xref: /openbmc/linux/mm/vmscan.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/*
92 	 * Cgroups are not reclaimed below their configured memory.low,
93 	 * unless we threaten to OOM. If any cgroups are skipped due to
94 	 * memory.low and nothing was reclaimed, go back for memory.low.
95 	 */
96 	unsigned int memcg_low_reclaim:1;
97 	unsigned int memcg_low_skipped:1;
98 
99 	unsigned int hibernation_mode:1;
100 
101 	/* One of the zones is ready for compaction */
102 	unsigned int compaction_ready:1;
103 
104 	/* Allocation order */
105 	s8 order;
106 
107 	/* Scan (total_size >> priority) pages at once */
108 	s8 priority;
109 
110 	/* The highest zone to isolate pages for reclaim from */
111 	s8 reclaim_idx;
112 
113 	/* This context's GFP mask */
114 	gfp_t gfp_mask;
115 
116 	/* Incremented by the number of inactive pages that were scanned */
117 	unsigned long nr_scanned;
118 
119 	/* Number of pages freed so far during a call to shrink_zones() */
120 	unsigned long nr_reclaimed;
121 
122 	struct {
123 		unsigned int dirty;
124 		unsigned int unqueued_dirty;
125 		unsigned int congested;
126 		unsigned int writeback;
127 		unsigned int immediate;
128 		unsigned int file_taken;
129 		unsigned int taken;
130 	} nr;
131 
132 	/* for recording the reclaimed slab by now */
133 	struct reclaim_state reclaim_state;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 static void set_task_reclaim_state(struct task_struct *task,
242 				   struct reclaim_state *rs)
243 {
244 	/* Check for an overwrite */
245 	WARN_ON_ONCE(rs && task->reclaim_state);
246 
247 	/* Check for the nulling of an already-nulled member */
248 	WARN_ON_ONCE(!rs && !task->reclaim_state);
249 
250 	task->reclaim_state = rs;
251 }
252 
253 #ifdef CONFIG_MEMCG
254 static bool global_reclaim(struct scan_control *sc)
255 {
256 	return !sc->target_mem_cgroup;
257 }
258 
259 /**
260  * sane_reclaim - is the usual dirty throttling mechanism operational?
261  * @sc: scan_control in question
262  *
263  * The normal page dirty throttling mechanism in balance_dirty_pages() is
264  * completely broken with the legacy memcg and direct stalling in
265  * shrink_page_list() is used for throttling instead, which lacks all the
266  * niceties such as fairness, adaptive pausing, bandwidth proportional
267  * allocation and configurability.
268  *
269  * This function tests whether the vmscan currently in progress can assume
270  * that the normal dirty throttling mechanism is operational.
271  */
272 static bool sane_reclaim(struct scan_control *sc)
273 {
274 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
275 
276 	if (!memcg)
277 		return true;
278 #ifdef CONFIG_CGROUP_WRITEBACK
279 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
280 		return true;
281 #endif
282 	return false;
283 }
284 
285 static void set_memcg_congestion(pg_data_t *pgdat,
286 				struct mem_cgroup *memcg,
287 				bool congested)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	if (!memcg)
292 		return;
293 
294 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 	WRITE_ONCE(mn->congested, congested);
296 }
297 
298 static bool memcg_congested(pg_data_t *pgdat,
299 			struct mem_cgroup *memcg)
300 {
301 	struct mem_cgroup_per_node *mn;
302 
303 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
304 	return READ_ONCE(mn->congested);
305 
306 }
307 #else
308 static bool global_reclaim(struct scan_control *sc)
309 {
310 	return true;
311 }
312 
313 static bool sane_reclaim(struct scan_control *sc)
314 {
315 	return true;
316 }
317 
318 static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 				struct mem_cgroup *memcg, bool congested)
320 {
321 }
322 
323 static inline bool memcg_congested(struct pglist_data *pgdat,
324 			struct mem_cgroup *memcg)
325 {
326 	return false;
327 
328 }
329 #endif
330 
331 /*
332  * This misses isolated pages which are not accounted for to save counters.
333  * As the data only determines if reclaim or compaction continues, it is
334  * not expected that isolated pages will be a dominating factor.
335  */
336 unsigned long zone_reclaimable_pages(struct zone *zone)
337 {
338 	unsigned long nr;
339 
340 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 	if (get_nr_swap_pages() > 0)
343 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345 
346 	return nr;
347 }
348 
349 /**
350  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
351  * @lruvec: lru vector
352  * @lru: lru to use
353  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354  */
355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356 {
357 	unsigned long lru_size;
358 	int zid;
359 
360 	if (!mem_cgroup_disabled())
361 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
362 	else
363 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
364 
365 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
366 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
367 		unsigned long size;
368 
369 		if (!managed_zone(zone))
370 			continue;
371 
372 		if (!mem_cgroup_disabled())
373 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 		else
375 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
376 				       NR_ZONE_LRU_BASE + lru);
377 		lru_size -= min(size, lru_size);
378 	}
379 
380 	return lru_size;
381 
382 }
383 
384 /*
385  * Add a shrinker callback to be called from the vm.
386  */
387 int prealloc_shrinker(struct shrinker *shrinker)
388 {
389 	unsigned int size = sizeof(*shrinker->nr_deferred);
390 
391 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
392 		size *= nr_node_ids;
393 
394 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
395 	if (!shrinker->nr_deferred)
396 		return -ENOMEM;
397 
398 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
399 		if (prealloc_memcg_shrinker(shrinker))
400 			goto free_deferred;
401 	}
402 
403 	return 0;
404 
405 free_deferred:
406 	kfree(shrinker->nr_deferred);
407 	shrinker->nr_deferred = NULL;
408 	return -ENOMEM;
409 }
410 
411 void free_prealloced_shrinker(struct shrinker *shrinker)
412 {
413 	if (!shrinker->nr_deferred)
414 		return;
415 
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		unregister_memcg_shrinker(shrinker);
418 
419 	kfree(shrinker->nr_deferred);
420 	shrinker->nr_deferred = NULL;
421 }
422 
423 void register_shrinker_prepared(struct shrinker *shrinker)
424 {
425 	down_write(&shrinker_rwsem);
426 	list_add_tail(&shrinker->list, &shrinker_list);
427 #ifdef CONFIG_MEMCG_KMEM
428 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
429 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
430 #endif
431 	up_write(&shrinker_rwsem);
432 }
433 
434 int register_shrinker(struct shrinker *shrinker)
435 {
436 	int err = prealloc_shrinker(shrinker);
437 
438 	if (err)
439 		return err;
440 	register_shrinker_prepared(shrinker);
441 	return 0;
442 }
443 EXPORT_SYMBOL(register_shrinker);
444 
445 /*
446  * Remove one
447  */
448 void unregister_shrinker(struct shrinker *shrinker)
449 {
450 	if (!shrinker->nr_deferred)
451 		return;
452 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
453 		unregister_memcg_shrinker(shrinker);
454 	down_write(&shrinker_rwsem);
455 	list_del(&shrinker->list);
456 	up_write(&shrinker_rwsem);
457 	kfree(shrinker->nr_deferred);
458 	shrinker->nr_deferred = NULL;
459 }
460 EXPORT_SYMBOL(unregister_shrinker);
461 
462 #define SHRINK_BATCH 128
463 
464 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
465 				    struct shrinker *shrinker, int priority)
466 {
467 	unsigned long freed = 0;
468 	unsigned long long delta;
469 	long total_scan;
470 	long freeable;
471 	long nr;
472 	long new_nr;
473 	int nid = shrinkctl->nid;
474 	long batch_size = shrinker->batch ? shrinker->batch
475 					  : SHRINK_BATCH;
476 	long scanned = 0, next_deferred;
477 
478 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 		nid = 0;
480 
481 	freeable = shrinker->count_objects(shrinker, shrinkctl);
482 	if (freeable == 0 || freeable == SHRINK_EMPTY)
483 		return freeable;
484 
485 	/*
486 	 * copy the current shrinker scan count into a local variable
487 	 * and zero it so that other concurrent shrinker invocations
488 	 * don't also do this scanning work.
489 	 */
490 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
491 
492 	total_scan = nr;
493 	if (shrinker->seeks) {
494 		delta = freeable >> priority;
495 		delta *= 4;
496 		do_div(delta, shrinker->seeks);
497 	} else {
498 		/*
499 		 * These objects don't require any IO to create. Trim
500 		 * them aggressively under memory pressure to keep
501 		 * them from causing refetches in the IO caches.
502 		 */
503 		delta = freeable / 2;
504 	}
505 
506 	total_scan += delta;
507 	if (total_scan < 0) {
508 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
509 		       shrinker->scan_objects, total_scan);
510 		total_scan = freeable;
511 		next_deferred = nr;
512 	} else
513 		next_deferred = total_scan;
514 
515 	/*
516 	 * We need to avoid excessive windup on filesystem shrinkers
517 	 * due to large numbers of GFP_NOFS allocations causing the
518 	 * shrinkers to return -1 all the time. This results in a large
519 	 * nr being built up so when a shrink that can do some work
520 	 * comes along it empties the entire cache due to nr >>>
521 	 * freeable. This is bad for sustaining a working set in
522 	 * memory.
523 	 *
524 	 * Hence only allow the shrinker to scan the entire cache when
525 	 * a large delta change is calculated directly.
526 	 */
527 	if (delta < freeable / 4)
528 		total_scan = min(total_scan, freeable / 2);
529 
530 	/*
531 	 * Avoid risking looping forever due to too large nr value:
532 	 * never try to free more than twice the estimate number of
533 	 * freeable entries.
534 	 */
535 	if (total_scan > freeable * 2)
536 		total_scan = freeable * 2;
537 
538 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
539 				   freeable, delta, total_scan, priority);
540 
541 	/*
542 	 * Normally, we should not scan less than batch_size objects in one
543 	 * pass to avoid too frequent shrinker calls, but if the slab has less
544 	 * than batch_size objects in total and we are really tight on memory,
545 	 * we will try to reclaim all available objects, otherwise we can end
546 	 * up failing allocations although there are plenty of reclaimable
547 	 * objects spread over several slabs with usage less than the
548 	 * batch_size.
549 	 *
550 	 * We detect the "tight on memory" situations by looking at the total
551 	 * number of objects we want to scan (total_scan). If it is greater
552 	 * than the total number of objects on slab (freeable), we must be
553 	 * scanning at high prio and therefore should try to reclaim as much as
554 	 * possible.
555 	 */
556 	while (total_scan >= batch_size ||
557 	       total_scan >= freeable) {
558 		unsigned long ret;
559 		unsigned long nr_to_scan = min(batch_size, total_scan);
560 
561 		shrinkctl->nr_to_scan = nr_to_scan;
562 		shrinkctl->nr_scanned = nr_to_scan;
563 		ret = shrinker->scan_objects(shrinker, shrinkctl);
564 		if (ret == SHRINK_STOP)
565 			break;
566 		freed += ret;
567 
568 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
569 		total_scan -= shrinkctl->nr_scanned;
570 		scanned += shrinkctl->nr_scanned;
571 
572 		cond_resched();
573 	}
574 
575 	if (next_deferred >= scanned)
576 		next_deferred -= scanned;
577 	else
578 		next_deferred = 0;
579 	/*
580 	 * move the unused scan count back into the shrinker in a
581 	 * manner that handles concurrent updates. If we exhausted the
582 	 * scan, there is no need to do an update.
583 	 */
584 	if (next_deferred > 0)
585 		new_nr = atomic_long_add_return(next_deferred,
586 						&shrinker->nr_deferred[nid]);
587 	else
588 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
589 
590 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
591 	return freed;
592 }
593 
594 #ifdef CONFIG_MEMCG_KMEM
595 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
596 			struct mem_cgroup *memcg, int priority)
597 {
598 	struct memcg_shrinker_map *map;
599 	unsigned long ret, freed = 0;
600 	int i;
601 
602 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
603 		return 0;
604 
605 	if (!down_read_trylock(&shrinker_rwsem))
606 		return 0;
607 
608 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
609 					true);
610 	if (unlikely(!map))
611 		goto unlock;
612 
613 	for_each_set_bit(i, map->map, shrinker_nr_max) {
614 		struct shrink_control sc = {
615 			.gfp_mask = gfp_mask,
616 			.nid = nid,
617 			.memcg = memcg,
618 		};
619 		struct shrinker *shrinker;
620 
621 		shrinker = idr_find(&shrinker_idr, i);
622 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
623 			if (!shrinker)
624 				clear_bit(i, map->map);
625 			continue;
626 		}
627 
628 		ret = do_shrink_slab(&sc, shrinker, priority);
629 		if (ret == SHRINK_EMPTY) {
630 			clear_bit(i, map->map);
631 			/*
632 			 * After the shrinker reported that it had no objects to
633 			 * free, but before we cleared the corresponding bit in
634 			 * the memcg shrinker map, a new object might have been
635 			 * added. To make sure, we have the bit set in this
636 			 * case, we invoke the shrinker one more time and reset
637 			 * the bit if it reports that it is not empty anymore.
638 			 * The memory barrier here pairs with the barrier in
639 			 * memcg_set_shrinker_bit():
640 			 *
641 			 * list_lru_add()     shrink_slab_memcg()
642 			 *   list_add_tail()    clear_bit()
643 			 *   <MB>               <MB>
644 			 *   set_bit()          do_shrink_slab()
645 			 */
646 			smp_mb__after_atomic();
647 			ret = do_shrink_slab(&sc, shrinker, priority);
648 			if (ret == SHRINK_EMPTY)
649 				ret = 0;
650 			else
651 				memcg_set_shrinker_bit(memcg, nid, i);
652 		}
653 		freed += ret;
654 
655 		if (rwsem_is_contended(&shrinker_rwsem)) {
656 			freed = freed ? : 1;
657 			break;
658 		}
659 	}
660 unlock:
661 	up_read(&shrinker_rwsem);
662 	return freed;
663 }
664 #else /* CONFIG_MEMCG_KMEM */
665 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
666 			struct mem_cgroup *memcg, int priority)
667 {
668 	return 0;
669 }
670 #endif /* CONFIG_MEMCG_KMEM */
671 
672 /**
673  * shrink_slab - shrink slab caches
674  * @gfp_mask: allocation context
675  * @nid: node whose slab caches to target
676  * @memcg: memory cgroup whose slab caches to target
677  * @priority: the reclaim priority
678  *
679  * Call the shrink functions to age shrinkable caches.
680  *
681  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
682  * unaware shrinkers will receive a node id of 0 instead.
683  *
684  * @memcg specifies the memory cgroup to target. Unaware shrinkers
685  * are called only if it is the root cgroup.
686  *
687  * @priority is sc->priority, we take the number of objects and >> by priority
688  * in order to get the scan target.
689  *
690  * Returns the number of reclaimed slab objects.
691  */
692 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
693 				 struct mem_cgroup *memcg,
694 				 int priority)
695 {
696 	unsigned long ret, freed = 0;
697 	struct shrinker *shrinker;
698 
699 	/*
700 	 * The root memcg might be allocated even though memcg is disabled
701 	 * via "cgroup_disable=memory" boot parameter.  This could make
702 	 * mem_cgroup_is_root() return false, then just run memcg slab
703 	 * shrink, but skip global shrink.  This may result in premature
704 	 * oom.
705 	 */
706 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
707 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
708 
709 	if (!down_read_trylock(&shrinker_rwsem))
710 		goto out;
711 
712 	list_for_each_entry(shrinker, &shrinker_list, list) {
713 		struct shrink_control sc = {
714 			.gfp_mask = gfp_mask,
715 			.nid = nid,
716 			.memcg = memcg,
717 		};
718 
719 		ret = do_shrink_slab(&sc, shrinker, priority);
720 		if (ret == SHRINK_EMPTY)
721 			ret = 0;
722 		freed += ret;
723 		/*
724 		 * Bail out if someone want to register a new shrinker to
725 		 * prevent the regsitration from being stalled for long periods
726 		 * by parallel ongoing shrinking.
727 		 */
728 		if (rwsem_is_contended(&shrinker_rwsem)) {
729 			freed = freed ? : 1;
730 			break;
731 		}
732 	}
733 
734 	up_read(&shrinker_rwsem);
735 out:
736 	cond_resched();
737 	return freed;
738 }
739 
740 void drop_slab_node(int nid)
741 {
742 	unsigned long freed;
743 
744 	do {
745 		struct mem_cgroup *memcg = NULL;
746 
747 		freed = 0;
748 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
749 		do {
750 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
751 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
752 	} while (freed > 10);
753 }
754 
755 void drop_slab(void)
756 {
757 	int nid;
758 
759 	for_each_online_node(nid)
760 		drop_slab_node(nid);
761 }
762 
763 static inline int is_page_cache_freeable(struct page *page)
764 {
765 	/*
766 	 * A freeable page cache page is referenced only by the caller
767 	 * that isolated the page, the page cache and optional buffer
768 	 * heads at page->private.
