xref: /openbmc/linux/mm/vmscan.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 	unsigned int may_deactivate:2;
100 	unsigned int force_deactivate:1;
101 	unsigned int skipped_deactivate:1;
102 
103 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
104 	unsigned int may_writepage:1;
105 
106 	/* Can mapped folios be reclaimed? */
107 	unsigned int may_unmap:1;
108 
109 	/* Can folios be swapped as part of reclaim? */
110 	unsigned int may_swap:1;
111 
112 	/* Proactive reclaim invoked by userspace through memory.reclaim */
113 	unsigned int proactive:1;
114 
115 	/*
116 	 * Cgroup memory below memory.low is protected as long as we
117 	 * don't threaten to OOM. If any cgroup is reclaimed at
118 	 * reduced force or passed over entirely due to its memory.low
119 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 	 * result, then go back for one more cycle that reclaims the protected
121 	 * memory (memcg_low_reclaim) to avert OOM.
122 	 */
123 	unsigned int memcg_low_reclaim:1;
124 	unsigned int memcg_low_skipped:1;
125 
126 	unsigned int hibernation_mode:1;
127 
128 	/* One of the zones is ready for compaction */
129 	unsigned int compaction_ready:1;
130 
131 	/* There is easily reclaimable cold cache in the current node */
132 	unsigned int cache_trim_mode:1;
133 
134 	/* The file folios on the current node are dangerously low */
135 	unsigned int file_is_tiny:1;
136 
137 	/* Always discard instead of demoting to lower tier memory */
138 	unsigned int no_demotion:1;
139 
140 	/* Allocation order */
141 	s8 order;
142 
143 	/* Scan (total_size >> priority) pages at once */
144 	s8 priority;
145 
146 	/* The highest zone to isolate folios for reclaim from */
147 	s8 reclaim_idx;
148 
149 	/* This context's GFP mask */
150 	gfp_t gfp_mask;
151 
152 	/* Incremented by the number of inactive pages that were scanned */
153 	unsigned long nr_scanned;
154 
155 	/* Number of pages freed so far during a call to shrink_zones() */
156 	unsigned long nr_reclaimed;
157 
158 	struct {
159 		unsigned int dirty;
160 		unsigned int unqueued_dirty;
161 		unsigned int congested;
162 		unsigned int writeback;
163 		unsigned int immediate;
164 		unsigned int file_taken;
165 		unsigned int taken;
166 	} nr;
167 
168 	/* for recording the reclaimed slab by now */
169 	struct reclaim_state reclaim_state;
170 };
171 
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
174 	do {								\
175 		if ((_folio)->lru.prev != _base) {			\
176 			struct folio *prev;				\
177 									\
178 			prev = lru_to_folio(&(_folio->lru));		\
179 			prefetchw(&prev->_field);			\
180 		}							\
181 	} while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185 
186 /*
187  * From 0 .. 200.  Higher means more swappy.
188  */
189 int vm_swappiness = 60;
190 
191 static void set_task_reclaim_state(struct task_struct *task,
192 				   struct reclaim_state *rs)
193 {
194 	/* Check for an overwrite */
195 	WARN_ON_ONCE(rs && task->reclaim_state);
196 
197 	/* Check for the nulling of an already-nulled member */
198 	WARN_ON_ONCE(!rs && !task->reclaim_state);
199 
200 	task->reclaim_state = rs;
201 }
202 
203 LIST_HEAD(shrinker_list);
204 DECLARE_RWSEM(shrinker_rwsem);
205 
206 #ifdef CONFIG_MEMCG
207 static int shrinker_nr_max;
208 
209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
210 static inline int shrinker_map_size(int nr_items)
211 {
212 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
213 }
214 
215 static inline int shrinker_defer_size(int nr_items)
216 {
217 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
218 }
219 
220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
221 						     int nid)
222 {
223 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
224 					 lockdep_is_held(&shrinker_rwsem));
225 }
226 
227 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
228 				    int map_size, int defer_size,
229 				    int old_map_size, int old_defer_size)
230 {
231 	struct shrinker_info *new, *old;
232 	struct mem_cgroup_per_node *pn;
233 	int nid;
234 	int size = map_size + defer_size;
235 
236 	for_each_node(nid) {
237 		pn = memcg->nodeinfo[nid];
238 		old = shrinker_info_protected(memcg, nid);
239 		/* Not yet online memcg */
240 		if (!old)
241 			return 0;
242 
243 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
244 		if (!new)
245 			return -ENOMEM;
246 
247 		new->nr_deferred = (atomic_long_t *)(new + 1);
248 		new->map = (void *)new->nr_deferred + defer_size;
249 
250 		/* map: set all old bits, clear all new bits */
251 		memset(new->map, (int)0xff, old_map_size);
252 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
253 		/* nr_deferred: copy old values, clear all new values */
254 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
255 		memset((void *)new->nr_deferred + old_defer_size, 0,
256 		       defer_size - old_defer_size);
257 
258 		rcu_assign_pointer(pn->shrinker_info, new);
259 		kvfree_rcu(old, rcu);
260 	}
261 
262 	return 0;
263 }
264 
265 void free_shrinker_info(struct mem_cgroup *memcg)
266 {
267 	struct mem_cgroup_per_node *pn;
268 	struct shrinker_info *info;
269 	int nid;
270 
271 	for_each_node(nid) {
272 		pn = memcg->nodeinfo[nid];
273 		info = rcu_dereference_protected(pn->shrinker_info, true);
274 		kvfree(info);
275 		rcu_assign_pointer(pn->shrinker_info, NULL);
276 	}
277 }
278 
279 int alloc_shrinker_info(struct mem_cgroup *memcg)
280 {
281 	struct shrinker_info *info;
282 	int nid, size, ret = 0;
283 	int map_size, defer_size = 0;
284 
285 	down_write(&shrinker_rwsem);
286 	map_size = shrinker_map_size(shrinker_nr_max);
287 	defer_size = shrinker_defer_size(shrinker_nr_max);
288 	size = map_size + defer_size;
289 	for_each_node(nid) {
290 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
291 		if (!info) {
292 			free_shrinker_info(memcg);
293 			ret = -ENOMEM;
294 			break;
295 		}
296 		info->nr_deferred = (atomic_long_t *)(info + 1);
297 		info->map = (void *)info->nr_deferred + defer_size;
298 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
299 	}
300 	up_write(&shrinker_rwsem);
301 
302 	return ret;
303 }
304 
305 static inline bool need_expand(int nr_max)
306 {
307 	return round_up(nr_max, BITS_PER_LONG) >
308 	       round_up(shrinker_nr_max, BITS_PER_LONG);
309 }
310 
311 static int expand_shrinker_info(int new_id)
312 {
313 	int ret = 0;
314 	int new_nr_max = new_id + 1;
315 	int map_size, defer_size = 0;
316 	int old_map_size, old_defer_size = 0;
317 	struct mem_cgroup *memcg;
318 
319 	if (!need_expand(new_nr_max))
320 		goto out;
321 
322 	if (!root_mem_cgroup)
323 		goto out;
324 
325 	lockdep_assert_held(&shrinker_rwsem);
326 
327 	map_size = shrinker_map_size(new_nr_max);
328 	defer_size = shrinker_defer_size(new_nr_max);
329 	old_map_size = shrinker_map_size(shrinker_nr_max);
330 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
331 
332 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
333 	do {
334 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
335 					       old_map_size, old_defer_size);
336 		if (ret) {
337 			mem_cgroup_iter_break(NULL, memcg);
338 			goto out;
339 		}
340 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
341 out:
342 	if (!ret)
343 		shrinker_nr_max = new_nr_max;
344 
345 	return ret;
346 }
347 
348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
349 {
350 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
351 		struct shrinker_info *info;
352 
353 		rcu_read_lock();
354 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
355 		/* Pairs with smp mb in shrink_slab() */
356 		smp_mb__before_atomic();
357 		set_bit(shrinker_id, info->map);
358 		rcu_read_unlock();
359 	}
360 }
361 
362 static DEFINE_IDR(shrinker_idr);
363 
364 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
365 {
366 	int id, ret = -ENOMEM;
367 
368 	if (mem_cgroup_disabled())
369 		return -ENOSYS;
370 
371 	down_write(&shrinker_rwsem);
372 	/* This may call shrinker, so it must use down_read_trylock() */
373 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
374 	if (id < 0)
375 		goto unlock;
376 
377 	if (id >= shrinker_nr_max) {
378 		if (expand_shrinker_info(id)) {
379 			idr_remove(&shrinker_idr, id);
380 			goto unlock;
381 		}
382 	}
383 	shrinker->id = id;
384 	ret = 0;
385 unlock:
386 	up_write(&shrinker_rwsem);
387 	return ret;
388 }
389 
390 static void unregister_memcg_shrinker(struct shrinker *shrinker)
391 {
392 	int id = shrinker->id;
393 
394 	BUG_ON(id < 0);
395 
396 	lockdep_assert_held(&shrinker_rwsem);
397 
398 	idr_remove(&shrinker_idr, id);
399 }
400 
401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
402 				   struct mem_cgroup *memcg)
403 {
404 	struct shrinker_info *info;
405 
406 	info = shrinker_info_protected(memcg, nid);
407 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
408 }
409 
410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
411 				  struct mem_cgroup *memcg)
412 {
413 	struct shrinker_info *info;
414 
415 	info = shrinker_info_protected(memcg, nid);
416 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
417 }
418 
419 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
420 {
421 	int i, nid;
422 	long nr;
423 	struct mem_cgroup *parent;
424 	struct shrinker_info *child_info, *parent_info;
425 
426 	parent = parent_mem_cgroup(memcg);
427 	if (!parent)
428 		parent = root_mem_cgroup;
429 
430 	/* Prevent from concurrent shrinker_info expand */
431 	down_read(&shrinker_rwsem);
432 	for_each_node(nid) {
433 		child_info = shrinker_info_protected(memcg, nid);
434 		parent_info = shrinker_info_protected(parent, nid);
435 		for (i = 0; i < shrinker_nr_max; i++) {
436 			nr = atomic_long_read(&child_info->nr_deferred[i]);
437 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
438 		}
439 	}
440 	up_read(&shrinker_rwsem);
441 }
442 
443 static bool cgroup_reclaim(struct scan_control *sc)
444 {
445 	return sc->target_mem_cgroup;
446 }
447 
448 static bool global_reclaim(struct scan_control *sc)
449 {
450 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
451 }
452 
453 /**
454  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
455  * @sc: scan_control in question
456  *
457  * The normal page dirty throttling mechanism in balance_dirty_pages() is
458  * completely broken with the legacy memcg and direct stalling in
459  * shrink_folio_list() is used for throttling instead, which lacks all the
460  * niceties such as fairness, adaptive pausing, bandwidth proportional
461  * allocation and configurability.
462  *
463  * This function tests whether the vmscan currently in progress can assume
464  * that the normal dirty throttling mechanism is operational.
465  */
466 static bool writeback_throttling_sane(struct scan_control *sc)
467 {
468 	if (!cgroup_reclaim(sc))
469 		return true;
470 #ifdef CONFIG_CGROUP_WRITEBACK
471 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
472 		return true;
473 #endif
474 	return false;
475 }
476 #else
477 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
478 {
479 	return -ENOSYS;
480 }
481 
482 static void unregister_memcg_shrinker(struct shrinker *shrinker)
483 {
484 }
485 
486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
487 				   struct mem_cgroup *memcg)
488 {
489 	return 0;
490 }
491 
492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
493 				  struct mem_cgroup *memcg)
494 {
495 	return 0;
496 }
497 
498 static bool cgroup_reclaim(struct scan_control *sc)
499 {
500 	return false;
501 }
502 
503 static bool global_reclaim(struct scan_control *sc)
504 {
505 	return true;
506 }
507 
508 static bool writeback_throttling_sane(struct scan_control *sc)
509 {
510 	return true;
511 }
512 #endif
513 
514 static long xchg_nr_deferred(struct shrinker *shrinker,
515 			     struct shrink_control *sc)
516 {
517 	int nid = sc->nid;
518 
519 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
520 		nid = 0;
521 
522 	if (sc->memcg &&
523 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
524 		return xchg_nr_deferred_memcg(nid, shrinker,
525 					      sc->memcg);
526 
527 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
528 }
529 
530 
531 static long add_nr_deferred(long nr, struct shrinker *shrinker,
532 			    struct shrink_control *sc)
533 {
534 	int nid = sc->nid;
535 
536 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
537 		nid = 0;
538 
539 	if (sc->memcg &&
540 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
541 		return add_nr_deferred_memcg(nr, nid, shrinker,
542 					     sc->memcg);
543 
544 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
545 }
546 
547 static bool can_demote(int nid, struct scan_control *sc)
548 {
549 	if (!numa_demotion_enabled)
550 		return false;
551 	if (sc && sc->no_demotion)
552 		return false;
553 	if (next_demotion_node(nid) == NUMA_NO_NODE)
554 		return false;
555 
556 	return true;
557 }
558 
559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
560 					  int nid,
561 					  struct scan_control *sc)
562 {
563 	if (memcg == NULL) {
564 		/*
565 		 * For non-memcg reclaim, is there
566 		 * space in any swap device?
567 		 */
568 		if (get_nr_swap_pages() > 0)
569 			return true;
570 	} else {
571 		/* Is the memcg below its swap limit? */
572 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
573 			return true;
574 	}
575 
576 	/*
577 	 * The page can not be swapped.
578 	 *
579 	 * Can it be reclaimed from this node via demotion?
580 	 */
581 	return can_demote(nid, sc);
582 }
583 
584 /*
585  * This misses isolated folios which are not accounted for to save counters.
586  * As the data only determines if reclaim or compaction continues, it is
587  * not expected that isolated folios will be a dominating factor.
588  */
589 unsigned long zone_reclaimable_pages(struct zone *zone)
590 {
591 	unsigned long nr;
592 
593 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
594 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
595 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
596 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
597 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
598 
599 	return nr;
600 }
601 
602 /**
603  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
604  * @lruvec: lru vector
605  * @lru: lru to use
606  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
607  */
608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
609 				     int zone_idx)
610 {
611 	unsigned long size = 0;
612 	int zid;
613 
614 	for (zid = 0; zid <= zone_idx; zid++) {
615 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
616 
617 		if (!managed_zone(zone))
618 			continue;
619 
620 		if (!mem_cgroup_disabled())
621 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
622 		else
623 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
624 	}
625 	return size;
626 }
627 
628 /*
629  * Add a shrinker callback to be called from the vm.
630  */
631 static int __prealloc_shrinker(struct shrinker *shrinker)
632 {
633 	unsigned int size;
634 	int err;
635 
636 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
637 		err = prealloc_memcg_shrinker(shrinker);
638 		if (err != -ENOSYS)
639 			return err;
640 
641 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
642 	}
643 
644 	size = sizeof(*shrinker->nr_deferred);
645 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
646 		size *= nr_node_ids;
647 
648 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
649 	if (!shrinker->nr_deferred)
650 		return -ENOMEM;
651 
652 	return 0;
653 }
654 
655 #ifdef CONFIG_SHRINKER_DEBUG
656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
657 {
658 	va_list ap;
659 	int err;
660 
661 	va_start(ap, fmt);
662 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
663 	va_end(ap);
664 	if (!shrinker->name)
665 		return -ENOMEM;
666 
667 	err = __prealloc_shrinker(shrinker);
668 	if (err) {
669 		kfree_const(shrinker->name);
670 		shrinker->name = NULL;
671 	}
672 
673 	return err;
674 }
675 #else
676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
677 {
678 	return __prealloc_shrinker(shrinker);
679 }
680 #endif
681 
682 void free_prealloced_shrinker(struct shrinker *shrinker)
683 {
684 #ifdef CONFIG_SHRINKER_DEBUG
685 	kfree_const(shrinker->name);
686 	shrinker->name = NULL;
687 #endif
688 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
689 		down_write(&shrinker_rwsem);
690 		unregister_memcg_shrinker(shrinker);
691 		up_write(&shrinker_rwsem);
692 		return;
693 	}
694 
695 	kfree(shrinker->nr_deferred);
696 	shrinker->nr_deferred = NULL;
697 }
698 
699 void register_shrinker_prepared(struct shrinker *shrinker)
700 {
701 	down_write(&shrinker_rwsem);
702 	list_add_tail(&shrinker->list, &shrinker_list);
703 	shrinker->flags |= SHRINKER_REGISTERED;
704 	shrinker_debugfs_add(shrinker);
705 	up_write(&shrinker_rwsem);
706 }
707 
708 static int __register_shrinker(struct shrinker *shrinker)
709 {
710 	int err = __prealloc_shrinker(shrinker);
711 
712 	if (err)
713 		return err;
714 	register_shrinker_prepared(shrinker);
715 	return 0;
716 }
717 
718 #ifdef CONFIG_SHRINKER_DEBUG
719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
720 {
721 	va_list ap;
722 	int err;
723 
724 	va_start(ap, fmt);
725 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
726 	va_end(ap);
727 	if (!shrinker->name)
728 		return -ENOMEM;
729 
730 	err = __register_shrinker(shrinker);
731 	if (err) {
732 		kfree_const(shrinker->name);
733 		shrinker->name = NULL;
734 	}
735 	return err;
736 }
737 #else
738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
739 {
740 	return __register_shrinker(shrinker);
741 }
742 #endif
743 EXPORT_SYMBOL(register_shrinker);
744 
745 /*
746  * Remove one
747  */
748 void unregister_shrinker(struct shrinker *shrinker)
749 {
750 	if (!(shrinker->flags & SHRINKER_REGISTERED))
751 		return;
752 
753 	down_write(&shrinker_rwsem);
754 	list_del(&shrinker->list);
755 	shrinker->flags &= ~SHRINKER_REGISTERED;
756 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
757 		unregister_memcg_shrinker(shrinker);
758 	shrinker_debugfs_remove(shrinker);
759 	up_write(&shrinker_rwsem);
760 
761 	kfree(shrinker->nr_deferred);
762 	shrinker->nr_deferred = NULL;
763 }
764 EXPORT_SYMBOL(unregister_shrinker);
765 
766 /**
767  * synchronize_shrinkers - Wait for all running shrinkers to complete.
768  *
769  * This is equivalent to calling unregister_shrink() and register_shrinker(),
770  * but atomically and with less overhead. This is useful to guarantee that all
771  * shrinker invocations have seen an update, before freeing memory, similar to
772  * rcu.
773  */
774 void synchronize_shrinkers(void)
775 {
776 	down_write(&shrinker_rwsem);
777 	up_write(&shrinker_rwsem);
778 }
779 EXPORT_SYMBOL(synchronize_shrinkers);
780 
781 #define SHRINK_BATCH 128
782 
783 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
784 				    struct shrinker *shrinker, int priority)
785 {
786 	unsigned long freed = 0;
787 	unsigned long long delta;
788 	long total_scan;
789 	long freeable;
790 	long nr;
791 	long new_nr;
792 	long batch_size = shrinker->batch ? shrinker->batch
793 					  : SHRINK_BATCH;
794 	long scanned = 0, next_deferred;
795 
796 	freeable = shrinker->count_objects(shrinker, shrinkctl);
797 	if (freeable == 0 || freeable == SHRINK_EMPTY)
798 		return freeable;
799 
800 	/*
801 	 * copy the current shrinker scan count into a local variable
802 	 * and zero it so that other concurrent shrinker invocations
803 	 * don't also do this scanning work.
804 	 */
805 	nr = xchg_nr_deferred(shrinker, shrinkctl);
806 
807 	if (shrinker->seeks) {
808 		delta = freeable >> priority;
809 		delta *= 4;
810 		do_div(delta, shrinker->seeks);
811 	} else {
812 		/*
813 		 * These objects don't require any IO to create. Trim
814 		 * them aggressively under memory pressure to keep
815 		 * them from causing refetches in the IO caches.
816 		 */
817 		delta = freeable / 2;
818 	}
819 
820 	total_scan = nr >> priority;
821 	total_scan += delta;
822 	total_scan = min(total_scan, (2 * freeable));
823 
824 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
825 				   freeable, delta, total_scan, priority);
826 
827 	/*
828 	 * Normally, we should not scan less than batch_size objects in one
829 	 * pass to avoid too frequent shrinker calls, but if the slab has less
830 	 * than batch_size objects in total and we are really tight on memory,
831 	 * we will try to reclaim all available objects, otherwise we can end
832 	 * up failing allocations although there are plenty of reclaimable
833 	 * objects spread over several slabs with usage less than the
834 	 * batch_size.
