
2131 	 * is being established. Disable active list protection to get
2132 	 * rid of the stale workingset quickly.
2133 	 */
2134 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2135 		inactive_ratio = 0;
2136 	} else {
2137 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2138 		if (gb)
2139 			inactive_ratio = int_sqrt(10 * gb);
2140 		else
2141 			inactive_ratio = 1;
2142 	}
2143 
2144 	if (actual_reclaim)
2145 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2146 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2147 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2148 			inactive_ratio, file);
2149 
2150 	return inactive * inactive_ratio < active;
2151 }
2152 
2153 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2154 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2155 				 struct scan_control *sc)
2156 {
2157 	if (is_active_lru(lru)) {
2158 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2159 					 memcg, sc, true))
2160 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2161 		return 0;
2162 	}
2163 
2164 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2165 }
2166 
2167 enum scan_balance {
2168 	SCAN_EQUAL,
2169 	SCAN_FRACT,
2170 	SCAN_ANON,
2171 	SCAN_FILE,
2172 };
2173 
2174 /*
2175  * Determine how aggressively the anon and file LRU lists should be
2176  * scanned.  The relative value of each set of LRU lists is determined
2177  * by looking at the fraction of the pages scanned we did rotate back
2178  * onto the active list instead of evict.
2179  *
2180  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2181  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2182  */
2183 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2184 			   struct scan_control *sc, unsigned long *nr,
2185 			   unsigned long *lru_pages)
2186 {
2187 	int swappiness = mem_cgroup_swappiness(memcg);
2188 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2189 	u64 fraction[2];
2190 	u64 denominator = 0;	/* gcc */
2191 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2192 	unsigned long anon_prio, file_prio;
2193 	enum scan_balance scan_balance;
2194 	unsigned long anon, file;
2195 	unsigned long ap, fp;
2196 	enum lru_list lru;
2197 
2198 	/* If we have no swap space, do not bother scanning anon pages. */
2199 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2200 		scan_balance = SCAN_FILE;
2201 		goto out;
2202 	}
2203 
2204 	/*
2205 	 * Global reclaim will swap to prevent OOM even with no
2206 	 * swappiness, but memcg users want to use this knob to
2207 	 * disable swapping for individual groups completely when
2208 	 * using the memory controller's swap limit feature would be
2209 	 * too expensive.
2210 	 */
2211 	if (!global_reclaim(sc) && !swappiness) {
2212 		scan_balance = SCAN_FILE;
2213 		goto out;
2214 	}
2215 
2216 	/*
2217 	 * Do not apply any pressure balancing cleverness when the
2218 	 * system is close to OOM, scan both anon and file equally
2219 	 * (unless the swappiness setting disagrees with swapping).
2220 	 */
2221 	if (!sc->priority && swappiness) {
2222 		scan_balance = SCAN_EQUAL;
2223 		goto out;
2224 	}
2225 
2226 	/*
2227 	 * Prevent the reclaimer from falling into the cache trap: as
2228 	 * cache pages start out inactive, every cache fault will tip
2229 	 * the scan balance towards the file LRU.  And as the file LRU
2230 	 * shrinks, so does the window for rotation from references.
2231 	 * This means we have a runaway feedback loop where a tiny
2232 	 * thrashing file LRU becomes infinitely more attractive than
2233 	 * anon pages.  Try to detect this based on file LRU size.
2234 	 */
2235 	if (global_reclaim(sc)) {
2236 		unsigned long pgdatfile;
2237 		unsigned long pgdatfree;
2238 		int z;
2239 		unsigned long total_high_wmark = 0;
2240 
2241 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2242 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2243 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2244 
2245 		for (z = 0; z < MAX_NR_ZONES; z++) {
2246 			struct zone *zone = &pgdat->node_zones[z];
2247 			if (!managed_zone(zone))
2248 				continue;
2249 
2250 			total_high_wmark += high_wmark_pages(zone);
2251 		}
2252 
2253 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2254 			/*
2255 			 * Force SCAN_ANON if there are enough inactive
2256 			 * anonymous pages on the LRU in eligible zones.
2257 			 * Otherwise, the small LRU gets thrashed.
2258 			 */
2259 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2260 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2261 					>> sc->priority) {
2262 				scan_balance = SCAN_ANON;
2263 				goto out;
2264 			}
2265 		}
2266 	}
2267 
2268 	/*
2269 	 * If there is enough inactive page cache, i.e. if the size of the
2270 	 * inactive list is greater than that of the active list *and* the
2271 	 * inactive list actually has some pages to scan on this priority, we
2272 	 * do not reclaim anything from the anonymous working set right now.
2273 	 * Without the second condition we could end up never scanning an
2274 	 * lruvec even if it has plenty of old anonymous pages unless the
2275 	 * system is under heavy pressure.
2276 	 */
2277 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2278 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2279 		scan_balance = SCAN_FILE;
2280 		goto out;
2281 	}
2282 
2283 	scan_balance = SCAN_FRACT;
2284 
2285 	/*
2286 	 * With swappiness at 100, anonymous and file have the same priority.
2287 	 * This scanning priority is essentially the inverse of IO cost.
2288 	 */
2289 	anon_prio = swappiness;
2290 	file_prio = 200 - anon_prio;
2291 
2292 	/*
2293 	 * OK, so we have swap space and a fair amount of page cache
2294 	 * pages.  We use the recently rotated / recently scanned
2295 	 * ratios to determine how valuable each cache is.
2296 	 *
2297 	 * Because workloads change over time (and to avoid overflow)
2298 	 * we keep these statistics as a floating average, which ends
2299 	 * up weighing recent references more than old ones.
2300 	 *
2301 	 * anon in [0], file in [1]
2302 	 */
2303 
2304 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2305 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2306 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2307 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2308 
2309 	spin_lock_irq(&pgdat->lru_lock);
2310 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2311 		reclaim_stat->recent_scanned[0] /= 2;
2312 		reclaim_stat->recent_rotated[0] /= 2;
2313 	}
2314 
2315 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2316 		reclaim_stat->recent_scanned[1] /= 2;
2317 		reclaim_stat->recent_rotated[1] /= 2;
2318 	}
2319 
2320 	/*
2321 	 * The amount of pressure on anon vs file pages is inversely
2322 	 * proportional to the fraction of recently scanned pages on
2323 	 * each list that were recently referenced and in active use.
2324 	 */
2325 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2326 	ap /= reclaim_stat->recent_rotated[0] + 1;
2327 
2328 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2329 	fp /= reclaim_stat->recent_rotated[1] + 1;
2330 	spin_unlock_irq(&pgdat->lru_lock);
2331 
2332 	fraction[0] = ap;
2333 	fraction[1] = fp;
2334 	denominator = ap + fp + 1;
2335 out:
2336 	*lru_pages = 0;
2337 	for_each_evictable_lru(lru) {
2338 		int file = is_file_lru(lru);
2339 		unsigned long size;
2340 		unsigned long scan;
2341 
2342 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2343 		scan = size >> sc->priority;
2344 		/*
2345 		 * If the cgroup's already been deleted, make sure to
2346 		 * scrape out the remaining cache.
2347 		 */
2348 		if (!scan && !mem_cgroup_online(memcg))
2349 			scan = min(size, SWAP_CLUSTER_MAX);
2350 
2351 		switch (scan_balance) {
2352 		case SCAN_EQUAL:
2353 			/* Scan lists relative to size */
2354 			break;
2355 		case SCAN_FRACT:
2356 			/*
2357 			 * Scan types proportional to swappiness and
2358 			 * their relative recent reclaim efficiency.