769 	 */
770 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
771 		HPAGE_PMD_NR : 1;
772 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
773 }
774 
775 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
776 {
777 	if (current->flags & PF_SWAPWRITE)
778 		return 1;
779 	if (!inode_write_congested(inode))
780 		return 1;
781 	if (inode_to_bdi(inode) == current->backing_dev_info)
782 		return 1;
783 	return 0;
784 }
785 
786 /*
787  * We detected a synchronous write error writing a page out.  Probably
788  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
789  * fsync(), msync() or close().
790  *
791  * The tricky part is that after writepage we cannot touch the mapping: nothing
792  * prevents it from being freed up.  But we have a ref on the page and once
793  * that page is locked, the mapping is pinned.
794  *
795  * We're allowed to run sleeping lock_page() here because we know the caller has
796  * __GFP_FS.
797  */
798 static void handle_write_error(struct address_space *mapping,
799 				struct page *page, int error)
800 {
801 	lock_page(page);
802 	if (page_mapping(page) == mapping)
803 		mapping_set_error(mapping, error);
804 	unlock_page(page);
805 }
806 
807 /* possible outcome of pageout() */
808 typedef enum {
809 	/* failed to write page out, page is locked */
810 	PAGE_KEEP,
811 	/* move page to the active list, page is locked */
812 	PAGE_ACTIVATE,
813 	/* page has been sent to the disk successfully, page is unlocked */
814 	PAGE_SUCCESS,
815 	/* page is clean and locked */
816 	PAGE_CLEAN,
817 } pageout_t;
818 
819 /*
820  * pageout is called by shrink_page_list() for each dirty page.
821  * Calls ->writepage().
822  */
823 static pageout_t pageout(struct page *page, struct address_space *mapping,
824 			 struct scan_control *sc)
825 {
826 	/*
827 	 * If the page is dirty, only perform writeback if that write
828 	 * will be non-blocking.  To prevent this allocation from being
829 	 * stalled by pagecache activity.  But note that there may be
830 	 * stalls if we need to run get_block().  We could test
831 	 * PagePrivate for that.
832 	 *
833 	 * If this process is currently in __generic_file_write_iter() against
834 	 * this page's queue, we can perform writeback even if that
835 	 * will block.
836 	 *
837 	 * If the page is swapcache, write it back even if that would
838 	 * block, for some throttling. This happens by accident, because
839 	 * swap_backing_dev_info is bust: it doesn't reflect the
840 	 * congestion state of the swapdevs.  Easy to fix, if needed.
841 	 */
842 	if (!is_page_cache_freeable(page))
843 		return PAGE_KEEP;
844 	if (!mapping) {
845 		/*
846 		 * Some data journaling orphaned pages can have
847 		 * page->mapping == NULL while being dirty with clean buffers.
848 		 */
849 		if (page_has_private(page)) {
850 			if (try_to_free_buffers(page)) {
851 				ClearPageDirty(page);
852 				pr_info("%s: orphaned page\n", __func__);
853 				return PAGE_CLEAN;
854 			}
855 		}
856 		return PAGE_KEEP;
857 	}
858 	if (mapping->a_ops->writepage == NULL)
859 		return PAGE_ACTIVATE;
860 	if (!may_write_to_inode(mapping->host, sc))
861 		return PAGE_KEEP;
862 
863 	if (clear_page_dirty_for_io(page)) {
864 		int res;
865 		struct writeback_control wbc = {
866 			.sync_mode = WB_SYNC_NONE,
867 			.nr_to_write = SWAP_CLUSTER_MAX,
868 			.range_start = 0,
869 			.range_end = LLONG_MAX,
870 			.for_reclaim = 1,
871 		};
872 
873 		SetPageReclaim(page);
874 		res = mapping->a_ops->writepage(page, &wbc);
875 		if (res < 0)
876 			handle_write_error(mapping, page, res);
877 		if (res == AOP_WRITEPAGE_ACTIVATE) {
878 			ClearPageReclaim(page);
879 			return PAGE_ACTIVATE;
880 		}
881 
882 		if (!PageWriteback(page)) {
883 			/* synchronous write or broken a_ops? */
884 			ClearPageReclaim(page);
885 		}
886 		trace_mm_vmscan_writepage(page);
887 		inc_node_page_state(page, NR_VMSCAN_WRITE);
888 		return PAGE_SUCCESS;
889 	}
890 
891 	return PAGE_CLEAN;
892 }
893 
894 /*
895  * Same as remove_mapping, but if the page is removed from the mapping, it
896  * gets returned with a refcount of 0.
897  */
898 static int __remove_mapping(struct address_space *mapping, struct page *page,
899 			    bool reclaimed)
900 {
901 	unsigned long flags;
902 	int refcount;
903 
904 	BUG_ON(!PageLocked(page));
905 	BUG_ON(mapping != page_mapping(page));
906 
907 	xa_lock_irqsave(&mapping->i_pages, flags);
908 	/*
909 	 * The non racy check for a busy page.
910 	 *
911 	 * Must be careful with the order of the tests. When someone has
912 	 * a ref to the page, it may be possible that they dirty it then
913 	 * drop the reference. So if PageDirty is tested before page_count
914 	 * here, then the following race may occur:
915 	 *
916 	 * get_user_pages(&page);
917 	 * [user mapping goes away]
918 	 * write_to(page);
919 	 *				!PageDirty(page)    [good]
920 	 * SetPageDirty(page);
921 	 * put_page(page);
922 	 *				!page_count(page)   [good, discard it]
923 	 *
924 	 * [oops, our write_to data is lost]
925 	 *
926 	 * Reversing the order of the tests ensures such a situation cannot
927 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
928 	 * load is not satisfied before that of page->_refcount.
929 	 *
930 	 * Note that if SetPageDirty is always performed via set_page_dirty,
931 	 * and thus under the i_pages lock, then this ordering is not required.
932 	 */
933 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
934 		refcount = 1 + HPAGE_PMD_NR;
935 	else
936 		refcount = 2;
937 	if (!page_ref_freeze(page, refcount))
938 		goto cannot_free;
939 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
940 	if (unlikely(PageDirty(page))) {
941 		page_ref_unfreeze(page, refcount);
942 		goto cannot_free;
943 	}
944 
945 	if (PageSwapCache(page)) {
946 		swp_entry_t swap = { .val = page_private(page) };
947 		mem_cgroup_swapout(page, swap);
948 		__delete_from_swap_cache(page, swap);
949 		xa_unlock_irqrestore(&mapping->i_pages, flags);
950 		put_swap_page(page, swap);
951 	} else {
952 		void (*freepage)(struct page *);
953 		void *shadow = NULL;
954 
955 		freepage = mapping->a_ops->freepage;
956 		/*
957 		 * Remember a shadow entry for reclaimed file cache in
958 		 * order to detect refaults, thus thrashing, later on.
959 		 *
960 		 * But don't store shadows in an address space that is
961 		 * already exiting.  This is not just an optizimation,
962 		 * inode reclaim needs to empty out the radix tree or
963 		 * the nodes are lost.  Don't plant shadows behind its
964 		 * back.
965 		 *
966 		 * We also don't store shadows for DAX mappings because the
967 		 * only page cache pages found in these are zero pages
968 		 * covering holes, and because we don't want to mix DAX
969 		 * exceptional entries and shadow exceptional entries in the
970 		 * same address_space.
971 		 */
972 		if (reclaimed && page_is_file_cache(page) &&
973 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
974 			shadow = workingset_eviction(page);
975 		__delete_from_page_cache(page, shadow);
976 		xa_unlock_irqrestore(&mapping->i_pages, flags);
977 
978 		if (freepage != NULL)
979 			freepage(page);
980 	}
981 
982 	return 1;
983 
984 cannot_free:
985 	xa_unlock_irqrestore(&mapping->i_pages, flags);
986 	return 0;
987 }
988 
989 /*
990  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
991  * someone else has a ref on the page, abort and return 0.  If it was
992  * successfully detached, return 1.  Assumes the caller has a single ref on
993  * this page.
994  */
995 int remove_mapping(struct address_space *mapping, struct page *page)
996 {
997 	if (__remove_mapping(mapping, page, false)) {
998 		/*
999 		 * Unfreezing the refcount with 1 rather than 2 effectively
1000 		 * drops the pagecache ref for us without requiring another
1001 		 * atomic operation.
1002 		 */
1003 		page_ref_unfreeze(page, 1);
1004 		return 1;
1005 	}
1006 	return 0;
1007 }
1008 
1009 /**
1010  * putback_lru_page - put previously isolated page onto appropriate LRU list
1011  * @page: page to be put back to appropriate lru list
1012  *
1013  * Add previously isolated @page to appropriate LRU list.
1014  * Page may still be unevictable for other reasons.
1015  *
1016  * lru_lock must not be held, interrupts must be enabled.
1017  */
1018 void putback_lru_page(struct page *page)
1019 {
1020 	lru_cache_add(page);
1021 	put_page(page);		/* drop ref from isolate */
1022 }
1023 
1024 enum page_references {
1025 	PAGEREF_RECLAIM,
1026 	PAGEREF_RECLAIM_CLEAN,
1027 	PAGEREF_KEEP,
1028 	PAGEREF_ACTIVATE,
1029 };
1030 
1031 static enum page_references page_check_references(struct page *page,
1032 						  struct scan_control *sc)
1033 {
1034 	int referenced_ptes, referenced_page;
1035 	unsigned long vm_flags;
1036 
1037 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038 					  &vm_flags);
1039 	referenced_page = TestClearPageReferenced(page);
1040 
1041 	/*
1042 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043 	 * move the page to the unevictable list.
1044 	 */
1045 	if (vm_flags & VM_LOCKED)
1046 		return PAGEREF_RECLAIM;
1047 
1048 	if (referenced_ptes) {
1049 		if (PageSwapBacked(page))
1050 			return PAGEREF_ACTIVATE;
1051 		/*
1052 		 * All mapped pages start out with page table
1053 		 * references from the instantiating fault, so we need
1054 		 * to look twice if a mapped file page is used more
1055 		 * than once.
1056 		 *
1057 		 * Mark it and spare it for another trip around the
1058 		 * inactive list.  Another page table reference will
1059 		 * lead to its activation.
1060 		 *
1061 		 * Note: the mark is set for activated pages as well
1062 		 * so that recently deactivated but used pages are
1063 		 * quickly recovered.
1064 		 */
1065 		SetPageReferenced(page);
1066 
1067 		if (referenced_page || referenced_ptes > 1)
1068 			return PAGEREF_ACTIVATE;
1069 
1070 		/*
1071 		 * Activate file-backed executable pages after first usage.
1072 		 */
1073 		if (vm_flags & VM_EXEC)
1074 			return PAGEREF_ACTIVATE;
1075 
1076 		return PAGEREF_KEEP;
1077 	}
1078 
1079 	/* Reclaim if clean, defer dirty pages to writeback */
1080 	if (referenced_page && !PageSwapBacked(page))
1081 		return PAGEREF_RECLAIM_CLEAN;
1082 
1083 	return PAGEREF_RECLAIM;
1084 }
1085 
1086 /* Check if a page is dirty or under writeback */
1087 static void page_check_dirty_writeback(struct page *page,
1088 				       bool *dirty, bool *writeback)
1089 {
1090 	struct address_space *mapping;
1091 
1092 	/*
1093 	 * Anonymous pages are not handled by flushers and must be written
1094 	 * from reclaim context. Do not stall reclaim based on them
1095 	 */
1096 	if (!page_is_file_cache(page) ||
1097 	    (PageAnon(page) && !PageSwapBacked(page))) {
1098 		*dirty = false;
1099 		*writeback = false;
1100 		return;
1101 	}
1102 
1103 	/* By default assume that the page flags are accurate */
1104 	*dirty = PageDirty(page);
1105 	*writeback = PageWriteback(page);
1106 
1107 	/* Verify dirty/writeback state if the filesystem supports it */
1108 	if (!page_has_private(page))
1109 		return;
1110 
1111 	mapping = page_mapping(page);
1112 	if (mapping && mapping->a_ops->is_dirty_writeback)
1113 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114 }
1115 
1116 /*
1117  * shrink_page_list() returns the number of reclaimed pages
1118  */
1119 static unsigned long shrink_page_list(struct list_head *page_list,
1120 				      struct pglist_data *pgdat,
1121 				      struct scan_control *sc,
1122 				      enum ttu_flags ttu_flags,
1123 				      struct reclaim_stat *stat,
1124 				      bool force_reclaim)
1125 {
1126 	LIST_HEAD(ret_pages);
1127 	LIST_HEAD(free_pages);
1128 	unsigned nr_reclaimed = 0;
1129 	unsigned pgactivate = 0;
1130 
1131 	memset(stat, 0, sizeof(*stat));
1132 	cond_resched();
1133 
1134 	while (!list_empty(page_list)) {
1135 		struct address_space *mapping;
1136 		struct page *page;
1137 		int may_enter_fs;
1138 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1139 		bool dirty, writeback;
1140 		unsigned int nr_pages;
1141 
1142 		cond_resched();
1143 
1144 		page = lru_to_page(page_list);
1145 		list_del(&page->lru);
1146 
1147 		if (!trylock_page(page))
1148 			goto keep;
1149 
1150 		VM_BUG_ON_PAGE(PageActive(page), page);
1151 
1152 		nr_pages = 1 << compound_order(page);
1153 
1154 		/* Account the number of base pages even though THP */
1155 		sc->nr_scanned += nr_pages;
1156 
1157 		if (unlikely(!page_evictable(page)))
1158 			goto activate_locked;
1159 
1160 		if (!sc->may_unmap && page_mapped(page))
1161 			goto keep_locked;
1162 
1163 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165 
1166 		/*
1167 		 * The number of dirty pages determines if a node is marked
1168 		 * reclaim_congested which affects wait_iff_congested. kswapd
1169 		 * will stall and start writing pages if the tail of the LRU
1170 		 * is all dirty unqueued pages.
1171 		 */
1172 		page_check_dirty_writeback(page, &dirty, &writeback);
1173 		if (dirty || writeback)
1174 			stat->nr_dirty++;
1175 
1176 		if (dirty && !writeback)
1177 			stat->nr_unqueued_dirty++;
1178 
1179 		/*
1180 		 * Treat this page as congested if the underlying BDI is or if
1181 		 * pages are cycling through the LRU so quickly that the
1182 		 * pages marked for immediate reclaim are making it to the
1183 		 * end of the LRU a second time.
1184 		 */
1185 		mapping = page_mapping(page);
1186 		if (((dirty || writeback) && mapping &&
1187 		     inode_write_congested(mapping->host)) ||
1188 		    (writeback && PageReclaim(page)))
1189 			stat->nr_congested++;
1190 
1191 		/*
1192 		 * If a page at the tail of the LRU is under writeback, there
1193 		 * are three cases to consider.
1194 		 *
1195 		 * 1) If reclaim is encountering an excessive number of pages
1196 		 *    under writeback and this page is both under writeback and
1197 		 *    PageReclaim then it indicates that pages are being queued
1198 		 *    for IO but are being recycled through the LRU before the
1199 		 *    IO can complete. Waiting on the page itself risks an
1200 		 *    indefinite stall if it is impossible to writeback the
1201 		 *    page due to IO error or disconnected storage so instead
1202 		 *    note that the LRU is being scanned too quickly and the
1203 		 *    caller can stall after page list has been processed.
1204 		 *
1205 		 * 2) Global or new memcg reclaim encounters a page that is
1206 		 *    not marked for immediate reclaim, or the caller does not
1207 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 		 *    not to fs). In this case mark the page for immediate
1209 		 *    reclaim and continue scanning.
1210 		 *
1211 		 *    Require may_enter_fs because we would wait on fs, which
1212 		 *    may not have submitted IO yet. And the loop driver might
1213 		 *    enter reclaim, and deadlock if it waits on a page for
1214 		 *    which it is needed to do the write (loop masks off
1215 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216 		 *    would probably show more reasons.
1217 		 *
1218 		 * 3) Legacy memcg encounters a page that is already marked
1219 		 *    PageReclaim. memcg does not have any dirty pages
1220 		 *    throttling so we could easily OOM just because too many
1221 		 *    pages are in writeback and there is nothing else to
1222 		 *    reclaim. Wait for the writeback to complete.