835 	 *
836 	 * We detect the "tight on memory" situations by looking at the total
837 	 * number of objects we want to scan (total_scan). If it is greater
838 	 * than the total number of objects on slab (freeable), we must be
839 	 * scanning at high prio and therefore should try to reclaim as much as
840 	 * possible.
841 	 */
842 	while (total_scan >= batch_size ||
843 	       total_scan >= freeable) {
844 		unsigned long ret;
845 		unsigned long nr_to_scan = min(batch_size, total_scan);
846 
847 		shrinkctl->nr_to_scan = nr_to_scan;
848 		shrinkctl->nr_scanned = nr_to_scan;
849 		ret = shrinker->scan_objects(shrinker, shrinkctl);
850 		if (ret == SHRINK_STOP)
851 			break;
852 		freed += ret;
853 
854 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
855 		total_scan -= shrinkctl->nr_scanned;
856 		scanned += shrinkctl->nr_scanned;
857 
858 		cond_resched();
859 	}
860 
861 	/*
862 	 * The deferred work is increased by any new work (delta) that wasn't
863 	 * done, decreased by old deferred work that was done now.
864 	 *
865 	 * And it is capped to two times of the freeable items.
866 	 */
867 	next_deferred = max_t(long, (nr + delta - scanned), 0);
868 	next_deferred = min(next_deferred, (2 * freeable));
869 
870 	/*
871 	 * move the unused scan count back into the shrinker in a
872 	 * manner that handles concurrent updates.
873 	 */
874 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
875 
876 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
877 	return freed;
878 }
879 
880 #ifdef CONFIG_MEMCG
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 			struct mem_cgroup *memcg, int priority)
883 {
884 	struct shrinker_info *info;
885 	unsigned long ret, freed = 0;
886 	int i;
887 
888 	if (!mem_cgroup_online(memcg))
889 		return 0;
890 
891 	if (!down_read_trylock(&shrinker_rwsem))
892 		return 0;
893 
894 	info = shrinker_info_protected(memcg, nid);
895 	if (unlikely(!info))
896 		goto unlock;
897 
898 	for_each_set_bit(i, info->map, shrinker_nr_max) {
899 		struct shrink_control sc = {
900 			.gfp_mask = gfp_mask,
901 			.nid = nid,
902 			.memcg = memcg,
903 		};
904 		struct shrinker *shrinker;
905 
906 		shrinker = idr_find(&shrinker_idr, i);
907 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
908 			if (!shrinker)
909 				clear_bit(i, info->map);
910 			continue;
911 		}
912 
913 		/* Call non-slab shrinkers even though kmem is disabled */
914 		if (!memcg_kmem_enabled() &&
915 		    !(shrinker->flags & SHRINKER_NONSLAB))
916 			continue;
917 
918 		ret = do_shrink_slab(&sc, shrinker, priority);
919 		if (ret == SHRINK_EMPTY) {
920 			clear_bit(i, info->map);
921 			/*
922 			 * After the shrinker reported that it had no objects to
923 			 * free, but before we cleared the corresponding bit in
924 			 * the memcg shrinker map, a new object might have been
925 			 * added. To make sure, we have the bit set in this
926 			 * case, we invoke the shrinker one more time and reset
927 			 * the bit if it reports that it is not empty anymore.
928 			 * The memory barrier here pairs with the barrier in
929 			 * set_shrinker_bit():
930 			 *
931 			 * list_lru_add()     shrink_slab_memcg()
932 			 *   list_add_tail()    clear_bit()
933 			 *   <MB>               <MB>
934 			 *   set_bit()          do_shrink_slab()
935 			 */
936 			smp_mb__after_atomic();
937 			ret = do_shrink_slab(&sc, shrinker, priority);
938 			if (ret == SHRINK_EMPTY)
939 				ret = 0;
940 			else
941 				set_shrinker_bit(memcg, nid, i);
942 		}
943 		freed += ret;
944 
945 		if (rwsem_is_contended(&shrinker_rwsem)) {
946 			freed = freed ? : 1;
947 			break;
948 		}
949 	}
950 unlock:
951 	up_read(&shrinker_rwsem);
952 	return freed;
953 }
954 #else /* CONFIG_MEMCG */
955 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
956 			struct mem_cgroup *memcg, int priority)
957 {
958 	return 0;
959 }
960 #endif /* CONFIG_MEMCG */
961 
962 /**
963  * shrink_slab - shrink slab caches
964  * @gfp_mask: allocation context
965  * @nid: node whose slab caches to target
966  * @memcg: memory cgroup whose slab caches to target
967  * @priority: the reclaim priority
968  *
969  * Call the shrink functions to age shrinkable caches.
970  *
971  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
972  * unaware shrinkers will receive a node id of 0 instead.
973  *
974  * @memcg specifies the memory cgroup to target. Unaware shrinkers
975  * are called only if it is the root cgroup.
976  *
977  * @priority is sc->priority, we take the number of objects and >> by priority
978  * in order to get the scan target.
979  *
980  * Returns the number of reclaimed slab objects.
981  */
982 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
983 				 struct mem_cgroup *memcg,
984 				 int priority)
985 {
986 	unsigned long ret, freed = 0;
987 	struct shrinker *shrinker;
988 
989 	/*
990 	 * The root memcg might be allocated even though memcg is disabled
991 	 * via "cgroup_disable=memory" boot parameter.  This could make
992 	 * mem_cgroup_is_root() return false, then just run memcg slab
993 	 * shrink, but skip global shrink.  This may result in premature
994 	 * oom.
995 	 */
996 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
997 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
998 
999 	if (!down_read_trylock(&shrinker_rwsem))
1000 		goto out;
1001 
1002 	list_for_each_entry(shrinker, &shrinker_list, list) {
1003 		struct shrink_control sc = {
1004 			.gfp_mask = gfp_mask,
1005 			.nid = nid,
1006 			.memcg = memcg,
1007 		};
1008 
1009 		ret = do_shrink_slab(&sc, shrinker, priority);
1010 		if (ret == SHRINK_EMPTY)
1011 			ret = 0;
1012 		freed += ret;
1013 		/*
1014 		 * Bail out if someone want to register a new shrinker to
1015 		 * prevent the registration from being stalled for long periods
1016 		 * by parallel ongoing shrinking.
1017 		 */
1018 		if (rwsem_is_contended(&shrinker_rwsem)) {
1019 			freed = freed ? : 1;
1020 			break;
1021 		}
1022 	}
1023 
1024 	up_read(&shrinker_rwsem);
1025 out:
1026 	cond_resched();
1027 	return freed;
1028 }
1029 
1030 static unsigned long drop_slab_node(int nid)
1031 {
1032 	unsigned long freed = 0;
1033 	struct mem_cgroup *memcg = NULL;
1034 
1035 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1036 	do {
1037 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1038 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1039 
1040 	return freed;
1041 }
1042 
1043 void drop_slab(void)
1044 {
1045 	int nid;
1046 	int shift = 0;
1047 	unsigned long freed;
1048 
1049 	do {
1050 		freed = 0;
1051 		for_each_online_node(nid) {
1052 			if (fatal_signal_pending(current))
1053 				return;
1054 
1055 			freed += drop_slab_node(nid);
1056 		}
1057 	} while ((freed >> shift++) > 1);
1058 }
1059 
1060 static int reclaimer_offset(void)
1061 {
1062 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1063 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1064 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1065 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1066 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1067 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1068 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1069 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1070 
1071 	if (current_is_kswapd())
1072 		return 0;
1073 	if (current_is_khugepaged())
1074 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1075 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1076 }
1077 
1078 static inline int is_page_cache_freeable(struct folio *folio)
1079 {
1080 	/*
1081 	 * A freeable page cache folio is referenced only by the caller
1082 	 * that isolated the folio, the page cache and optional filesystem
1083 	 * private data at folio->private.
1084 	 */
1085 	return folio_ref_count(folio) - folio_test_private(folio) ==
1086 		1 + folio_nr_pages(folio);
1087 }
1088 
1089 /*
1090  * We detected a synchronous write error writing a folio out.  Probably
1091  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1092  * fsync(), msync() or close().
1093  *
1094  * The tricky part is that after writepage we cannot touch the mapping: nothing
1095  * prevents it from being freed up.  But we have a ref on the folio and once
1096  * that folio is locked, the mapping is pinned.
1097  *
1098  * We're allowed to run sleeping folio_lock() here because we know the caller has
1099  * __GFP_FS.
1100  */
1101 static void handle_write_error(struct address_space *mapping,
1102 				struct folio *folio, int error)
1103 {
1104 	folio_lock(folio);
1105 	if (folio_mapping(folio) == mapping)
1106 		mapping_set_error(mapping, error);
1107 	folio_unlock(folio);
1108 }
1109 
1110 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1111 {
1112 	int reclaimable = 0, write_pending = 0;
1113 	int i;
1114 
1115 	/*
1116 	 * If kswapd is disabled, reschedule if necessary but do not
1117 	 * throttle as the system is likely near OOM.
1118 	 */
1119 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1120 		return true;
1121 
1122 	/*
1123 	 * If there are a lot of dirty/writeback folios then do not
1124 	 * throttle as throttling will occur when the folios cycle
1125 	 * towards the end of the LRU if still under writeback.
1126 	 */
1127 	for (i = 0; i < MAX_NR_ZONES; i++) {
1128 		struct zone *zone = pgdat->node_zones + i;
1129 
1130 		if (!managed_zone(zone))
1131 			continue;
1132 
1133 		reclaimable += zone_reclaimable_pages(zone);
1134 		write_pending += zone_page_state_snapshot(zone,
1135 						  NR_ZONE_WRITE_PENDING);
1136 	}
1137 	if (2 * write_pending <= reclaimable)
1138 		return true;
1139 
1140 	return false;
1141 }
1142 
1143 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1144 {
1145 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1146 	long timeout, ret;
1147 	DEFINE_WAIT(wait);
1148 
1149 	/*
1150 	 * Do not throttle IO workers, kthreads other than kswapd or
1151 	 * workqueues. They may be required for reclaim to make
1152 	 * forward progress (e.g. journalling workqueues or kthreads).
1153 	 */
1154 	if (!current_is_kswapd() &&
1155 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1156 		cond_resched();
1157 		return;
1158 	}
1159 
1160 	/*
1161 	 * These figures are pulled out of thin air.
1162 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1163 	 * parallel reclaimers which is a short-lived event so the timeout is
1164 	 * short. Failing to make progress or waiting on writeback are
1165 	 * potentially long-lived events so use a longer timeout. This is shaky
1166 	 * logic as a failure to make progress could be due to anything from
1167 	 * writeback to a slow device to excessive referenced folios at the tail
1168 	 * of the inactive LRU.
1169 	 */
1170 	switch(reason) {
1171 	case VMSCAN_THROTTLE_WRITEBACK:
1172 		timeout = HZ/10;
1173 
1174 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1175 			WRITE_ONCE(pgdat->nr_reclaim_start,
1176 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1177 		}
1178 
1179 		break;
1180 	case VMSCAN_THROTTLE_CONGESTED:
1181 		fallthrough;
1182 	case VMSCAN_THROTTLE_NOPROGRESS:
1183 		if (skip_throttle_noprogress(pgdat)) {
1184 			cond_resched();
1185 			return;
1186 		}
1187 
1188 		timeout = 1;
1189 
1190 		break;
1191 	case VMSCAN_THROTTLE_ISOLATED:
1192 		timeout = HZ/50;
1193 		break;
1194 	default:
1195 		WARN_ON_ONCE(1);
1196 		timeout = HZ;
1197 		break;
1198 	}
1199 
1200 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1201 	ret = schedule_timeout(timeout);
1202 	finish_wait(wqh, &wait);
1203 
1204 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1205 		atomic_dec(&pgdat->nr_writeback_throttled);
1206 
1207 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1208 				jiffies_to_usecs(timeout - ret),
1209 				reason);
1210 }
1211 
1212 /*
1213  * Account for folios written if tasks are throttled waiting on dirty
1214  * folios to clean. If enough folios have been cleaned since throttling
1215  * started then wakeup the throttled tasks.
1216  */
1217 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1218 							int nr_throttled)
1219 {
1220 	unsigned long nr_written;
1221 
1222 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1223 
1224 	/*
1225 	 * This is an inaccurate read as the per-cpu deltas may not
1226 	 * be synchronised. However, given that the system is
1227 	 * writeback throttled, it is not worth taking the penalty
1228 	 * of getting an accurate count. At worst, the throttle
1229 	 * timeout guarantees forward progress.
1230 	 */
1231 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1232 		READ_ONCE(pgdat->nr_reclaim_start);
1233 
1234 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1235 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1236 }
1237 
1238 /* possible outcome of pageout() */
1239 typedef enum {
1240 	/* failed to write folio out, folio is locked */
1241 	PAGE_KEEP,
1242 	/* move folio to the active list, folio is locked */
1243 	PAGE_ACTIVATE,
1244 	/* folio has been sent to the disk successfully, folio is unlocked */
1245 	PAGE_SUCCESS,
1246 	/* folio is clean and locked */
1247 	PAGE_CLEAN,
1248 } pageout_t;
1249 
1250 /*
1251  * pageout is called by shrink_folio_list() for each dirty folio.
1252  * Calls ->writepage().
1253  */
1254 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1255 			 struct swap_iocb **plug)
1256 {
1257 	/*
1258 	 * If the folio is dirty, only perform writeback if that write
1259 	 * will be non-blocking.  To prevent this allocation from being
1260 	 * stalled by pagecache activity.  But note that there may be
1261 	 * stalls if we need to run get_block().  We could test
1262 	 * PagePrivate for that.
1263 	 *
1264 	 * If this process is currently in __generic_file_write_iter() against
1265 	 * this folio's queue, we can perform writeback even if that
1266 	 * will block.
1267 	 *
1268 	 * If the folio is swapcache, write it back even if that would
1269 	 * block, for some throttling. This happens by accident, because
1270 	 * swap_backing_dev_info is bust: it doesn't reflect the
1271 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1272 	 */
1273 	if (!is_page_cache_freeable(folio))
1274 		return PAGE_KEEP;
1275 	if (!mapping) {
1276 		/*
1277 		 * Some data journaling orphaned folios can have
1278 		 * folio->mapping == NULL while being dirty with clean buffers.
1279 		 */
1280 		if (folio_test_private(folio)) {
1281 			if (try_to_free_buffers(folio)) {
1282 				folio_clear_dirty(folio);
1283 				pr_info("%s: orphaned folio\n", __func__);
1284 				return PAGE_CLEAN;
1285 			}
1286 		}
1287 		return PAGE_KEEP;
1288 	}
1289 	if (mapping->a_ops->writepage == NULL)
1290 		return PAGE_ACTIVATE;
1291 
1292 	if (folio_clear_dirty_for_io(folio)) {
1293 		int res;
1294 		struct writeback_control wbc = {
1295 			.sync_mode = WB_SYNC_NONE,
1296 			.nr_to_write = SWAP_CLUSTER_MAX,
1297 			.range_start = 0,
1298 			.range_end = LLONG_MAX,
1299 			.for_reclaim = 1,
1300 			.swap_plug = plug,
1301 		};
1302 
1303 		folio_set_reclaim(folio);
1304 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1305 		if (res < 0)
1306 			handle_write_error(mapping, folio, res);
1307 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1308 			folio_clear_reclaim(folio);
1309 			return PAGE_ACTIVATE;
1310 		}
1311 
1312 		if (!folio_test_writeback(folio)) {
1313 			/* synchronous write or broken a_ops? */
1314 			folio_clear_reclaim(folio);
1315 		}
1316 		trace_mm_vmscan_write_folio(folio);
1317 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1318 		return PAGE_SUCCESS;
1319 	}
1320 
1321 	return PAGE_CLEAN;
1322 }
1323 
1324 /*
1325  * Same as remove_mapping, but if the folio is removed from the mapping, it
1326  * gets returned with a refcount of 0.
1327  */
1328 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1329 			    bool reclaimed, struct mem_cgroup *target_memcg)
1330 {
1331 	int refcount;
1332 	void *shadow = NULL;
1333 
1334 	BUG_ON(!folio_test_locked(folio));
1335 	BUG_ON(mapping != folio_mapping(folio));
1336 
1337 	if (!folio_test_swapcache(folio))
1338 		spin_lock(&mapping->host->i_lock);
1339 	xa_lock_irq(&mapping->i_pages);
1340 	/*
1341 	 * The non racy check for a busy folio.
1342 	 *
1343 	 * Must be careful with the order of the tests. When someone has
1344 	 * a ref to the folio, it may be possible that they dirty it then
1345 	 * drop the reference. So if the dirty flag is tested before the
1346 	 * refcount here, then the following race may occur:
1347 	 *
1348 	 * get_user_pages(&page);
1349 	 * [user mapping goes away]
1350 	 * write_to(page);
1351 	 *				!folio_test_dirty(folio)    [good]
1352 	 * folio_set_dirty(folio);
1353 	 * folio_put(folio);
1354 	 *				!refcount(folio)   [good, discard it]
1355 	 *
1356 	 * [oops, our write_to data is lost]
1357 	 *
1358 	 * Reversing the order of the tests ensures such a situation cannot
1359 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1360 	 * load is not satisfied before that of folio->_refcount.
1361 	 *
1362 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1363 	 * and thus under the i_pages lock, then this ordering is not required.
1364 	 */
1365 	refcount = 1 + folio_nr_pages(folio);
1366 	if (!folio_ref_freeze(folio, refcount))
1367 		goto cannot_free;
1368 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1369 	if (unlikely(folio_test_dirty(folio))) {
1370 		folio_ref_unfreeze(folio, refcount);
1371 		goto cannot_free;
1372 	}
1373 
1374 	if (folio_test_swapcache(folio)) {
1375 		swp_entry_t swap = folio_swap_entry(folio);
1376 
1377 		if (reclaimed && !mapping_exiting(mapping))
1378 			shadow = workingset_eviction(folio, target_memcg);
1379 		__delete_from_swap_cache(folio, swap, shadow);
1380 		mem_cgroup_swapout(folio, swap);
1381 		xa_unlock_irq(&mapping->i_pages);
1382 		put_swap_folio(folio, swap);
1383 	} else {
1384 		void (*free_folio)(struct folio *);
1385 
1386 		free_folio = mapping->a_ops->free_folio;
1387 		/*
1388 		 * Remember a shadow entry for reclaimed file cache in
1389 		 * order to detect refaults, thus thrashing, later on.
1390 		 *
1391 		 * But don't store shadows in an address space that is
1392 		 * already exiting.  This is not just an optimization,
1393 		 * inode reclaim needs to empty out the radix tree or
1394 		 * the nodes are lost.  Don't plant shadows behind its
1395 		 * back.
1396 		 *
1397 		 * We also don't store shadows for DAX mappings because the
1398 		 * only page cache folios found in these are zero pages
1399 		 * covering holes, and because we don't want to mix DAX
1400 		 * exceptional entries and shadow exceptional entries in the
1401 		 * same address_space.
1402 		 */
1403 		if (reclaimed && folio_is_file_lru(folio) &&
1404 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1405 			shadow = workingset_eviction(folio, target_memcg);
1406 		__filemap_remove_folio(folio, shadow);
1407 		xa_unlock_irq(&mapping->i_pages);
1408 		if (mapping_shrinkable(mapping))
1409 			inode_add_lru(mapping->host);
1410 		spin_unlock(&mapping->host->i_lock);
1411 
1412 		if (free_folio)
1413 			free_folio(folio);
1414 	}
1415 
1416 	return 1;
1417 
1418 cannot_free:
1419 	xa_unlock_irq(&mapping->i_pages);
1420 	if (!folio_test_swapcache(folio))
1421 		spin_unlock(&mapping->host->i_lock);
1422 	return 0;
1423 }
1424 
1425 /**
1426  * remove_mapping() - Attempt to remove a folio from its mapping.
1427  * @mapping: The address space.
1428  * @folio: The folio to remove.
1429  *
1430  * If the folio is dirty, under writeback or if someone else has a ref
1431  * on it, removal will fail.