2359 			 */
2360 			scan = div64_u64(scan * fraction[file],
2361 					 denominator);
2362 			break;
2363 		case SCAN_FILE:
2364 		case SCAN_ANON:
2365 			/* Scan one type exclusively */
2366 			if ((scan_balance == SCAN_FILE) != file) {
2367 				size = 0;
2368 				scan = 0;
2369 			}
2370 			break;
2371 		default:
2372 			/* Look ma, no brain */
2373 			BUG();
2374 		}
2375 
2376 		*lru_pages += size;
2377 		nr[lru] = scan;
2378 	}
2379 }
2380 
2381 /*
2382  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2383  */
2384 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2385 			      struct scan_control *sc, unsigned long *lru_pages)
2386 {
2387 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2388 	unsigned long nr[NR_LRU_LISTS];
2389 	unsigned long targets[NR_LRU_LISTS];
2390 	unsigned long nr_to_scan;
2391 	enum lru_list lru;
2392 	unsigned long nr_reclaimed = 0;
2393 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2394 	struct blk_plug plug;
2395 	bool scan_adjusted;
2396 
2397 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2398 
2399 	/* Record the original scan target for proportional adjustments later */
2400 	memcpy(targets, nr, sizeof(nr));
2401 
2402 	/*
2403 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2404 	 * event that can occur when there is little memory pressure e.g.
2405 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2406 	 * when the requested number of pages are reclaimed when scanning at
2407 	 * DEF_PRIORITY on the assumption that the fact we are direct
2408 	 * reclaiming implies that kswapd is not keeping up and it is best to
2409 	 * do a batch of work at once. For memcg reclaim one check is made to
2410 	 * abort proportional reclaim if either the file or anon lru has already
2411 	 * dropped to zero at the first pass.
2412 	 */
2413 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2414 			 sc->priority == DEF_PRIORITY);
2415 
2416 	blk_start_plug(&plug);
2417 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2418 					nr[LRU_INACTIVE_FILE]) {
2419 		unsigned long nr_anon, nr_file, percentage;
2420 		unsigned long nr_scanned;
2421 
2422 		for_each_evictable_lru(lru) {
2423 			if (nr[lru]) {
2424 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2425 				nr[lru] -= nr_to_scan;
2426 
2427 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2428 							    lruvec, memcg, sc);
2429 			}
2430 		}
2431 
2432 		cond_resched();
2433 
2434 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2435 			continue;
2436 
2437 		/*
2438 		 * For kswapd and memcg, reclaim at least the number of pages
2439 		 * requested. Ensure that the anon and file LRUs are scanned
2440 		 * proportionally what was requested by get_scan_count(). We
2441 		 * stop reclaiming one LRU and reduce the amount scanning
2442 		 * proportional to the original scan target.
2443 		 */
2444 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2445 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2446 
2447 		/*
2448 		 * It's just vindictive to attack the larger once the smaller
2449 		 * has gone to zero.  And given the way we stop scanning the
2450 		 * smaller below, this makes sure that we only make one nudge
2451 		 * towards proportionality once we've got nr_to_reclaim.
2452 		 */
2453 		if (!nr_file || !nr_anon)
2454 			break;
2455 
2456 		if (nr_file > nr_anon) {
2457 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2458 						targets[LRU_ACTIVE_ANON] + 1;
2459 			lru = LRU_BASE;
2460 			percentage = nr_anon * 100 / scan_target;
2461 		} else {
2462 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2463 						targets[LRU_ACTIVE_FILE] + 1;
2464 			lru = LRU_FILE;
2465 			percentage = nr_file * 100 / scan_target;
2466 		}
2467 
2468 		/* Stop scanning the smaller of the LRU */
2469 		nr[lru] = 0;
2470 		nr[lru + LRU_ACTIVE] = 0;
2471 
2472 		/*
2473 		 * Recalculate the other LRU scan count based on its original
2474 		 * scan target and the percentage scanning already complete
2475 		 */
2476 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2477 		nr_scanned = targets[lru] - nr[lru];
2478 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2479 		nr[lru] -= min(nr[lru], nr_scanned);
2480 
2481 		lru += LRU_ACTIVE;
2482 		nr_scanned = targets[lru] - nr[lru];
2483 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2484 		nr[lru] -= min(nr[lru], nr_scanned);
2485 
2486 		scan_adjusted = true;
2487 	}
2488 	blk_finish_plug(&plug);
2489 	sc->nr_reclaimed += nr_reclaimed;
2490 
2491 	/*
2492 	 * Even if we did not try to evict anon pages at all, we want to
2493 	 * rebalance the anon lru active/inactive ratio.
2494 	 */
2495 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2496 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2497 				   sc, LRU_ACTIVE_ANON);
2498 }
2499 
2500 /* Use reclaim/compaction for costly allocs or under memory pressure */
2501 static bool in_reclaim_compaction(struct scan_control *sc)
2502 {
2503 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2504 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2505 			 sc->priority < DEF_PRIORITY - 2))
2506 		return true;
2507 
2508 	return false;
2509 }
2510 
2511 /*
2512  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2513  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2514  * true if more pages should be reclaimed such that when the page allocator
2515  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2516  * It will give up earlier than that if there is difficulty reclaiming pages.
2517  */
2518 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2519 					unsigned long nr_reclaimed,
2520 					unsigned long nr_scanned,
2521 					struct scan_control *sc)
2522 {
2523 	unsigned long pages_for_compaction;
2524 	unsigned long inactive_lru_pages;
2525 	int z;
2526 
2527 	/* If not in reclaim/compaction mode, stop */
2528 	if (!in_reclaim_compaction(sc))
2529 		return false;
2530 
2531 	/* Consider stopping depending on scan and reclaim activity */
2532 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2533 		/*
2534 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2535 		 * full LRU list has been scanned and we are still failing
2536 		 * to reclaim pages. This full LRU scan is potentially
2537 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2538 		 */
2539 		if (!nr_reclaimed && !nr_scanned)
2540 			return false;
2541 	} else {
2542 		/*
2543 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2544 		 * fail without consequence, stop if we failed to reclaim
2545 		 * any pages from the last SWAP_CLUSTER_MAX number of
2546 		 * pages that were scanned. This will return to the
2547 		 * caller faster at the risk reclaim/compaction and
2548 		 * the resulting allocation attempt fails
2549 		 */
2550 		if (!nr_reclaimed)
2551 			return false;
2552 	}
2553 
2554 	/*
2555 	 * If we have not reclaimed enough pages for compaction and the
2556 	 * inactive lists are large enough, continue reclaiming
2557 	 */
2558 	pages_for_compaction = compact_gap(sc->order);
2559 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2560 	if (get_nr_swap_pages() > 0)
2561 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2562 	if (sc->nr_reclaimed < pages_for_compaction &&
2563 			inactive_lru_pages > pages_for_compaction)
2564 		return true;
2565 
2566 	/* If compaction would go ahead or the allocation would succeed, stop */
2567 	for (z = 0; z <= sc->reclaim_idx; z++) {
2568 		struct zone *zone = &pgdat->node_zones[z];
2569 		if (!managed_zone(zone))
2570 			continue;
2571 
2572 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2573 		case COMPACT_SUCCESS:
2574 		case COMPACT_CONTINUE:
2575 			return false;
2576 		default:
2577 			/* check next zone */
2578 			;
2579 		}
2580 	}
2581 	return true;
2582 }
2583 
2584 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2585 {
2586 	struct reclaim_state *reclaim_state = current->reclaim_state;
2587 	unsigned long nr_reclaimed, nr_scanned;
2588 	bool reclaimable = false;
2589 
2590 	do {
2591 		struct mem_cgroup *root = sc->target_mem_cgroup;
2592 		struct mem_cgroup_reclaim_cookie reclaim = {
2593 			.pgdat = pgdat,
2594 			.priority = sc->priority,
2595 		};
2596 		unsigned long node_lru_pages = 0;
2597 		struct mem_cgroup *memcg;
2598 
2599 		nr_reclaimed = sc->nr_reclaimed;
2600 		nr_scanned = sc->nr_scanned;
2601 
2602 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2603 		do {
2604 			unsigned long lru_pages;
2605 			unsigned long reclaimed;
2606 			unsigned long scanned;
2607 
2608 			if (mem_cgroup_low(root, memcg)) {
2609 				if (!sc->memcg_low_reclaim) {
2610 					sc->memcg_low_skipped = 1;
2611 					continue;
2612 				}
2613 				mem_cgroup_event(memcg, MEMCG_LOW);
2614 			}
2615 
2616 			reclaimed = sc->nr_reclaimed;
2617 			scanned = sc->nr_scanned;
2618 
2619 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2620 			node_lru_pages += lru_pages;
2621 
2622 			if (memcg)
2623 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2624 					    memcg, sc->nr_scanned - scanned,
2625 					    lru_pages);
2626 
2627 			/* Record the group's reclaim efficiency */
2628 			vmpressure(sc->gfp_mask, memcg, false,
2629 				   sc->nr_scanned - scanned,
2630 				   sc->nr_reclaimed - reclaimed);
2631 
2632 			/*
2633 			 * Direct reclaim and kswapd have to scan all memory
2634 			 * cgroups to fulfill the overall scan target for the
2635 			 * node.