1223 		 *
1224 		 * In cases 1) and 2) we activate the pages to get them out of
1225 		 * the way while we continue scanning for clean pages on the
1226 		 * inactive list and refilling from the active list. The
1227 		 * observation here is that waiting for disk writes is more
1228 		 * expensive than potentially causing reloads down the line.
1229 		 * Since they're marked for immediate reclaim, they won't put
1230 		 * memory pressure on the cache working set any longer than it
1231 		 * takes to write them to disk.
1232 		 */
1233 		if (PageWriteback(page)) {
1234 			/* Case 1 above */
1235 			if (current_is_kswapd() &&
1236 			    PageReclaim(page) &&
1237 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238 				stat->nr_immediate++;
1239 				goto activate_locked;
1240 
1241 			/* Case 2 above */
1242 			} else if (sane_reclaim(sc) ||
1243 			    !PageReclaim(page) || !may_enter_fs) {
1244 				/*
1245 				 * This is slightly racy - end_page_writeback()
1246 				 * might have just cleared PageReclaim, then
1247 				 * setting PageReclaim here end up interpreted
1248 				 * as PageReadahead - but that does not matter
1249 				 * enough to care.  What we do want is for this
1250 				 * page to have PageReclaim set next time memcg
1251 				 * reclaim reaches the tests above, so it will
1252 				 * then wait_on_page_writeback() to avoid OOM;
1253 				 * and it's also appropriate in global reclaim.
1254 				 */
1255 				SetPageReclaim(page);
1256 				stat->nr_writeback++;
1257 				goto activate_locked;
1258 
1259 			/* Case 3 above */
1260 			} else {
1261 				unlock_page(page);
1262 				wait_on_page_writeback(page);
1263 				/* then go back and try same page again */
1264 				list_add_tail(&page->lru, page_list);
1265 				continue;
1266 			}
1267 		}
1268 
1269 		if (!force_reclaim)
1270 			references = page_check_references(page, sc);
1271 
1272 		switch (references) {
1273 		case PAGEREF_ACTIVATE:
1274 			goto activate_locked;
1275 		case PAGEREF_KEEP:
1276 			stat->nr_ref_keep += nr_pages;
1277 			goto keep_locked;
1278 		case PAGEREF_RECLAIM:
1279 		case PAGEREF_RECLAIM_CLEAN:
1280 			; /* try to reclaim the page below */
1281 		}
1282 
1283 		/*
1284 		 * Anonymous process memory has backing store?
1285 		 * Try to allocate it some swap space here.
1286 		 * Lazyfree page could be freed directly
1287 		 */
1288 		if (PageAnon(page) && PageSwapBacked(page)) {
1289 			if (!PageSwapCache(page)) {
1290 				if (!(sc->gfp_mask & __GFP_IO))
1291 					goto keep_locked;
1292 				if (PageTransHuge(page)) {
1293 					/* cannot split THP, skip it */
1294 					if (!can_split_huge_page(page, NULL))
1295 						goto activate_locked;
1296 					/*
1297 					 * Split pages without a PMD map right
1298 					 * away. Chances are some or all of the
1299 					 * tail pages can be freed without IO.
1300 					 */
1301 					if (!compound_mapcount(page) &&
1302 					    split_huge_page_to_list(page,
1303 								    page_list))
1304 						goto activate_locked;
1305 				}
1306 				if (!add_to_swap(page)) {
1307 					if (!PageTransHuge(page))
1308 						goto activate_locked_split;
1309 					/* Fallback to swap normal pages */
1310 					if (split_huge_page_to_list(page,
1311 								    page_list))
1312 						goto activate_locked;
1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 					count_vm_event(THP_SWPOUT_FALLBACK);
1315 #endif
1316 					if (!add_to_swap(page))
1317 						goto activate_locked_split;
1318 				}
1319 
1320 				may_enter_fs = 1;
1321 
1322 				/* Adding to swap updated mapping */
1323 				mapping = page_mapping(page);
1324 			}
1325 		} else if (unlikely(PageTransHuge(page))) {
1326 			/* Split file THP */
1327 			if (split_huge_page_to_list(page, page_list))
1328 				goto keep_locked;
1329 		}
1330 
1331 		/*
1332 		 * THP may get split above, need minus tail pages and update
1333 		 * nr_pages to avoid accounting tail pages twice.
1334 		 *
1335 		 * The tail pages that are added into swap cache successfully
1336 		 * reach here.
1337 		 */
1338 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1339 			sc->nr_scanned -= (nr_pages - 1);
1340 			nr_pages = 1;
1341 		}
1342 
1343 		/*
1344 		 * The page is mapped into the page tables of one or more
1345 		 * processes. Try to unmap it here.
1346 		 */
1347 		if (page_mapped(page)) {
1348 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349 
1350 			if (unlikely(PageTransHuge(page)))
1351 				flags |= TTU_SPLIT_HUGE_PMD;
1352 			if (!try_to_unmap(page, flags)) {
1353 				stat->nr_unmap_fail += nr_pages;
1354 				goto activate_locked;
1355 			}
1356 		}
1357 
1358 		if (PageDirty(page)) {
1359 			/*
1360 			 * Only kswapd can writeback filesystem pages
1361 			 * to avoid risk of stack overflow. But avoid
1362 			 * injecting inefficient single-page IO into
1363 			 * flusher writeback as much as possible: only
1364 			 * write pages when we've encountered many
1365 			 * dirty pages, and when we've already scanned
1366 			 * the rest of the LRU for clean pages and see
1367 			 * the same dirty pages again (PageReclaim).
1368 			 */
1369 			if (page_is_file_cache(page) &&
1370 			    (!current_is_kswapd() || !PageReclaim(page) ||
1371 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372 				/*
1373 				 * Immediately reclaim when written back.
1374 				 * Similar in principal to deactivate_page()
1375 				 * except we already have the page isolated
1376 				 * and know it's dirty
1377 				 */
1378 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379 				SetPageReclaim(page);
1380 
1381 				goto activate_locked;
1382 			}
1383 
1384 			if (references == PAGEREF_RECLAIM_CLEAN)
1385 				goto keep_locked;
1386 			if (!may_enter_fs)
1387 				goto keep_locked;
1388 			if (!sc->may_writepage)
1389 				goto keep_locked;
1390 
1391 			/*
1392 			 * Page is dirty. Flush the TLB if a writable entry
1393 			 * potentially exists to avoid CPU writes after IO
1394 			 * starts and then write it out here.
1395 			 */
1396 			try_to_unmap_flush_dirty();
1397 			switch (pageout(page, mapping, sc)) {
1398 			case PAGE_KEEP:
1399 				goto keep_locked;
1400 			case PAGE_ACTIVATE:
1401 				goto activate_locked;
1402 			case PAGE_SUCCESS:
1403 				if (PageWriteback(page))
1404 					goto keep;
1405 				if (PageDirty(page))
1406 					goto keep;
1407 
1408 				/*
1409 				 * A synchronous write - probably a ramdisk.  Go
1410 				 * ahead and try to reclaim the page.
1411 				 */
1412 				if (!trylock_page(page))
1413 					goto keep;
1414 				if (PageDirty(page) || PageWriteback(page))
1415 					goto keep_locked;
1416 				mapping = page_mapping(page);
1417 			case PAGE_CLEAN:
1418 				; /* try to free the page below */
1419 			}
1420 		}
1421 
1422 		/*
1423 		 * If the page has buffers, try to free the buffer mappings
1424 		 * associated with this page. If we succeed we try to free
1425 		 * the page as well.
1426 		 *
1427 		 * We do this even if the page is PageDirty().
1428 		 * try_to_release_page() does not perform I/O, but it is
1429 		 * possible for a page to have PageDirty set, but it is actually
1430 		 * clean (all its buffers are clean).  This happens if the
1431 		 * buffers were written out directly, with submit_bh(). ext3
1432 		 * will do this, as well as the blockdev mapping.
1433 		 * try_to_release_page() will discover that cleanness and will
1434 		 * drop the buffers and mark the page clean - it can be freed.
1435 		 *
1436 		 * Rarely, pages can have buffers and no ->mapping.  These are
1437 		 * the pages which were not successfully invalidated in
1438 		 * truncate_complete_page().  We try to drop those buffers here
1439 		 * and if that worked, and the page is no longer mapped into
1440 		 * process address space (page_count == 1) it can be freed.
1441 		 * Otherwise, leave the page on the LRU so it is swappable.
1442 		 */
1443 		if (page_has_private(page)) {
1444 			if (!try_to_release_page(page, sc->gfp_mask))
1445 				goto activate_locked;
1446 			if (!mapping && page_count(page) == 1) {
1447 				unlock_page(page);
1448 				if (put_page_testzero(page))
1449 					goto free_it;
1450 				else {
1451 					/*
1452 					 * rare race with speculative reference.
1453 					 * the speculative reference will free
1454 					 * this page shortly, so we may
1455 					 * increment nr_reclaimed here (and
1456 					 * leave it off the LRU).
1457 					 */
1458 					nr_reclaimed++;
1459 					continue;
1460 				}
1461 			}
1462 		}
1463 
1464 		if (PageAnon(page) && !PageSwapBacked(page)) {
1465 			/* follow __remove_mapping for reference */
1466 			if (!page_ref_freeze(page, 1))
1467 				goto keep_locked;
1468 			if (PageDirty(page)) {
1469 				page_ref_unfreeze(page, 1);
1470 				goto keep_locked;
1471 			}
1472 
1473 			count_vm_event(PGLAZYFREED);
1474 			count_memcg_page_event(page, PGLAZYFREED);
1475 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1476 			goto keep_locked;
1477 
1478 		unlock_page(page);
1479 free_it:
1480 		/*
1481 		 * THP may get swapped out in a whole, need account
1482 		 * all base pages.
1483 		 */
1484 		nr_reclaimed += nr_pages;
1485 
1486 		/*
1487 		 * Is there need to periodically free_page_list? It would
1488 		 * appear not as the counts should be low
1489 		 */
1490 		if (unlikely(PageTransHuge(page))) {
1491 			mem_cgroup_uncharge(page);
1492 			(*get_compound_page_dtor(page))(page);
1493 		} else
1494 			list_add(&page->lru, &free_pages);
1495 		continue;
1496 
1497 activate_locked_split:
1498 		/*
1499 		 * The tail pages that are failed to add into swap cache
1500 		 * reach here.  Fixup nr_scanned and nr_pages.
1501 		 */
1502 		if (nr_pages > 1) {
1503 			sc->nr_scanned -= (nr_pages - 1);
1504 			nr_pages = 1;
1505 		}
1506 activate_locked:
1507 		/* Not a candidate for swapping, so reclaim swap space. */
1508 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1509 						PageMlocked(page)))
1510 			try_to_free_swap(page);
1511 		VM_BUG_ON_PAGE(PageActive(page), page);
1512 		if (!PageMlocked(page)) {
1513 			int type = page_is_file_cache(page);
1514 			SetPageActive(page);
1515 			stat->nr_activate[type] += nr_pages;
1516 			count_memcg_page_event(page, PGACTIVATE);
1517 		}
1518 keep_locked:
1519 		unlock_page(page);
1520 keep:
1521 		list_add(&page->lru, &ret_pages);
1522 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1523 	}
1524 
1525 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1526 
1527 	mem_cgroup_uncharge_list(&free_pages);
1528 	try_to_unmap_flush();
1529 	free_unref_page_list(&free_pages);
1530 
1531 	list_splice(&ret_pages, page_list);
1532 	count_vm_events(PGACTIVATE, pgactivate);
1533 
1534 	return nr_reclaimed;
1535 }
1536 
1537 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1538 					    struct list_head *page_list)
1539 {
1540 	struct scan_control sc = {
1541 		.gfp_mask = GFP_KERNEL,
1542 		.priority = DEF_PRIORITY,
1543 		.may_unmap = 1,
1544 	};
1545 	struct reclaim_stat dummy_stat;
1546 	unsigned long ret;
1547 	struct page *page, *next;
1548 	LIST_HEAD(clean_pages);
1549 
1550 	list_for_each_entry_safe(page, next, page_list, lru) {
1551 		if (page_is_file_cache(page) && !PageDirty(page) &&
1552 		    !__PageMovable(page) && !PageUnevictable(page)) {
1553 			ClearPageActive(page);
1554 			list_move(&page->lru, &clean_pages);
1555 		}
1556 	}
1557 
1558 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1559 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1560 	list_splice(&clean_pages, page_list);
1561 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1562 	return ret;
1563 }
1564 
1565 /*
1566  * Attempt to remove the specified page from its LRU.  Only take this page
1567  * if it is of the appropriate PageActive status.  Pages which are being
1568  * freed elsewhere are also ignored.
1569  *
1570  * page:	page to consider
1571  * mode:	one of the LRU isolation modes defined above
1572  *
1573  * returns 0 on success, -ve errno on failure.
1574  */
1575 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1576 {
1577 	int ret = -EINVAL;
1578 
1579 	/* Only take pages on the LRU. */
1580 	if (!PageLRU(page))
1581 		return ret;
1582 
1583 	/* Compaction should not handle unevictable pages but CMA can do so */
1584 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1585 		return ret;
1586 
1587 	ret = -EBUSY;
1588 
1589 	/*
1590 	 * To minimise LRU disruption, the caller can indicate that it only
1591 	 * wants to isolate pages it will be able to operate on without
1592 	 * blocking - clean pages for the most part.
1593 	 *
1594 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1595 	 * that it is possible to migrate without blocking
1596 	 */
1597 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1598 		/* All the caller can do on PageWriteback is block */
1599 		if (PageWriteback(page))
1600 			return ret;
1601 
1602 		if (PageDirty(page)) {
1603 			struct address_space *mapping;
1604 			bool migrate_dirty;
1605 
1606 			/*
1607 			 * Only pages without mappings or that have a
1608 			 * ->migratepage callback are possible to migrate
1609 			 * without blocking. However, we can be racing with
1610 			 * truncation so it's necessary to lock the page
1611 			 * to stabilise the mapping as truncation holds
1612 			 * the page lock until after the page is removed
1613 			 * from the page cache.
1614 			 */
1615 			if (!trylock_page(page))
1616 				return ret;
1617 
1618 			mapping = page_mapping(page);
1619 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1620 			unlock_page(page);
1621 			if (!migrate_dirty)
1622 				return ret;
1623 		}
1624 	}
1625 
1626 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1627 		return ret;
1628 
1629 	if (likely(get_page_unless_zero(page))) {
1630 		/*
1631 		 * Be careful not to clear PageLRU until after we're
1632 		 * sure the page is not being freed elsewhere -- the
1633 		 * page release code relies on it.
1634 		 */
1635 		ClearPageLRU(page);
1636 		ret = 0;
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 
1643 /*
1644  * Update LRU sizes after isolating pages. The LRU size updates must
1645  * be complete before mem_cgroup_update_lru_size due to a santity check.
1646  */
1647 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1648 			enum lru_list lru, unsigned long *nr_zone_taken)
1649 {
1650 	int zid;
1651 
1652 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1653 		if (!nr_zone_taken[zid])
1654 			continue;
1655 
1656 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1657 #ifdef CONFIG_MEMCG
1658 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1659 #endif
1660 	}
1661 
1662 }
1663 
1664 /**
1665  * pgdat->lru_lock is heavily contended.  Some of the functions that
1666  * shrink the lists perform better by taking out a batch of pages
1667  * and working on them outside the LRU lock.
1668  *
1669  * For pagecache intensive workloads, this function is the hottest
1670  * spot in the kernel (apart from copy_*_user functions).
1671  *
1672  * Appropriate locks must be held before calling this function.
1673  *
1674  * @nr_to_scan:	The number of eligible pages to look through on the list.
1675  * @lruvec:	The LRU vector to pull pages from.
1676  * @dst:	The temp list to put pages on to.
1677  * @nr_scanned:	The number of pages that were scanned.
1678  * @sc:		The scan_control struct for this reclaim session
1679  * @mode:	One of the LRU isolation modes
1680  * @lru:	LRU list id for isolating
1681  *
1682  * returns how many pages were moved onto *@dst.