1432  * Return: The number of pages removed from the mapping.  0 if the folio
1433  * could not be removed.
1434  * Context: The caller should have a single refcount on the folio and
1435  * hold its lock.
1436  */
1437 long remove_mapping(struct address_space *mapping, struct folio *folio)
1438 {
1439 	if (__remove_mapping(mapping, folio, false, NULL)) {
1440 		/*
1441 		 * Unfreezing the refcount with 1 effectively
1442 		 * drops the pagecache ref for us without requiring another
1443 		 * atomic operation.
1444 		 */
1445 		folio_ref_unfreeze(folio, 1);
1446 		return folio_nr_pages(folio);
1447 	}
1448 	return 0;
1449 }
1450 
1451 /**
1452  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1453  * @folio: Folio to be returned to an LRU list.
1454  *
1455  * Add previously isolated @folio to appropriate LRU list.
1456  * The folio may still be unevictable for other reasons.
1457  *
1458  * Context: lru_lock must not be held, interrupts must be enabled.
1459  */
1460 void folio_putback_lru(struct folio *folio)
1461 {
1462 	folio_add_lru(folio);
1463 	folio_put(folio);		/* drop ref from isolate */
1464 }
1465 
1466 enum folio_references {
1467 	FOLIOREF_RECLAIM,
1468 	FOLIOREF_RECLAIM_CLEAN,
1469 	FOLIOREF_KEEP,
1470 	FOLIOREF_ACTIVATE,
1471 };
1472 
1473 static enum folio_references folio_check_references(struct folio *folio,
1474 						  struct scan_control *sc)
1475 {
1476 	int referenced_ptes, referenced_folio;
1477 	unsigned long vm_flags;
1478 
1479 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1480 					   &vm_flags);
1481 	referenced_folio = folio_test_clear_referenced(folio);
1482 
1483 	/*
1484 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1485 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1486 	 */
1487 	if (vm_flags & VM_LOCKED)
1488 		return FOLIOREF_ACTIVATE;
1489 
1490 	/* rmap lock contention: rotate */
1491 	if (referenced_ptes == -1)
1492 		return FOLIOREF_KEEP;
1493 
1494 	if (referenced_ptes) {
1495 		/*
1496 		 * All mapped folios start out with page table
1497 		 * references from the instantiating fault, so we need
1498 		 * to look twice if a mapped file/anon folio is used more
1499 		 * than once.
1500 		 *
1501 		 * Mark it and spare it for another trip around the
1502 		 * inactive list.  Another page table reference will
1503 		 * lead to its activation.
1504 		 *
1505 		 * Note: the mark is set for activated folios as well
1506 		 * so that recently deactivated but used folios are
1507 		 * quickly recovered.
1508 		 */
1509 		folio_set_referenced(folio);
1510 
1511 		if (referenced_folio || referenced_ptes > 1)
1512 			return FOLIOREF_ACTIVATE;
1513 
1514 		/*
1515 		 * Activate file-backed executable folios after first usage.
1516 		 */
1517 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1518 			return FOLIOREF_ACTIVATE;
1519 
1520 		return FOLIOREF_KEEP;
1521 	}
1522 
1523 	/* Reclaim if clean, defer dirty folios to writeback */
1524 	if (referenced_folio && folio_is_file_lru(folio))
1525 		return FOLIOREF_RECLAIM_CLEAN;
1526 
1527 	return FOLIOREF_RECLAIM;
1528 }
1529 
1530 /* Check if a folio is dirty or under writeback */
1531 static void folio_check_dirty_writeback(struct folio *folio,
1532 				       bool *dirty, bool *writeback)
1533 {
1534 	struct address_space *mapping;
1535 
1536 	/*
1537 	 * Anonymous folios are not handled by flushers and must be written
1538 	 * from reclaim context. Do not stall reclaim based on them.
1539 	 * MADV_FREE anonymous folios are put into inactive file list too.
1540 	 * They could be mistakenly treated as file lru. So further anon
1541 	 * test is needed.
1542 	 */
1543 	if (!folio_is_file_lru(folio) ||
1544 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1545 		*dirty = false;
1546 		*writeback = false;
1547 		return;
1548 	}
1549 
1550 	/* By default assume that the folio flags are accurate */
1551 	*dirty = folio_test_dirty(folio);
1552 	*writeback = folio_test_writeback(folio);
1553 
1554 	/* Verify dirty/writeback state if the filesystem supports it */
1555 	if (!folio_test_private(folio))
1556 		return;
1557 
1558 	mapping = folio_mapping(folio);
1559 	if (mapping && mapping->a_ops->is_dirty_writeback)
1560 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1561 }
1562 
1563 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1564 {
1565 	struct page *target_page;
1566 	nodemask_t *allowed_mask;
1567 	struct migration_target_control *mtc;
1568 
1569 	mtc = (struct migration_target_control *)private;
1570 
1571 	allowed_mask = mtc->nmask;
1572 	/*
1573 	 * make sure we allocate from the target node first also trying to
1574 	 * demote or reclaim pages from the target node via kswapd if we are
1575 	 * low on free memory on target node. If we don't do this and if
1576 	 * we have free memory on the slower(lower) memtier, we would start
1577 	 * allocating pages from slower(lower) memory tiers without even forcing
1578 	 * a demotion of cold pages from the target memtier. This can result
1579 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1580 	 */
1581 	mtc->nmask = NULL;
1582 	mtc->gfp_mask |= __GFP_THISNODE;
1583 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1584 	if (target_page)
1585 		return target_page;
1586 
1587 	mtc->gfp_mask &= ~__GFP_THISNODE;
1588 	mtc->nmask = allowed_mask;
1589 
1590 	return alloc_migration_target(page, (unsigned long)mtc);
1591 }
1592 
1593 /*
1594  * Take folios on @demote_folios and attempt to demote them to another node.
1595  * Folios which are not demoted are left on @demote_folios.
1596  */
1597 static unsigned int demote_folio_list(struct list_head *demote_folios,
1598 				     struct pglist_data *pgdat)
1599 {
1600 	int target_nid = next_demotion_node(pgdat->node_id);
1601 	unsigned int nr_succeeded;
1602 	nodemask_t allowed_mask;
1603 
1604 	struct migration_target_control mtc = {
1605 		/*
1606 		 * Allocate from 'node', or fail quickly and quietly.
1607 		 * When this happens, 'page' will likely just be discarded
1608 		 * instead of migrated.
1609 		 */
1610 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1611 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1612 		.nid = target_nid,
1613 		.nmask = &allowed_mask
1614 	};
1615 
1616 	if (list_empty(demote_folios))
1617 		return 0;
1618 
1619 	if (target_nid == NUMA_NO_NODE)
1620 		return 0;
1621 
1622 	node_get_allowed_targets(pgdat, &allowed_mask);
1623 
1624 	/* Demotion ignores all cpuset and mempolicy settings */
1625 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1626 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1627 		      &nr_succeeded);
1628 
1629 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1630 
1631 	return nr_succeeded;
1632 }
1633 
1634 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1635 {
1636 	if (gfp_mask & __GFP_FS)
1637 		return true;
1638 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1639 		return false;
1640 	/*
1641 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1642 	 * providing this isn't SWP_FS_OPS.
1643 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1644 	 * but that will never affect SWP_FS_OPS, so the data_race
1645 	 * is safe.
1646 	 */
1647 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1648 }
1649 
1650 /*
1651  * shrink_folio_list() returns the number of reclaimed pages
1652  */
1653 static unsigned int shrink_folio_list(struct list_head *folio_list,
1654 		struct pglist_data *pgdat, struct scan_control *sc,
1655 		struct reclaim_stat *stat, bool ignore_references)
1656 {
1657 	LIST_HEAD(ret_folios);
1658 	LIST_HEAD(free_folios);
1659 	LIST_HEAD(demote_folios);
1660 	unsigned int nr_reclaimed = 0;
1661 	unsigned int pgactivate = 0;
1662 	bool do_demote_pass;
1663 	struct swap_iocb *plug = NULL;
1664 
1665 	memset(stat, 0, sizeof(*stat));
1666 	cond_resched();
1667 	do_demote_pass = can_demote(pgdat->node_id, sc);
1668 
1669 retry:
1670 	while (!list_empty(folio_list)) {
1671 		struct address_space *mapping;
1672 		struct folio *folio;
1673 		enum folio_references references = FOLIOREF_RECLAIM;
1674 		bool dirty, writeback;
1675 		unsigned int nr_pages;
1676 
1677 		cond_resched();
1678 
1679 		folio = lru_to_folio(folio_list);
1680 		list_del(&folio->lru);
1681 
1682 		if (!folio_trylock(folio))
1683 			goto keep;
1684 
1685 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1686 
1687 		nr_pages = folio_nr_pages(folio);
1688 
1689 		/* Account the number of base pages */
1690 		sc->nr_scanned += nr_pages;
1691 
1692 		if (unlikely(!folio_evictable(folio)))
1693 			goto activate_locked;
1694 
1695 		if (!sc->may_unmap && folio_mapped(folio))
1696 			goto keep_locked;
1697 
1698 		/* folio_update_gen() tried to promote this page? */
1699 		if (lru_gen_enabled() && !ignore_references &&
1700 		    folio_mapped(folio) && folio_test_referenced(folio))
1701 			goto keep_locked;
1702 
1703 		/*
1704 		 * The number of dirty pages determines if a node is marked
1705 		 * reclaim_congested. kswapd will stall and start writing
1706 		 * folios if the tail of the LRU is all dirty unqueued folios.
1707 		 */
1708 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1709 		if (dirty || writeback)
1710 			stat->nr_dirty += nr_pages;
1711 
1712 		if (dirty && !writeback)
1713 			stat->nr_unqueued_dirty += nr_pages;
1714 
1715 		/*
1716 		 * Treat this folio as congested if folios are cycling
1717 		 * through the LRU so quickly that the folios marked
1718 		 * for immediate reclaim are making it to the end of
1719 		 * the LRU a second time.
1720 		 */
1721 		if (writeback && folio_test_reclaim(folio))
1722 			stat->nr_congested += nr_pages;
1723 
1724 		/*
1725 		 * If a folio at the tail of the LRU is under writeback, there
1726 		 * are three cases to consider.
1727 		 *
1728 		 * 1) If reclaim is encountering an excessive number
1729 		 *    of folios under writeback and this folio has both
1730 		 *    the writeback and reclaim flags set, then it
1731 		 *    indicates that folios are being queued for I/O but
1732 		 *    are being recycled through the LRU before the I/O
1733 		 *    can complete. Waiting on the folio itself risks an
1734 		 *    indefinite stall if it is impossible to writeback
1735 		 *    the folio due to I/O error or disconnected storage
1736 		 *    so instead note that the LRU is being scanned too
1737 		 *    quickly and the caller can stall after the folio
1738 		 *    list has been processed.
1739 		 *
1740 		 * 2) Global or new memcg reclaim encounters a folio that is
1741 		 *    not marked for immediate reclaim, or the caller does not
1742 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1743 		 *    not to fs). In this case mark the folio for immediate
1744 		 *    reclaim and continue scanning.
1745 		 *
1746 		 *    Require may_enter_fs() because we would wait on fs, which
1747 		 *    may not have submitted I/O yet. And the loop driver might
1748 		 *    enter reclaim, and deadlock if it waits on a folio for
1749 		 *    which it is needed to do the write (loop masks off
1750 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1751 		 *    would probably show more reasons.
1752 		 *
1753 		 * 3) Legacy memcg encounters a folio that already has the
1754 		 *    reclaim flag set. memcg does not have any dirty folio
1755 		 *    throttling so we could easily OOM just because too many
1756 		 *    folios are in writeback and there is nothing else to
1757 		 *    reclaim. Wait for the writeback to complete.
1758 		 *
1759 		 * In cases 1) and 2) we activate the folios to get them out of
1760 		 * the way while we continue scanning for clean folios on the
1761 		 * inactive list and refilling from the active list. The
1762 		 * observation here is that waiting for disk writes is more
1763 		 * expensive than potentially causing reloads down the line.
1764 		 * Since they're marked for immediate reclaim, they won't put
1765 		 * memory pressure on the cache working set any longer than it
1766 		 * takes to write them to disk.
1767 		 */
1768 		if (folio_test_writeback(folio)) {
1769 			/* Case 1 above */
1770 			if (current_is_kswapd() &&
1771 			    folio_test_reclaim(folio) &&
1772 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1773 				stat->nr_immediate += nr_pages;
1774 				goto activate_locked;
1775 
1776 			/* Case 2 above */
1777 			} else if (writeback_throttling_sane(sc) ||
1778 			    !folio_test_reclaim(folio) ||
1779 			    !may_enter_fs(folio, sc->gfp_mask)) {
1780 				/*
1781 				 * This is slightly racy -
1782 				 * folio_end_writeback() might have
1783 				 * just cleared the reclaim flag, then
1784 				 * setting the reclaim flag here ends up
1785 				 * interpreted as the readahead flag - but
1786 				 * that does not matter enough to care.
1787 				 * What we do want is for this folio to
1788 				 * have the reclaim flag set next time
1789 				 * memcg reclaim reaches the tests above,
1790 				 * so it will then wait for writeback to
1791 				 * avoid OOM; and it's also appropriate
1792 				 * in global reclaim.
1793 				 */
1794 				folio_set_reclaim(folio);
1795 				stat->nr_writeback += nr_pages;
1796 				goto activate_locked;
1797 
1798 			/* Case 3 above */
1799 			} else {
1800 				folio_unlock(folio);
1801 				folio_wait_writeback(folio);
1802 				/* then go back and try same folio again */
1803 				list_add_tail(&folio->lru, folio_list);
1804 				continue;
1805 			}
1806 		}
1807 
1808 		if (!ignore_references)
1809 			references = folio_check_references(folio, sc);
1810 
1811 		switch (references) {
1812 		case FOLIOREF_ACTIVATE:
1813 			goto activate_locked;
1814 		case FOLIOREF_KEEP:
1815 			stat->nr_ref_keep += nr_pages;
1816 			goto keep_locked;
1817 		case FOLIOREF_RECLAIM:
1818 		case FOLIOREF_RECLAIM_CLEAN:
1819 			; /* try to reclaim the folio below */
1820 		}
1821 
1822 		/*
1823 		 * Before reclaiming the folio, try to relocate
1824 		 * its contents to another node.
1825 		 */
1826 		if (do_demote_pass &&
1827 		    (thp_migration_supported() || !folio_test_large(folio))) {
1828 			list_add(&folio->lru, &demote_folios);
1829 			folio_unlock(folio);
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * Anonymous process memory has backing store?
1835 		 * Try to allocate it some swap space here.
1836 		 * Lazyfree folio could be freed directly
1837 		 */
1838 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1839 			if (!folio_test_swapcache(folio)) {
1840 				if (!(sc->gfp_mask & __GFP_IO))
1841 					goto keep_locked;
1842 				if (folio_maybe_dma_pinned(folio))
1843 					goto keep_locked;
1844 				if (folio_test_large(folio)) {
1845 					/* cannot split folio, skip it */
1846 					if (!can_split_folio(folio, NULL))
1847 						goto activate_locked;
1848 					/*
1849 					 * Split folios without a PMD map right
1850 					 * away. Chances are some or all of the
1851 					 * tail pages can be freed without IO.
1852 					 */
1853 					if (!folio_entire_mapcount(folio) &&
1854 					    split_folio_to_list(folio,
1855 								folio_list))
1856 						goto activate_locked;
1857 				}
1858 				if (!add_to_swap(folio)) {
1859 					if (!folio_test_large(folio))
1860 						goto activate_locked_split;
1861 					/* Fallback to swap normal pages */
1862 					if (split_folio_to_list(folio,
1863 								folio_list))
1864 						goto activate_locked;
1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1866 					count_vm_event(THP_SWPOUT_FALLBACK);
1867 #endif
1868 					if (!add_to_swap(folio))
1869 						goto activate_locked_split;
1870 				}
1871 			}
1872 		} else if (folio_test_swapbacked(folio) &&
1873 			   folio_test_large(folio)) {
1874 			/* Split shmem folio */
1875 			if (split_folio_to_list(folio, folio_list))
1876 				goto keep_locked;
1877 		}
1878 
1879 		/*
1880 		 * If the folio was split above, the tail pages will make
1881 		 * their own pass through this function and be accounted
1882 		 * then.
1883 		 */
1884 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1885 			sc->nr_scanned -= (nr_pages - 1);
1886 			nr_pages = 1;
1887 		}
1888 
1889 		/*
1890 		 * The folio is mapped into the page tables of one or more
1891 		 * processes. Try to unmap it here.
1892 		 */
1893 		if (folio_mapped(folio)) {
1894 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1895 			bool was_swapbacked = folio_test_swapbacked(folio);
1896 
1897 			if (folio_test_pmd_mappable(folio))
1898 				flags |= TTU_SPLIT_HUGE_PMD;
1899 
1900 			try_to_unmap(folio, flags);
1901 			if (folio_mapped(folio)) {
1902 				stat->nr_unmap_fail += nr_pages;
1903 				if (!was_swapbacked &&
1904 				    folio_test_swapbacked(folio))
1905 					stat->nr_lazyfree_fail += nr_pages;
1906 				goto activate_locked;
1907 			}
1908 		}
1909 
1910 		mapping = folio_mapping(folio);
1911 		if (folio_test_dirty(folio)) {
1912 			/*
1913 			 * Only kswapd can writeback filesystem folios
1914 			 * to avoid risk of stack overflow. But avoid
1915 			 * injecting inefficient single-folio I/O into
1916 			 * flusher writeback as much as possible: only
1917 			 * write folios when we've encountered many
1918 			 * dirty folios, and when we've already scanned
1919 			 * the rest of the LRU for clean folios and see
1920 			 * the same dirty folios again (with the reclaim
1921 			 * flag set).
1922 			 */
1923 			if (folio_is_file_lru(folio) &&
1924 			    (!current_is_kswapd() ||
1925 			     !folio_test_reclaim(folio) ||
1926 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1927 				/*
1928 				 * Immediately reclaim when written back.
1929 				 * Similar in principle to folio_deactivate()
1930 				 * except we already have the folio isolated
1931 				 * and know it's dirty
1932 				 */
1933 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1934 						nr_pages);
1935 				folio_set_reclaim(folio);
1936 
1937 				goto activate_locked;
1938 			}
1939 
1940 			if (references == FOLIOREF_RECLAIM_CLEAN)
1941 				goto keep_locked;
1942 			if (!may_enter_fs(folio, sc->gfp_mask))
1943 				goto keep_locked;
1944 			if (!sc->may_writepage)
1945 				goto keep_locked;
1946 
1947 			/*
1948 			 * Folio is dirty. Flush the TLB if a writable entry
1949 			 * potentially exists to avoid CPU writes after I/O
1950 			 * starts and then write it out here.
1951 			 */
1952 			try_to_unmap_flush_dirty();
1953 			switch (pageout(folio, mapping, &plug)) {
1954 			case PAGE_KEEP:
1955 				goto keep_locked;
1956 			case PAGE_ACTIVATE:
1957 				goto activate_locked;
1958 			case PAGE_SUCCESS:
1959 				stat->nr_pageout += nr_pages;
1960 
1961 				if (folio_test_writeback(folio))
1962 					goto keep;
1963 				if (folio_test_dirty(folio))
1964 					goto keep;
1965 
1966 				/*
1967 				 * A synchronous write - probably a ramdisk.  Go
1968 				 * ahead and try to reclaim the folio.
1969 				 */
1970 				if (!folio_trylock(folio))
1971 					goto keep;
1972 				if (folio_test_dirty(folio) ||
1973 				    folio_test_writeback(folio))
1974 					goto keep_locked;
1975 				mapping = folio_mapping(folio);
1976 				fallthrough;
1977 			case PAGE_CLEAN:
1978 				; /* try to free the folio below */
1979 			}
1980 		}
1981 
1982 		/*
1983 		 * If the folio has buffers, try to free the buffer
1984 		 * mappings associated with this folio. If we succeed
1985 		 * we try to free the folio as well.
1986 		 *
1987 		 * We do this even if the folio is dirty.
1988 		 * filemap_release_folio() does not perform I/O, but it
1989 		 * is possible for a folio to have the dirty flag set,
1990 		 * but it is actually clean (all its buffers are clean).