2636 			 *
2637 			 * Limit reclaim, on the other hand, only cares about
2638 			 * nr_to_reclaim pages to be reclaimed and it will
2639 			 * retry with decreasing priority if one round over the
2640 			 * whole hierarchy is not sufficient.
2641 			 */
2642 			if (!global_reclaim(sc) &&
2643 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2644 				mem_cgroup_iter_break(root, memcg);
2645 				break;
2646 			}
2647 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2648 
2649 		/*
2650 		 * Shrink the slab caches in the same proportion that
2651 		 * the eligible LRU pages were scanned.
2652 		 */
2653 		if (global_reclaim(sc))
2654 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2655 				    sc->nr_scanned - nr_scanned,
2656 				    node_lru_pages);
2657 
2658 		if (reclaim_state) {
2659 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2660 			reclaim_state->reclaimed_slab = 0;
2661 		}
2662 
2663 		/* Record the subtree's reclaim efficiency */
2664 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2665 			   sc->nr_scanned - nr_scanned,
2666 			   sc->nr_reclaimed - nr_reclaimed);
2667 
2668 		if (sc->nr_reclaimed - nr_reclaimed)
2669 			reclaimable = true;
2670 
2671 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2672 					 sc->nr_scanned - nr_scanned, sc));
2673 
2674 	/*
2675 	 * Kswapd gives up on balancing particular nodes after too
2676 	 * many failures to reclaim anything from them and goes to
2677 	 * sleep. On reclaim progress, reset the failure counter. A
2678 	 * successful direct reclaim run will revive a dormant kswapd.
2679 	 */
2680 	if (reclaimable)
2681 		pgdat->kswapd_failures = 0;
2682 
2683 	return reclaimable;
2684 }
2685 
2686 /*
2687  * Returns true if compaction should go ahead for a costly-order request, or
2688  * the allocation would already succeed without compaction. Return false if we
2689  * should reclaim first.
2690  */
2691 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2692 {
2693 	unsigned long watermark;
2694 	enum compact_result suitable;
2695 
2696 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2697 	if (suitable == COMPACT_SUCCESS)
2698 		/* Allocation should succeed already. Don't reclaim. */
2699 		return true;
2700 	if (suitable == COMPACT_SKIPPED)
2701 		/* Compaction cannot yet proceed. Do reclaim. */
2702 		return false;
2703 
2704 	/*
2705 	 * Compaction is already possible, but it takes time to run and there
2706 	 * are potentially other callers using the pages just freed. So proceed
2707 	 * with reclaim to make a buffer of free pages available to give
2708 	 * compaction a reasonable chance of completing and allocating the page.
2709 	 * Note that we won't actually reclaim the whole buffer in one attempt
2710 	 * as the target watermark in should_continue_reclaim() is lower. But if
2711 	 * we are already above the high+gap watermark, don't reclaim at all.
2712 	 */
2713 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2714 
2715 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2716 }
2717 
2718 /*
2719  * This is the direct reclaim path, for page-allocating processes.  We only
2720  * try to reclaim pages from zones which will satisfy the caller's allocation
2721  * request.
2722  *
2723  * If a zone is deemed to be full of pinned pages then just give it a light
2724  * scan then give up on it.
2725  */
2726 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2727 {
2728 	struct zoneref *z;
2729 	struct zone *zone;
2730 	unsigned long nr_soft_reclaimed;
2731 	unsigned long nr_soft_scanned;
2732 	gfp_t orig_mask;
2733 	pg_data_t *last_pgdat = NULL;
2734 
2735 	/*
2736 	 * If the number of buffer_heads in the machine exceeds the maximum
2737 	 * allowed level, force direct reclaim to scan the highmem zone as
2738 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2739 	 */
2740 	orig_mask = sc->gfp_mask;
2741 	if (buffer_heads_over_limit) {
2742 		sc->gfp_mask |= __GFP_HIGHMEM;
2743 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2744 	}
2745 
2746 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2747 					sc->reclaim_idx, sc->nodemask) {
2748 		/*
2749 		 * Take care memory controller reclaiming has small influence
2750 		 * to global LRU.
2751 		 */
2752 		if (global_reclaim(sc)) {
2753 			if (!cpuset_zone_allowed(zone,
2754 						 GFP_KERNEL | __GFP_HARDWALL))
2755 				continue;
2756 
2757 			/*
2758 			 * If we already have plenty of memory free for
2759 			 * compaction in this zone, don't free any more.
2760 			 * Even though compaction is invoked for any
2761 			 * non-zero order, only frequent costly order
2762 			 * reclamation is disruptive enough to become a
2763 			 * noticeable problem, like transparent huge
2764 			 * page allocations.
2765 			 */
2766 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2767 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2768 			    compaction_ready(zone, sc)) {
2769 				sc->compaction_ready = true;
2770 				continue;
2771 			}
2772 
2773 			/*
2774 			 * Shrink each node in the zonelist once. If the
2775 			 * zonelist is ordered by zone (not the default) then a
2776 			 * node may be shrunk multiple times but in that case
2777 			 * the user prefers lower zones being preserved.
2778 			 */
2779 			if (zone->zone_pgdat == last_pgdat)
2780 				continue;
2781 
2782 			/*
2783 			 * This steals pages from memory cgroups over softlimit
2784 			 * and returns the number of reclaimed pages and
2785 			 * scanned pages. This works for global memory pressure
2786 			 * and balancing, not for a memcg's limit.
2787 			 */
2788 			nr_soft_scanned = 0;
2789 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2790 						sc->order, sc->gfp_mask,
2791 						&nr_soft_scanned);
2792 			sc->nr_reclaimed += nr_soft_reclaimed;
2793 			sc->nr_scanned += nr_soft_scanned;
2794 			/* need some check for avoid more shrink_zone() */
2795 		}
2796 
2797 		/* See comment about same check for global reclaim above */
2798 		if (zone->zone_pgdat == last_pgdat)
2799 			continue;
2800 		last_pgdat = zone->zone_pgdat;
2801 		shrink_node(zone->zone_pgdat, sc);
2802 	}
2803 
2804 	/*
2805 	 * Restore to original mask to avoid the impact on the caller if we
2806 	 * promoted it to __GFP_HIGHMEM.