1683  */
1684 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1685 		struct lruvec *lruvec, struct list_head *dst,
1686 		unsigned long *nr_scanned, struct scan_control *sc,
1687 		enum lru_list lru)
1688 {
1689 	struct list_head *src = &lruvec->lists[lru];
1690 	unsigned long nr_taken = 0;
1691 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1692 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1693 	unsigned long skipped = 0;
1694 	unsigned long scan, total_scan, nr_pages;
1695 	LIST_HEAD(pages_skipped);
1696 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1697 
1698 	total_scan = 0;
1699 	scan = 0;
1700 	while (scan < nr_to_scan && !list_empty(src)) {
1701 		struct page *page;
1702 
1703 		page = lru_to_page(src);
1704 		prefetchw_prev_lru_page(page, src, flags);
1705 
1706 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1707 
1708 		nr_pages = 1 << compound_order(page);
1709 		total_scan += nr_pages;
1710 
1711 		if (page_zonenum(page) > sc->reclaim_idx) {
1712 			list_move(&page->lru, &pages_skipped);
1713 			nr_skipped[page_zonenum(page)] += nr_pages;
1714 			continue;
1715 		}
1716 
1717 		/*
1718 		 * Do not count skipped pages because that makes the function
1719 		 * return with no isolated pages if the LRU mostly contains
1720 		 * ineligible pages.  This causes the VM to not reclaim any
1721 		 * pages, triggering a premature OOM.
1722 		 *
1723 		 * Account all tail pages of THP.  This would not cause
1724 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1725 		 * only when the page is being freed somewhere else.
1726 		 */
1727 		scan += nr_pages;
1728 		switch (__isolate_lru_page(page, mode)) {
1729 		case 0:
1730 			nr_taken += nr_pages;
1731 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1732 			list_move(&page->lru, dst);
1733 			break;
1734 
1735 		case -EBUSY:
1736 			/* else it is being freed elsewhere */
1737 			list_move(&page->lru, src);
1738 			continue;
1739 
1740 		default:
1741 			BUG();
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * Splice any skipped pages to the start of the LRU list. Note that
1747 	 * this disrupts the LRU order when reclaiming for lower zones but
1748 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1749 	 * scanning would soon rescan the same pages to skip and put the
1750 	 * system at risk of premature OOM.
1751 	 */
1752 	if (!list_empty(&pages_skipped)) {
1753 		int zid;
1754 
1755 		list_splice(&pages_skipped, src);
1756 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 			if (!nr_skipped[zid])
1758 				continue;
1759 
1760 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1761 			skipped += nr_skipped[zid];
1762 		}
1763 	}
1764 	*nr_scanned = total_scan;
1765 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1766 				    total_scan, skipped, nr_taken, mode, lru);
1767 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1768 	return nr_taken;
1769 }
1770 
1771 /**
1772  * isolate_lru_page - tries to isolate a page from its LRU list
1773  * @page: page to isolate from its LRU list
1774  *
1775  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1776  * vmstat statistic corresponding to whatever LRU list the page was on.
1777  *
1778  * Returns 0 if the page was removed from an LRU list.
1779  * Returns -EBUSY if the page was not on an LRU list.
1780  *
1781  * The returned page will have PageLRU() cleared.  If it was found on
1782  * the active list, it will have PageActive set.  If it was found on
1783  * the unevictable list, it will have the PageUnevictable bit set. That flag
1784  * may need to be cleared by the caller before letting the page go.
1785  *
1786  * The vmstat statistic corresponding to the list on which the page was
1787  * found will be decremented.
1788  *
1789  * Restrictions:
1790  *
1791  * (1) Must be called with an elevated refcount on the page. This is a
1792  *     fundamentnal difference from isolate_lru_pages (which is called
1793  *     without a stable reference).
1794  * (2) the lru_lock must not be held.
1795  * (3) interrupts must be enabled.
1796  */
1797 int isolate_lru_page(struct page *page)
1798 {
1799 	int ret = -EBUSY;
1800 
1801 	VM_BUG_ON_PAGE(!page_count(page), page);
1802 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1803 
1804 	if (PageLRU(page)) {
1805 		pg_data_t *pgdat = page_pgdat(page);
1806 		struct lruvec *lruvec;
1807 
1808 		spin_lock_irq(&pgdat->lru_lock);
1809 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1810 		if (PageLRU(page)) {
1811 			int lru = page_lru(page);
1812 			get_page(page);
1813 			ClearPageLRU(page);
1814 			del_page_from_lru_list(page, lruvec, lru);
1815 			ret = 0;
1816 		}
1817 		spin_unlock_irq(&pgdat->lru_lock);
1818 	}
1819 	return ret;
1820 }
1821 
1822 /*
1823  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1824  * then get resheduled. When there are massive number of tasks doing page
1825  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1826  * the LRU list will go small and be scanned faster than necessary, leading to
1827  * unnecessary swapping, thrashing and OOM.
1828  */
1829 static int too_many_isolated(struct pglist_data *pgdat, int file,
1830 		struct scan_control *sc)
1831 {
1832 	unsigned long inactive, isolated;
1833 
1834 	if (current_is_kswapd())
1835 		return 0;
1836 
1837 	if (!sane_reclaim(sc))
1838 		return 0;
1839 
1840 	if (file) {
1841 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1842 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1843 	} else {
1844 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1845 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1846 	}
1847 
1848 	/*
1849 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1850 	 * won't get blocked by normal direct-reclaimers, forming a circular
1851 	 * deadlock.
1852 	 */
1853 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1854 		inactive >>= 3;
1855 
1856 	return isolated > inactive;
1857 }
1858 
1859 /*
1860  * This moves pages from @list to corresponding LRU list.
1861  *
1862  * We move them the other way if the page is referenced by one or more
1863  * processes, from rmap.
1864  *
1865  * If the pages are mostly unmapped, the processing is fast and it is
1866  * appropriate to hold zone_lru_lock across the whole operation.  But if
1867  * the pages are mapped, the processing is slow (page_referenced()) so we
1868  * should drop zone_lru_lock around each page.  It's impossible to balance
1869  * this, so instead we remove the pages from the LRU while processing them.
1870  * It is safe to rely on PG_active against the non-LRU pages in here because
1871  * nobody will play with that bit on a non-LRU page.
1872  *
1873  * The downside is that we have to touch page->_refcount against each page.
1874  * But we had to alter page->flags anyway.
1875  *
1876  * Returns the number of pages moved to the given lruvec.
1877  */
1878 
1879 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1880 						     struct list_head *list)
1881 {
1882 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883 	int nr_pages, nr_moved = 0;
1884 	LIST_HEAD(pages_to_free);
1885 	struct page *page;
1886 	enum lru_list lru;
1887 
1888 	while (!list_empty(list)) {
1889 		page = lru_to_page(list);
1890 		VM_BUG_ON_PAGE(PageLRU(page), page);
1891 		if (unlikely(!page_evictable(page))) {
1892 			list_del(&page->lru);
1893 			spin_unlock_irq(&pgdat->lru_lock);
1894 			putback_lru_page(page);
1895 			spin_lock_irq(&pgdat->lru_lock);
1896 			continue;
1897 		}
1898 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1899 
1900 		SetPageLRU(page);
1901 		lru = page_lru(page);
1902 
1903 		nr_pages = hpage_nr_pages(page);
1904 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1905 		list_move(&page->lru, &lruvec->lists[lru]);
1906 
1907 		if (put_page_testzero(page)) {
1908 			__ClearPageLRU(page);
1909 			__ClearPageActive(page);
1910 			del_page_from_lru_list(page, lruvec, lru);
1911 
1912 			if (unlikely(PageCompound(page))) {
1913 				spin_unlock_irq(&pgdat->lru_lock);
1914 				mem_cgroup_uncharge(page);
1915 				(*get_compound_page_dtor(page))(page);
1916 				spin_lock_irq(&pgdat->lru_lock);
1917 			} else
1918 				list_add(&page->lru, &pages_to_free);
1919 		} else {
1920 			nr_moved += nr_pages;
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * To save our caller's stack, now use input list for pages to free.
1926 	 */
1927 	list_splice(&pages_to_free, list);
1928 
1929 	return nr_moved;
1930 }
1931 
1932 /*
1933  * If a kernel thread (such as nfsd for loop-back mounts) services
1934  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935  * In that case we should only throttle if the backing device it is
1936  * writing to is congested.  In other cases it is safe to throttle.
1937  */
1938 static int current_may_throttle(void)
1939 {
1940 	return !(current->flags & PF_LESS_THROTTLE) ||
1941 		current->backing_dev_info == NULL ||
1942 		bdi_write_congested(current->backing_dev_info);
1943 }
1944 
1945 /*
1946  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1947  * of reclaimed pages
1948  */
1949 static noinline_for_stack unsigned long
1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951 		     struct scan_control *sc, enum lru_list lru)
1952 {
1953 	LIST_HEAD(page_list);
1954 	unsigned long nr_scanned;
1955 	unsigned long nr_reclaimed = 0;
1956 	unsigned long nr_taken;
1957 	struct reclaim_stat stat;
1958 	int file = is_file_lru(lru);
1959 	enum vm_event_item item;
1960 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962 	bool stalled = false;
1963 
1964 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 		if (stalled)
1966 			return 0;
1967 
1968 		/* wait a bit for the reclaimer. */
1969 		msleep(100);
1970 		stalled = true;
1971 
1972 		/* We are about to die and free our memory. Return now. */
1973 		if (fatal_signal_pending(current))
1974 			return SWAP_CLUSTER_MAX;
1975 	}
1976 
1977 	lru_add_drain();
1978 
1979 	spin_lock_irq(&pgdat->lru_lock);
1980 
1981 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982 				     &nr_scanned, sc, lru);
1983 
1984 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985 	reclaim_stat->recent_scanned[file] += nr_taken;
1986 
1987 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 	if (global_reclaim(sc))
1989 		__count_vm_events(item, nr_scanned);
1990 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1991 	spin_unlock_irq(&pgdat->lru_lock);
1992 
1993 	if (nr_taken == 0)
1994 		return 0;
1995 
1996 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997 				&stat, false);
1998 
1999 	spin_lock_irq(&pgdat->lru_lock);
2000 
2001 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 	if (global_reclaim(sc))
2003 		__count_vm_events(item, nr_reclaimed);
2004 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2007 
2008 	move_pages_to_lru(lruvec, &page_list);
2009 
2010 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011 
2012 	spin_unlock_irq(&pgdat->lru_lock);
2013 
2014 	mem_cgroup_uncharge_list(&page_list);
2015 	free_unref_page_list(&page_list);
2016 
2017 	/*
2018 	 * If dirty pages are scanned that are not queued for IO, it
2019 	 * implies that flushers are not doing their job. This can
2020 	 * happen when memory pressure pushes dirty pages to the end of
2021 	 * the LRU before the dirty limits are breached and the dirty
2022 	 * data has expired. It can also happen when the proportion of
2023 	 * dirty pages grows not through writes but through memory
2024 	 * pressure reclaiming all the clean cache. And in some cases,
2025 	 * the flushers simply cannot keep up with the allocation
2026 	 * rate. Nudge the flusher threads in case they are asleep.
2027 	 */
2028 	if (stat.nr_unqueued_dirty == nr_taken)
2029 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2030 
2031 	sc->nr.dirty += stat.nr_dirty;
2032 	sc->nr.congested += stat.nr_congested;
2033 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 	sc->nr.writeback += stat.nr_writeback;
2035 	sc->nr.immediate += stat.nr_immediate;
2036 	sc->nr.taken += nr_taken;
2037 	if (file)
2038 		sc->nr.file_taken += nr_taken;
2039 
2040 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042 	return nr_reclaimed;
2043 }
2044 
2045 static void shrink_active_list(unsigned long nr_to_scan,
2046 			       struct lruvec *lruvec,
2047 			       struct scan_control *sc,
2048 			       enum lru_list lru)
2049 {
2050 	unsigned long nr_taken;
2051 	unsigned long nr_scanned;
2052 	unsigned long vm_flags;
2053 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2054 	LIST_HEAD(l_active);
2055 	LIST_HEAD(l_inactive);
2056 	struct page *page;
2057 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 	unsigned nr_deactivate, nr_activate;
2059 	unsigned nr_rotated = 0;
2060 	int file = is_file_lru(lru);
2061 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2062 
2063 	lru_add_drain();
2064 
2065 	spin_lock_irq(&pgdat->lru_lock);
2066 
2067 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068 				     &nr_scanned, sc, lru);
2069 
2070 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071 	reclaim_stat->recent_scanned[file] += nr_taken;
2072 
2073 	__count_vm_events(PGREFILL, nr_scanned);
2074 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075 
2076 	spin_unlock_irq(&pgdat->lru_lock);
2077 
2078 	while (!list_empty(&l_hold)) {
2079 		cond_resched();
2080 		page = lru_to_page(&l_hold);
2081 		list_del(&page->lru);
2082 
2083 		if (unlikely(!page_evictable(page))) {
2084 			putback_lru_page(page);
2085 			continue;
2086 		}
2087 
2088 		if (unlikely(buffer_heads_over_limit)) {
2089 			if (page_has_private(page) && trylock_page(page)) {
2090 				if (page_has_private(page))
2091 					try_to_release_page(page, 0);
2092 				unlock_page(page);
2093 			}
2094 		}
2095 
2096 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 				    &vm_flags)) {
2098 			nr_rotated += hpage_nr_pages(page);
2099 			/*
2100 			 * Identify referenced, file-backed active pages and
2101 			 * give them one more trip around the active list. So
2102 			 * that executable code get better chances to stay in
2103 			 * memory under moderate memory pressure.  Anon pages
2104 			 * are not likely to be evicted by use-once streaming
2105 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 			 * so we ignore them here.
2107 			 */
2108 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 				list_add(&page->lru, &l_active);
2110 				continue;
2111 			}
2112 		}
2113 
2114 		ClearPageActive(page);	/* we are de-activating */
2115 		SetPageWorkingset(page);
2116 		list_add(&page->lru, &l_inactive);
2117 	}
2118 
2119 	/*
2120 	 * Move pages back to the lru list.
2121 	 */
2122 	spin_lock_irq(&pgdat->lru_lock);
2123 	/*
2124 	 * Count referenced pages from currently used mappings as rotated,
2125 	 * even though only some of them are actually re-activated.  This
2126 	 * helps balance scan pressure between file and anonymous pages in
2127 	 * get_scan_count.
2128 	 */
2129 	reclaim_stat->recent_rotated[file] += nr_rotated;
2130 
2131 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 	/* Keep all free pages in l_active list */
2134 	list_splice(&l_inactive, &l_active);
2135 
2136 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138 
2139 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 	spin_unlock_irq(&pgdat->lru_lock);
2141 
2142 	mem_cgroup_uncharge_list(&l_active);
2143 	free_unref_page_list(&l_active);
2144 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 			nr_deactivate, nr_rotated, sc->priority, file);
2146 }
2147 
2148 /*
2149  * The inactive anon list should be small enough that the VM never has
2150  * to do too much work.
2151  *
2152  * The inactive file list should be small enough to leave most memory
2153  * to the established workingset on the scan-resistant active list,
2154  * but large enough to avoid thrashing the aggregate readahead window.
2155  *
2156  * Both inactive lists should also be large enough that each inactive
2157  * page has a chance to be referenced again before it is reclaimed.
2158  *
2159  * If that fails and refaulting is observed, the inactive list grows.
2160  *
2161  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2162  * on this LRU, maintained by the pageout code. An inactive_ratio
2163  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2164  *
2165  * total     target    max
2166  * memory    ratio     inactive
2167  * -------------------------------------
2168  *   10MB       1         5MB
2169  *  100MB       1        50MB
2170  *    1GB       3       250MB
2171  *   10GB      10       0.9GB
2172  *  100GB      31         3GB
2173  *    1TB     101        10GB
2174  *   10TB     320        32GB
2175  */
2176 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2177 				 struct scan_control *sc, bool trace)
2178 {
2179 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2180 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2181 	enum lru_list inactive_lru = file * LRU_FILE;
2182 	unsigned long inactive, active;
2183 	unsigned long inactive_ratio;
2184 	unsigned long refaults;
2185 	unsigned long gb;
2186 
2187 	/*
2188 	 * If we don't have swap space, anonymous page deactivation
2189 	 * is pointless.
2190 	 */
2191 	if (!file && !total_swap_pages)
2192 		return false;
2193 
2194 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2195 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2196 
2197 	/*
2198 	 * When refaults are being observed, it means a new workingset
2199 	 * is being established. Disable active list protection to get
2200 	 * rid of the stale workingset quickly.