1991 		 * This happens if the buffers were written out directly,
1992 		 * with submit_bh(). ext3 will do this, as well as
1993 		 * the blockdev mapping.  filemap_release_folio() will
1994 		 * discover that cleanness and will drop the buffers
1995 		 * and mark the folio clean - it can be freed.
1996 		 *
1997 		 * Rarely, folios can have buffers and no ->mapping.
1998 		 * These are the folios which were not successfully
1999 		 * invalidated in truncate_cleanup_folio().  We try to
2000 		 * drop those buffers here and if that worked, and the
2001 		 * folio is no longer mapped into process address space
2002 		 * (refcount == 1) it can be freed.  Otherwise, leave
2003 		 * the folio on the LRU so it is swappable.
2004 		 */
2005 		if (folio_has_private(folio)) {
2006 			if (!filemap_release_folio(folio, sc->gfp_mask))
2007 				goto activate_locked;
2008 			if (!mapping && folio_ref_count(folio) == 1) {
2009 				folio_unlock(folio);
2010 				if (folio_put_testzero(folio))
2011 					goto free_it;
2012 				else {
2013 					/*
2014 					 * rare race with speculative reference.
2015 					 * the speculative reference will free
2016 					 * this folio shortly, so we may
2017 					 * increment nr_reclaimed here (and
2018 					 * leave it off the LRU).
2019 					 */
2020 					nr_reclaimed += nr_pages;
2021 					continue;
2022 				}
2023 			}
2024 		}
2025 
2026 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2027 			/* follow __remove_mapping for reference */
2028 			if (!folio_ref_freeze(folio, 1))
2029 				goto keep_locked;
2030 			/*
2031 			 * The folio has only one reference left, which is
2032 			 * from the isolation. After the caller puts the
2033 			 * folio back on the lru and drops the reference, the
2034 			 * folio will be freed anyway. It doesn't matter
2035 			 * which lru it goes on. So we don't bother checking
2036 			 * the dirty flag here.
2037 			 */
2038 			count_vm_events(PGLAZYFREED, nr_pages);
2039 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2040 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2041 							 sc->target_mem_cgroup))
2042 			goto keep_locked;
2043 
2044 		folio_unlock(folio);
2045 free_it:
2046 		/*
2047 		 * Folio may get swapped out as a whole, need to account
2048 		 * all pages in it.
2049 		 */
2050 		nr_reclaimed += nr_pages;
2051 
2052 		/*
2053 		 * Is there need to periodically free_folio_list? It would
2054 		 * appear not as the counts should be low
2055 		 */
2056 		if (unlikely(folio_test_large(folio)))
2057 			destroy_large_folio(folio);
2058 		else
2059 			list_add(&folio->lru, &free_folios);
2060 		continue;
2061 
2062 activate_locked_split:
2063 		/*
2064 		 * The tail pages that are failed to add into swap cache
2065 		 * reach here.  Fixup nr_scanned and nr_pages.
2066 		 */
2067 		if (nr_pages > 1) {
2068 			sc->nr_scanned -= (nr_pages - 1);
2069 			nr_pages = 1;
2070 		}
2071 activate_locked:
2072 		/* Not a candidate for swapping, so reclaim swap space. */
2073 		if (folio_test_swapcache(folio) &&
2074 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2075 			folio_free_swap(folio);
2076 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2077 		if (!folio_test_mlocked(folio)) {
2078 			int type = folio_is_file_lru(folio);
2079 			folio_set_active(folio);
2080 			stat->nr_activate[type] += nr_pages;
2081 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2082 		}
2083 keep_locked:
2084 		folio_unlock(folio);
2085 keep:
2086 		list_add(&folio->lru, &ret_folios);
2087 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2088 				folio_test_unevictable(folio), folio);
2089 	}
2090 	/* 'folio_list' is always empty here */
2091 
2092 	/* Migrate folios selected for demotion */
2093 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2094 	/* Folios that could not be demoted are still in @demote_folios */
2095 	if (!list_empty(&demote_folios)) {
2096 		/* Folios which weren't demoted go back on @folio_list */
2097 		list_splice_init(&demote_folios, folio_list);
2098 
2099 		/*
2100 		 * goto retry to reclaim the undemoted folios in folio_list if
2101 		 * desired.
2102 		 *
2103 		 * Reclaiming directly from top tier nodes is not often desired
2104 		 * due to it breaking the LRU ordering: in general memory
2105 		 * should be reclaimed from lower tier nodes and demoted from
2106 		 * top tier nodes.
2107 		 *
2108 		 * However, disabling reclaim from top tier nodes entirely
2109 		 * would cause ooms in edge scenarios where lower tier memory
2110 		 * is unreclaimable for whatever reason, eg memory being
2111 		 * mlocked or too hot to reclaim. We can disable reclaim
2112 		 * from top tier nodes in proactive reclaim though as that is
2113 		 * not real memory pressure.
2114 		 */
2115 		if (!sc->proactive) {
2116 			do_demote_pass = false;
2117 			goto retry;
2118 		}
2119 	}
2120 
2121 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2122 
2123 	mem_cgroup_uncharge_list(&free_folios);
2124 	try_to_unmap_flush();
2125 	free_unref_page_list(&free_folios);
2126 
2127 	list_splice(&ret_folios, folio_list);
2128 	count_vm_events(PGACTIVATE, pgactivate);
2129 
2130 	if (plug)
2131 		swap_write_unplug(plug);
2132 	return nr_reclaimed;
2133 }
2134 
2135 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2136 					   struct list_head *folio_list)
2137 {
2138 	struct scan_control sc = {
2139 		.gfp_mask = GFP_KERNEL,
2140 		.may_unmap = 1,
2141 	};
2142 	struct reclaim_stat stat;
2143 	unsigned int nr_reclaimed;
2144 	struct folio *folio, *next;
2145 	LIST_HEAD(clean_folios);
2146 	unsigned int noreclaim_flag;
2147 
2148 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2149 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2150 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2151 		    !folio_test_unevictable(folio)) {
2152 			folio_clear_active(folio);
2153 			list_move(&folio->lru, &clean_folios);
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * We should be safe here since we are only dealing with file pages and
2159 	 * we are not kswapd and therefore cannot write dirty file pages. But
2160 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2161 	 * change in the future.
2162 	 */
2163 	noreclaim_flag = memalloc_noreclaim_save();
2164 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2165 					&stat, true);
2166 	memalloc_noreclaim_restore(noreclaim_flag);
2167 
2168 	list_splice(&clean_folios, folio_list);
2169 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2170 			    -(long)nr_reclaimed);
2171 	/*
2172 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2173 	 * they will rotate back to anonymous LRU in the end if it failed to
2174 	 * discard so isolated count will be mismatched.
2175 	 * Compensate the isolated count for both LRU lists.
2176 	 */
2177 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2178 			    stat.nr_lazyfree_fail);
2179 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2180 			    -(long)stat.nr_lazyfree_fail);
2181 	return nr_reclaimed;
2182 }
2183 
2184 /*
2185  * Update LRU sizes after isolating pages. The LRU size updates must
2186  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2187  */
2188 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2189 			enum lru_list lru, unsigned long *nr_zone_taken)
2190 {
2191 	int zid;
2192 
2193 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2194 		if (!nr_zone_taken[zid])
2195 			continue;
2196 
2197 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2198 	}
2199 
2200 }
2201 
2202 /*
2203  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2204  *
2205  * lruvec->lru_lock is heavily contended.  Some of the functions that
2206  * shrink the lists perform better by taking out a batch of pages
2207  * and working on them outside the LRU lock.
2208  *
2209  * For pagecache intensive workloads, this function is the hottest
2210  * spot in the kernel (apart from copy_*_user functions).
2211  *
2212  * Lru_lock must be held before calling this function.
2213  *
2214  * @nr_to_scan:	The number of eligible pages to look through on the list.
2215  * @lruvec:	The LRU vector to pull pages from.
2216  * @dst:	The temp list to put pages on to.
2217  * @nr_scanned:	The number of pages that were scanned.
2218  * @sc:		The scan_control struct for this reclaim session
2219  * @lru:	LRU list id for isolating
2220  *
2221  * returns how many pages were moved onto *@dst.
2222  */
2223 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2224 		struct lruvec *lruvec, struct list_head *dst,
2225 		unsigned long *nr_scanned, struct scan_control *sc,
2226 		enum lru_list lru)
2227 {
2228 	struct list_head *src = &lruvec->lists[lru];
2229 	unsigned long nr_taken = 0;
2230 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2231 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2232 	unsigned long skipped = 0;
2233 	unsigned long scan, total_scan, nr_pages;
2234 	LIST_HEAD(folios_skipped);
2235 
2236 	total_scan = 0;
2237 	scan = 0;
2238 	while (scan < nr_to_scan && !list_empty(src)) {
2239 		struct list_head *move_to = src;
2240 		struct folio *folio;
2241 
2242 		folio = lru_to_folio(src);
2243 		prefetchw_prev_lru_folio(folio, src, flags);
2244 
2245 		nr_pages = folio_nr_pages(folio);
2246 		total_scan += nr_pages;
2247 
2248 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2249 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2250 			move_to = &folios_skipped;
2251 			goto move;
2252 		}
2253 
2254 		/*
2255 		 * Do not count skipped folios because that makes the function
2256 		 * return with no isolated folios if the LRU mostly contains
2257 		 * ineligible folios.  This causes the VM to not reclaim any
2258 		 * folios, triggering a premature OOM.
2259 		 * Account all pages in a folio.
2260 		 */
2261 		scan += nr_pages;
2262 
2263 		if (!folio_test_lru(folio))
2264 			goto move;
2265 		if (!sc->may_unmap && folio_mapped(folio))
2266 			goto move;
2267 
2268 		/*
2269 		 * Be careful not to clear the lru flag until after we're
2270 		 * sure the folio is not being freed elsewhere -- the
2271 		 * folio release code relies on it.
2272 		 */
2273 		if (unlikely(!folio_try_get(folio)))
2274 			goto move;
2275 
2276 		if (!folio_test_clear_lru(folio)) {
2277 			/* Another thread is already isolating this folio */
2278 			folio_put(folio);
2279 			goto move;
2280 		}
2281 
2282 		nr_taken += nr_pages;
2283 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2284 		move_to = dst;
2285 move:
2286 		list_move(&folio->lru, move_to);
2287 	}
2288 
2289 	/*
2290 	 * Splice any skipped folios to the start of the LRU list. Note that
2291 	 * this disrupts the LRU order when reclaiming for lower zones but
2292 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2293 	 * scanning would soon rescan the same folios to skip and waste lots
2294 	 * of cpu cycles.
2295 	 */
2296 	if (!list_empty(&folios_skipped)) {
2297 		int zid;
2298 
2299 		list_splice(&folios_skipped, src);
2300 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2301 			if (!nr_skipped[zid])
2302 				continue;
2303 
2304 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2305 			skipped += nr_skipped[zid];
2306 		}
2307 	}
2308 	*nr_scanned = total_scan;
2309 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2310 				    total_scan, skipped, nr_taken,
2311 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2312 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2313 	return nr_taken;
2314 }
2315 
2316 /**
2317  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2318  * @folio: Folio to isolate from its LRU list.
2319  *
2320  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2321  * corresponding to whatever LRU list the folio was on.
2322  *
2323  * The folio will have its LRU flag cleared.  If it was found on the
2324  * active list, it will have the Active flag set.  If it was found on the
2325  * unevictable list, it will have the Unevictable flag set.  These flags
2326  * may need to be cleared by the caller before letting the page go.
2327  *
2328  * Context:
2329  *
2330  * (1) Must be called with an elevated refcount on the folio. This is a
2331  *     fundamental difference from isolate_lru_folios() (which is called
2332  *     without a stable reference).
2333  * (2) The lru_lock must not be held.
2334  * (3) Interrupts must be enabled.
2335  *
2336  * Return: 0 if the folio was removed from an LRU list.
2337  * -EBUSY if the folio was not on an LRU list.
2338  */
2339 int folio_isolate_lru(struct folio *folio)
2340 {
2341 	int ret = -EBUSY;
2342 
2343 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2344 
2345 	if (folio_test_clear_lru(folio)) {
2346 		struct lruvec *lruvec;
2347 
2348 		folio_get(folio);
2349 		lruvec = folio_lruvec_lock_irq(folio);
2350 		lruvec_del_folio(lruvec, folio);
2351 		unlock_page_lruvec_irq(lruvec);
2352 		ret = 0;
2353 	}
2354 
2355 	return ret;
2356 }
2357 
2358 /*
2359  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2360  * then get rescheduled. When there are massive number of tasks doing page
2361  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2362  * the LRU list will go small and be scanned faster than necessary, leading to
2363  * unnecessary swapping, thrashing and OOM.
2364  */
2365 static int too_many_isolated(struct pglist_data *pgdat, int file,
2366 		struct scan_control *sc)
2367 {
2368 	unsigned long inactive, isolated;
2369 	bool too_many;
2370 
2371 	if (current_is_kswapd())
2372 		return 0;
2373 
2374 	if (!writeback_throttling_sane(sc))
2375 		return 0;
2376 
2377 	if (file) {
2378 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2379 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2380 	} else {
2381 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2382 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2383 	}
2384 
2385 	/*
2386 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2387 	 * won't get blocked by normal direct-reclaimers, forming a circular
2388 	 * deadlock.
2389 	 */
2390 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2391 		inactive >>= 3;
2392 
2393 	too_many = isolated > inactive;
2394 
2395 	/* Wake up tasks throttled due to too_many_isolated. */
2396 	if (!too_many)
2397 		wake_throttle_isolated(pgdat);
2398 
2399 	return too_many;
2400 }
2401 
2402 /*
2403  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2404  * On return, @list is reused as a list of folios to be freed by the caller.
2405  *
2406  * Returns the number of pages moved to the given lruvec.
2407  */
2408 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2409 		struct list_head *list)
2410 {
2411 	int nr_pages, nr_moved = 0;
2412 	LIST_HEAD(folios_to_free);
2413 
2414 	while (!list_empty(list)) {
2415 		struct folio *folio = lru_to_folio(list);
2416 
2417 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2418 		list_del(&folio->lru);
2419 		if (unlikely(!folio_evictable(folio))) {
2420 			spin_unlock_irq(&lruvec->lru_lock);
2421 			folio_putback_lru(folio);
2422 			spin_lock_irq(&lruvec->lru_lock);
2423 			continue;
2424 		}
2425 
2426 		/*
2427 		 * The folio_set_lru needs to be kept here for list integrity.
2428 		 * Otherwise:
2429 		 *   #0 move_folios_to_lru             #1 release_pages
2430 		 *   if (!folio_put_testzero())
2431 		 *				      if (folio_put_testzero())
2432 		 *				        !lru //skip lru_lock
2433 		 *     folio_set_lru()
2434 		 *     list_add(&folio->lru,)
2435 		 *                                        list_add(&folio->lru,)
2436 		 */
2437 		folio_set_lru(folio);
2438 
2439 		if (unlikely(folio_put_testzero(folio))) {
2440 			__folio_clear_lru_flags(folio);
2441 
2442 			if (unlikely(folio_test_large(folio))) {
2443 				spin_unlock_irq(&lruvec->lru_lock);
2444 				destroy_large_folio(folio);
2445 				spin_lock_irq(&lruvec->lru_lock);
2446 			} else
2447 				list_add(&folio->lru, &folios_to_free);
2448 
2449 			continue;
2450 		}
2451 
2452 		/*
2453 		 * All pages were isolated from the same lruvec (and isolation
2454 		 * inhibits memcg migration).
2455 		 */
2456 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2457 		lruvec_add_folio(lruvec, folio);
2458 		nr_pages = folio_nr_pages(folio);
2459 		nr_moved += nr_pages;
2460 		if (folio_test_active(folio))
2461 			workingset_age_nonresident(lruvec, nr_pages);
2462 	}
2463 
2464 	/*
2465 	 * To save our caller's stack, now use input list for pages to free.
2466 	 */
2467 	list_splice(&folios_to_free, list);
2468 
2469 	return nr_moved;
2470 }
2471 
2472 /*
2473  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2474  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2475  * we should not throttle.  Otherwise it is safe to do so.
2476  */
2477 static int current_may_throttle(void)
2478 {
2479 	return !(current->flags & PF_LOCAL_THROTTLE);
2480 }
2481 
2482 /*
2483  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2484  * of reclaimed pages
2485  */
2486 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2487 		struct lruvec *lruvec, struct scan_control *sc,
2488 		enum lru_list lru)
2489 {
2490 	LIST_HEAD(folio_list);
2491 	unsigned long nr_scanned;
2492 	unsigned int nr_reclaimed = 0;
2493 	unsigned long nr_taken;
2494 	struct reclaim_stat stat;
2495 	bool file = is_file_lru(lru);
2496 	enum vm_event_item item;
2497 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2498 	bool stalled = false;
2499 
2500 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2501 		if (stalled)
2502 			return 0;
2503 
2504 		/* wait a bit for the reclaimer. */
2505 		stalled = true;
2506 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2507 
2508 		/* We are about to die and free our memory. Return now. */
2509 		if (fatal_signal_pending(current))
2510 			return SWAP_CLUSTER_MAX;
2511 	}
2512 
2513 	lru_add_drain();
2514 
2515 	spin_lock_irq(&lruvec->lru_lock);
2516 
2517 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2518 				     &nr_scanned, sc, lru);
2519 
2520 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2521 	item = PGSCAN_KSWAPD + reclaimer_offset();
2522 	if (!cgroup_reclaim(sc))
2523 		__count_vm_events(item, nr_scanned);
2524 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2525 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2526 
2527 	spin_unlock_irq(&lruvec->lru_lock);
2528 
2529 	if (nr_taken == 0)
2530 		return 0;
2531 
2532 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2533 
2534 	spin_lock_irq(&lruvec->lru_lock);
2535 	move_folios_to_lru(lruvec, &folio_list);
2536 
2537 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2538 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2539 	if (!cgroup_reclaim(sc))
2540 		__count_vm_events(item, nr_reclaimed);
2541 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2542 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2543 	spin_unlock_irq(&lruvec->lru_lock);
2544 
2545 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2546 	mem_cgroup_uncharge_list(&folio_list);
2547 	free_unref_page_list(&folio_list);
2548 
2549 	/*
2550 	 * If dirty folios are scanned that are not queued for IO, it
2551 	 * implies that flushers are not doing their job. This can
2552 	 * happen when memory pressure pushes dirty folios to the end of
2553 	 * the LRU before the dirty limits are breached and the dirty
2554 	 * data has expired. It can also happen when the proportion of
2555 	 * dirty folios grows not through writes but through memory
2556 	 * pressure reclaiming all the clean cache. And in some cases,
2557 	 * the flushers simply cannot keep up with the allocation
2558 	 * rate. Nudge the flusher threads in case they are asleep.
2559 	 */
2560 	if (stat.nr_unqueued_dirty == nr_taken) {
2561 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2562 		/*
2563 		 * For cgroupv1 dirty throttling is achieved by waking up
2564 		 * the kernel flusher here and later waiting on folios
2565 		 * which are in writeback to finish (see shrink_folio_list()).
2566 		 *
2567 		 * Flusher may not be able to issue writeback quickly
2568 		 * enough for cgroupv1 writeback throttling to work
2569 		 * on a large system.
2570 		 */
2571 		if (!writeback_throttling_sane(sc))
2572 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2573 	}
2574 
2575 	sc->nr.dirty += stat.nr_dirty;
2576 	sc->nr.congested += stat.nr_congested;
2577 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2578 	sc->nr.writeback += stat.nr_writeback;
2579 	sc->nr.immediate += stat.nr_immediate;
2580 	sc->nr.taken += nr_taken;
2581 	if (file)
2582 		sc->nr.file_taken += nr_taken;
2583 
2584 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2585 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2586 	return nr_reclaimed;
2587 }
2588 
2589 /*
2590  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2591  *
2592  * We move them the other way if the folio is referenced by one or more
2593  * processes.
2594  *
2595  * If the folios are mostly unmapped, the processing is fast and it is
2596  * appropriate to hold lru_lock across the whole operation.  But if
2597  * the folios are mapped, the processing is slow (folio_referenced()), so
2598  * we should drop lru_lock around each folio.  It's impossible to balance
2599  * this, so instead we remove the folios from the LRU while processing them.