2807 	 */
2808 	sc->gfp_mask = orig_mask;
2809 }
2810 
2811 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2812 {
2813 	struct mem_cgroup *memcg;
2814 
2815 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2816 	do {
2817 		unsigned long refaults;
2818 		struct lruvec *lruvec;
2819 
2820 		if (memcg)
2821 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2822 		else
2823 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2824 
2825 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2826 		lruvec->refaults = refaults;
2827 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2828 }
2829 
2830 /*
2831  * This is the main entry point to direct page reclaim.
2832  *
2833  * If a full scan of the inactive list fails to free enough memory then we
2834  * are "out of memory" and something needs to be killed.
2835  *
2836  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2837  * high - the zone may be full of dirty or under-writeback pages, which this
2838  * caller can't do much about.  We kick the writeback threads and take explicit
2839  * naps in the hope that some of these pages can be written.  But if the
2840  * allocating task holds filesystem locks which prevent writeout this might not
2841  * work, and the allocation attempt will fail.
2842  *
2843  * returns:	0, if no pages reclaimed
2844  * 		else, the number of pages reclaimed
2845  */
2846 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2847 					  struct scan_control *sc)
2848 {
2849 	int initial_priority = sc->priority;
2850 	pg_data_t *last_pgdat;
2851 	struct zoneref *z;
2852 	struct zone *zone;
2853 retry:
2854 	delayacct_freepages_start();
2855 
2856 	if (global_reclaim(sc))
2857 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2858 
2859 	do {
2860 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2861 				sc->priority);
2862 		sc->nr_scanned = 0;
2863 		shrink_zones(zonelist, sc);
2864 
2865 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2866 			break;
2867 
2868 		if (sc->compaction_ready)
2869 			break;
2870 
2871 		/*
2872 		 * If we're getting trouble reclaiming, start doing
2873 		 * writepage even in laptop mode.
2874 		 */
2875 		if (sc->priority < DEF_PRIORITY - 2)
2876 			sc->may_writepage = 1;
2877 	} while (--sc->priority >= 0);
2878 
2879 	last_pgdat = NULL;
2880 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2881 					sc->nodemask) {
2882 		if (zone->zone_pgdat == last_pgdat)
2883 			continue;
2884 		last_pgdat = zone->zone_pgdat;
2885 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2886 	}
2887 
2888 	delayacct_freepages_end();
2889 
2890 	if (sc->nr_reclaimed)
2891 		return sc->nr_reclaimed;
2892 
2893 	/* Aborted reclaim to try compaction? don't OOM, then */
2894 	if (sc->compaction_ready)
2895 		return 1;
2896 
2897 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2898 	if (sc->memcg_low_skipped) {
2899 		sc->priority = initial_priority;
2900 		sc->memcg_low_reclaim = 1;
2901 		sc->memcg_low_skipped = 0;
2902 		goto retry;
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 static bool allow_direct_reclaim(pg_data_t *pgdat)
2909 {
2910 	struct zone *zone;
2911 	unsigned long pfmemalloc_reserve = 0;
2912 	unsigned long free_pages = 0;
2913 	int i;
2914 	bool wmark_ok;
2915 
2916 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2917 		return true;
2918 
2919 	for (i = 0; i <= ZONE_NORMAL; i++) {
2920 		zone = &pgdat->node_zones[i];
2921 		if (!managed_zone(zone))
2922 			continue;
2923 
2924 		if (!zone_reclaimable_pages(zone))
2925 			continue;
2926 
2927 		pfmemalloc_reserve += min_wmark_pages(zone);
2928 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2929 	}
2930 
2931 	/* If there are no reserves (unexpected config) then do not throttle */
2932 	if (!pfmemalloc_reserve)
2933 		return true;
2934 
2935 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2936 
2937 	/* kswapd must be awake if processes are being throttled */
2938 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2939 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2940 						(enum zone_type)ZONE_NORMAL);
2941 		wake_up_interruptible(&pgdat->kswapd_wait);
2942 	}
2943 
2944 	return wmark_ok;
2945 }
2946 
2947 /*
2948  * Throttle direct reclaimers if backing storage is backed by the network
2949  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2950  * depleted. kswapd will continue to make progress and wake the processes
2951  * when the low watermark is reached.
2952  *
2953  * Returns true if a fatal signal was delivered during throttling. If this
2954  * happens, the page allocator should not consider triggering the OOM killer.
2955  */
2956 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2957 					nodemask_t *nodemask)
2958 {
2959 	struct zoneref *z;
2960 	struct zone *zone;
2961 	pg_data_t *pgdat = NULL;
2962 
2963 	/*
2964 	 * Kernel threads should not be throttled as they may be indirectly
2965 	 * responsible for cleaning pages necessary for reclaim to make forward
2966 	 * progress. kjournald for example may enter direct reclaim while
2967 	 * committing a transaction where throttling it could forcing other
2968 	 * processes to block on log_wait_commit().
2969 	 */
2970 	if (current->flags & PF_KTHREAD)
2971 		goto out;
2972 
2973 	/*
2974 	 * If a fatal signal is pending, this process should not throttle.
2975 	 * It should return quickly so it can exit and free its memory
2976 	 */
2977 	if (fatal_signal_pending(current))
2978 		goto out;
2979 
2980 	/*
2981 	 * Check if the pfmemalloc reserves are ok by finding the first node
2982 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2983 	 * GFP_KERNEL will be required for allocating network buffers when
2984 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2985 	 *
2986 	 * Throttling is based on the first usable node and throttled processes
2987 	 * wait on a queue until kswapd makes progress and wakes them. There
2988 	 * is an affinity then between processes waking up and where reclaim
2989 	 * progress has been made assuming the process wakes on the same node.
2990 	 * More importantly, processes running on remote nodes will not compete
2991 	 * for remote pfmemalloc reserves and processes on different nodes
2992 	 * should make reasonable progress.
2993 	 */
2994 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2995 					gfp_zone(gfp_mask), nodemask) {
2996 		if (zone_idx(zone) > ZONE_NORMAL)
2997 			continue;
2998 
2999 		/* Throttle based on the first usable node */
3000 		pgdat = zone->zone_pgdat;
3001 		if (allow_direct_reclaim(pgdat))
3002 			goto out;
3003 		break;
3004 	}
3005 
3006 	/* If no zone was usable by the allocation flags then do not throttle */
3007 	if (!pgdat)
3008 		goto out;
3009 
3010 	/* Account for the throttling */
3011 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3012 
3013 	/*
3014 	 * If the caller cannot enter the filesystem, it's possible that it
3015 	 * is due to the caller holding an FS lock or performing a journal
3016 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3017 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3018 	 * blocked waiting on the same lock. Instead, throttle for up to a
3019 	 * second before continuing.
3020 	 */
3021 	if (!(gfp_mask & __GFP_FS)) {
3022 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3023 			allow_direct_reclaim(pgdat), HZ);
3024 
3025 		goto check_pending;
3026 	}
3027 
3028 	/* Throttle until kswapd wakes the process */
3029 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3030 		allow_direct_reclaim(pgdat));
3031 
3032 check_pending:
3033 	if (fatal_signal_pending(current))
3034 		return true;
3035 
3036 out:
3037 	return false;
3038 }
3039 
3040 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3041 				gfp_t gfp_mask, nodemask_t *nodemask)
3042 {
3043 	unsigned long nr_reclaimed;
3044 	struct scan_control sc = {
3045 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3046 		.gfp_mask = current_gfp_context(gfp_mask),
3047 		.reclaim_idx = gfp_zone(gfp_mask),
3048 		.order = order,
3049 		.nodemask = nodemask,
3050 		.priority = DEF_PRIORITY,
3051 		.may_writepage = !laptop_mode,
3052 		.may_unmap = 1,
3053 		.may_swap = 1,
3054 	};
3055 
3056 	/*
3057 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3058 	 * 1 is returned so that the page allocator does not OOM kill at this
3059 	 * point.