2201 	 */
2202 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2203 	if (file && lruvec->refaults != refaults) {
2204 		inactive_ratio = 0;
2205 	} else {
2206 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2207 		if (gb)
2208 			inactive_ratio = int_sqrt(10 * gb);
2209 		else
2210 			inactive_ratio = 1;
2211 	}
2212 
2213 	if (trace)
2214 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2215 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2216 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2217 			inactive_ratio, file);
2218 
2219 	return inactive * inactive_ratio < active;
2220 }
2221 
2222 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2223 				 struct lruvec *lruvec, struct scan_control *sc)
2224 {
2225 	if (is_active_lru(lru)) {
2226 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2227 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2228 		return 0;
2229 	}
2230 
2231 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2232 }
2233 
2234 enum scan_balance {
2235 	SCAN_EQUAL,
2236 	SCAN_FRACT,
2237 	SCAN_ANON,
2238 	SCAN_FILE,
2239 };
2240 
2241 /*
2242  * Determine how aggressively the anon and file LRU lists should be
2243  * scanned.  The relative value of each set of LRU lists is determined
2244  * by looking at the fraction of the pages scanned we did rotate back
2245  * onto the active list instead of evict.
2246  *
2247  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2248  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2249  */
2250 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2251 			   struct scan_control *sc, unsigned long *nr,
2252 			   unsigned long *lru_pages)
2253 {
2254 	int swappiness = mem_cgroup_swappiness(memcg);
2255 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2256 	u64 fraction[2];
2257 	u64 denominator = 0;	/* gcc */
2258 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2259 	unsigned long anon_prio, file_prio;
2260 	enum scan_balance scan_balance;
2261 	unsigned long anon, file;
2262 	unsigned long ap, fp;
2263 	enum lru_list lru;
2264 
2265 	/* If we have no swap space, do not bother scanning anon pages. */
2266 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2267 		scan_balance = SCAN_FILE;
2268 		goto out;
2269 	}
2270 
2271 	/*
2272 	 * Global reclaim will swap to prevent OOM even with no
2273 	 * swappiness, but memcg users want to use this knob to
2274 	 * disable swapping for individual groups completely when
2275 	 * using the memory controller's swap limit feature would be
2276 	 * too expensive.
2277 	 */
2278 	if (!global_reclaim(sc) && !swappiness) {
2279 		scan_balance = SCAN_FILE;
2280 		goto out;
2281 	}
2282 
2283 	/*
2284 	 * Do not apply any pressure balancing cleverness when the
2285 	 * system is close to OOM, scan both anon and file equally
2286 	 * (unless the swappiness setting disagrees with swapping).
2287 	 */
2288 	if (!sc->priority && swappiness) {
2289 		scan_balance = SCAN_EQUAL;
2290 		goto out;
2291 	}
2292 
2293 	/*
2294 	 * Prevent the reclaimer from falling into the cache trap: as
2295 	 * cache pages start out inactive, every cache fault will tip
2296 	 * the scan balance towards the file LRU.  And as the file LRU
2297 	 * shrinks, so does the window for rotation from references.
2298 	 * This means we have a runaway feedback loop where a tiny
2299 	 * thrashing file LRU becomes infinitely more attractive than
2300 	 * anon pages.  Try to detect this based on file LRU size.
2301 	 */
2302 	if (global_reclaim(sc)) {
2303 		unsigned long pgdatfile;
2304 		unsigned long pgdatfree;
2305 		int z;
2306 		unsigned long total_high_wmark = 0;
2307 
2308 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2309 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2310 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2311 
2312 		for (z = 0; z < MAX_NR_ZONES; z++) {
2313 			struct zone *zone = &pgdat->node_zones[z];
2314 			if (!managed_zone(zone))
2315 				continue;
2316 
2317 			total_high_wmark += high_wmark_pages(zone);
2318 		}
2319 
2320 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2321 			/*
2322 			 * Force SCAN_ANON if there are enough inactive
2323 			 * anonymous pages on the LRU in eligible zones.
2324 			 * Otherwise, the small LRU gets thrashed.
2325 			 */
2326 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2327 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2328 					>> sc->priority) {
2329 				scan_balance = SCAN_ANON;
2330 				goto out;
2331 			}
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * If there is enough inactive page cache, i.e. if the size of the
2337 	 * inactive list is greater than that of the active list *and* the
2338 	 * inactive list actually has some pages to scan on this priority, we
2339 	 * do not reclaim anything from the anonymous working set right now.
2340 	 * Without the second condition we could end up never scanning an
2341 	 * lruvec even if it has plenty of old anonymous pages unless the
2342 	 * system is under heavy pressure.
2343 	 */
2344 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2345 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2346 		scan_balance = SCAN_FILE;
2347 		goto out;
2348 	}
2349 
2350 	scan_balance = SCAN_FRACT;
2351 
2352 	/*
2353 	 * With swappiness at 100, anonymous and file have the same priority.
2354 	 * This scanning priority is essentially the inverse of IO cost.
2355 	 */
2356 	anon_prio = swappiness;
2357 	file_prio = 200 - anon_prio;
2358 
2359 	/*
2360 	 * OK, so we have swap space and a fair amount of page cache
2361 	 * pages.  We use the recently rotated / recently scanned
2362 	 * ratios to determine how valuable each cache is.
2363 	 *
2364 	 * Because workloads change over time (and to avoid overflow)
2365 	 * we keep these statistics as a floating average, which ends
2366 	 * up weighing recent references more than old ones.
2367 	 *
2368 	 * anon in [0], file in [1]
2369 	 */
2370 
2371 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2372 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2373 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2374 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2375 
2376 	spin_lock_irq(&pgdat->lru_lock);
2377 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2378 		reclaim_stat->recent_scanned[0] /= 2;
2379 		reclaim_stat->recent_rotated[0] /= 2;
2380 	}
2381 
2382 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2383 		reclaim_stat->recent_scanned[1] /= 2;
2384 		reclaim_stat->recent_rotated[1] /= 2;
2385 	}
2386 
2387 	/*
2388 	 * The amount of pressure on anon vs file pages is inversely
2389 	 * proportional to the fraction of recently scanned pages on
2390 	 * each list that were recently referenced and in active use.
2391 	 */
2392 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2393 	ap /= reclaim_stat->recent_rotated[0] + 1;
2394 
2395 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2396 	fp /= reclaim_stat->recent_rotated[1] + 1;
2397 	spin_unlock_irq(&pgdat->lru_lock);
2398 
2399 	fraction[0] = ap;
2400 	fraction[1] = fp;
2401 	denominator = ap + fp + 1;
2402 out:
2403 	*lru_pages = 0;
2404 	for_each_evictable_lru(lru) {
2405 		int file = is_file_lru(lru);
2406 		unsigned long size;
2407 		unsigned long scan;
2408 
2409 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2410 		scan = size >> sc->priority;
2411 		/*
2412 		 * If the cgroup's already been deleted, make sure to
2413 		 * scrape out the remaining cache.
2414 		 */
2415 		if (!scan && !mem_cgroup_online(memcg))
2416 			scan = min(size, SWAP_CLUSTER_MAX);
2417 
2418 		switch (scan_balance) {
2419 		case SCAN_EQUAL:
2420 			/* Scan lists relative to size */
2421 			break;
2422 		case SCAN_FRACT:
2423 			/*
2424 			 * Scan types proportional to swappiness and
2425 			 * their relative recent reclaim efficiency.
2426 			 * Make sure we don't miss the last page
2427 			 * because of a round-off error.
2428 			 */
2429 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2430 						  denominator);
2431 			break;
2432 		case SCAN_FILE:
2433 		case SCAN_ANON:
2434 			/* Scan one type exclusively */
2435 			if ((scan_balance == SCAN_FILE) != file) {
2436 				size = 0;
2437 				scan = 0;
2438 			}
2439 			break;
2440 		default:
2441 			/* Look ma, no brain */
2442 			BUG();
2443 		}
2444 
2445 		*lru_pages += size;
2446 		nr[lru] = scan;
2447 	}
2448 }
2449 
2450 /*
2451  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2452  */
2453 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2454 			      struct scan_control *sc, unsigned long *lru_pages)
2455 {
2456 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2457 	unsigned long nr[NR_LRU_LISTS];
2458 	unsigned long targets[NR_LRU_LISTS];
2459 	unsigned long nr_to_scan;
2460 	enum lru_list lru;
2461 	unsigned long nr_reclaimed = 0;
2462 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463 	struct blk_plug plug;
2464 	bool scan_adjusted;
2465 
2466 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2467 
2468 	/* Record the original scan target for proportional adjustments later */
2469 	memcpy(targets, nr, sizeof(nr));
2470 
2471 	/*
2472 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473 	 * event that can occur when there is little memory pressure e.g.
2474 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2475 	 * when the requested number of pages are reclaimed when scanning at
2476 	 * DEF_PRIORITY on the assumption that the fact we are direct
2477 	 * reclaiming implies that kswapd is not keeping up and it is best to
2478 	 * do a batch of work at once. For memcg reclaim one check is made to
2479 	 * abort proportional reclaim if either the file or anon lru has already
2480 	 * dropped to zero at the first pass.
2481 	 */
2482 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2483 			 sc->priority == DEF_PRIORITY);
2484 
2485 	blk_start_plug(&plug);
2486 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487 					nr[LRU_INACTIVE_FILE]) {
2488 		unsigned long nr_anon, nr_file, percentage;
2489 		unsigned long nr_scanned;
2490 
2491 		for_each_evictable_lru(lru) {
2492 			if (nr[lru]) {
2493 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494 				nr[lru] -= nr_to_scan;
2495 
2496 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2497 							    lruvec, sc);
2498 			}
2499 		}
2500 
2501 		cond_resched();
2502 
2503 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504 			continue;
2505 
2506 		/*
2507 		 * For kswapd and memcg, reclaim at least the number of pages
2508 		 * requested. Ensure that the anon and file LRUs are scanned
2509 		 * proportionally what was requested by get_scan_count(). We
2510 		 * stop reclaiming one LRU and reduce the amount scanning
2511 		 * proportional to the original scan target.
2512 		 */
2513 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2515 
2516 		/*
2517 		 * It's just vindictive to attack the larger once the smaller
2518 		 * has gone to zero.  And given the way we stop scanning the
2519 		 * smaller below, this makes sure that we only make one nudge
2520 		 * towards proportionality once we've got nr_to_reclaim.
2521 		 */
2522 		if (!nr_file || !nr_anon)
2523 			break;
2524 
2525 		if (nr_file > nr_anon) {
2526 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527 						targets[LRU_ACTIVE_ANON] + 1;
2528 			lru = LRU_BASE;
2529 			percentage = nr_anon * 100 / scan_target;
2530 		} else {
2531 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532 						targets[LRU_ACTIVE_FILE] + 1;
2533 			lru = LRU_FILE;
2534 			percentage = nr_file * 100 / scan_target;
2535 		}
2536 
2537 		/* Stop scanning the smaller of the LRU */
2538 		nr[lru] = 0;
2539 		nr[lru + LRU_ACTIVE] = 0;
2540 
2541 		/*
2542 		 * Recalculate the other LRU scan count based on its original
2543 		 * scan target and the percentage scanning already complete
2544 		 */
2545 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546 		nr_scanned = targets[lru] - nr[lru];
2547 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2548 		nr[lru] -= min(nr[lru], nr_scanned);
2549 
2550 		lru += LRU_ACTIVE;
2551 		nr_scanned = targets[lru] - nr[lru];
2552 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2553 		nr[lru] -= min(nr[lru], nr_scanned);
2554 
2555 		scan_adjusted = true;
2556 	}
2557 	blk_finish_plug(&plug);
2558 	sc->nr_reclaimed += nr_reclaimed;
2559 
2560 	/*
2561 	 * Even if we did not try to evict anon pages at all, we want to
2562 	 * rebalance the anon lru active/inactive ratio.
2563 	 */
2564 	if (inactive_list_is_low(lruvec, false, sc, true))
2565 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566 				   sc, LRU_ACTIVE_ANON);
2567 }
2568 
2569 /* Use reclaim/compaction for costly allocs or under memory pressure */
2570 static bool in_reclaim_compaction(struct scan_control *sc)
2571 {
2572 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2573 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574 			 sc->priority < DEF_PRIORITY - 2))
2575 		return true;
2576 
2577 	return false;
2578 }
2579 
2580 /*
2581  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583  * true if more pages should be reclaimed such that when the page allocator
2584  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585  * It will give up earlier than that if there is difficulty reclaiming pages.
2586  */
2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 					unsigned long nr_reclaimed,
2589 					unsigned long nr_scanned,
2590 					struct scan_control *sc)
2591 {
2592 	unsigned long pages_for_compaction;
2593 	unsigned long inactive_lru_pages;
2594 	int z;
2595 
2596 	/* If not in reclaim/compaction mode, stop */
2597 	if (!in_reclaim_compaction(sc))
2598 		return false;
2599 
2600 	/* Consider stopping depending on scan and reclaim activity */
2601 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2602 		/*
2603 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2604 		 * full LRU list has been scanned and we are still failing
2605 		 * to reclaim pages. This full LRU scan is potentially
2606 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2607 		 */
2608 		if (!nr_reclaimed && !nr_scanned)
2609 			return false;
2610 	} else {
2611 		/*
2612 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2613 		 * fail without consequence, stop if we failed to reclaim
2614 		 * any pages from the last SWAP_CLUSTER_MAX number of
2615 		 * pages that were scanned. This will return to the
2616 		 * caller faster at the risk reclaim/compaction and
2617 		 * the resulting allocation attempt fails
2618 		 */
2619 		if (!nr_reclaimed)
2620 			return false;
2621 	}
2622 
2623 	/*
2624 	 * If we have not reclaimed enough pages for compaction and the
2625 	 * inactive lists are large enough, continue reclaiming
2626 	 */
2627 	pages_for_compaction = compact_gap(sc->order);
2628 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2629 	if (get_nr_swap_pages() > 0)
2630 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2631 	if (sc->nr_reclaimed < pages_for_compaction &&
2632 			inactive_lru_pages > pages_for_compaction)
2633 		return true;
2634 
2635 	/* If compaction would go ahead or the allocation would succeed, stop */
2636 	for (z = 0; z <= sc->reclaim_idx; z++) {
2637 		struct zone *zone = &pgdat->node_zones[z];
2638 		if (!managed_zone(zone))
2639 			continue;
2640 
2641 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2642 		case COMPACT_SUCCESS:
2643 		case COMPACT_CONTINUE:
2644 			return false;
2645 		default:
2646 			/* check next zone */
2647 			;
2648 		}
2649 	}
2650 	return true;
2651 }
2652 
2653 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2654 {
2655 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2656 		(memcg && memcg_congested(pgdat, memcg));
2657 }
2658 
2659 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2660 {
2661 	struct reclaim_state *reclaim_state = current->reclaim_state;
2662 	unsigned long nr_reclaimed, nr_scanned;
2663 	bool reclaimable = false;
2664 
2665 	do {
2666 		struct mem_cgroup *root = sc->target_mem_cgroup;
2667 		struct mem_cgroup_reclaim_cookie reclaim = {
2668 			.pgdat = pgdat,
2669 			.priority = sc->priority,
2670 		};
2671 		unsigned long node_lru_pages = 0;
2672 		struct mem_cgroup *memcg;
2673 
2674 		memset(&sc->nr, 0, sizeof(sc->nr));
2675 
2676 		nr_reclaimed = sc->nr_reclaimed;
2677 		nr_scanned = sc->nr_scanned;
2678 
2679 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2680 		do {
2681 			unsigned long lru_pages;
2682 			unsigned long reclaimed;
2683 			unsigned long scanned;
2684 
2685 			switch (mem_cgroup_protected(root, memcg)) {
2686 			case MEMCG_PROT_MIN:
2687 				/*
2688 				 * Hard protection.
2689 				 * If there is no reclaimable memory, OOM.
2690 				 */
2691 				continue;
2692 			case MEMCG_PROT_LOW:
2693 				/*
2694 				 * Soft protection.
2695 				 * Respect the protection only as long as
2696 				 * there is an unprotected supply
2697 				 * of reclaimable memory from other cgroups.
2698 				 */
2699 				if (!sc->memcg_low_reclaim) {
2700 					sc->memcg_low_skipped = 1;
2701 					continue;
2702 				}
2703 				memcg_memory_event(memcg, MEMCG_LOW);
2704 				break;
2705 			case MEMCG_PROT_NONE:
2706 				break;
2707 			}
2708 
2709 			reclaimed = sc->nr_reclaimed;
2710 			scanned = sc->nr_scanned;
2711 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2712 			node_lru_pages += lru_pages;
2713 
2714 			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2715 					sc->priority);
2716 
2717 			/* Record the group's reclaim efficiency */
2718 			vmpressure(sc->gfp_mask, memcg, false,
2719 				   sc->nr_scanned - scanned,
2720 				   sc->nr_reclaimed - reclaimed);
2721 
2722 			/*
2723 			 * Kswapd have to scan all memory cgroups to fulfill
2724 			 * the overall scan target for the node.