2600  * It is safe to rely on the active flag against the non-LRU folios in here
2601  * because nobody will play with that bit on a non-LRU folio.
2602  *
2603  * The downside is that we have to touch folio->_refcount against each folio.
2604  * But we had to alter folio->flags anyway.
2605  */
2606 static void shrink_active_list(unsigned long nr_to_scan,
2607 			       struct lruvec *lruvec,
2608 			       struct scan_control *sc,
2609 			       enum lru_list lru)
2610 {
2611 	unsigned long nr_taken;
2612 	unsigned long nr_scanned;
2613 	unsigned long vm_flags;
2614 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2615 	LIST_HEAD(l_active);
2616 	LIST_HEAD(l_inactive);
2617 	unsigned nr_deactivate, nr_activate;
2618 	unsigned nr_rotated = 0;
2619 	int file = is_file_lru(lru);
2620 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2621 
2622 	lru_add_drain();
2623 
2624 	spin_lock_irq(&lruvec->lru_lock);
2625 
2626 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2627 				     &nr_scanned, sc, lru);
2628 
2629 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2630 
2631 	if (!cgroup_reclaim(sc))
2632 		__count_vm_events(PGREFILL, nr_scanned);
2633 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2634 
2635 	spin_unlock_irq(&lruvec->lru_lock);
2636 
2637 	while (!list_empty(&l_hold)) {
2638 		struct folio *folio;
2639 
2640 		cond_resched();
2641 		folio = lru_to_folio(&l_hold);
2642 		list_del(&folio->lru);
2643 
2644 		if (unlikely(!folio_evictable(folio))) {
2645 			folio_putback_lru(folio);
2646 			continue;
2647 		}
2648 
2649 		if (unlikely(buffer_heads_over_limit)) {
2650 			if (folio_test_private(folio) && folio_trylock(folio)) {
2651 				if (folio_test_private(folio))
2652 					filemap_release_folio(folio, 0);
2653 				folio_unlock(folio);
2654 			}
2655 		}
2656 
2657 		/* Referenced or rmap lock contention: rotate */
2658 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2659 				     &vm_flags) != 0) {
2660 			/*
2661 			 * Identify referenced, file-backed active folios and
2662 			 * give them one more trip around the active list. So
2663 			 * that executable code get better chances to stay in
2664 			 * memory under moderate memory pressure.  Anon folios
2665 			 * are not likely to be evicted by use-once streaming
2666 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2667 			 * so we ignore them here.
2668 			 */
2669 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2670 				nr_rotated += folio_nr_pages(folio);
2671 				list_add(&folio->lru, &l_active);
2672 				continue;
2673 			}
2674 		}
2675 
2676 		folio_clear_active(folio);	/* we are de-activating */
2677 		folio_set_workingset(folio);
2678 		list_add(&folio->lru, &l_inactive);
2679 	}
2680 
2681 	/*
2682 	 * Move folios back to the lru list.
2683 	 */
2684 	spin_lock_irq(&lruvec->lru_lock);
2685 
2686 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2687 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2688 	/* Keep all free folios in l_active list */
2689 	list_splice(&l_inactive, &l_active);
2690 
2691 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2692 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2693 
2694 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2695 	spin_unlock_irq(&lruvec->lru_lock);
2696 
2697 	if (nr_rotated)
2698 		lru_note_cost(lruvec, file, 0, nr_rotated);
2699 	mem_cgroup_uncharge_list(&l_active);
2700 	free_unref_page_list(&l_active);
2701 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2702 			nr_deactivate, nr_rotated, sc->priority, file);
2703 }
2704 
2705 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2706 				      struct pglist_data *pgdat)
2707 {
2708 	struct reclaim_stat dummy_stat;
2709 	unsigned int nr_reclaimed;
2710 	struct folio *folio;
2711 	struct scan_control sc = {
2712 		.gfp_mask = GFP_KERNEL,
2713 		.may_writepage = 1,
2714 		.may_unmap = 1,
2715 		.may_swap = 1,
2716 		.no_demotion = 1,
2717 	};
2718 
2719 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2720 	while (!list_empty(folio_list)) {
2721 		folio = lru_to_folio(folio_list);
2722 		list_del(&folio->lru);
2723 		folio_putback_lru(folio);
2724 	}
2725 
2726 	return nr_reclaimed;
2727 }
2728 
2729 unsigned long reclaim_pages(struct list_head *folio_list)
2730 {
2731 	int nid;
2732 	unsigned int nr_reclaimed = 0;
2733 	LIST_HEAD(node_folio_list);
2734 	unsigned int noreclaim_flag;
2735 
2736 	if (list_empty(folio_list))
2737 		return nr_reclaimed;
2738 
2739 	noreclaim_flag = memalloc_noreclaim_save();
2740 
2741 	nid = folio_nid(lru_to_folio(folio_list));
2742 	do {
2743 		struct folio *folio = lru_to_folio(folio_list);
2744 
2745 		if (nid == folio_nid(folio)) {
2746 			folio_clear_active(folio);
2747 			list_move(&folio->lru, &node_folio_list);
2748 			continue;
2749 		}
2750 
2751 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2752 		nid = folio_nid(lru_to_folio(folio_list));
2753 	} while (!list_empty(folio_list));
2754 
2755 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2756 
2757 	memalloc_noreclaim_restore(noreclaim_flag);
2758 
2759 	return nr_reclaimed;
2760 }
2761 
2762 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2763 				 struct lruvec *lruvec, struct scan_control *sc)
2764 {
2765 	if (is_active_lru(lru)) {
2766 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2767 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2768 		else
2769 			sc->skipped_deactivate = 1;
2770 		return 0;
2771 	}
2772 
2773 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2774 }
2775 
2776 /*
2777  * The inactive anon list should be small enough that the VM never has
2778  * to do too much work.
2779  *
2780  * The inactive file list should be small enough to leave most memory
2781  * to the established workingset on the scan-resistant active list,
2782  * but large enough to avoid thrashing the aggregate readahead window.
2783  *
2784  * Both inactive lists should also be large enough that each inactive
2785  * folio has a chance to be referenced again before it is reclaimed.
2786  *
2787  * If that fails and refaulting is observed, the inactive list grows.
2788  *
2789  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2790  * on this LRU, maintained by the pageout code. An inactive_ratio
2791  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2792  *
2793  * total     target    max
2794  * memory    ratio     inactive
2795  * -------------------------------------
2796  *   10MB       1         5MB
2797  *  100MB       1        50MB
2798  *    1GB       3       250MB
2799  *   10GB      10       0.9GB
2800  *  100GB      31         3GB
2801  *    1TB     101        10GB
2802  *   10TB     320        32GB
2803  */
2804 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2805 {
2806 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2807 	unsigned long inactive, active;
2808 	unsigned long inactive_ratio;
2809 	unsigned long gb;
2810 
2811 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2812 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2813 
2814 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2815 	if (gb)
2816 		inactive_ratio = int_sqrt(10 * gb);
2817 	else
2818 		inactive_ratio = 1;
2819 
2820 	return inactive * inactive_ratio < active;
2821 }
2822 
2823 enum scan_balance {
2824 	SCAN_EQUAL,
2825 	SCAN_FRACT,
2826 	SCAN_ANON,
2827 	SCAN_FILE,
2828 };
2829 
2830 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2831 {
2832 	unsigned long file;
2833 	struct lruvec *target_lruvec;
2834 
2835 	if (lru_gen_enabled())
2836 		return;
2837 
2838 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2839 
2840 	/*
2841 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2842 	 * lruvec stats for heuristics.
2843 	 */
2844 	mem_cgroup_flush_stats();
2845 
2846 	/*
2847 	 * Determine the scan balance between anon and file LRUs.
2848 	 */
2849 	spin_lock_irq(&target_lruvec->lru_lock);
2850 	sc->anon_cost = target_lruvec->anon_cost;
2851 	sc->file_cost = target_lruvec->file_cost;
2852 	spin_unlock_irq(&target_lruvec->lru_lock);
2853 
2854 	/*
2855 	 * Target desirable inactive:active list ratios for the anon
2856 	 * and file LRU lists.
2857 	 */
2858 	if (!sc->force_deactivate) {
2859 		unsigned long refaults;
2860 
2861 		/*
2862 		 * When refaults are being observed, it means a new
2863 		 * workingset is being established. Deactivate to get
2864 		 * rid of any stale active pages quickly.
2865 		 */
2866 		refaults = lruvec_page_state(target_lruvec,
2867 				WORKINGSET_ACTIVATE_ANON);
2868 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2869 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2870 			sc->may_deactivate |= DEACTIVATE_ANON;
2871 		else
2872 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2873 
2874 		refaults = lruvec_page_state(target_lruvec,
2875 				WORKINGSET_ACTIVATE_FILE);
2876 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2877 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2878 			sc->may_deactivate |= DEACTIVATE_FILE;
2879 		else
2880 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2881 	} else
2882 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2883 
2884 	/*
2885 	 * If we have plenty of inactive file pages that aren't
2886 	 * thrashing, try to reclaim those first before touching
2887 	 * anonymous pages.
2888 	 */
2889 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2890 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2891 		sc->cache_trim_mode = 1;
2892 	else
2893 		sc->cache_trim_mode = 0;
2894 
2895 	/*
2896 	 * Prevent the reclaimer from falling into the cache trap: as
2897 	 * cache pages start out inactive, every cache fault will tip
2898 	 * the scan balance towards the file LRU.  And as the file LRU
2899 	 * shrinks, so does the window for rotation from references.
2900 	 * This means we have a runaway feedback loop where a tiny
2901 	 * thrashing file LRU becomes infinitely more attractive than
2902 	 * anon pages.  Try to detect this based on file LRU size.
2903 	 */
2904 	if (!cgroup_reclaim(sc)) {
2905 		unsigned long total_high_wmark = 0;
2906 		unsigned long free, anon;
2907 		int z;
2908 
2909 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2910 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2911 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2912 
2913 		for (z = 0; z < MAX_NR_ZONES; z++) {
2914 			struct zone *zone = &pgdat->node_zones[z];
2915 
2916 			if (!managed_zone(zone))
2917 				continue;
2918 
2919 			total_high_wmark += high_wmark_pages(zone);
2920 		}
2921 
2922 		/*
2923 		 * Consider anon: if that's low too, this isn't a
2924 		 * runaway file reclaim problem, but rather just
2925 		 * extreme pressure. Reclaim as per usual then.
2926 		 */
2927 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2928 
2929 		sc->file_is_tiny =
2930 			file + free <= total_high_wmark &&
2931 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2932 			anon >> sc->priority;
2933 	}
2934 }
2935 
2936 /*
2937  * Determine how aggressively the anon and file LRU lists should be
2938  * scanned.
2939  *
2940  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2941  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2942  */
2943 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2944 			   unsigned long *nr)
2945 {
2946 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2947 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2948 	unsigned long anon_cost, file_cost, total_cost;
2949 	int swappiness = mem_cgroup_swappiness(memcg);
2950 	u64 fraction[ANON_AND_FILE];
2951 	u64 denominator = 0;	/* gcc */
2952 	enum scan_balance scan_balance;
2953 	unsigned long ap, fp;
2954 	enum lru_list lru;
2955 
2956 	/* If we have no swap space, do not bother scanning anon folios. */
2957 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2958 		scan_balance = SCAN_FILE;
2959 		goto out;
2960 	}
2961 
2962 	/*
2963 	 * Global reclaim will swap to prevent OOM even with no
2964 	 * swappiness, but memcg users want to use this knob to
2965 	 * disable swapping for individual groups completely when
2966 	 * using the memory controller's swap limit feature would be
2967 	 * too expensive.
2968 	 */
2969 	if (cgroup_reclaim(sc) && !swappiness) {
2970 		scan_balance = SCAN_FILE;
2971 		goto out;
2972 	}
2973 
2974 	/*
2975 	 * Do not apply any pressure balancing cleverness when the
2976 	 * system is close to OOM, scan both anon and file equally
2977 	 * (unless the swappiness setting disagrees with swapping).
2978 	 */
2979 	if (!sc->priority && swappiness) {
2980 		scan_balance = SCAN_EQUAL;
2981 		goto out;
2982 	}
2983 
2984 	/*
2985 	 * If the system is almost out of file pages, force-scan anon.
2986 	 */
2987 	if (sc->file_is_tiny) {
2988 		scan_balance = SCAN_ANON;
2989 		goto out;
2990 	}
2991 
2992 	/*
2993 	 * If there is enough inactive page cache, we do not reclaim
2994 	 * anything from the anonymous working right now.
2995 	 */
2996 	if (sc->cache_trim_mode) {
2997 		scan_balance = SCAN_FILE;
2998 		goto out;
2999 	}
3000 
3001 	scan_balance = SCAN_FRACT;
3002 	/*
3003 	 * Calculate the pressure balance between anon and file pages.
3004 	 *
3005 	 * The amount of pressure we put on each LRU is inversely
3006 	 * proportional to the cost of reclaiming each list, as
3007 	 * determined by the share of pages that are refaulting, times
3008 	 * the relative IO cost of bringing back a swapped out
3009 	 * anonymous page vs reloading a filesystem page (swappiness).
3010 	 *
3011 	 * Although we limit that influence to ensure no list gets
3012 	 * left behind completely: at least a third of the pressure is
3013 	 * applied, before swappiness.
3014 	 *
3015 	 * With swappiness at 100, anon and file have equal IO cost.
3016 	 */
3017 	total_cost = sc->anon_cost + sc->file_cost;
3018 	anon_cost = total_cost + sc->anon_cost;
3019 	file_cost = total_cost + sc->file_cost;
3020 	total_cost = anon_cost + file_cost;
3021 
3022 	ap = swappiness * (total_cost + 1);
3023 	ap /= anon_cost + 1;
3024 
3025 	fp = (200 - swappiness) * (total_cost + 1);
3026 	fp /= file_cost + 1;
3027 
3028 	fraction[0] = ap;
3029 	fraction[1] = fp;
3030 	denominator = ap + fp;
3031 out:
3032 	for_each_evictable_lru(lru) {
3033 		int file = is_file_lru(lru);
3034 		unsigned long lruvec_size;
3035 		unsigned long low, min;
3036 		unsigned long scan;
3037 
3038 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3039 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3040 				      &min, &low);
3041 
3042 		if (min || low) {
3043 			/*
3044 			 * Scale a cgroup's reclaim pressure by proportioning
3045 			 * its current usage to its memory.low or memory.min
3046 			 * setting.
3047 			 *
3048 			 * This is important, as otherwise scanning aggression
3049 			 * becomes extremely binary -- from nothing as we
3050 			 * approach the memory protection threshold, to totally
3051 			 * nominal as we exceed it.  This results in requiring
3052 			 * setting extremely liberal protection thresholds. It
3053 			 * also means we simply get no protection at all if we
3054 			 * set it too low, which is not ideal.
3055 			 *
3056 			 * If there is any protection in place, we reduce scan
3057 			 * pressure by how much of the total memory used is
3058 			 * within protection thresholds.
3059 			 *
3060 			 * There is one special case: in the first reclaim pass,
3061 			 * we skip over all groups that are within their low
3062 			 * protection. If that fails to reclaim enough pages to
3063 			 * satisfy the reclaim goal, we come back and override
3064 			 * the best-effort low protection. However, we still
3065 			 * ideally want to honor how well-behaved groups are in
3066 			 * that case instead of simply punishing them all
3067 			 * equally. As such, we reclaim them based on how much
3068 			 * memory they are using, reducing the scan pressure
3069 			 * again by how much of the total memory used is under
3070 			 * hard protection.
3071 			 */
3072 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3073 			unsigned long protection;
3074 
3075 			/* memory.low scaling, make sure we retry before OOM */
3076 			if (!sc->memcg_low_reclaim && low > min) {
3077 				protection = low;
3078 				sc->memcg_low_skipped = 1;
3079 			} else {
3080 				protection = min;
3081 			}
3082 
3083 			/* Avoid TOCTOU with earlier protection check */
3084 			cgroup_size = max(cgroup_size, protection);
3085 
3086 			scan = lruvec_size - lruvec_size * protection /
3087 				(cgroup_size + 1);
3088 
3089 			/*
3090 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3091 			 * reclaim moving forwards, avoiding decrementing
3092 			 * sc->priority further than desirable.
3093 			 */
3094 			scan = max(scan, SWAP_CLUSTER_MAX);
3095 		} else {
3096 			scan = lruvec_size;
3097 		}
3098 
3099 		scan >>= sc->priority;
3100 
3101 		/*
3102 		 * If the cgroup's already been deleted, make sure to
3103 		 * scrape out the remaining cache.
3104 		 */
3105 		if (!scan && !mem_cgroup_online(memcg))
3106 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3107 
3108 		switch (scan_balance) {
3109 		case SCAN_EQUAL:
3110 			/* Scan lists relative to size */
3111 			break;
3112 		case SCAN_FRACT:
3113 			/*
3114 			 * Scan types proportional to swappiness and
3115 			 * their relative recent reclaim efficiency.
3116 			 * Make sure we don't miss the last page on
3117 			 * the offlined memory cgroups because of a
3118 			 * round-off error.
3119 			 */
3120 			scan = mem_cgroup_online(memcg) ?
3121 			       div64_u64(scan * fraction[file], denominator) :
3122 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3123 						  denominator);
3124 			break;
3125 		case SCAN_FILE:
3126 		case SCAN_ANON:
3127 			/* Scan one type exclusively */
3128 			if ((scan_balance == SCAN_FILE) != file)
3129 				scan = 0;
3130 			break;
3131 		default:
3132 			/* Look ma, no brain */
3133 			BUG();
3134 		}
3135 
3136 		nr[lru] = scan;
3137 	}
3138 }
3139 
3140 /*
3141  * Anonymous LRU management is a waste if there is
3142  * ultimately no way to reclaim the memory.