3060 	 */
3061 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3062 		return 1;
3063 
3064 	trace_mm_vmscan_direct_reclaim_begin(order,
3065 				sc.may_writepage,
3066 				sc.gfp_mask,
3067 				sc.reclaim_idx);
3068 
3069 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3070 
3071 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3072 
3073 	return nr_reclaimed;
3074 }
3075 
3076 #ifdef CONFIG_MEMCG
3077 
3078 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3079 						gfp_t gfp_mask, bool noswap,
3080 						pg_data_t *pgdat,
3081 						unsigned long *nr_scanned)
3082 {
3083 	struct scan_control sc = {
3084 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3085 		.target_mem_cgroup = memcg,
3086 		.may_writepage = !laptop_mode,
3087 		.may_unmap = 1,
3088 		.reclaim_idx = MAX_NR_ZONES - 1,
3089 		.may_swap = !noswap,
3090 	};
3091 	unsigned long lru_pages;
3092 
3093 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3094 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3095 
3096 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3097 						      sc.may_writepage,
3098 						      sc.gfp_mask,
3099 						      sc.reclaim_idx);
3100 
3101 	/*
3102 	 * NOTE: Although we can get the priority field, using it
3103 	 * here is not a good idea, since it limits the pages we can scan.
3104 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3105 	 * will pick up pages from other mem cgroup's as well. We hack
3106 	 * the priority and make it zero.
3107 	 */
3108 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3109 
3110 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3111 
3112 	*nr_scanned = sc.nr_scanned;
3113 	return sc.nr_reclaimed;
3114 }
3115 
3116 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3117 					   unsigned long nr_pages,
3118 					   gfp_t gfp_mask,
3119 					   bool may_swap)
3120 {
3121 	struct zonelist *zonelist;
3122 	unsigned long nr_reclaimed;
3123 	int nid;
3124 	unsigned int noreclaim_flag;
3125 	struct scan_control sc = {
3126 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3127 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3128 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3129 		.reclaim_idx = MAX_NR_ZONES - 1,
3130 		.target_mem_cgroup = memcg,
3131 		.priority = DEF_PRIORITY,
3132 		.may_writepage = !laptop_mode,
3133 		.may_unmap = 1,
3134 		.may_swap = may_swap,
3135 	};
3136 
3137 	/*
3138 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3139 	 * take care of from where we get pages. So the node where we start the
3140 	 * scan does not need to be the current node.
3141 	 */
3142 	nid = mem_cgroup_select_victim_node(memcg);
3143 
3144 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3145 
3146 	trace_mm_vmscan_memcg_reclaim_begin(0,
3147 					    sc.may_writepage,
3148 					    sc.gfp_mask,
3149 					    sc.reclaim_idx);
3150 
3151 	noreclaim_flag = memalloc_noreclaim_save();
3152 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3153 	memalloc_noreclaim_restore(noreclaim_flag);
3154 
3155 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3156 
3157 	return nr_reclaimed;
3158 }
3159 #endif
3160 
3161 static void age_active_anon(struct pglist_data *pgdat,
3162 				struct scan_control *sc)
3163 {
3164 	struct mem_cgroup *memcg;
3165 
3166 	if (!total_swap_pages)
3167 		return;
3168 
3169 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3170 	do {
3171 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3172 
3173 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3174 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3175 					   sc, LRU_ACTIVE_ANON);
3176 
3177 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3178 	} while (memcg);
3179 }
3180 
3181 /*
3182  * Returns true if there is an eligible zone balanced for the request order
3183  * and classzone_idx
3184  */
3185 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3186 {
3187 	int i;
3188 	unsigned long mark = -1;
3189 	struct zone *zone;
3190 
3191 	for (i = 0; i <= classzone_idx; i++) {
3192 		zone = pgdat->node_zones + i;
3193 
3194 		if (!managed_zone(zone))
3195 			continue;
3196 
3197 		mark = high_wmark_pages(zone);
3198 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3199 			return true;
3200 	}
3201 
3202 	/*
3203 	 * If a node has no populated zone within classzone_idx, it does not
3204 	 * need balancing by definition. This can happen if a zone-restricted
3205 	 * allocation tries to wake a remote kswapd.
3206 	 */
3207 	if (mark == -1)
3208 		return true;
3209 
3210 	return false;
3211 }
3212 
3213 /* Clear pgdat state for congested, dirty or under writeback. */
3214 static void clear_pgdat_congested(pg_data_t *pgdat)
3215 {
3216 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3217 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3218 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3219 }
3220 
3221 /*
3222  * Prepare kswapd for sleeping. This verifies that there are no processes
3223  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3224  *
3225  * Returns true if kswapd is ready to sleep
3226  */
3227 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3228 {
3229 	/*
3230 	 * The throttled processes are normally woken up in balance_pgdat() as
3231 	 * soon as allow_direct_reclaim() is true. But there is a potential
3232 	 * race between when kswapd checks the watermarks and a process gets
3233 	 * throttled. There is also a potential race if processes get
3234 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3235 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3236 	 * the wake up checks. If kswapd is going to sleep, no process should
3237 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3238 	 * the wake up is premature, processes will wake kswapd and get
3239 	 * throttled again. The difference from wake ups in balance_pgdat() is
3240 	 * that here we are under prepare_to_wait().
3241 	 */
3242 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3243 		wake_up_all(&pgdat->pfmemalloc_wait);
3244 
3245 	/* Hopeless node, leave it to direct reclaim */
3246 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3247 		return true;
3248 
3249 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3250 		clear_pgdat_congested(pgdat);
3251 		return true;
3252 	}
3253 
3254 	return false;
3255 }
3256 
3257 /*
3258  * kswapd shrinks a node of pages that are at or below the highest usable
3259  * zone that is currently unbalanced.
3260  *
3261  * Returns true if kswapd scanned at least the requested number of pages to
3262  * reclaim or if the lack of progress was due to pages under writeback.
3263  * This is used to determine if the scanning priority needs to be raised.
3264  */
3265 static bool kswapd_shrink_node(pg_data_t *pgdat,
3266 			       struct scan_control *sc)
3267 {
3268 	struct zone *zone;
3269 	int z;
3270 
3271 	/* Reclaim a number of pages proportional to the number of zones */
3272 	sc->nr_to_reclaim = 0;
3273 	for (z = 0; z <= sc->reclaim_idx; z++) {
3274 		zone = pgdat->node_zones + z;
3275 		if (!managed_zone(zone))
3276 			continue;
3277 
3278 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3279 	}
3280 
3281 	/*
3282 	 * Historically care was taken to put equal pressure on all zones but
3283 	 * now pressure is applied based on node LRU order.
3284 	 */
3285 	shrink_node(pgdat, sc);
3286 
3287 	/*
3288 	 * Fragmentation may mean that the system cannot be rebalanced for
3289 	 * high-order allocations. If twice the allocation size has been
3290 	 * reclaimed then recheck watermarks only at order-0 to prevent
3291 	 * excessive reclaim. Assume that a process requested a high-order
3292 	 * can direct reclaim/compact.