2725 			 *
2726 			 * Limit reclaim, on the other hand, only cares about
2727 			 * nr_to_reclaim pages to be reclaimed and it will
2728 			 * retry with decreasing priority if one round over the
2729 			 * whole hierarchy is not sufficient.
2730 			 */
2731 			if (!current_is_kswapd() &&
2732 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2733 				mem_cgroup_iter_break(root, memcg);
2734 				break;
2735 			}
2736 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2737 
2738 		if (reclaim_state) {
2739 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2740 			reclaim_state->reclaimed_slab = 0;
2741 		}
2742 
2743 		/* Record the subtree's reclaim efficiency */
2744 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2745 			   sc->nr_scanned - nr_scanned,
2746 			   sc->nr_reclaimed - nr_reclaimed);
2747 
2748 		if (sc->nr_reclaimed - nr_reclaimed)
2749 			reclaimable = true;
2750 
2751 		if (current_is_kswapd()) {
2752 			/*
2753 			 * If reclaim is isolating dirty pages under writeback,
2754 			 * it implies that the long-lived page allocation rate
2755 			 * is exceeding the page laundering rate. Either the
2756 			 * global limits are not being effective at throttling
2757 			 * processes due to the page distribution throughout
2758 			 * zones or there is heavy usage of a slow backing
2759 			 * device. The only option is to throttle from reclaim
2760 			 * context which is not ideal as there is no guarantee
2761 			 * the dirtying process is throttled in the same way
2762 			 * balance_dirty_pages() manages.
2763 			 *
2764 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2765 			 * count the number of pages under pages flagged for
2766 			 * immediate reclaim and stall if any are encountered
2767 			 * in the nr_immediate check below.
2768 			 */
2769 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2770 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2771 
2772 			/*
2773 			 * Tag a node as congested if all the dirty pages
2774 			 * scanned were backed by a congested BDI and
2775 			 * wait_iff_congested will stall.
2776 			 */
2777 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2778 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2779 
2780 			/* Allow kswapd to start writing pages during reclaim.*/
2781 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2782 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2783 
2784 			/*
2785 			 * If kswapd scans pages marked marked for immediate
2786 			 * reclaim and under writeback (nr_immediate), it
2787 			 * implies that pages are cycling through the LRU
2788 			 * faster than they are written so also forcibly stall.
2789 			 */
2790 			if (sc->nr.immediate)
2791 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2792 		}
2793 
2794 		/*
2795 		 * Legacy memcg will stall in page writeback so avoid forcibly
2796 		 * stalling in wait_iff_congested().
2797 		 */
2798 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2799 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800 			set_memcg_congestion(pgdat, root, true);
2801 
2802 		/*
2803 		 * Stall direct reclaim for IO completions if underlying BDIs
2804 		 * and node is congested. Allow kswapd to continue until it
2805 		 * starts encountering unqueued dirty pages or cycling through
2806 		 * the LRU too quickly.
2807 		 */
2808 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2809 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2810 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2811 
2812 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2813 					 sc->nr_scanned - nr_scanned, sc));
2814 
2815 	/*
2816 	 * Kswapd gives up on balancing particular nodes after too
2817 	 * many failures to reclaim anything from them and goes to
2818 	 * sleep. On reclaim progress, reset the failure counter. A
2819 	 * successful direct reclaim run will revive a dormant kswapd.
2820 	 */
2821 	if (reclaimable)
2822 		pgdat->kswapd_failures = 0;
2823 
2824 	return reclaimable;
2825 }
2826 
2827 /*
2828  * Returns true if compaction should go ahead for a costly-order request, or
2829  * the allocation would already succeed without compaction. Return false if we
2830  * should reclaim first.
2831  */
2832 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2833 {
2834 	unsigned long watermark;
2835 	enum compact_result suitable;
2836 
2837 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2838 	if (suitable == COMPACT_SUCCESS)
2839 		/* Allocation should succeed already. Don't reclaim. */
2840 		return true;
2841 	if (suitable == COMPACT_SKIPPED)
2842 		/* Compaction cannot yet proceed. Do reclaim. */
2843 		return false;
2844 
2845 	/*
2846 	 * Compaction is already possible, but it takes time to run and there
2847 	 * are potentially other callers using the pages just freed. So proceed
2848 	 * with reclaim to make a buffer of free pages available to give
2849 	 * compaction a reasonable chance of completing and allocating the page.
2850 	 * Note that we won't actually reclaim the whole buffer in one attempt
2851 	 * as the target watermark in should_continue_reclaim() is lower. But if
2852 	 * we are already above the high+gap watermark, don't reclaim at all.
2853 	 */
2854 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2855 
2856 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2857 }
2858 
2859 /*
2860  * This is the direct reclaim path, for page-allocating processes.  We only
2861  * try to reclaim pages from zones which will satisfy the caller's allocation
2862  * request.
2863  *
2864  * If a zone is deemed to be full of pinned pages then just give it a light
2865  * scan then give up on it.
2866  */
2867 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2868 {
2869 	struct zoneref *z;
2870 	struct zone *zone;
2871 	unsigned long nr_soft_reclaimed;
2872 	unsigned long nr_soft_scanned;
2873 	gfp_t orig_mask;
2874 	pg_data_t *last_pgdat = NULL;
2875 
2876 	/*
2877 	 * If the number of buffer_heads in the machine exceeds the maximum
2878 	 * allowed level, force direct reclaim to scan the highmem zone as
2879 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2880 	 */
2881 	orig_mask = sc->gfp_mask;
2882 	if (buffer_heads_over_limit) {
2883 		sc->gfp_mask |= __GFP_HIGHMEM;
2884 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2885 	}
2886 
2887 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2888 					sc->reclaim_idx, sc->nodemask) {
2889 		/*
2890 		 * Take care memory controller reclaiming has small influence
2891 		 * to global LRU.
2892 		 */
2893 		if (global_reclaim(sc)) {
2894 			if (!cpuset_zone_allowed(zone,
2895 						 GFP_KERNEL | __GFP_HARDWALL))
2896 				continue;
2897 
2898 			/*
2899 			 * If we already have plenty of memory free for
2900 			 * compaction in this zone, don't free any more.
2901 			 * Even though compaction is invoked for any
2902 			 * non-zero order, only frequent costly order
2903 			 * reclamation is disruptive enough to become a
2904 			 * noticeable problem, like transparent huge
2905 			 * page allocations.
2906 			 */
2907 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2908 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2909 			    compaction_ready(zone, sc)) {
2910 				sc->compaction_ready = true;
2911 				continue;
2912 			}
2913 
2914 			/*
2915 			 * Shrink each node in the zonelist once. If the
2916 			 * zonelist is ordered by zone (not the default) then a
2917 			 * node may be shrunk multiple times but in that case
2918 			 * the user prefers lower zones being preserved.
2919 			 */
2920 			if (zone->zone_pgdat == last_pgdat)
2921 				continue;
2922 
2923 			/*
2924 			 * This steals pages from memory cgroups over softlimit
2925 			 * and returns the number of reclaimed pages and
2926 			 * scanned pages. This works for global memory pressure
2927 			 * and balancing, not for a memcg's limit.
2928 			 */
2929 			nr_soft_scanned = 0;
2930 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2931 						sc->order, sc->gfp_mask,
2932 						&nr_soft_scanned);
2933 			sc->nr_reclaimed += nr_soft_reclaimed;
2934 			sc->nr_scanned += nr_soft_scanned;
2935 			/* need some check for avoid more shrink_zone() */
2936 		}
2937 
2938 		/* See comment about same check for global reclaim above */
2939 		if (zone->zone_pgdat == last_pgdat)
2940 			continue;
2941 		last_pgdat = zone->zone_pgdat;
2942 		shrink_node(zone->zone_pgdat, sc);
2943 	}
2944 
2945 	/*
2946 	 * Restore to original mask to avoid the impact on the caller if we
2947 	 * promoted it to __GFP_HIGHMEM.
2948 	 */
2949 	sc->gfp_mask = orig_mask;
2950 }
2951 
2952 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2953 {
2954 	struct mem_cgroup *memcg;
2955 
2956 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2957 	do {
2958 		unsigned long refaults;
2959 		struct lruvec *lruvec;
2960 
2961 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2962 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2963 		lruvec->refaults = refaults;
2964 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2965 }
2966 
2967 /*
2968  * This is the main entry point to direct page reclaim.
2969  *
2970  * If a full scan of the inactive list fails to free enough memory then we
2971  * are "out of memory" and something needs to be killed.
2972  *
2973  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2974  * high - the zone may be full of dirty or under-writeback pages, which this
2975  * caller can't do much about.  We kick the writeback threads and take explicit
2976  * naps in the hope that some of these pages can be written.  But if the
2977  * allocating task holds filesystem locks which prevent writeout this might not
2978  * work, and the allocation attempt will fail.
2979  *
2980  * returns:	0, if no pages reclaimed
2981  * 		else, the number of pages reclaimed
2982  */
2983 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2984 					  struct scan_control *sc)
2985 {
2986 	int initial_priority = sc->priority;
2987 	pg_data_t *last_pgdat;
2988 	struct zoneref *z;
2989 	struct zone *zone;
2990 retry:
2991 	delayacct_freepages_start();
2992 
2993 	if (global_reclaim(sc))
2994 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2995 
2996 	do {
2997 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2998 				sc->priority);
2999 		sc->nr_scanned = 0;
3000 		shrink_zones(zonelist, sc);
3001 
3002 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3003 			break;
3004 
3005 		if (sc->compaction_ready)
3006 			break;
3007 
3008 		/*
3009 		 * If we're getting trouble reclaiming, start doing
3010 		 * writepage even in laptop mode.
3011 		 */
3012 		if (sc->priority < DEF_PRIORITY - 2)
3013 			sc->may_writepage = 1;
3014 	} while (--sc->priority >= 0);
3015 
3016 	last_pgdat = NULL;
3017 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3018 					sc->nodemask) {
3019 		if (zone->zone_pgdat == last_pgdat)
3020 			continue;
3021 		last_pgdat = zone->zone_pgdat;
3022 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3023 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3024 	}
3025 
3026 	delayacct_freepages_end();
3027 
3028 	if (sc->nr_reclaimed)
3029 		return sc->nr_reclaimed;
3030 
3031 	/* Aborted reclaim to try compaction? don't OOM, then */
3032 	if (sc->compaction_ready)
3033 		return 1;
3034 
3035 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3036 	if (sc->memcg_low_skipped) {
3037 		sc->priority = initial_priority;
3038 		sc->memcg_low_reclaim = 1;
3039 		sc->memcg_low_skipped = 0;
3040 		goto retry;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static bool allow_direct_reclaim(pg_data_t *pgdat)
3047 {
3048 	struct zone *zone;
3049 	unsigned long pfmemalloc_reserve = 0;
3050 	unsigned long free_pages = 0;
3051 	int i;
3052 	bool wmark_ok;
3053 
3054 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3055 		return true;
3056 
3057 	for (i = 0; i <= ZONE_NORMAL; i++) {
3058 		zone = &pgdat->node_zones[i];
3059 		if (!managed_zone(zone))
3060 			continue;
3061 
3062 		if (!zone_reclaimable_pages(zone))
3063 			continue;
3064 
3065 		pfmemalloc_reserve += min_wmark_pages(zone);
3066 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3067 	}
3068 
3069 	/* If there are no reserves (unexpected config) then do not throttle */
3070 	if (!pfmemalloc_reserve)
3071 		return true;
3072 
3073 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3074 
3075 	/* kswapd must be awake if processes are being throttled */
3076 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3077 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3078 						(enum zone_type)ZONE_NORMAL);
3079 		wake_up_interruptible(&pgdat->kswapd_wait);
3080 	}
3081 
3082 	return wmark_ok;
3083 }
3084 
3085 /*
3086  * Throttle direct reclaimers if backing storage is backed by the network
3087  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3088  * depleted. kswapd will continue to make progress and wake the processes
3089  * when the low watermark is reached.
3090  *
3091  * Returns true if a fatal signal was delivered during throttling. If this
3092  * happens, the page allocator should not consider triggering the OOM killer.
3093  */
3094 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3095 					nodemask_t *nodemask)
3096 {
3097 	struct zoneref *z;
3098 	struct zone *zone;
3099 	pg_data_t *pgdat = NULL;
3100 
3101 	/*
3102 	 * Kernel threads should not be throttled as they may be indirectly
3103 	 * responsible for cleaning pages necessary for reclaim to make forward
3104 	 * progress. kjournald for example may enter direct reclaim while
3105 	 * committing a transaction where throttling it could forcing other
3106 	 * processes to block on log_wait_commit().
3107 	 */
3108 	if (current->flags & PF_KTHREAD)
3109 		goto out;
3110 
3111 	/*
3112 	 * If a fatal signal is pending, this process should not throttle.
3113 	 * It should return quickly so it can exit and free its memory
3114 	 */
3115 	if (fatal_signal_pending(current))
3116 		goto out;
3117 
3118 	/*
3119 	 * Check if the pfmemalloc reserves are ok by finding the first node
3120 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3121 	 * GFP_KERNEL will be required for allocating network buffers when
3122 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3123 	 *
3124 	 * Throttling is based on the first usable node and throttled processes
3125 	 * wait on a queue until kswapd makes progress and wakes them. There
3126 	 * is an affinity then between processes waking up and where reclaim
3127 	 * progress has been made assuming the process wakes on the same node.
3128 	 * More importantly, processes running on remote nodes will not compete
3129 	 * for remote pfmemalloc reserves and processes on different nodes
3130 	 * should make reasonable progress.
3131 	 */
3132 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3133 					gfp_zone(gfp_mask), nodemask) {
3134 		if (zone_idx(zone) > ZONE_NORMAL)
3135 			continue;
3136 
3137 		/* Throttle based on the first usable node */
3138 		pgdat = zone->zone_pgdat;
3139 		if (allow_direct_reclaim(pgdat))
3140 			goto out;
3141 		break;
3142 	}
3143 
3144 	/* If no zone was usable by the allocation flags then do not throttle */
3145 	if (!pgdat)
3146 		goto out;
3147 
3148 	/* Account for the throttling */
3149 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3150 
3151 	/*
3152 	 * If the caller cannot enter the filesystem, it's possible that it
3153 	 * is due to the caller holding an FS lock or performing a journal
3154 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3155 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3156 	 * blocked waiting on the same lock. Instead, throttle for up to a
3157 	 * second before continuing.
3158 	 */
3159 	if (!(gfp_mask & __GFP_FS)) {
3160 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3161 			allow_direct_reclaim(pgdat), HZ);
3162 
3163 		goto check_pending;
3164 	}
3165 
3166 	/* Throttle until kswapd wakes the process */
3167 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3168 		allow_direct_reclaim(pgdat));
3169 
3170 check_pending:
3171 	if (fatal_signal_pending(current))
3172 		return true;
3173 
3174 out:
3175 	return false;
3176 }
3177 
3178 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3179 				gfp_t gfp_mask, nodemask_t *nodemask)
3180 {
3181 	unsigned long nr_reclaimed;
3182 	struct scan_control sc = {
3183 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3184 		.gfp_mask = current_gfp_context(gfp_mask),
3185 		.reclaim_idx = gfp_zone(gfp_mask),
3186 		.order = order,
3187 		.nodemask = nodemask,
3188 		.priority = DEF_PRIORITY,
3189 		.may_writepage = !laptop_mode,
3190 		.may_unmap = 1,
3191 		.may_swap = 1,
3192 	};
3193 
3194 	/*
3195 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3196 	 * Confirm they are large enough for max values.
3197 	 */
3198 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3199 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3200 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3201 
3202 	/*
3203 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3204 	 * 1 is returned so that the page allocator does not OOM kill at this
3205 	 * point.
3206 	 */
3207 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3208 		return 1;
3209 
3210 	set_task_reclaim_state(current, &sc.reclaim_state);
3211 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3212 
3213 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3214 
3215 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3216 	set_task_reclaim_state(current, NULL);
3217 
3218 	return nr_reclaimed;
3219 }
3220 
3221 #ifdef CONFIG_MEMCG
3222 
3223 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3224 						gfp_t gfp_mask, bool noswap,
3225 						pg_data_t *pgdat,
3226 						unsigned long *nr_scanned)
3227 {
3228 	struct scan_control sc = {
3229 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3230 		.target_mem_cgroup = memcg,
3231 		.may_writepage = !laptop_mode,
3232 		.may_unmap = 1,
3233 		.reclaim_idx = MAX_NR_ZONES - 1,
3234 		.may_swap = !noswap,
3235 	};
3236 	unsigned long lru_pages;
3237 
3238 	set_task_reclaim_state(current, &sc.reclaim_state);
3239 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3240 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3241 
3242 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3243 						      sc.gfp_mask);
3244 
3245 	/*
3246 	 * NOTE: Although we can get the priority field, using it
3247 	 * here is not a good idea, since it limits the pages we can scan.