3143  */
3144 static bool can_age_anon_pages(struct pglist_data *pgdat,
3145 			       struct scan_control *sc)
3146 {
3147 	/* Aging the anon LRU is valuable if swap is present: */
3148 	if (total_swap_pages > 0)
3149 		return true;
3150 
3151 	/* Also valuable if anon pages can be demoted: */
3152 	return can_demote(pgdat->node_id, sc);
3153 }
3154 
3155 #ifdef CONFIG_LRU_GEN
3156 
3157 #ifdef CONFIG_LRU_GEN_ENABLED
3158 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3159 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3160 #else
3161 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3162 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3163 #endif
3164 
3165 /******************************************************************************
3166  *                          shorthand helpers
3167  ******************************************************************************/
3168 
3169 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3170 
3171 #define DEFINE_MAX_SEQ(lruvec)						\
3172 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3173 
3174 #define DEFINE_MIN_SEQ(lruvec)						\
3175 	unsigned long min_seq[ANON_AND_FILE] = {			\
3176 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3177 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3178 	}
3179 
3180 #define for_each_gen_type_zone(gen, type, zone)				\
3181 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3182 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3183 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3184 
3185 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3186 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3187 
3188 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3189 {
3190 	struct pglist_data *pgdat = NODE_DATA(nid);
3191 
3192 #ifdef CONFIG_MEMCG
3193 	if (memcg) {
3194 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3195 
3196 		/* see the comment in mem_cgroup_lruvec() */
3197 		if (!lruvec->pgdat)
3198 			lruvec->pgdat = pgdat;
3199 
3200 		return lruvec;
3201 	}
3202 #endif
3203 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3204 
3205 	return &pgdat->__lruvec;
3206 }
3207 
3208 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3209 {
3210 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3211 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3212 
3213 	if (!sc->may_swap)
3214 		return 0;
3215 
3216 	if (!can_demote(pgdat->node_id, sc) &&
3217 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3218 		return 0;
3219 
3220 	return mem_cgroup_swappiness(memcg);
3221 }
3222 
3223 static int get_nr_gens(struct lruvec *lruvec, int type)
3224 {
3225 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3226 }
3227 
3228 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3229 {
3230 	/* see the comment on lru_gen_folio */
3231 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3232 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3233 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3234 }
3235 
3236 /******************************************************************************
3237  *                          mm_struct list
3238  ******************************************************************************/
3239 
3240 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3241 {
3242 	static struct lru_gen_mm_list mm_list = {
3243 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3244 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3245 	};
3246 
3247 #ifdef CONFIG_MEMCG
3248 	if (memcg)
3249 		return &memcg->mm_list;
3250 #endif
3251 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3252 
3253 	return &mm_list;
3254 }
3255 
3256 void lru_gen_add_mm(struct mm_struct *mm)
3257 {
3258 	int nid;
3259 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3260 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3261 
3262 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3263 #ifdef CONFIG_MEMCG
3264 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3265 	mm->lru_gen.memcg = memcg;
3266 #endif
3267 	spin_lock(&mm_list->lock);
3268 
3269 	for_each_node_state(nid, N_MEMORY) {
3270 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3271 
3272 		/* the first addition since the last iteration */
3273 		if (lruvec->mm_state.tail == &mm_list->fifo)
3274 			lruvec->mm_state.tail = &mm->lru_gen.list;
3275 	}
3276 
3277 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3278 
3279 	spin_unlock(&mm_list->lock);
3280 }
3281 
3282 void lru_gen_del_mm(struct mm_struct *mm)
3283 {
3284 	int nid;
3285 	struct lru_gen_mm_list *mm_list;
3286 	struct mem_cgroup *memcg = NULL;
3287 
3288 	if (list_empty(&mm->lru_gen.list))
3289 		return;
3290 
3291 #ifdef CONFIG_MEMCG
3292 	memcg = mm->lru_gen.memcg;
3293 #endif
3294 	mm_list = get_mm_list(memcg);
3295 
3296 	spin_lock(&mm_list->lock);
3297 
3298 	for_each_node(nid) {
3299 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3300 
3301 		/* where the last iteration ended (exclusive) */
3302 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3303 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3304 
3305 		/* where the current iteration continues (inclusive) */
3306 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3307 			continue;
3308 
3309 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3310 		/* the deletion ends the current iteration */
3311 		if (lruvec->mm_state.head == &mm_list->fifo)
3312 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3313 	}
3314 
3315 	list_del_init(&mm->lru_gen.list);
3316 
3317 	spin_unlock(&mm_list->lock);
3318 
3319 #ifdef CONFIG_MEMCG
3320 	mem_cgroup_put(mm->lru_gen.memcg);
3321 	mm->lru_gen.memcg = NULL;
3322 #endif
3323 }
3324 
3325 #ifdef CONFIG_MEMCG
3326 void lru_gen_migrate_mm(struct mm_struct *mm)
3327 {
3328 	struct mem_cgroup *memcg;
3329 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3330 
3331 	VM_WARN_ON_ONCE(task->mm != mm);
3332 	lockdep_assert_held(&task->alloc_lock);
3333 
3334 	/* for mm_update_next_owner() */
3335 	if (mem_cgroup_disabled())
3336 		return;
3337 
3338 	rcu_read_lock();
3339 	memcg = mem_cgroup_from_task(task);
3340 	rcu_read_unlock();
3341 	if (memcg == mm->lru_gen.memcg)
3342 		return;
3343 
3344 	VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3345 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3346 
3347 	lru_gen_del_mm(mm);
3348 	lru_gen_add_mm(mm);
3349 }
3350 #endif
3351 
3352 /*
3353  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3354  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3355  * bits in a bitmap, k is the number of hash functions and n is the number of
3356  * inserted items.
3357  *
3358  * Page table walkers use one of the two filters to reduce their search space.
3359  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3360  * aging uses the double-buffering technique to flip to the other filter each
3361  * time it produces a new generation. For non-leaf entries that have enough
3362  * leaf entries, the aging carries them over to the next generation in
3363  * walk_pmd_range(); the eviction also report them when walking the rmap
3364  * in lru_gen_look_around().
3365  *
3366  * For future optimizations:
3367  * 1. It's not necessary to keep both filters all the time. The spare one can be
3368  *    freed after the RCU grace period and reallocated if needed again.
3369  * 2. And when reallocating, it's worth scaling its size according to the number
3370  *    of inserted entries in the other filter, to reduce the memory overhead on
3371  *    small systems and false positives on large systems.
3372  * 3. Jenkins' hash function is an alternative to Knuth's.
3373  */
3374 #define BLOOM_FILTER_SHIFT	15
3375 
3376 static inline int filter_gen_from_seq(unsigned long seq)
3377 {
3378 	return seq % NR_BLOOM_FILTERS;
3379 }
3380 
3381 static void get_item_key(void *item, int *key)
3382 {
3383 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3384 
3385 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3386 
3387 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3388 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3389 }
3390 
3391 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3392 {
3393 	unsigned long *filter;
3394 	int gen = filter_gen_from_seq(seq);
3395 
3396 	filter = lruvec->mm_state.filters[gen];
3397 	if (filter) {
3398 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3399 		return;
3400 	}
3401 
3402 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3403 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3404 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3405 }
3406 
3407 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3408 {
3409 	int key[2];
3410 	unsigned long *filter;
3411 	int gen = filter_gen_from_seq(seq);
3412 
3413 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3414 	if (!filter)
3415 		return;
3416 
3417 	get_item_key(item, key);
3418 
3419 	if (!test_bit(key[0], filter))
3420 		set_bit(key[0], filter);
3421 	if (!test_bit(key[1], filter))
3422 		set_bit(key[1], filter);
3423 }
3424 
3425 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3426 {
3427 	int key[2];
3428 	unsigned long *filter;
3429 	int gen = filter_gen_from_seq(seq);
3430 
3431 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3432 	if (!filter)
3433 		return true;
3434 
3435 	get_item_key(item, key);
3436 
3437 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3438 }
3439 
3440 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3441 {
3442 	int i;
3443 	int hist;
3444 
3445 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3446 
3447 	if (walk) {
3448 		hist = lru_hist_from_seq(walk->max_seq);
3449 
3450 		for (i = 0; i < NR_MM_STATS; i++) {
3451 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3452 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3453 			walk->mm_stats[i] = 0;
3454 		}
3455 	}
3456 
3457 	if (NR_HIST_GENS > 1 && last) {
3458 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3459 
3460 		for (i = 0; i < NR_MM_STATS; i++)
3461 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3462 	}
3463 }
3464 
3465 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3466 {
3467 	int type;
3468 	unsigned long size = 0;
3469 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3470 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3471 
3472 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3473 		return true;
3474 
3475 	clear_bit(key, &mm->lru_gen.bitmap);
3476 
3477 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3478 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3479 			       get_mm_counter(mm, MM_ANONPAGES) +
3480 			       get_mm_counter(mm, MM_SHMEMPAGES);
3481 	}
3482 
3483 	if (size < MIN_LRU_BATCH)
3484 		return true;
3485 
3486 	return !mmget_not_zero(mm);
3487 }
3488 
3489 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3490 			    struct mm_struct **iter)
3491 {
3492 	bool first = false;
3493 	bool last = true;
3494 	struct mm_struct *mm = NULL;
3495 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3496 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3497 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3498 
3499 	/*
3500 	 * There are four interesting cases for this page table walker:
3501 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3502 	 *    there is nothing left to do.
3503 	 * 2. It's the first of the current generation, and it needs to reset
3504 	 *    the Bloom filter for the next generation.
3505 	 * 3. It reaches the end of mm_list, and it needs to increment
3506 	 *    mm_state->seq; the iteration is done.
3507 	 * 4. It's the last of the current generation, and it needs to reset the
3508 	 *    mm stats counters for the next generation.
3509 	 */
3510 	spin_lock(&mm_list->lock);
3511 
3512 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3513 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3514 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3515 
3516 	if (walk->max_seq <= mm_state->seq) {
3517 		if (!*iter)
3518 			last = false;
3519 		goto done;
3520 	}
3521 
3522 	if (!mm_state->nr_walkers) {
3523 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3524 
3525 		mm_state->head = mm_list->fifo.next;
3526 		first = true;
3527 	}
3528 
3529 	while (!mm && mm_state->head != &mm_list->fifo) {
3530 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3531 
3532 		mm_state->head = mm_state->head->next;
3533 
3534 		/* force scan for those added after the last iteration */
3535 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3536 			mm_state->tail = mm_state->head;
3537 			walk->force_scan = true;
3538 		}
3539 
3540 		if (should_skip_mm(mm, walk))
3541 			mm = NULL;
3542 	}
3543 
3544 	if (mm_state->head == &mm_list->fifo)
3545 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3546 done:
3547 	if (*iter && !mm)
3548 		mm_state->nr_walkers--;
3549 	if (!*iter && mm)
3550 		mm_state->nr_walkers++;
3551 
3552 	if (mm_state->nr_walkers)
3553 		last = false;
3554 
3555 	if (*iter || last)
3556 		reset_mm_stats(lruvec, walk, last);
3557 
3558 	spin_unlock(&mm_list->lock);
3559 
3560 	if (mm && first)
3561 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3562 
3563 	if (*iter)
3564 		mmput_async(*iter);
3565 
3566 	*iter = mm;
3567 
3568 	return last;
3569 }
3570 
3571 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3572 {
3573 	bool success = false;
3574 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3575 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3576 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3577 
3578 	spin_lock(&mm_list->lock);
3579 
3580 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3581 
3582 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3583 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3584 
3585 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3586 		reset_mm_stats(lruvec, NULL, true);
3587 		success = true;
3588 	}
3589 
3590 	spin_unlock(&mm_list->lock);
3591 
3592 	return success;
3593 }
3594 
3595 /******************************************************************************
3596  *                          refault feedback loop
3597  ******************************************************************************/
3598 
3599 /*
3600  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3601  *
3602  * The P term is refaulted/(evicted+protected) from a tier in the generation
3603  * currently being evicted; the I term is the exponential moving average of the
3604  * P term over the generations previously evicted, using the smoothing factor
3605  * 1/2; the D term isn't supported.
3606  *
3607  * The setpoint (SP) is always the first tier of one type; the process variable
3608  * (PV) is either any tier of the other type or any other tier of the same
3609  * type.
3610  *
3611  * The error is the difference between the SP and the PV; the correction is to
3612  * turn off protection when SP>PV or turn on protection when SP<PV.
3613  *
3614  * For future optimizations:
3615  * 1. The D term may discount the other two terms over time so that long-lived
3616  *    generations can resist stale information.
3617  */
3618 struct ctrl_pos {
3619 	unsigned long refaulted;
3620 	unsigned long total;
3621 	int gain;
3622 };
3623 
3624 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3625 			  struct ctrl_pos *pos)
3626 {
3627 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3628 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3629 
3630 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3631 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3632 	pos->total = lrugen->avg_total[type][tier] +
3633 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3634 	if (tier)
3635 		pos->total += lrugen->protected[hist][type][tier - 1];
3636 	pos->gain = gain;
3637 }
3638 
3639 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3640 {
3641 	int hist, tier;
3642 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3643 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3644 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3645 
3646 	lockdep_assert_held(&lruvec->lru_lock);
3647 
3648 	if (!carryover && !clear)
3649 		return;
3650 
3651 	hist = lru_hist_from_seq(seq);
3652 
3653 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3654 		if (carryover) {
3655 			unsigned long sum;
3656 
3657 			sum = lrugen->avg_refaulted[type][tier] +
3658 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3659 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3660 
3661 			sum = lrugen->avg_total[type][tier] +
3662 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3663 			if (tier)
3664 				sum += lrugen->protected[hist][type][tier - 1];
3665 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3666 		}
3667 
3668 		if (clear) {
3669 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3670 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3671 			if (tier)
3672 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3673 		}
3674 	}
3675 }
3676 
3677 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3678 {
3679 	/*
3680 	 * Return true if the PV has a limited number of refaults or a lower
3681 	 * refaulted/total than the SP.
3682 	 */
3683 	return pv->refaulted < MIN_LRU_BATCH ||
3684 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3685 	       (sp->refaulted + 1) * pv->total * pv->gain;
3686 }
3687 
3688 /******************************************************************************
3689  *                          the aging
3690  ******************************************************************************/
3691 
3692 /* promote pages accessed through page tables */
3693 static int folio_update_gen(struct folio *folio, int gen)
3694 {
3695 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3696 
3697 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3698 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3699 
3700 	do {
3701 		/* lru_gen_del_folio() has isolated this page? */
3702 		if (!(old_flags & LRU_GEN_MASK)) {
3703 			/* for shrink_folio_list() */
3704 			new_flags = old_flags | BIT(PG_referenced);
3705 			continue;
3706 		}
3707 
3708 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3709 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3710 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3711 
3712 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3713 }
3714 
3715 /* protect pages accessed multiple times through file descriptors */
3716 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3717 {
3718 	int type = folio_is_file_lru(folio);
3719 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3720 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3721 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3722 
3723 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3724 
3725 	do {
3726 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3727 		/* folio_update_gen() has promoted this page? */
3728 		if (new_gen >= 0 && new_gen != old_gen)
3729 			return new_gen;
3730 
3731 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3732 
3733 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3734 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3735 		/* for folio_end_writeback() */
3736 		if (reclaiming)
3737 			new_flags |= BIT(PG_reclaim);
3738 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3739 
3740 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3741 
3742 	return new_gen;
3743 }
3744 
3745 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3746 			      int old_gen, int new_gen)
3747 {
3748 	int type = folio_is_file_lru(folio);
3749 	int zone = folio_zonenum(folio);
3750 	int delta = folio_nr_pages(folio);
3751 
3752 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3753 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3754 
3755 	walk->batched++;
3756 
3757 	walk->nr_pages[old_gen][type][zone] -= delta;
3758 	walk->nr_pages[new_gen][type][zone] += delta;
3759 }
3760 
3761 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3762 {
3763 	int gen, type, zone;
3764 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3765 
3766 	walk->batched = 0;
3767 
3768 	for_each_gen_type_zone(gen, type, zone) {
3769 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3770 		int delta = walk->nr_pages[gen][type][zone];
3771 
3772 		if (!delta)
3773 			continue;
3774 
3775 		walk->nr_pages[gen][type][zone] = 0;
3776 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3777 			   lrugen->nr_pages[gen][type][zone] + delta);
3778 
3779 		if (lru_gen_is_active(lruvec, gen))
3780 			lru += LRU_ACTIVE;
3781 		__update_lru_size(lruvec, lru, zone, delta);
3782 	}
3783 }
3784 
3785 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3786 {
3787 	struct address_space *mapping;
3788 	struct vm_area_struct *vma = args->vma;
3789 	struct lru_gen_mm_walk *walk = args->private;
3790 
3791 	if (!vma_is_accessible(vma))
3792 		return true;
3793 
3794 	if (is_vm_hugetlb_page(vma))
3795 		return true;
3796 
3797 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3798 		return true;
3799 
3800 	if (vma == get_gate_vma(vma->vm_mm))
3801 		return true;
3802 
3803 	if (vma_is_anonymous(vma))
3804 		return !walk->can_swap;
3805 
3806 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3807 		return true;
3808 
3809 	mapping = vma->vm_file->f_mapping;
3810 	if (mapping_unevictable(mapping))
3811 		return true;
3812 
3813 	if (shmem_mapping(mapping))
3814 		return !walk->can_swap;
3815 
3816 	/* to exclude special mappings like dax, etc. */
3817 	return !mapping->a_ops->read_folio;
3818 }
3819 
3820 /*
3821  * Some userspace memory allocators map many single-page VMAs. Instead of
3822  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3823  * table to reduce zigzags and improve cache performance.
3824  */
3825 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3826 			 unsigned long *vm_start, unsigned long *vm_end)
3827 {
3828 	unsigned long start = round_up(*vm_end, size);
3829 	unsigned long end = (start | ~mask) + 1;
3830 	VMA_ITERATOR(vmi, args->mm, start);
3831 
3832 	VM_WARN_ON_ONCE(mask & size);
3833 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3834 
3835 	for_each_vma(vmi, args->vma) {
3836 		if (end && end <= args->vma->vm_start)
3837 			return false;
3838 
3839 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3840 			continue;
3841 
3842 		*vm_start = max(start, args->vma->vm_start);
3843 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3844 
3845 		return true;
3846 	}
3847 
3848 	return false;
3849 }
3850 
3851 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3852 {
3853 	unsigned long pfn = pte_pfn(pte);
3854 
3855 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3856 
3857 	if (!pte_present(pte) || is_zero_pfn(pfn))
3858 		return -1;
3859 
3860 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3861 		return -1;
3862 
3863 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3864 		return -1;
3865 
3866 	return pfn;
3867 }
3868 
3869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3870 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3871 {
3872 	unsigned long pfn = pmd_pfn(pmd);
3873 
3874 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3875 
3876 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3877 		return -1;
3878 
3879 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3880 		return -1;
3881 
3882 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3883 		return -1;
3884 
3885 	return pfn;
3886 }
3887 #endif
3888 
3889 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3890 				   struct pglist_data *pgdat, bool can_swap)
3891 {
3892 	struct folio *folio;
3893 
3894 	/* try to avoid unnecessary memory loads */
3895 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3896 		return NULL;
3897 
3898 	folio = pfn_folio(pfn);
3899 	if (folio_nid(folio) != pgdat->node_id)
3900 		return NULL;
3901 
3902 	if (folio_memcg_rcu(folio) != memcg)
3903 		return NULL;
3904 
3905 	/* file VMAs can contain anon pages from COW */
3906 	if (!folio_is_file_lru(folio) && !can_swap)
3907 		return NULL;
3908 
3909 	return folio;
3910 }
3911 
3912 static bool suitable_to_scan(int total, int young)
3913 {
3914 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3915 
3916 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3917 	return young * n >= total;
3918 }
3919 
3920 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3921 			   struct mm_walk *args)
3922 {
3923 	int i;
3924 	pte_t *pte;
3925 	spinlock_t *ptl;
3926 	unsigned long addr;
3927 	int total = 0;
3928 	int young = 0;
3929 	struct lru_gen_mm_walk *walk = args->private;
3930 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3931 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3932 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3933 
3934 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3935 
3936 	ptl = pte_lockptr(args->mm, pmd);
3937 	if (!spin_trylock(ptl))
3938 		return false;
3939 
3940 	arch_enter_lazy_mmu_mode();
3941 
3942 	pte = pte_offset_map(pmd, start & PMD_MASK);
3943 restart:
3944 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3945 		unsigned long pfn;
3946 		struct folio *folio;
3947 
3948 		total++;
3949 		walk->mm_stats[MM_LEAF_TOTAL]++;
3950 
3951 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3952 		if (pfn == -1)
3953 			continue;
3954 
3955 		if (!pte_young(pte[i])) {
3956 			walk->mm_stats[MM_LEAF_OLD]++;
3957 			continue;
3958 		}
3959 
3960 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3961 		if (!folio)
3962 			continue;
3963 
3964 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3965 			VM_WARN_ON_ONCE(true);
3966 
3967 		young++;
3968 		walk->mm_stats[MM_LEAF_YOUNG]++;
3969 
3970 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3971 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3972 		      !folio_test_swapcache(folio)))
3973 			folio_mark_dirty(folio);
3974 
3975 		old_gen = folio_update_gen(folio, new_gen);
3976 		if (old_gen >= 0 && old_gen != new_gen)
3977 			update_batch_size(walk, folio, old_gen, new_gen);
3978 	}
3979 
3980 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3981 		goto restart;
3982 
3983 	pte_unmap(pte);
3984 
3985 	arch_leave_lazy_mmu_mode();
3986 	spin_unlock(ptl);
3987 
3988 	return suitable_to_scan(total, young);
3989 }
3990 
3991 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3992 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3993 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3994 {
3995 	int i;
3996 	pmd_t *pmd;
3997 	spinlock_t *ptl;
3998 	struct lru_gen_mm_walk *walk = args->private;
3999 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4000 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4001 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4002 
4003 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4004 
4005 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4006 	if (*start == -1) {
4007 		*start = next;
4008 		return;
4009 	}
4010 
4011 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4012 	if (i && i <= MIN_LRU_BATCH) {
4013 		__set_bit(i - 1, bitmap);
4014 		return;
4015 	}
4016 
4017 	pmd = pmd_offset(pud, *start);
4018 
4019 	ptl = pmd_lockptr(args->mm, pmd);
4020 	if (!spin_trylock(ptl))
4021 		goto done;
4022 
4023 	arch_enter_lazy_mmu_mode();
4024 
4025 	do {
4026 		unsigned long pfn;
4027 		struct folio *folio;
4028 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4029 
4030 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4031 		if (pfn == -1)
4032 			goto next;
4033 
4034 		if (!pmd_trans_huge(pmd[i])) {
4035 			if (arch_has_hw_nonleaf_pmd_young() &&
4036 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4037 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4038 			goto next;
4039 		}
4040 
4041 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4042 		if (!folio)
4043 			goto next;
4044 
4045 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4046 			goto next;
4047 
4048 		walk->mm_stats[MM_LEAF_YOUNG]++;
4049 
4050 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4051 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4052 		      !folio_test_swapcache(folio)))
4053 			folio_mark_dirty(folio);
4054 
4055 		old_gen = folio_update_gen(folio, new_gen);
4056 		if (old_gen >= 0 && old_gen != new_gen)
4057 			update_batch_size(walk, folio, old_gen, new_gen);
4058 next:
4059 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4060 	} while (i <= MIN_LRU_BATCH);
4061 
4062 	arch_leave_lazy_mmu_mode();
4063 	spin_unlock(ptl);
4064 done:
4065 	*start = -1;
4066 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4067 }
4068 #else
4069 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4070 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4071 {
4072 }
4073 #endif
4074 
4075 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4076 			   struct mm_walk *args)
4077 {
4078 	int i;
4079 	pmd_t *pmd;
4080 	unsigned long next;
4081 	unsigned long addr;
4082 	struct vm_area_struct *vma;
4083 	unsigned long pos = -1;
4084 	struct lru_gen_mm_walk *walk = args->private;
4085 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4086 
4087 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4088 
4089 	/*
4090 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4091 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4092 	 * the PMD lock to clear the accessed bit in PMD entries.