3293 	 */
3294 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3295 		sc->order = 0;
3296 
3297 	return sc->nr_scanned >= sc->nr_to_reclaim;
3298 }
3299 
3300 /*
3301  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3302  * that are eligible for use by the caller until at least one zone is
3303  * balanced.
3304  *
3305  * Returns the order kswapd finished reclaiming at.
3306  *
3307  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3308  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3309  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3310  * or lower is eligible for reclaim until at least one usable zone is
3311  * balanced.
3312  */
3313 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3314 {
3315 	int i;
3316 	unsigned long nr_soft_reclaimed;
3317 	unsigned long nr_soft_scanned;
3318 	struct zone *zone;
3319 	struct scan_control sc = {
3320 		.gfp_mask = GFP_KERNEL,
3321 		.order = order,
3322 		.priority = DEF_PRIORITY,
3323 		.may_writepage = !laptop_mode,
3324 		.may_unmap = 1,
3325 		.may_swap = 1,
3326 	};
3327 	count_vm_event(PAGEOUTRUN);
3328 
3329 	do {
3330 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3331 		bool raise_priority = true;
3332 
3333 		sc.reclaim_idx = classzone_idx;
3334 
3335 		/*
3336 		 * If the number of buffer_heads exceeds the maximum allowed
3337 		 * then consider reclaiming from all zones. This has a dual
3338 		 * purpose -- on 64-bit systems it is expected that
3339 		 * buffer_heads are stripped during active rotation. On 32-bit
3340 		 * systems, highmem pages can pin lowmem memory and shrinking
3341 		 * buffers can relieve lowmem pressure. Reclaim may still not
3342 		 * go ahead if all eligible zones for the original allocation
3343 		 * request are balanced to avoid excessive reclaim from kswapd.
3344 		 */
3345 		if (buffer_heads_over_limit) {
3346 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3347 				zone = pgdat->node_zones + i;
3348 				if (!managed_zone(zone))
3349 					continue;
3350 
3351 				sc.reclaim_idx = i;
3352 				break;
3353 			}
3354 		}
3355 
3356 		/*
3357 		 * Only reclaim if there are no eligible zones. Note that
3358 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3359 		 * have adjusted it.
3360 		 */
3361 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3362 			goto out;
3363 
3364 		/*
3365 		 * Do some background aging of the anon list, to give
3366 		 * pages a chance to be referenced before reclaiming. All
3367 		 * pages are rotated regardless of classzone as this is
3368 		 * about consistent aging.
3369 		 */
3370 		age_active_anon(pgdat, &sc);
3371 
3372 		/*
3373 		 * If we're getting trouble reclaiming, start doing writepage
3374 		 * even in laptop mode.
3375 		 */
3376 		if (sc.priority < DEF_PRIORITY - 2)
3377 			sc.may_writepage = 1;
3378 
3379 		/* Call soft limit reclaim before calling shrink_node. */
3380 		sc.nr_scanned = 0;
3381 		nr_soft_scanned = 0;
3382 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3383 						sc.gfp_mask, &nr_soft_scanned);
3384 		sc.nr_reclaimed += nr_soft_reclaimed;
3385 
3386 		/*
3387 		 * There should be no need to raise the scanning priority if
3388 		 * enough pages are already being scanned that that high
3389 		 * watermark would be met at 100% efficiency.
3390 		 */
3391 		if (kswapd_shrink_node(pgdat, &sc))
3392 			raise_priority = false;
3393 
3394 		/*
3395 		 * If the low watermark is met there is no need for processes
3396 		 * to be throttled on pfmemalloc_wait as they should not be
3397 		 * able to safely make forward progress. Wake them
3398 		 */
3399 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3400 				allow_direct_reclaim(pgdat))
3401 			wake_up_all(&pgdat->pfmemalloc_wait);
3402 
3403 		/* Check if kswapd should be suspending */
3404 		if (try_to_freeze() || kthread_should_stop())
3405 			break;
3406 
3407 		/*
3408 		 * Raise priority if scanning rate is too low or there was no
3409 		 * progress in reclaiming pages
3410 		 */
3411 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3412 		if (raise_priority || !nr_reclaimed)
3413 			sc.priority--;
3414 	} while (sc.priority >= 1);
3415 
3416 	if (!sc.nr_reclaimed)
3417 		pgdat->kswapd_failures++;
3418 
3419 out:
3420 	snapshot_refaults(NULL, pgdat);
3421 	/*
3422 	 * Return the order kswapd stopped reclaiming at as
3423 	 * prepare_kswapd_sleep() takes it into account. If another caller
3424 	 * entered the allocator slow path while kswapd was awake, order will
3425 	 * remain at the higher level.
3426 	 */
3427 	return sc.order;
3428 }
3429 
3430 /*
3431  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3432  * allocation request woke kswapd for. When kswapd has not woken recently,
3433  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3434  * given classzone and returns it or the highest classzone index kswapd
3435  * was recently woke for.
3436  */
3437 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3438 					   enum zone_type classzone_idx)
3439 {
3440 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3441 		return classzone_idx;
3442 
3443 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3444 }
3445 
3446 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3447 				unsigned int classzone_idx)
3448 {
3449 	long remaining = 0;
3450 	DEFINE_WAIT(wait);
3451 
3452 	if (freezing(current) || kthread_should_stop())
3453 		return;
3454 
3455 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3456 
3457 	/*
3458 	 * Try to sleep for a short interval. Note that kcompactd will only be
3459 	 * woken if it is possible to sleep for a short interval. This is
3460 	 * deliberate on the assumption that if reclaim cannot keep an
3461 	 * eligible zone balanced that it's also unlikely that compaction will
3462 	 * succeed.
3463 	 */
3464 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3465 		/*
3466 		 * Compaction records what page blocks it recently failed to
3467 		 * isolate pages from and skips them in the future scanning.
3468 		 * When kswapd is going to sleep, it is reasonable to assume
3469 		 * that pages and compaction may succeed so reset the cache.
3470 		 */
3471 		reset_isolation_suitable(pgdat);
3472 
3473 		/*
3474 		 * We have freed the memory, now we should compact it to make
3475 		 * allocation of the requested order possible.
3476 		 */
3477 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3478 
3479 		remaining = schedule_timeout(HZ/10);
3480 
3481 		/*
3482 		 * If woken prematurely then reset kswapd_classzone_idx and
3483 		 * order. The values will either be from a wakeup request or
3484 		 * the previous request that slept prematurely.
3485 		 */
3486 		if (remaining) {
3487 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3488 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3489 		}
3490 
3491 		finish_wait(&pgdat->kswapd_wait, &wait);
3492 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3493 	}
3494 
3495 	/*
3496 	 * After a short sleep, check if it was a premature sleep. If not, then
3497 	 * go fully to sleep until explicitly woken up.
3498 	 */
3499 	if (!remaining &&
3500 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3501 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3502 
3503 		/*
3504 		 * vmstat counters are not perfectly accurate and the estimated
3505 		 * value for counters such as NR_FREE_PAGES can deviate from the
3506 		 * true value by nr_online_cpus * threshold. To avoid the zone
3507 		 * watermarks being breached while under pressure, we reduce the
3508 		 * per-cpu vmstat threshold while kswapd is awake and restore
3509 		 * them before going back to sleep.
3510 		 */
3511 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3512 
3513 		if (!kthread_should_stop())
3514 			schedule();
3515 
3516 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3517 	} else {
3518 		if (remaining)
3519 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3520 		else
3521 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3522 	}
3523 	finish_wait(&pgdat->kswapd_wait, &wait);
3524 }
3525 
3526 /*
3527  * The background pageout daemon, started as a kernel thread
3528  * from the init process.