3248 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3249 	 * will pick up pages from other mem cgroup's as well. We hack
3250 	 * the priority and make it zero.
3251 	 */
3252 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3253 
3254 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255 
3256 	set_task_reclaim_state(current, NULL);
3257 	*nr_scanned = sc.nr_scanned;
3258 
3259 	return sc.nr_reclaimed;
3260 }
3261 
3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3263 					   unsigned long nr_pages,
3264 					   gfp_t gfp_mask,
3265 					   bool may_swap)
3266 {
3267 	struct zonelist *zonelist;
3268 	unsigned long nr_reclaimed;
3269 	unsigned long pflags;
3270 	int nid;
3271 	unsigned int noreclaim_flag;
3272 	struct scan_control sc = {
3273 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3274 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3275 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3276 		.reclaim_idx = MAX_NR_ZONES - 1,
3277 		.target_mem_cgroup = memcg,
3278 		.priority = DEF_PRIORITY,
3279 		.may_writepage = !laptop_mode,
3280 		.may_unmap = 1,
3281 		.may_swap = may_swap,
3282 	};
3283 
3284 	set_task_reclaim_state(current, &sc.reclaim_state);
3285 	/*
3286 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3287 	 * take care of from where we get pages. So the node where we start the
3288 	 * scan does not need to be the current node.
3289 	 */
3290 	nid = mem_cgroup_select_victim_node(memcg);
3291 
3292 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3293 
3294 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3295 
3296 	psi_memstall_enter(&pflags);
3297 	noreclaim_flag = memalloc_noreclaim_save();
3298 
3299 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3300 
3301 	memalloc_noreclaim_restore(noreclaim_flag);
3302 	psi_memstall_leave(&pflags);
3303 
3304 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3305 	set_task_reclaim_state(current, NULL);
3306 
3307 	return nr_reclaimed;
3308 }
3309 #endif
3310 
3311 static void age_active_anon(struct pglist_data *pgdat,
3312 				struct scan_control *sc)
3313 {
3314 	struct mem_cgroup *memcg;
3315 
3316 	if (!total_swap_pages)
3317 		return;
3318 
3319 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3320 	do {
3321 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3322 
3323 		if (inactive_list_is_low(lruvec, false, sc, true))
3324 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3325 					   sc, LRU_ACTIVE_ANON);
3326 
3327 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3328 	} while (memcg);
3329 }
3330 
3331 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3332 {
3333 	int i;
3334 	struct zone *zone;
3335 
3336 	/*
3337 	 * Check for watermark boosts top-down as the higher zones
3338 	 * are more likely to be boosted. Both watermarks and boosts
3339 	 * should not be checked at the time time as reclaim would
3340 	 * start prematurely when there is no boosting and a lower
3341 	 * zone is balanced.
3342 	 */
3343 	for (i = classzone_idx; i >= 0; i--) {
3344 		zone = pgdat->node_zones + i;
3345 		if (!managed_zone(zone))
3346 			continue;
3347 
3348 		if (zone->watermark_boost)
3349 			return true;
3350 	}
3351 
3352 	return false;
3353 }
3354 
3355 /*
3356  * Returns true if there is an eligible zone balanced for the request order
3357  * and classzone_idx
3358  */
3359 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3360 {
3361 	int i;
3362 	unsigned long mark = -1;
3363 	struct zone *zone;
3364 
3365 	/*
3366 	 * Check watermarks bottom-up as lower zones are more likely to
3367 	 * meet watermarks.
3368 	 */
3369 	for (i = 0; i <= classzone_idx; i++) {
3370 		zone = pgdat->node_zones + i;
3371 
3372 		if (!managed_zone(zone))
3373 			continue;
3374 
3375 		mark = high_wmark_pages(zone);
3376 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3377 			return true;
3378 	}
3379 
3380 	/*
3381 	 * If a node has no populated zone within classzone_idx, it does not
3382 	 * need balancing by definition. This can happen if a zone-restricted
3383 	 * allocation tries to wake a remote kswapd.
3384 	 */
3385 	if (mark == -1)
3386 		return true;
3387 
3388 	return false;
3389 }
3390 
3391 /* Clear pgdat state for congested, dirty or under writeback. */
3392 static void clear_pgdat_congested(pg_data_t *pgdat)
3393 {
3394 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3395 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3396 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3397 }
3398 
3399 /*
3400  * Prepare kswapd for sleeping. This verifies that there are no processes
3401  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3402  *
3403  * Returns true if kswapd is ready to sleep
3404  */
3405 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3406 {
3407 	/*
3408 	 * The throttled processes are normally woken up in balance_pgdat() as
3409 	 * soon as allow_direct_reclaim() is true. But there is a potential
3410 	 * race between when kswapd checks the watermarks and a process gets
3411 	 * throttled. There is also a potential race if processes get
3412 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3413 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3414 	 * the wake up checks. If kswapd is going to sleep, no process should
3415 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3416 	 * the wake up is premature, processes will wake kswapd and get
3417 	 * throttled again. The difference from wake ups in balance_pgdat() is
3418 	 * that here we are under prepare_to_wait().
3419 	 */
3420 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3421 		wake_up_all(&pgdat->pfmemalloc_wait);
3422 
3423 	/* Hopeless node, leave it to direct reclaim */
3424 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3425 		return true;
3426 
3427 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3428 		clear_pgdat_congested(pgdat);
3429 		return true;
3430 	}
3431 
3432 	return false;
3433 }
3434 
3435 /*
3436  * kswapd shrinks a node of pages that are at or below the highest usable
3437  * zone that is currently unbalanced.
3438  *
3439  * Returns true if kswapd scanned at least the requested number of pages to
3440  * reclaim or if the lack of progress was due to pages under writeback.
3441  * This is used to determine if the scanning priority needs to be raised.
3442  */
3443 static bool kswapd_shrink_node(pg_data_t *pgdat,
3444 			       struct scan_control *sc)
3445 {
3446 	struct zone *zone;
3447 	int z;
3448 
3449 	/* Reclaim a number of pages proportional to the number of zones */
3450 	sc->nr_to_reclaim = 0;
3451 	for (z = 0; z <= sc->reclaim_idx; z++) {
3452 		zone = pgdat->node_zones + z;
3453 		if (!managed_zone(zone))
3454 			continue;
3455 
3456 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3457 	}
3458 
3459 	/*
3460 	 * Historically care was taken to put equal pressure on all zones but
3461 	 * now pressure is applied based on node LRU order.
3462 	 */
3463 	shrink_node(pgdat, sc);
3464 
3465 	/*
3466 	 * Fragmentation may mean that the system cannot be rebalanced for
3467 	 * high-order allocations. If twice the allocation size has been
3468 	 * reclaimed then recheck watermarks only at order-0 to prevent
3469 	 * excessive reclaim. Assume that a process requested a high-order
3470 	 * can direct reclaim/compact.
3471 	 */
3472 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3473 		sc->order = 0;
3474 
3475 	return sc->nr_scanned >= sc->nr_to_reclaim;
3476 }
3477 
3478 /*
3479  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3480  * that are eligible for use by the caller until at least one zone is
3481  * balanced.
3482  *
3483  * Returns the order kswapd finished reclaiming at.
3484  *
3485  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3486  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3487  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3488  * or lower is eligible for reclaim until at least one usable zone is
3489  * balanced.
3490  */
3491 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3492 {
3493 	int i;
3494 	unsigned long nr_soft_reclaimed;
3495 	unsigned long nr_soft_scanned;
3496 	unsigned long pflags;
3497 	unsigned long nr_boost_reclaim;
3498 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3499 	bool boosted;
3500 	struct zone *zone;
3501 	struct scan_control sc = {
3502 		.gfp_mask = GFP_KERNEL,
3503 		.order = order,
3504 		.may_unmap = 1,
3505 	};
3506 
3507 	set_task_reclaim_state(current, &sc.reclaim_state);
3508 	psi_memstall_enter(&pflags);
3509 	__fs_reclaim_acquire();
3510 
3511 	count_vm_event(PAGEOUTRUN);
3512 
3513 	/*
3514 	 * Account for the reclaim boost. Note that the zone boost is left in
3515 	 * place so that parallel allocations that are near the watermark will
3516 	 * stall or direct reclaim until kswapd is finished.
3517 	 */
3518 	nr_boost_reclaim = 0;
3519 	for (i = 0; i <= classzone_idx; i++) {
3520 		zone = pgdat->node_zones + i;
3521 		if (!managed_zone(zone))
3522 			continue;
3523 
3524 		nr_boost_reclaim += zone->watermark_boost;
3525 		zone_boosts[i] = zone->watermark_boost;
3526 	}
3527 	boosted = nr_boost_reclaim;
3528 
3529 restart:
3530 	sc.priority = DEF_PRIORITY;
3531 	do {
3532 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3533 		bool raise_priority = true;
3534 		bool balanced;
3535 		bool ret;
3536 
3537 		sc.reclaim_idx = classzone_idx;
3538 
3539 		/*
3540 		 * If the number of buffer_heads exceeds the maximum allowed
3541 		 * then consider reclaiming from all zones. This has a dual
3542 		 * purpose -- on 64-bit systems it is expected that
3543 		 * buffer_heads are stripped during active rotation. On 32-bit
3544 		 * systems, highmem pages can pin lowmem memory and shrinking
3545 		 * buffers can relieve lowmem pressure. Reclaim may still not
3546 		 * go ahead if all eligible zones for the original allocation
3547 		 * request are balanced to avoid excessive reclaim from kswapd.
3548 		 */
3549 		if (buffer_heads_over_limit) {
3550 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3551 				zone = pgdat->node_zones + i;
3552 				if (!managed_zone(zone))
3553 					continue;
3554 
3555 				sc.reclaim_idx = i;
3556 				break;
3557 			}
3558 		}
3559 
3560 		/*
3561 		 * If the pgdat is imbalanced then ignore boosting and preserve
3562 		 * the watermarks for a later time and restart. Note that the
3563 		 * zone watermarks will be still reset at the end of balancing
3564 		 * on the grounds that the normal reclaim should be enough to
3565 		 * re-evaluate if boosting is required when kswapd next wakes.
3566 		 */
3567 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3568 		if (!balanced && nr_boost_reclaim) {
3569 			nr_boost_reclaim = 0;
3570 			goto restart;
3571 		}
3572 
3573 		/*
3574 		 * If boosting is not active then only reclaim if there are no
3575 		 * eligible zones. Note that sc.reclaim_idx is not used as
3576 		 * buffer_heads_over_limit may have adjusted it.
3577 		 */
3578 		if (!nr_boost_reclaim && balanced)
3579 			goto out;
3580 
3581 		/* Limit the priority of boosting to avoid reclaim writeback */
3582 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3583 			raise_priority = false;
3584 
3585 		/*
3586 		 * Do not writeback or swap pages for boosted reclaim. The
3587 		 * intent is to relieve pressure not issue sub-optimal IO
3588 		 * from reclaim context. If no pages are reclaimed, the
3589 		 * reclaim will be aborted.
3590 		 */
3591 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3592 		sc.may_swap = !nr_boost_reclaim;
3593 
3594 		/*
3595 		 * Do some background aging of the anon list, to give
3596 		 * pages a chance to be referenced before reclaiming. All
3597 		 * pages are rotated regardless of classzone as this is
3598 		 * about consistent aging.
3599 		 */
3600 		age_active_anon(pgdat, &sc);
3601 
3602 		/*
3603 		 * If we're getting trouble reclaiming, start doing writepage
3604 		 * even in laptop mode.
3605 		 */
3606 		if (sc.priority < DEF_PRIORITY - 2)
3607 			sc.may_writepage = 1;
3608 
3609 		/* Call soft limit reclaim before calling shrink_node. */
3610 		sc.nr_scanned = 0;
3611 		nr_soft_scanned = 0;
3612 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3613 						sc.gfp_mask, &nr_soft_scanned);
3614 		sc.nr_reclaimed += nr_soft_reclaimed;
3615 
3616 		/*
3617 		 * There should be no need to raise the scanning priority if
3618 		 * enough pages are already being scanned that that high
3619 		 * watermark would be met at 100% efficiency.
3620 		 */
3621 		if (kswapd_shrink_node(pgdat, &sc))
3622 			raise_priority = false;
3623 
3624 		/*
3625 		 * If the low watermark is met there is no need for processes
3626 		 * to be throttled on pfmemalloc_wait as they should not be
3627 		 * able to safely make forward progress. Wake them
3628 		 */
3629 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3630 				allow_direct_reclaim(pgdat))
3631 			wake_up_all(&pgdat->pfmemalloc_wait);
3632 
3633 		/* Check if kswapd should be suspending */
3634 		__fs_reclaim_release();
3635 		ret = try_to_freeze();
3636 		__fs_reclaim_acquire();
3637 		if (ret || kthread_should_stop())
3638 			break;
3639 
3640 		/*
3641 		 * Raise priority if scanning rate is too low or there was no
3642 		 * progress in reclaiming pages
3643 		 */
3644 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3645 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3646 
3647 		/*
3648 		 * If reclaim made no progress for a boost, stop reclaim as
3649 		 * IO cannot be queued and it could be an infinite loop in
3650 		 * extreme circumstances.
3651 		 */
3652 		if (nr_boost_reclaim && !nr_reclaimed)
3653 			break;
3654 
3655 		if (raise_priority || !nr_reclaimed)
3656 			sc.priority--;
3657 	} while (sc.priority >= 1);
3658 
3659 	if (!sc.nr_reclaimed)
3660 		pgdat->kswapd_failures++;
3661 
3662 out:
3663 	/* If reclaim was boosted, account for the reclaim done in this pass */
3664 	if (boosted) {
3665 		unsigned long flags;
3666 
3667 		for (i = 0; i <= classzone_idx; i++) {
3668 			if (!zone_boosts[i])
3669 				continue;
3670 
3671 			/* Increments are under the zone lock */
3672 			zone = pgdat->node_zones + i;
3673 			spin_lock_irqsave(&zone->lock, flags);
3674 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3675 			spin_unlock_irqrestore(&zone->lock, flags);
3676 		}
3677 
3678 		/*
3679 		 * As there is now likely space, wakeup kcompact to defragment
3680 		 * pageblocks.
3681 		 */
3682 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3683 	}
3684 
3685 	snapshot_refaults(NULL, pgdat);
3686 	__fs_reclaim_release();
3687 	psi_memstall_leave(&pflags);
3688 	set_task_reclaim_state(current, NULL);
3689 
3690 	/*
3691 	 * Return the order kswapd stopped reclaiming at as
3692 	 * prepare_kswapd_sleep() takes it into account. If another caller
3693 	 * entered the allocator slow path while kswapd was awake, order will
3694 	 * remain at the higher level.
3695 	 */
3696 	return sc.order;
3697 }
3698 
3699 /*
3700  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3701  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3702  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3703  * after previous reclaim attempt (node is still unbalanced). In that case
3704  * return the zone index of the previous kswapd reclaim cycle.
3705  */
3706 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3707 					   enum zone_type prev_classzone_idx)
3708 {
3709 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3710 		return prev_classzone_idx;
3711 	return pgdat->kswapd_classzone_idx;
3712 }
3713 
3714 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3715 				unsigned int classzone_idx)
3716 {
3717 	long remaining = 0;
3718 	DEFINE_WAIT(wait);
3719 
3720 	if (freezing(current) || kthread_should_stop())
3721 		return;
3722 
3723 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3724 
3725 	/*
3726 	 * Try to sleep for a short interval. Note that kcompactd will only be
3727 	 * woken if it is possible to sleep for a short interval. This is
3728 	 * deliberate on the assumption that if reclaim cannot keep an
3729 	 * eligible zone balanced that it's also unlikely that compaction will
3730 	 * succeed.
3731 	 */
3732 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3733 		/*
3734 		 * Compaction records what page blocks it recently failed to
3735 		 * isolate pages from and skips them in the future scanning.
3736 		 * When kswapd is going to sleep, it is reasonable to assume
3737 		 * that pages and compaction may succeed so reset the cache.
3738 		 */
3739 		reset_isolation_suitable(pgdat);
3740 
3741 		/*
3742 		 * We have freed the memory, now we should compact it to make
3743 		 * allocation of the requested order possible.
3744 		 */
3745 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3746 
3747 		remaining = schedule_timeout(HZ/10);
3748 
3749 		/*
3750 		 * If woken prematurely then reset kswapd_classzone_idx and
3751 		 * order. The values will either be from a wakeup request or
3752 		 * the previous request that slept prematurely.