4093 	 */
4094 	pmd = pmd_offset(pud, start & PUD_MASK);
4095 restart:
4096 	/* walk_pte_range() may call get_next_vma() */
4097 	vma = args->vma;
4098 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4099 		pmd_t val = pmdp_get_lockless(pmd + i);
4100 
4101 		next = pmd_addr_end(addr, end);
4102 
4103 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4104 			walk->mm_stats[MM_LEAF_TOTAL]++;
4105 			continue;
4106 		}
4107 
4108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4109 		if (pmd_trans_huge(val)) {
4110 			unsigned long pfn = pmd_pfn(val);
4111 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4112 
4113 			walk->mm_stats[MM_LEAF_TOTAL]++;
4114 
4115 			if (!pmd_young(val)) {
4116 				walk->mm_stats[MM_LEAF_OLD]++;
4117 				continue;
4118 			}
4119 
4120 			/* try to avoid unnecessary memory loads */
4121 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4122 				continue;
4123 
4124 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4125 			continue;
4126 		}
4127 #endif
4128 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4129 
4130 		if (arch_has_hw_nonleaf_pmd_young() &&
4131 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4132 			if (!pmd_young(val))
4133 				continue;
4134 
4135 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4136 		}
4137 
4138 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4139 			continue;
4140 
4141 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4142 
4143 		if (!walk_pte_range(&val, addr, next, args))
4144 			continue;
4145 
4146 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4147 
4148 		/* carry over to the next generation */
4149 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4150 	}
4151 
4152 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4153 
4154 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4155 		goto restart;
4156 }
4157 
4158 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4159 			  struct mm_walk *args)
4160 {
4161 	int i;
4162 	pud_t *pud;
4163 	unsigned long addr;
4164 	unsigned long next;
4165 	struct lru_gen_mm_walk *walk = args->private;
4166 
4167 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4168 
4169 	pud = pud_offset(p4d, start & P4D_MASK);
4170 restart:
4171 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4172 		pud_t val = READ_ONCE(pud[i]);
4173 
4174 		next = pud_addr_end(addr, end);
4175 
4176 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4177 			continue;
4178 
4179 		walk_pmd_range(&val, addr, next, args);
4180 
4181 		/* a racy check to curtail the waiting time */
4182 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4183 			return 1;
4184 
4185 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4186 			end = (addr | ~PUD_MASK) + 1;
4187 			goto done;
4188 		}
4189 	}
4190 
4191 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4192 		goto restart;
4193 
4194 	end = round_up(end, P4D_SIZE);
4195 done:
4196 	if (!end || !args->vma)
4197 		return 1;
4198 
4199 	walk->next_addr = max(end, args->vma->vm_start);
4200 
4201 	return -EAGAIN;
4202 }
4203 
4204 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4205 {
4206 	static const struct mm_walk_ops mm_walk_ops = {
4207 		.test_walk = should_skip_vma,
4208 		.p4d_entry = walk_pud_range,
4209 	};
4210 
4211 	int err;
4212 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4213 
4214 	walk->next_addr = FIRST_USER_ADDRESS;
4215 
4216 	do {
4217 		err = -EBUSY;
4218 
4219 		/* folio_update_gen() requires stable folio_memcg() */
4220 		if (!mem_cgroup_trylock_pages(memcg))
4221 			break;
4222 
4223 		/* the caller might be holding the lock for write */
4224 		if (mmap_read_trylock(mm)) {
4225 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4226 
4227 			mmap_read_unlock(mm);
4228 		}
4229 
4230 		mem_cgroup_unlock_pages();
4231 
4232 		if (walk->batched) {
4233 			spin_lock_irq(&lruvec->lru_lock);
4234 			reset_batch_size(lruvec, walk);
4235 			spin_unlock_irq(&lruvec->lru_lock);
4236 		}
4237 
4238 		cond_resched();
4239 	} while (err == -EAGAIN);
4240 }
4241 
4242 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4243 {
4244 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4245 
4246 	if (pgdat && current_is_kswapd()) {
4247 		VM_WARN_ON_ONCE(walk);
4248 
4249 		walk = &pgdat->mm_walk;
4250 	} else if (!walk && force_alloc) {
4251 		VM_WARN_ON_ONCE(current_is_kswapd());
4252 
4253 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4254 	}
4255 
4256 	current->reclaim_state->mm_walk = walk;
4257 
4258 	return walk;
4259 }
4260 
4261 static void clear_mm_walk(void)
4262 {
4263 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4264 
4265 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4266 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4267 
4268 	current->reclaim_state->mm_walk = NULL;
4269 
4270 	if (!current_is_kswapd())
4271 		kfree(walk);
4272 }
4273 
4274 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4275 {
4276 	int zone;
4277 	int remaining = MAX_LRU_BATCH;
4278 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4279 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4280 
4281 	if (type == LRU_GEN_ANON && !can_swap)
4282 		goto done;
4283 
4284 	/* prevent cold/hot inversion if force_scan is true */
4285 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4286 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4287 
4288 		while (!list_empty(head)) {
4289 			struct folio *folio = lru_to_folio(head);
4290 
4291 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4292 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4293 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4294 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4295 
4296 			new_gen = folio_inc_gen(lruvec, folio, false);
4297 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4298 
4299 			if (!--remaining)
4300 				return false;
4301 		}
4302 	}
4303 done:
4304 	reset_ctrl_pos(lruvec, type, true);
4305 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4306 
4307 	return true;
4308 }
4309 
4310 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4311 {
4312 	int gen, type, zone;
4313 	bool success = false;
4314 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4315 	DEFINE_MIN_SEQ(lruvec);
4316 
4317 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4318 
4319 	/* find the oldest populated generation */
4320 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4321 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4322 			gen = lru_gen_from_seq(min_seq[type]);
4323 
4324 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4325 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4326 					goto next;
4327 			}
4328 
4329 			min_seq[type]++;
4330 		}
4331 next:
4332 		;
4333 	}
4334 
4335 	/* see the comment on lru_gen_folio */
4336 	if (can_swap) {
4337 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4338 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4339 	}
4340 
4341 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4342 		if (min_seq[type] == lrugen->min_seq[type])
4343 			continue;
4344 
4345 		reset_ctrl_pos(lruvec, type, true);
4346 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4347 		success = true;
4348 	}
4349 
4350 	return success;
4351 }
4352 
4353 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4354 {
4355 	int prev, next;
4356 	int type, zone;
4357 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4358 
4359 	spin_lock_irq(&lruvec->lru_lock);
4360 
4361 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4362 
4363 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4364 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4365 			continue;
4366 
4367 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4368 
4369 		while (!inc_min_seq(lruvec, type, can_swap)) {
4370 			spin_unlock_irq(&lruvec->lru_lock);
4371 			cond_resched();
4372 			spin_lock_irq(&lruvec->lru_lock);
4373 		}
4374 	}
4375 
4376 	/*
4377 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4378 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4379 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4380 	 * overlap, cold/hot inversion happens.
4381 	 */
4382 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4383 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4384 
4385 	for (type = 0; type < ANON_AND_FILE; type++) {
4386 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4387 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4388 			long delta = lrugen->nr_pages[prev][type][zone] -
4389 				     lrugen->nr_pages[next][type][zone];
4390 
4391 			if (!delta)
4392 				continue;
4393 
4394 			__update_lru_size(lruvec, lru, zone, delta);
4395 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4396 		}
4397 	}
4398 
4399 	for (type = 0; type < ANON_AND_FILE; type++)
4400 		reset_ctrl_pos(lruvec, type, false);
4401 
4402 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4403 	/* make sure preceding modifications appear */
4404 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4405 
4406 	spin_unlock_irq(&lruvec->lru_lock);
4407 }
4408 
4409 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4410 			       struct scan_control *sc, bool can_swap, bool force_scan)
4411 {
4412 	bool success;
4413 	struct lru_gen_mm_walk *walk;
4414 	struct mm_struct *mm = NULL;
4415 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4416 
4417 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4418 
4419 	/* see the comment in iterate_mm_list() */
4420 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4421 		success = false;
4422 		goto done;
4423 	}
4424 
4425 	/*
4426 	 * If the hardware doesn't automatically set the accessed bit, fallback
4427 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4428 	 * handful of PTEs. Spreading the work out over a period of time usually
4429 	 * is less efficient, but it avoids bursty page faults.
4430 	 */
4431 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4432 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4433 		goto done;
4434 	}
4435 
4436 	walk = set_mm_walk(NULL, true);
4437 	if (!walk) {
4438 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4439 		goto done;
4440 	}
4441 
4442 	walk->lruvec = lruvec;
4443 	walk->max_seq = max_seq;
4444 	walk->can_swap = can_swap;
4445 	walk->force_scan = force_scan;
4446 
4447 	do {
4448 		success = iterate_mm_list(lruvec, walk, &mm);
4449 		if (mm)
4450 			walk_mm(lruvec, mm, walk);
4451 
4452 		cond_resched();
4453 	} while (mm);
4454 done:
4455 	if (!success) {
4456 		if (sc->priority <= DEF_PRIORITY - 2)
4457 			wait_event_killable(lruvec->mm_state.wait,
4458 					    max_seq < READ_ONCE(lrugen->max_seq));
4459 		return false;
4460 	}
4461 
4462 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4463 
4464 	inc_max_seq(lruvec, can_swap, force_scan);
4465 	/* either this sees any waiters or they will see updated max_seq */
4466 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4467 		wake_up_all(&lruvec->mm_state.wait);
4468 
4469 	return true;
4470 }
4471 
4472 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4473 {
4474 	int gen, type, zone;
4475 	unsigned long total = 0;
4476 	bool can_swap = get_swappiness(lruvec, sc);
4477 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4478 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4479 	DEFINE_MAX_SEQ(lruvec);
4480 	DEFINE_MIN_SEQ(lruvec);
4481 
4482 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4483 		unsigned long seq;
4484 
4485 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4486 			gen = lru_gen_from_seq(seq);
4487 
4488 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4489 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4490 		}
4491 	}
4492 
4493 	/* whether the size is big enough to be helpful */
4494 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4495 }
4496 
4497 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4498 				  unsigned long min_ttl)
4499 {
4500 	int gen;
4501 	unsigned long birth;
4502 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4503 	DEFINE_MIN_SEQ(lruvec);
4504 
4505 	/* see the comment on lru_gen_folio */
4506 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4507 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4508 
4509 	if (time_is_after_jiffies(birth + min_ttl))
4510 		return false;
4511 
4512 	if (!lruvec_is_sizable(lruvec, sc))
4513 		return false;
4514 
4515 	mem_cgroup_calculate_protection(NULL, memcg);
4516 
4517 	return !mem_cgroup_below_min(NULL, memcg);
4518 }
4519 
4520 /* to protect the working set of the last N jiffies */
4521 static unsigned long lru_gen_min_ttl __read_mostly;
4522 
4523 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4524 {
4525 	struct mem_cgroup *memcg;
4526 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4527 
4528 	VM_WARN_ON_ONCE(!current_is_kswapd());
4529 
4530 	/* check the order to exclude compaction-induced reclaim */
4531 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4532 		return;
4533 
4534 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4535 	do {
4536 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4537 
4538 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4539 			mem_cgroup_iter_break(NULL, memcg);
4540 			return;
4541 		}
4542 
4543 		cond_resched();
4544 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4545 
4546 	/*
4547 	 * The main goal is to OOM kill if every generation from all memcgs is
4548 	 * younger than min_ttl. However, another possibility is all memcgs are
4549 	 * either too small or below min.
4550 	 */
4551 	if (mutex_trylock(&oom_lock)) {
4552 		struct oom_control oc = {
4553 			.gfp_mask = sc->gfp_mask,
4554 		};
4555 
4556 		out_of_memory(&oc);
4557 
4558 		mutex_unlock(&oom_lock);
4559 	}
4560 }
4561 
4562 /*
4563  * This function exploits spatial locality when shrink_folio_list() walks the
4564  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4565  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4566  * the PTE table to the Bloom filter. This forms a feedback loop between the
4567  * eviction and the aging.
4568  */
4569 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4570 {
4571 	int i;
4572 	pte_t *pte;
4573 	unsigned long start;
4574 	unsigned long end;
4575 	unsigned long addr;
4576 	struct lru_gen_mm_walk *walk;
4577 	int young = 0;
4578 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4579 	struct folio *folio = pfn_folio(pvmw->pfn);
4580 	struct mem_cgroup *memcg = folio_memcg(folio);
4581 	struct pglist_data *pgdat = folio_pgdat(folio);
4582 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4583 	DEFINE_MAX_SEQ(lruvec);
4584 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4585 
4586 	lockdep_assert_held(pvmw->ptl);
4587 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4588 
4589 	if (spin_is_contended(pvmw->ptl))
4590 		return;
4591 
4592 	/* avoid taking the LRU lock under the PTL when possible */
4593 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4594 
4595 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4596 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4597 
4598 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4599 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4600 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4601 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4602 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4603 		else {
4604 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4605 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4606 		}
4607 	}
4608 
4609 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4610 
4611 	rcu_read_lock();
4612 	arch_enter_lazy_mmu_mode();
4613 
4614 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4615 		unsigned long pfn;
4616 
4617 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4618 		if (pfn == -1)
4619 			continue;
4620 
4621 		if (!pte_young(pte[i]))
4622 			continue;
4623 
4624 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4625 		if (!folio)
4626 			continue;
4627 
4628 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4629 			VM_WARN_ON_ONCE(true);
4630 
4631 		young++;
4632 
4633 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4634 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4635 		      !folio_test_swapcache(folio)))
4636 			folio_mark_dirty(folio);
4637 
4638 		old_gen = folio_lru_gen(folio);
4639 		if (old_gen < 0)
4640 			folio_set_referenced(folio);
4641 		else if (old_gen != new_gen)
4642 			__set_bit(i, bitmap);
4643 	}
4644 
4645 	arch_leave_lazy_mmu_mode();
4646 	rcu_read_unlock();
4647 
4648 	/* feedback from rmap walkers to page table walkers */
4649 	if (suitable_to_scan(i, young))
4650 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4651 
4652 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4653 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4654 			folio = pfn_folio(pte_pfn(pte[i]));
4655 			folio_activate(folio);
4656 		}
4657 		return;
4658 	}
4659 
4660 	/* folio_update_gen() requires stable folio_memcg() */
4661 	if (!mem_cgroup_trylock_pages(memcg))
4662 		return;
4663 
4664 	if (!walk) {
4665 		spin_lock_irq(&lruvec->lru_lock);
4666 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4667 	}
4668 
4669 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4670 		folio = pfn_folio(pte_pfn(pte[i]));
4671 		if (folio_memcg_rcu(folio) != memcg)
4672 			continue;
4673 
4674 		old_gen = folio_update_gen(folio, new_gen);
4675 		if (old_gen < 0 || old_gen == new_gen)
4676 			continue;
4677 
4678 		if (walk)
4679 			update_batch_size(walk, folio, old_gen, new_gen);
4680 		else
4681 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4682 	}
4683 
4684 	if (!walk)
4685 		spin_unlock_irq(&lruvec->lru_lock);
4686 
4687 	mem_cgroup_unlock_pages();
4688 }
4689 
4690 /******************************************************************************
4691  *                          the eviction
4692  ******************************************************************************/
4693 
4694 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4695 {
4696 	bool success;
4697 	int gen = folio_lru_gen(folio);
4698 	int type = folio_is_file_lru(folio);
4699 	int zone = folio_zonenum(folio);
4700 	int delta = folio_nr_pages(folio);
4701 	int refs = folio_lru_refs(folio);
4702 	int tier = lru_tier_from_refs(refs);
4703 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4704 
4705 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4706 
4707 	/* unevictable */
4708 	if (!folio_evictable(folio)) {
4709 		success = lru_gen_del_folio(lruvec, folio, true);
4710 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4711 		folio_set_unevictable(folio);
4712 		lruvec_add_folio(lruvec, folio);
4713 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4714 		return true;
4715 	}
4716 
4717 	/* dirty lazyfree */
4718 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4719 		success = lru_gen_del_folio(lruvec, folio, true);
4720 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4721 		folio_set_swapbacked(folio);
4722 		lruvec_add_folio_tail(lruvec, folio);
4723 		return true;
4724 	}
4725 
4726 	/* promoted */
4727 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4728 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4729 		return true;
4730 	}
4731 
4732 	/* protected */
4733 	if (tier > tier_idx) {
4734 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4735 
4736 		gen = folio_inc_gen(lruvec, folio, false);
4737 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4738 
4739 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4740 			   lrugen->protected[hist][type][tier - 1] + delta);
4741 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4742 		return true;
4743 	}
4744 
4745 	/* waiting for writeback */
4746 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4747 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4748 		gen = folio_inc_gen(lruvec, folio, true);
4749 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4750 		return true;
4751 	}
4752 
4753 	return false;
4754 }
4755 
4756 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4757 {
4758 	bool success;
4759 
4760 	/* swapping inhibited */
4761 	if (!(sc->gfp_mask & __GFP_IO) &&
4762 	    (folio_test_dirty(folio) ||
4763 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4764 		return false;
4765 
4766 	/* raced with release_pages() */
4767 	if (!folio_try_get(folio))
4768 		return false;
4769 
4770 	/* raced with another isolation */
4771 	if (!folio_test_clear_lru(folio)) {
4772 		folio_put(folio);
4773 		return false;
4774 	}
4775 
4776 	/* see the comment on MAX_NR_TIERS */
4777 	if (!folio_test_referenced(folio))
4778 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4779 
4780 	/* for shrink_folio_list() */
4781 	folio_clear_reclaim(folio);
4782 	folio_clear_referenced(folio);
4783 
4784 	success = lru_gen_del_folio(lruvec, folio, true);
4785 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4786 
4787 	return true;
4788 }
4789 
4790 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4791 		       int type, int tier, struct list_head *list)
4792 {
4793 	int gen, zone;
4794 	enum vm_event_item item;
4795 	int sorted = 0;
4796 	int scanned = 0;
4797 	int isolated = 0;
4798 	int remaining = MAX_LRU_BATCH;
4799 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4800 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4801 
4802 	VM_WARN_ON_ONCE(!list_empty(list));
4803 
4804 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4805 		return 0;
4806 
4807 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4808 
4809 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4810 		LIST_HEAD(moved);
4811 		int skipped = 0;
4812 		struct list_head *head = &lrugen->folios[gen][type][zone];
4813 
4814 		while (!list_empty(head)) {
4815 			struct folio *folio = lru_to_folio(head);
4816 			int delta = folio_nr_pages(folio);
4817 
4818 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4819 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4820 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4821 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4822 
4823 			scanned += delta;
4824 
4825 			if (sort_folio(lruvec, folio, tier))
4826 				sorted += delta;
4827 			else if (isolate_folio(lruvec, folio, sc)) {
4828 				list_add(&folio->lru, list);
4829 				isolated += delta;
4830 			} else {
4831 				list_move(&folio->lru, &moved);
4832 				skipped += delta;
4833 			}
4834 
4835 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4836 				break;
4837 		}
4838 
4839 		if (skipped) {
4840 			list_splice(&moved, head);
4841 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4842 		}
4843 
4844 		if (!remaining || isolated >= MIN_LRU_BATCH)
4845 			break;
4846 	}
4847 
4848 	item = PGSCAN_KSWAPD + reclaimer_offset();
4849 	if (!cgroup_reclaim(sc)) {
4850 		__count_vm_events(item, isolated);
4851 		__count_vm_events(PGREFILL, sorted);
4852 	}
4853 	__count_memcg_events(memcg, item, isolated);
4854 	__count_memcg_events(memcg, PGREFILL, sorted);
4855 	__count_vm_events(PGSCAN_ANON + type, isolated);
4856 
4857 	/*
4858 	 * There might not be eligible folios due to reclaim_idx. Check the
4859 	 * remaining to prevent livelock if it's not making progress.