3529  *
3530  * This basically trickles out pages so that we have _some_
3531  * free memory available even if there is no other activity
3532  * that frees anything up. This is needed for things like routing
3533  * etc, where we otherwise might have all activity going on in
3534  * asynchronous contexts that cannot page things out.
3535  *
3536  * If there are applications that are active memory-allocators
3537  * (most normal use), this basically shouldn't matter.
3538  */
3539 static int kswapd(void *p)
3540 {
3541 	unsigned int alloc_order, reclaim_order;
3542 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3543 	pg_data_t *pgdat = (pg_data_t*)p;
3544 	struct task_struct *tsk = current;
3545 
3546 	struct reclaim_state reclaim_state = {
3547 		.reclaimed_slab = 0,
3548 	};
3549 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3550 
3551 	if (!cpumask_empty(cpumask))
3552 		set_cpus_allowed_ptr(tsk, cpumask);
3553 	current->reclaim_state = &reclaim_state;
3554 
3555 	/*
3556 	 * Tell the memory management that we're a "memory allocator",
3557 	 * and that if we need more memory we should get access to it
3558 	 * regardless (see "__alloc_pages()"). "kswapd" should
3559 	 * never get caught in the normal page freeing logic.
3560 	 *
3561 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3562 	 * you need a small amount of memory in order to be able to
3563 	 * page out something else, and this flag essentially protects
3564 	 * us from recursively trying to free more memory as we're
3565 	 * trying to free the first piece of memory in the first place).
3566 	 */
3567 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3568 	set_freezable();
3569 
3570 	pgdat->kswapd_order = 0;
3571 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3572 	for ( ; ; ) {
3573 		bool ret;
3574 
3575 		alloc_order = reclaim_order = pgdat->kswapd_order;
3576 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3577 
3578 kswapd_try_sleep:
3579 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3580 					classzone_idx);
3581 
3582 		/* Read the new order and classzone_idx */
3583 		alloc_order = reclaim_order = pgdat->kswapd_order;
3584 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3585 		pgdat->kswapd_order = 0;
3586 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3587 
3588 		ret = try_to_freeze();
3589 		if (kthread_should_stop())
3590 			break;
3591 
3592 		/*
3593 		 * We can speed up thawing tasks if we don't call balance_pgdat
3594 		 * after returning from the refrigerator
3595 		 */
3596 		if (ret)
3597 			continue;
3598 
3599 		/*
3600 		 * Reclaim begins at the requested order but if a high-order
3601 		 * reclaim fails then kswapd falls back to reclaiming for
3602 		 * order-0. If that happens, kswapd will consider sleeping
3603 		 * for the order it finished reclaiming at (reclaim_order)
3604 		 * but kcompactd is woken to compact for the original
3605 		 * request (alloc_order).
3606 		 */
3607 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3608 						alloc_order);
3609 		fs_reclaim_acquire(GFP_KERNEL);
3610 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3611 		fs_reclaim_release(GFP_KERNEL);
3612 		if (reclaim_order < alloc_order)
3613 			goto kswapd_try_sleep;
3614 	}
3615 
3616 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3617 	current->reclaim_state = NULL;
3618 
3619 	return 0;
3620 }
3621 
3622 /*
3623  * A zone is low on free memory, so wake its kswapd task to service it.
3624  */
3625 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3626 {
3627 	pg_data_t *pgdat;
3628 
3629 	if (!managed_zone(zone))
3630 		return;
3631 
3632 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3633 		return;
3634 	pgdat = zone->zone_pgdat;
3635 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3636 							   classzone_idx);
3637 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3638 	if (!waitqueue_active(&pgdat->kswapd_wait))
3639 		return;
3640 
3641 	/* Hopeless node, leave it to direct reclaim */
3642 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3643 		return;
3644 
3645 	if (pgdat_balanced(pgdat, order, classzone_idx))
3646 		return;
3647 
3648 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3649 	wake_up_interruptible(&pgdat->kswapd_wait);
3650 }
3651 
3652 #ifdef CONFIG_HIBERNATION
3653 /*
3654  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3655  * freed pages.
3656  *
3657  * Rather than trying to age LRUs the aim is to preserve the overall
3658  * LRU order by reclaiming preferentially
3659  * inactive > active > active referenced > active mapped
3660  */
3661 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3662 {
3663 	struct reclaim_state reclaim_state;
3664 	struct scan_control sc = {
3665 		.nr_to_reclaim = nr_to_reclaim,
3666 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3667 		.reclaim_idx = MAX_NR_ZONES - 1,
3668 		.priority = DEF_PRIORITY,
3669 		.may_writepage = 1,
3670 		.may_unmap = 1,
3671 		.may_swap = 1,
3672 		.hibernation_mode = 1,
3673 	};
3674 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3675 	struct task_struct *p = current;
3676 	unsigned long nr_reclaimed;
3677 	unsigned int noreclaim_flag;
3678 
3679 	noreclaim_flag = memalloc_noreclaim_save();
3680 	fs_reclaim_acquire(sc.gfp_mask);
3681 	reclaim_state.reclaimed_slab = 0;
3682 	p->reclaim_state = &reclaim_state;
3683 
3684 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3685 
3686 	p->reclaim_state = NULL;
3687 	fs_reclaim_release(sc.gfp_mask);
3688 	memalloc_noreclaim_restore(noreclaim_flag);
3689 
3690 	return nr_reclaimed;
3691 }
3692 #endif /* CONFIG_HIBERNATION */
3693 
3694 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3695    not required for correctness.  So if the last cpu in a node goes
3696    away, we get changed to run anywhere: as the first one comes back,
3697    restore their cpu bindings. */
3698 static int kswapd_cpu_online(unsigned int cpu)
3699 {
3700 	int nid;
3701 
3702 	for_each_node_state(nid, N_MEMORY) {
3703 		pg_data_t *pgdat = NODE_DATA(nid);
3704 		const struct cpumask *mask;
3705 
3706 		mask = cpumask_of_node(pgdat->node_id);
3707 
3708 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3709 			/* One of our CPUs online: restore mask */
3710 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3711 	}
3712 	return 0;
3713 }
3714 
3715 /*
3716  * This kswapd start function will be called by init and node-hot-add.
3717  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3718  */
3719 int kswapd_run(int nid)
3720 {
3721 	pg_data_t *pgdat = NODE_DATA(nid);
3722 	int ret = 0;
3723 
3724 	if (pgdat->kswapd)
3725 		return 0;
3726 
3727 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3728 	if (IS_ERR(pgdat->kswapd)) {
3729 		/* failure at boot is fatal */
3730 		BUG_ON(system_state < SYSTEM_RUNNING);
3731 		pr_err("Failed to start kswapd on node %d\n", nid);
3732 		ret = PTR_ERR(pgdat->kswapd);
3733 		pgdat->kswapd = NULL;
3734 	}
3735 	return ret;
3736 }
3737 
3738 /*
3739  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3740  * hold mem_hotplug_begin/end().
3741  */
3742 void kswapd_stop(int nid)
3743 {
3744 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3745 
3746 	if (kswapd) {
3747 		kthread_stop(kswapd);
3748 		NODE_DATA(nid)->kswapd = NULL;
3749 	}
3750 }
3751 
3752 static int __init kswapd_init(void)
3753 {
3754 	int nid, ret;
3755 
3756 	swap_setup();
3757 	for_each_node_state(nid, N_MEMORY)
3758  		kswapd_run(nid);
3759 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3760 					"mm/vmscan:online", kswapd_cpu_online,
3761 					NULL);
3762 	WARN_ON(ret < 0);
3763 	return 0;
3764 }
3765 
3766 module_init(kswapd_init)
3767 
3768 #ifdef CONFIG_NUMA
3769 /*
3770  * Node reclaim mode
3771  *
3772  * If non-zero call node_reclaim when the number of free pages falls below
3773  * the watermarks.