3753 		 */
3754 		if (remaining) {
3755 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3756 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3757 		}
3758 
3759 		finish_wait(&pgdat->kswapd_wait, &wait);
3760 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3761 	}
3762 
3763 	/*
3764 	 * After a short sleep, check if it was a premature sleep. If not, then
3765 	 * go fully to sleep until explicitly woken up.
3766 	 */
3767 	if (!remaining &&
3768 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3769 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3770 
3771 		/*
3772 		 * vmstat counters are not perfectly accurate and the estimated
3773 		 * value for counters such as NR_FREE_PAGES can deviate from the
3774 		 * true value by nr_online_cpus * threshold. To avoid the zone
3775 		 * watermarks being breached while under pressure, we reduce the
3776 		 * per-cpu vmstat threshold while kswapd is awake and restore
3777 		 * them before going back to sleep.
3778 		 */
3779 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3780 
3781 		if (!kthread_should_stop())
3782 			schedule();
3783 
3784 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3785 	} else {
3786 		if (remaining)
3787 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3788 		else
3789 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3790 	}
3791 	finish_wait(&pgdat->kswapd_wait, &wait);
3792 }
3793 
3794 /*
3795  * The background pageout daemon, started as a kernel thread
3796  * from the init process.
3797  *
3798  * This basically trickles out pages so that we have _some_
3799  * free memory available even if there is no other activity
3800  * that frees anything up. This is needed for things like routing
3801  * etc, where we otherwise might have all activity going on in
3802  * asynchronous contexts that cannot page things out.
3803  *
3804  * If there are applications that are active memory-allocators
3805  * (most normal use), this basically shouldn't matter.
3806  */
3807 static int kswapd(void *p)
3808 {
3809 	unsigned int alloc_order, reclaim_order;
3810 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3811 	pg_data_t *pgdat = (pg_data_t*)p;
3812 	struct task_struct *tsk = current;
3813 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3814 
3815 	if (!cpumask_empty(cpumask))
3816 		set_cpus_allowed_ptr(tsk, cpumask);
3817 
3818 	/*
3819 	 * Tell the memory management that we're a "memory allocator",
3820 	 * and that if we need more memory we should get access to it
3821 	 * regardless (see "__alloc_pages()"). "kswapd" should
3822 	 * never get caught in the normal page freeing logic.
3823 	 *
3824 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3825 	 * you need a small amount of memory in order to be able to
3826 	 * page out something else, and this flag essentially protects
3827 	 * us from recursively trying to free more memory as we're
3828 	 * trying to free the first piece of memory in the first place).
3829 	 */
3830 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3831 	set_freezable();
3832 
3833 	pgdat->kswapd_order = 0;
3834 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3835 	for ( ; ; ) {
3836 		bool ret;
3837 
3838 		alloc_order = reclaim_order = pgdat->kswapd_order;
3839 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840 
3841 kswapd_try_sleep:
3842 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3843 					classzone_idx);
3844 
3845 		/* Read the new order and classzone_idx */
3846 		alloc_order = reclaim_order = pgdat->kswapd_order;
3847 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3848 		pgdat->kswapd_order = 0;
3849 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3850 
3851 		ret = try_to_freeze();
3852 		if (kthread_should_stop())
3853 			break;
3854 
3855 		/*
3856 		 * We can speed up thawing tasks if we don't call balance_pgdat
3857 		 * after returning from the refrigerator
3858 		 */
3859 		if (ret)
3860 			continue;
3861 
3862 		/*
3863 		 * Reclaim begins at the requested order but if a high-order
3864 		 * reclaim fails then kswapd falls back to reclaiming for
3865 		 * order-0. If that happens, kswapd will consider sleeping
3866 		 * for the order it finished reclaiming at (reclaim_order)
3867 		 * but kcompactd is woken to compact for the original
3868 		 * request (alloc_order).
3869 		 */
3870 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3871 						alloc_order);
3872 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3873 		if (reclaim_order < alloc_order)
3874 			goto kswapd_try_sleep;
3875 	}
3876 
3877 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3878 
3879 	return 0;
3880 }
3881 
3882 /*
3883  * A zone is low on free memory or too fragmented for high-order memory.  If
3884  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3885  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3886  * has failed or is not needed, still wake up kcompactd if only compaction is
3887  * needed.
3888  */
3889 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3890 		   enum zone_type classzone_idx)
3891 {
3892 	pg_data_t *pgdat;
3893 
3894 	if (!managed_zone(zone))
3895 		return;
3896 
3897 	if (!cpuset_zone_allowed(zone, gfp_flags))
3898 		return;
3899 	pgdat = zone->zone_pgdat;
3900 
3901 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3902 		pgdat->kswapd_classzone_idx = classzone_idx;
3903 	else
3904 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3905 						  classzone_idx);
3906 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3907 	if (!waitqueue_active(&pgdat->kswapd_wait))
3908 		return;
3909 
3910 	/* Hopeless node, leave it to direct reclaim if possible */
3911 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3912 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3913 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3914 		/*
3915 		 * There may be plenty of free memory available, but it's too
3916 		 * fragmented for high-order allocations.  Wake up kcompactd
3917 		 * and rely on compaction_suitable() to determine if it's
3918 		 * needed.  If it fails, it will defer subsequent attempts to
3919 		 * ratelimit its work.
3920 		 */
3921 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3922 			wakeup_kcompactd(pgdat, order, classzone_idx);
3923 		return;
3924 	}
3925 
3926 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3927 				      gfp_flags);
3928 	wake_up_interruptible(&pgdat->kswapd_wait);
3929 }
3930 
3931 #ifdef CONFIG_HIBERNATION
3932 /*
3933  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3934  * freed pages.
3935  *
3936  * Rather than trying to age LRUs the aim is to preserve the overall
3937  * LRU order by reclaiming preferentially
3938  * inactive > active > active referenced > active mapped
3939  */
3940 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3941 {
3942 	struct scan_control sc = {
3943 		.nr_to_reclaim = nr_to_reclaim,
3944 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3945 		.reclaim_idx = MAX_NR_ZONES - 1,
3946 		.priority = DEF_PRIORITY,
3947 		.may_writepage = 1,
3948 		.may_unmap = 1,
3949 		.may_swap = 1,
3950 		.hibernation_mode = 1,
3951 	};
3952 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3953 	unsigned long nr_reclaimed;
3954 	unsigned int noreclaim_flag;
3955 
3956 	fs_reclaim_acquire(sc.gfp_mask);
3957 	noreclaim_flag = memalloc_noreclaim_save();
3958 	set_task_reclaim_state(current, &sc.reclaim_state);
3959 
3960 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3961 
3962 	set_task_reclaim_state(current, NULL);
3963 	memalloc_noreclaim_restore(noreclaim_flag);
3964 	fs_reclaim_release(sc.gfp_mask);
3965 
3966 	return nr_reclaimed;
3967 }
3968 #endif /* CONFIG_HIBERNATION */
3969 
3970 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3971    not required for correctness.  So if the last cpu in a node goes
3972    away, we get changed to run anywhere: as the first one comes back,
3973    restore their cpu bindings. */
3974 static int kswapd_cpu_online(unsigned int cpu)
3975 {
3976 	int nid;
3977 
3978 	for_each_node_state(nid, N_MEMORY) {
3979 		pg_data_t *pgdat = NODE_DATA(nid);
3980 		const struct cpumask *mask;
3981 
3982 		mask = cpumask_of_node(pgdat->node_id);
3983 
3984 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3985 			/* One of our CPUs online: restore mask */
3986 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3987 	}
3988 	return 0;
3989 }
3990 
3991 /*
3992  * This kswapd start function will be called by init and node-hot-add.
3993  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3994  */
3995 int kswapd_run(int nid)
3996 {
3997 	pg_data_t *pgdat = NODE_DATA(nid);
3998 	int ret = 0;
3999 
4000 	if (pgdat->kswapd)
4001 		return 0;
4002 
4003 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4004 	if (IS_ERR(pgdat->kswapd)) {
4005 		/* failure at boot is fatal */
4006 		BUG_ON(system_state < SYSTEM_RUNNING);
4007 		pr_err("Failed to start kswapd on node %d\n", nid);
4008 		ret = PTR_ERR(pgdat->kswapd);
4009 		pgdat->kswapd = NULL;
4010 	}
4011 	return ret;
4012 }
4013 
4014 /*
4015  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4016  * hold mem_hotplug_begin/end().
4017  */
4018 void kswapd_stop(int nid)
4019 {
4020 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4021 
4022 	if (kswapd) {
4023 		kthread_stop(kswapd);
4024 		NODE_DATA(nid)->kswapd = NULL;
4025 	}
4026 }
4027 
4028 static int __init kswapd_init(void)
4029 {
4030 	int nid, ret;
4031 
4032 	swap_setup();
4033 	for_each_node_state(nid, N_MEMORY)
4034  		kswapd_run(nid);
4035 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4036 					"mm/vmscan:online", kswapd_cpu_online,
4037 					NULL);
4038 	WARN_ON(ret < 0);
4039 	return 0;
4040 }
4041 
4042 module_init(kswapd_init)
4043 
4044 #ifdef CONFIG_NUMA
4045 /*
4046  * Node reclaim mode
4047  *
4048  * If non-zero call node_reclaim when the number of free pages falls below
4049  * the watermarks.
4050  */
4051 int node_reclaim_mode __read_mostly;
4052 
4053 #define RECLAIM_OFF 0
4054 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4055 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4056 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4057 
4058 /*
4059  * Priority for NODE_RECLAIM. This determines the fraction of pages
4060  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4061  * a zone.
4062  */
4063 #define NODE_RECLAIM_PRIORITY 4
4064 
4065 /*
4066  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4067  * occur.
4068  */
4069 int sysctl_min_unmapped_ratio = 1;
4070 
4071 /*
4072  * If the number of slab pages in a zone grows beyond this percentage then
4073  * slab reclaim needs to occur.
4074  */
4075 int sysctl_min_slab_ratio = 5;
4076 
4077 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4078 {
4079 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4080 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4081 		node_page_state(pgdat, NR_ACTIVE_FILE);
4082 
4083 	/*
4084 	 * It's possible for there to be more file mapped pages than
4085 	 * accounted for by the pages on the file LRU lists because
4086 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4087 	 */
4088 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4089 }
4090 
4091 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4092 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4093 {
4094 	unsigned long nr_pagecache_reclaimable;
4095 	unsigned long delta = 0;
4096 
4097 	/*
4098 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4099 	 * potentially reclaimable. Otherwise, we have to worry about
4100 	 * pages like swapcache and node_unmapped_file_pages() provides
4101 	 * a better estimate
4102 	 */
4103 	if (node_reclaim_mode & RECLAIM_UNMAP)
4104 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4105 	else
4106 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4107 
4108 	/* If we can't clean pages, remove dirty pages from consideration */
4109 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4110 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4111 
4112 	/* Watch for any possible underflows due to delta */
4113 	if (unlikely(delta > nr_pagecache_reclaimable))
4114 		delta = nr_pagecache_reclaimable;
4115 
4116 	return nr_pagecache_reclaimable - delta;
4117 }
4118 
4119 /*
4120  * Try to free up some pages from this node through reclaim.
4121  */
4122 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4123 {
4124 	/* Minimum pages needed in order to stay on node */
4125 	const unsigned long nr_pages = 1 << order;
4126 	struct task_struct *p = current;
4127 	unsigned int noreclaim_flag;
4128 	struct scan_control sc = {
4129 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4130 		.gfp_mask = current_gfp_context(gfp_mask),
4131 		.order = order,
4132 		.priority = NODE_RECLAIM_PRIORITY,
4133 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4134 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4135 		.may_swap = 1,
4136 		.reclaim_idx = gfp_zone(gfp_mask),
4137 	};
4138 
4139 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4140 					   sc.gfp_mask);
4141 
4142 	cond_resched();
4143 	fs_reclaim_acquire(sc.gfp_mask);
4144 	/*
4145 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4146 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4147 	 * and RECLAIM_UNMAP.
4148 	 */
4149 	noreclaim_flag = memalloc_noreclaim_save();
4150 	p->flags |= PF_SWAPWRITE;
4151 	set_task_reclaim_state(p, &sc.reclaim_state);
4152 
4153 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4154 		/*
4155 		 * Free memory by calling shrink node with increasing
4156 		 * priorities until we have enough memory freed.
4157 		 */
4158 		do {
4159 			shrink_node(pgdat, &sc);
4160 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4161 	}
4162 
4163 	set_task_reclaim_state(p, NULL);
4164 	current->flags &= ~PF_SWAPWRITE;
4165 	memalloc_noreclaim_restore(noreclaim_flag);
4166 	fs_reclaim_release(sc.gfp_mask);
4167 
4168 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4169 
4170 	return sc.nr_reclaimed >= nr_pages;
4171 }
4172 
4173 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4174 {
4175 	int ret;
4176 
4177 	/*
4178 	 * Node reclaim reclaims unmapped file backed pages and
4179 	 * slab pages if we are over the defined limits.
4180 	 *
4181 	 * A small portion of unmapped file backed pages is needed for
4182 	 * file I/O otherwise pages read by file I/O will be immediately
4183 	 * thrown out if the node is overallocated. So we do not reclaim
4184 	 * if less than a specified percentage of the node is used by
4185 	 * unmapped file backed pages.
4186 	 */
4187 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4188 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4189 		return NODE_RECLAIM_FULL;
4190 
4191 	/*
4192 	 * Do not scan if the allocation should not be delayed.
4193 	 */
4194 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4195 		return NODE_RECLAIM_NOSCAN;
4196 
4197 	/*
4198 	 * Only run node reclaim on the local node or on nodes that do not
4199 	 * have associated processors. This will favor the local processor
4200 	 * over remote processors and spread off node memory allocations
4201 	 * as wide as possible.
4202 	 */
4203 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4204 		return NODE_RECLAIM_NOSCAN;
4205 
4206 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4207 		return NODE_RECLAIM_NOSCAN;
4208 
4209 	ret = __node_reclaim(pgdat, gfp_mask, order);
4210 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4211 
4212 	if (!ret)
4213 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4214 
4215 	return ret;
4216 }
4217 #endif
4218 
4219 /*
4220  * page_evictable - test whether a page is evictable
4221  * @page: the page to test
4222  *
4223  * Test whether page is evictable--i.e., should be placed on active/inactive
4224  * lists vs unevictable list.
4225  *
4226  * Reasons page might not be evictable:
4227  * (1) page's mapping marked unevictable
4228  * (2) page is part of an mlocked VMA
4229  *
4230  */
4231 int page_evictable(struct page *page)
4232 {
4233 	int ret;
4234 
4235 	/* Prevent address_space of inode and swap cache from being freed */
4236 	rcu_read_lock();
4237 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4238 	rcu_read_unlock();
4239 	return ret;
4240 }
4241 
4242 /**
4243  * check_move_unevictable_pages - check pages for evictability and move to
4244  * appropriate zone lru list
4245  * @pvec: pagevec with lru pages to check
4246  *
4247  * Checks pages for evictability, if an evictable page is in the unevictable
4248  * lru list, moves it to the appropriate evictable lru list. This function
4249  * should be only used for lru pages.
4250  */
4251 void check_move_unevictable_pages(struct pagevec *pvec)
4252 {
4253 	struct lruvec *lruvec;
4254 	struct pglist_data *pgdat = NULL;
4255 	int pgscanned = 0;
4256 	int pgrescued = 0;
4257 	int i;
4258 
4259 	for (i = 0; i < pvec->nr; i++) {
4260 		struct page *page = pvec->pages[i];
4261 		struct pglist_data *pagepgdat = page_pgdat(page);
4262 
4263 		pgscanned++;
4264 		if (pagepgdat != pgdat) {
4265 			if (pgdat)
4266 				spin_unlock_irq(&pgdat->lru_lock);
4267 			pgdat = pagepgdat;
4268 			spin_lock_irq(&pgdat->lru_lock);
4269 		}
4270 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4271 
4272 		if (!PageLRU(page) || !PageUnevictable(page))
4273 			continue;
4274 
4275 		if (page_evictable(page)) {
4276 			enum lru_list lru = page_lru_base_type(page);
4277 
4278 			VM_BUG_ON_PAGE(PageActive(page), page);
4279 			ClearPageUnevictable(page);
4280 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4281 			add_page_to_lru_list(page, lruvec, lru);
4282 			pgrescued++;
4283 		}
4284 	}
4285 
4286 	if (pgdat) {
4287 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4288 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4289 		spin_unlock_irq(&pgdat->lru_lock);
4290 	}
4291 }
4292 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4293