3774  */
3775 int node_reclaim_mode __read_mostly;
3776 
3777 #define RECLAIM_OFF 0
3778 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3779 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3780 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3781 
3782 /*
3783  * Priority for NODE_RECLAIM. This determines the fraction of pages
3784  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3785  * a zone.
3786  */
3787 #define NODE_RECLAIM_PRIORITY 4
3788 
3789 /*
3790  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3791  * occur.
3792  */
3793 int sysctl_min_unmapped_ratio = 1;
3794 
3795 /*
3796  * If the number of slab pages in a zone grows beyond this percentage then
3797  * slab reclaim needs to occur.
3798  */
3799 int sysctl_min_slab_ratio = 5;
3800 
3801 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3802 {
3803 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3804 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3805 		node_page_state(pgdat, NR_ACTIVE_FILE);
3806 
3807 	/*
3808 	 * It's possible for there to be more file mapped pages than
3809 	 * accounted for by the pages on the file LRU lists because
3810 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3811 	 */
3812 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3813 }
3814 
3815 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3816 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3817 {
3818 	unsigned long nr_pagecache_reclaimable;
3819 	unsigned long delta = 0;
3820 
3821 	/*
3822 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3823 	 * potentially reclaimable. Otherwise, we have to worry about
3824 	 * pages like swapcache and node_unmapped_file_pages() provides
3825 	 * a better estimate
3826 	 */
3827 	if (node_reclaim_mode & RECLAIM_UNMAP)
3828 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3829 	else
3830 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3831 
3832 	/* If we can't clean pages, remove dirty pages from consideration */
3833 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3834 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3835 
3836 	/* Watch for any possible underflows due to delta */
3837 	if (unlikely(delta > nr_pagecache_reclaimable))
3838 		delta = nr_pagecache_reclaimable;
3839 
3840 	return nr_pagecache_reclaimable - delta;
3841 }
3842 
3843 /*
3844  * Try to free up some pages from this node through reclaim.
3845  */
3846 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3847 {
3848 	/* Minimum pages needed in order to stay on node */
3849 	const unsigned long nr_pages = 1 << order;
3850 	struct task_struct *p = current;
3851 	struct reclaim_state reclaim_state;
3852 	unsigned int noreclaim_flag;
3853 	struct scan_control sc = {
3854 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3855 		.gfp_mask = current_gfp_context(gfp_mask),
3856 		.order = order,
3857 		.priority = NODE_RECLAIM_PRIORITY,
3858 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3859 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3860 		.may_swap = 1,
3861 		.reclaim_idx = gfp_zone(gfp_mask),
3862 	};
3863 
3864 	cond_resched();
3865 	/*
3866 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3867 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3868 	 * and RECLAIM_UNMAP.
3869 	 */
3870 	noreclaim_flag = memalloc_noreclaim_save();
3871 	p->flags |= PF_SWAPWRITE;
3872 	fs_reclaim_acquire(sc.gfp_mask);
3873 	reclaim_state.reclaimed_slab = 0;
3874 	p->reclaim_state = &reclaim_state;
3875 
3876 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3877 		/*
3878 		 * Free memory by calling shrink zone with increasing
3879 		 * priorities until we have enough memory freed.
3880 		 */
3881 		do {
3882 			shrink_node(pgdat, &sc);
3883 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3884 	}
3885 
3886 	p->reclaim_state = NULL;
3887 	fs_reclaim_release(gfp_mask);
3888 	current->flags &= ~PF_SWAPWRITE;
3889 	memalloc_noreclaim_restore(noreclaim_flag);
3890 	return sc.nr_reclaimed >= nr_pages;
3891 }
3892 
3893 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3894 {
3895 	int ret;
3896 
3897 	/*
3898 	 * Node reclaim reclaims unmapped file backed pages and
3899 	 * slab pages if we are over the defined limits.
3900 	 *
3901 	 * A small portion of unmapped file backed pages is needed for
3902 	 * file I/O otherwise pages read by file I/O will be immediately
3903 	 * thrown out if the node is overallocated. So we do not reclaim
3904 	 * if less than a specified percentage of the node is used by
3905 	 * unmapped file backed pages.
3906 	 */
3907 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3908 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3909 		return NODE_RECLAIM_FULL;
3910 
3911 	/*
3912 	 * Do not scan if the allocation should not be delayed.
3913 	 */
3914 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3915 		return NODE_RECLAIM_NOSCAN;
3916 
3917 	/*
3918 	 * Only run node reclaim on the local node or on nodes that do not
3919 	 * have associated processors. This will favor the local processor
3920 	 * over remote processors and spread off node memory allocations
3921 	 * as wide as possible.
3922 	 */
3923 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3924 		return NODE_RECLAIM_NOSCAN;
3925 
3926 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3927 		return NODE_RECLAIM_NOSCAN;
3928 
3929 	ret = __node_reclaim(pgdat, gfp_mask, order);
3930 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3931 
3932 	if (!ret)
3933 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3934 
3935 	return ret;
3936 }
3937 #endif
3938 
3939 /*
3940  * page_evictable - test whether a page is evictable
3941  * @page: the page to test
3942  *
3943  * Test whether page is evictable--i.e., should be placed on active/inactive
3944  * lists vs unevictable list.
3945  *
3946  * Reasons page might not be evictable:
3947  * (1) page's mapping marked unevictable
3948  * (2) page is part of an mlocked VMA
3949  *
3950  */
3951 int page_evictable(struct page *page)
3952 {
3953 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3954 }
3955 
3956 #ifdef CONFIG_SHMEM
3957 /**
3958  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3959  * @pages:	array of pages to check
3960  * @nr_pages:	number of pages to check
3961  *
3962  * Checks pages for evictability and moves them to the appropriate lru list.
3963  *
3964  * This function is only used for SysV IPC SHM_UNLOCK.
3965  */
3966 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3967 {
3968 	struct lruvec *lruvec;
3969 	struct pglist_data *pgdat = NULL;
3970 	int pgscanned = 0;
3971 	int pgrescued = 0;
3972 	int i;
3973 
3974 	for (i = 0; i < nr_pages; i++) {
3975 		struct page *page = pages[i];
3976 		struct pglist_data *pagepgdat = page_pgdat(page);
3977 
3978 		pgscanned++;
3979 		if (pagepgdat != pgdat) {
3980 			if (pgdat)
3981 				spin_unlock_irq(&pgdat->lru_lock);
3982 			pgdat = pagepgdat;
3983 			spin_lock_irq(&pgdat->lru_lock);
3984 		}
3985 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3986 
3987 		if (!PageLRU(page) || !PageUnevictable(page))
3988 			continue;
3989 
3990 		if (page_evictable(page)) {
3991 			enum lru_list lru = page_lru_base_type(page);
3992 
3993 			VM_BUG_ON_PAGE(PageActive(page), page);
3994 			ClearPageUnevictable(page);
3995 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3996 			add_page_to_lru_list(page, lruvec, lru);
3997 			pgrescued++;
3998 		}
3999 	}
4000 
4001 	if (pgdat) {
4002 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4003 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4004 		spin_unlock_irq(&pgdat->lru_lock);
4005 	}
4006 }
4007 #endif /* CONFIG_SHMEM */
4008