4860 	 */
4861 	return isolated || !remaining ? scanned : 0;
4862 }
4863 
4864 static int get_tier_idx(struct lruvec *lruvec, int type)
4865 {
4866 	int tier;
4867 	struct ctrl_pos sp, pv;
4868 
4869 	/*
4870 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4871 	 * This value is chosen because any other tier would have at least twice
4872 	 * as many refaults as the first tier.
4873 	 */
4874 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4875 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4876 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4877 		if (!positive_ctrl_err(&sp, &pv))
4878 			break;
4879 	}
4880 
4881 	return tier - 1;
4882 }
4883 
4884 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4885 {
4886 	int type, tier;
4887 	struct ctrl_pos sp, pv;
4888 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4889 
4890 	/*
4891 	 * Compare the first tier of anon with that of file to determine which
4892 	 * type to scan. Also need to compare other tiers of the selected type
4893 	 * with the first tier of the other type to determine the last tier (of
4894 	 * the selected type) to evict.
4895 	 */
4896 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4897 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4898 	type = positive_ctrl_err(&sp, &pv);
4899 
4900 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4901 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4902 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4903 		if (!positive_ctrl_err(&sp, &pv))
4904 			break;
4905 	}
4906 
4907 	*tier_idx = tier - 1;
4908 
4909 	return type;
4910 }
4911 
4912 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4913 			  int *type_scanned, struct list_head *list)
4914 {
4915 	int i;
4916 	int type;
4917 	int scanned;
4918 	int tier = -1;
4919 	DEFINE_MIN_SEQ(lruvec);
4920 
4921 	/*
4922 	 * Try to make the obvious choice first. When anon and file are both
4923 	 * available from the same generation, interpret swappiness 1 as file
4924 	 * first and 200 as anon first.
4925 	 */
4926 	if (!swappiness)
4927 		type = LRU_GEN_FILE;
4928 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4929 		type = LRU_GEN_ANON;
4930 	else if (swappiness == 1)
4931 		type = LRU_GEN_FILE;
4932 	else if (swappiness == 200)
4933 		type = LRU_GEN_ANON;
4934 	else
4935 		type = get_type_to_scan(lruvec, swappiness, &tier);
4936 
4937 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4938 		if (tier < 0)
4939 			tier = get_tier_idx(lruvec, type);
4940 
4941 		scanned = scan_folios(lruvec, sc, type, tier, list);
4942 		if (scanned)
4943 			break;
4944 
4945 		type = !type;
4946 		tier = -1;
4947 	}
4948 
4949 	*type_scanned = type;
4950 
4951 	return scanned;
4952 }
4953 
4954 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4955 {
4956 	int type;
4957 	int scanned;
4958 	int reclaimed;
4959 	LIST_HEAD(list);
4960 	LIST_HEAD(clean);
4961 	struct folio *folio;
4962 	struct folio *next;
4963 	enum vm_event_item item;
4964 	struct reclaim_stat stat;
4965 	struct lru_gen_mm_walk *walk;
4966 	bool skip_retry = false;
4967 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4968 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4969 
4970 	spin_lock_irq(&lruvec->lru_lock);
4971 
4972 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4973 
4974 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4975 
4976 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4977 		scanned = 0;
4978 
4979 	spin_unlock_irq(&lruvec->lru_lock);
4980 
4981 	if (list_empty(&list))
4982 		return scanned;
4983 retry:
4984 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4985 	sc->nr_reclaimed += reclaimed;
4986 
4987 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4988 		if (!folio_evictable(folio)) {
4989 			list_del(&folio->lru);
4990 			folio_putback_lru(folio);
4991 			continue;
4992 		}
4993 
4994 		if (folio_test_reclaim(folio) &&
4995 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4996 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4997 			if (folio_test_workingset(folio))
4998 				folio_set_referenced(folio);
4999 			continue;
5000 		}
5001 
5002 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5003 		    folio_mapped(folio) || folio_test_locked(folio) ||
5004 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5005 			/* don't add rejected folios to the oldest generation */
5006 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5007 				      BIT(PG_active));
5008 			continue;
5009 		}
5010 
5011 		/* retry folios that may have missed folio_rotate_reclaimable() */
5012 		list_move(&folio->lru, &clean);
5013 		sc->nr_scanned -= folio_nr_pages(folio);
5014 	}
5015 
5016 	spin_lock_irq(&lruvec->lru_lock);
5017 
5018 	move_folios_to_lru(lruvec, &list);
5019 
5020 	walk = current->reclaim_state->mm_walk;
5021 	if (walk && walk->batched)
5022 		reset_batch_size(lruvec, walk);
5023 
5024 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5025 	if (!cgroup_reclaim(sc))
5026 		__count_vm_events(item, reclaimed);
5027 	__count_memcg_events(memcg, item, reclaimed);
5028 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5029 
5030 	spin_unlock_irq(&lruvec->lru_lock);
5031 
5032 	mem_cgroup_uncharge_list(&list);
5033 	free_unref_page_list(&list);
5034 
5035 	INIT_LIST_HEAD(&list);
5036 	list_splice_init(&clean, &list);
5037 
5038 	if (!list_empty(&list)) {
5039 		skip_retry = true;
5040 		goto retry;
5041 	}
5042 
5043 	return scanned;
5044 }
5045 
5046 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5047 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5048 {
5049 	int gen, type, zone;
5050 	unsigned long old = 0;
5051 	unsigned long young = 0;
5052 	unsigned long total = 0;
5053 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5054 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5055 	DEFINE_MIN_SEQ(lruvec);
5056 
5057 	/* whether this lruvec is completely out of cold folios */
5058 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5059 		*nr_to_scan = 0;
5060 		return true;
5061 	}
5062 
5063 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5064 		unsigned long seq;
5065 
5066 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5067 			unsigned long size = 0;
5068 
5069 			gen = lru_gen_from_seq(seq);
5070 
5071 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5072 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5073 
5074 			total += size;
5075 			if (seq == max_seq)
5076 				young += size;
5077 			else if (seq + MIN_NR_GENS == max_seq)
5078 				old += size;
5079 		}
5080 	}
5081 
5082 	/* try to scrape all its memory if this memcg was deleted */
5083 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5084 
5085 	/*
5086 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5087 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5088 	 * ideal number of generations is MIN_NR_GENS+1.
5089 	 */
5090 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5091 		return false;
5092 
5093 	/*
5094 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5095 	 * of the total number of pages for each generation. A reasonable range
5096 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5097 	 * aging cares about the upper bound of hot pages, while the eviction
5098 	 * cares about the lower bound of cold pages.
5099 	 */
5100 	if (young * MIN_NR_GENS > total)
5101 		return true;
5102 	if (old * (MIN_NR_GENS + 2) < total)
5103 		return true;
5104 
5105 	return false;
5106 }
5107 
5108 /*
5109  * For future optimizations:
5110  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5111  *    reclaim.
5112  */
5113 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5114 {
5115 	unsigned long nr_to_scan;
5116 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5117 	DEFINE_MAX_SEQ(lruvec);
5118 
5119 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5120 		return 0;
5121 
5122 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5123 		return nr_to_scan;
5124 
5125 	/* skip the aging path at the default priority */
5126 	if (sc->priority == DEF_PRIORITY)
5127 		return nr_to_scan;
5128 
5129 	/* skip this lruvec as it's low on cold folios */
5130 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5131 }
5132 
5133 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5134 {
5135 	/* don't abort memcg reclaim to ensure fairness */
5136 	if (!global_reclaim(sc))
5137 		return -1;
5138 
5139 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5140 }
5141 
5142 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5143 {
5144 	long nr_to_scan;
5145 	unsigned long scanned = 0;
5146 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5147 	int swappiness = get_swappiness(lruvec, sc);
5148 
5149 	/* clean file folios are more likely to exist */
5150 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5151 		swappiness = 1;
5152 
5153 	while (true) {
5154 		int delta;
5155 
5156 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5157 		if (nr_to_scan <= 0)
5158 			break;
5159 
5160 		delta = evict_folios(lruvec, sc, swappiness);
5161 		if (!delta)
5162 			break;
5163 
5164 		scanned += delta;
5165 		if (scanned >= nr_to_scan)
5166 			break;
5167 
5168 		if (sc->nr_reclaimed >= nr_to_reclaim)
5169 			break;
5170 
5171 		cond_resched();
5172 	}
5173 
5174 	/* whether try_to_inc_max_seq() was successful */
5175 	return nr_to_scan < 0;
5176 }
5177 
5178 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5179 {
5180 	bool success;
5181 	unsigned long scanned = sc->nr_scanned;
5182 	unsigned long reclaimed = sc->nr_reclaimed;
5183 	int seg = lru_gen_memcg_seg(lruvec);
5184 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5185 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5186 
5187 	/* see the comment on MEMCG_NR_GENS */
5188 	if (!lruvec_is_sizable(lruvec, sc))
5189 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5190 
5191 	mem_cgroup_calculate_protection(NULL, memcg);
5192 
5193 	if (mem_cgroup_below_min(NULL, memcg))
5194 		return MEMCG_LRU_YOUNG;
5195 
5196 	if (mem_cgroup_below_low(NULL, memcg)) {
5197 		/* see the comment on MEMCG_NR_GENS */
5198 		if (seg != MEMCG_LRU_TAIL)
5199 			return MEMCG_LRU_TAIL;
5200 
5201 		memcg_memory_event(memcg, MEMCG_LOW);
5202 	}
5203 
5204 	success = try_to_shrink_lruvec(lruvec, sc);
5205 
5206 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5207 
5208 	if (!sc->proactive)
5209 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5210 			   sc->nr_reclaimed - reclaimed);
5211 
5212 	sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
5213 	current->reclaim_state->reclaimed_slab = 0;
5214 
5215 	return success ? MEMCG_LRU_YOUNG : 0;
5216 }
5217 
5218 #ifdef CONFIG_MEMCG
5219 
5220 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5221 {
5222 	int gen;
5223 	int bin;
5224 	int first_bin;
5225 	struct lruvec *lruvec;
5226 	struct lru_gen_folio *lrugen;
5227 	const struct hlist_nulls_node *pos;
5228 	int op = 0;
5229 	struct mem_cgroup *memcg = NULL;
5230 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5231 
5232 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5233 restart:
5234 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5235 
5236 	rcu_read_lock();
5237 
5238 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5239 		if (op)
5240 			lru_gen_rotate_memcg(lruvec, op);
5241 
5242 		mem_cgroup_put(memcg);
5243 
5244 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5245 		memcg = lruvec_memcg(lruvec);
5246 
5247 		if (!mem_cgroup_tryget(memcg)) {
5248 			op = 0;
5249 			memcg = NULL;
5250 			continue;
5251 		}
5252 
5253 		rcu_read_unlock();
5254 
5255 		op = shrink_one(lruvec, sc);
5256 
5257 		if (sc->nr_reclaimed >= nr_to_reclaim)
5258 			goto success;
5259 
5260 		rcu_read_lock();
5261 	}
5262 
5263 	rcu_read_unlock();
5264 
5265 	/* restart if raced with lru_gen_rotate_memcg() */
5266 	if (gen != get_nulls_value(pos))
5267 		goto restart;
5268 
5269 	/* try the rest of the bins of the current generation */
5270 	bin = get_memcg_bin(bin + 1);
5271 	if (bin != first_bin)
5272 		goto restart;
5273 success:
5274 	if (op)
5275 		lru_gen_rotate_memcg(lruvec, op);
5276 
5277 	mem_cgroup_put(memcg);
5278 }
5279 
5280 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5281 {
5282 	struct blk_plug plug;
5283 
5284 	VM_WARN_ON_ONCE(global_reclaim(sc));
5285 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5286 
5287 	lru_add_drain();
5288 
5289 	blk_start_plug(&plug);
5290 
5291 	set_mm_walk(NULL, sc->proactive);
5292 
5293 	if (try_to_shrink_lruvec(lruvec, sc))
5294 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5295 
5296 	clear_mm_walk();
5297 
5298 	blk_finish_plug(&plug);
5299 }
5300 
5301 #else /* !CONFIG_MEMCG */
5302 
5303 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5304 {
5305 	BUILD_BUG();
5306 }
5307 
5308 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5309 {
5310 	BUILD_BUG();
5311 }
5312 
5313 #endif
5314 
5315 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5316 {
5317 	int priority;
5318 	unsigned long reclaimable;
5319 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5320 
5321 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5322 		return;
5323 	/*
5324 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5325 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5326 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5327 	 */
5328 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5329 	if (get_swappiness(lruvec, sc))
5330 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5331 
5332 	reclaimable /= MEMCG_NR_GENS;
5333 
5334 	/* round down reclaimable and round up sc->nr_to_reclaim */
5335 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5336 
5337 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5338 }
5339 
5340 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5341 {
5342 	struct blk_plug plug;
5343 	unsigned long reclaimed = sc->nr_reclaimed;
5344 
5345 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5346 
5347 	/*
5348 	 * Unmapped clean folios are already prioritized. Scanning for more of
5349 	 * them is likely futile and can cause high reclaim latency when there
5350 	 * is a large number of memcgs.
5351 	 */
5352 	if (!sc->may_writepage || !sc->may_unmap)
5353 		goto done;
5354 
5355 	lru_add_drain();
5356 
5357 	blk_start_plug(&plug);
5358 
5359 	set_mm_walk(pgdat, sc->proactive);
5360 
5361 	set_initial_priority(pgdat, sc);
5362 
5363 	if (current_is_kswapd())
5364 		sc->nr_reclaimed = 0;
5365 
5366 	if (mem_cgroup_disabled())
5367 		shrink_one(&pgdat->__lruvec, sc);
5368 	else
5369 		shrink_many(pgdat, sc);
5370 
5371 	if (current_is_kswapd())
5372 		sc->nr_reclaimed += reclaimed;
5373 
5374 	clear_mm_walk();
5375 
5376 	blk_finish_plug(&plug);
5377 done:
5378 	/* kswapd should never fail */
5379 	pgdat->kswapd_failures = 0;
5380 }
5381 
5382 #ifdef CONFIG_MEMCG
5383 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
5384 {
5385 	int seg;
5386 	int old, new;
5387 	int bin = get_random_u32_below(MEMCG_NR_BINS);
5388 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5389 
5390 	spin_lock(&pgdat->memcg_lru.lock);
5391 
5392 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
5393 
5394 	seg = 0;
5395 	new = old = lruvec->lrugen.gen;
5396 
5397 	/* see the comment on MEMCG_NR_GENS */
5398 	if (op == MEMCG_LRU_HEAD)
5399 		seg = MEMCG_LRU_HEAD;
5400 	else if (op == MEMCG_LRU_TAIL)
5401 		seg = MEMCG_LRU_TAIL;
5402 	else if (op == MEMCG_LRU_OLD)
5403 		new = get_memcg_gen(pgdat->memcg_lru.seq);
5404 	else if (op == MEMCG_LRU_YOUNG)
5405 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
5406 	else
5407 		VM_WARN_ON_ONCE(true);
5408 
5409 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
5410 
5411 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
5412 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5413 	else
5414 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5415 
5416 	pgdat->memcg_lru.nr_memcgs[old]--;
5417 	pgdat->memcg_lru.nr_memcgs[new]++;
5418 
5419 	lruvec->lrugen.gen = new;
5420 	WRITE_ONCE(lruvec->lrugen.seg, seg);
5421 
5422 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
5423 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
5424 
5425 	spin_unlock(&pgdat->memcg_lru.lock);
5426 }
5427 #endif
5428 
5429 /******************************************************************************
5430  *                          state change
5431  ******************************************************************************/
5432 
5433 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5434 {
5435 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5436 
5437 	if (lrugen->enabled) {
5438 		enum lru_list lru;
5439 
5440 		for_each_evictable_lru(lru) {
5441 			if (!list_empty(&lruvec->lists[lru]))
5442 				return false;
5443 		}
5444 	} else {
5445 		int gen, type, zone;
5446 
5447 		for_each_gen_type_zone(gen, type, zone) {
5448 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5449 				return false;
5450 		}
5451 	}
5452 
5453 	return true;
5454 }
5455 
5456 static bool fill_evictable(struct lruvec *lruvec)
5457 {
5458 	enum lru_list lru;
5459 	int remaining = MAX_LRU_BATCH;
5460 
5461 	for_each_evictable_lru(lru) {
5462 		int type = is_file_lru(lru);
5463 		bool active = is_active_lru(lru);
5464 		struct list_head *head = &lruvec->lists[lru];
5465 
5466 		while (!list_empty(head)) {
5467 			bool success;
5468 			struct folio *folio = lru_to_folio(head);
5469 
5470 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5471 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5472 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5473 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5474 
5475 			lruvec_del_folio(lruvec, folio);
5476 			success = lru_gen_add_folio(lruvec, folio, false);
5477 			VM_WARN_ON_ONCE(!success);
5478 
5479 			if (!--remaining)
5480 				return false;
5481 		}
5482 	}
5483 
5484 	return true;
5485 }
5486 
5487 static bool drain_evictable(struct lruvec *lruvec)
5488 {
5489 	int gen, type, zone;
5490 	int remaining = MAX_LRU_BATCH;
5491 
5492 	for_each_gen_type_zone(gen, type, zone) {
5493 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5494 
5495 		while (!list_empty(head)) {
5496 			bool success;
5497 			struct folio *folio = lru_to_folio(head);
5498 
5499 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5500 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5501 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5502 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5503 
5504 			success = lru_gen_del_folio(lruvec, folio, false);
5505 			VM_WARN_ON_ONCE(!success);
5506 			lruvec_add_folio(lruvec, folio);
5507 
5508 			if (!--remaining)
5509 				return false;
5510 		}
5511 	}
5512 
5513 	return true;
5514 }
5515 
5516 static void lru_gen_change_state(bool enabled)
5517 {
5518 	static DEFINE_MUTEX(state_mutex);
5519 
5520 	struct mem_cgroup *memcg;
5521 
5522 	cgroup_lock();
5523 	cpus_read_lock();
5524 	get_online_mems();
5525 	mutex_lock(&state_mutex);
5526 
5527 	if (enabled == lru_gen_enabled())
5528 		goto unlock;
5529 
5530 	if (enabled)
5531 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5532 	else
5533 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5534 
5535 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5536 	do {
5537 		int nid;
5538 
5539 		for_each_node(nid) {
5540 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5541 
5542 			spin_lock_irq(&lruvec->lru_lock);
5543 
5544 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5545 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5546 
5547 			lruvec->lrugen.enabled = enabled;
5548 
5549 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5550 				spin_unlock_irq(&lruvec->lru_lock);
5551 				cond_resched();
5552 				spin_lock_irq(&lruvec->lru_lock);
5553 			}
5554 
5555 			spin_unlock_irq(&lruvec->lru_lock);
5556 		}
5557 
5558 		cond_resched();
5559 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5560 unlock:
5561 	mutex_unlock(&state_mutex);
5562 	put_online_mems();
5563 	cpus_read_unlock();
5564 	cgroup_unlock();
5565 }
5566 
5567 /******************************************************************************
5568  *                          sysfs interface
5569  ******************************************************************************/
5570 
5571 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5572 {
5573 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5574 }
5575 
5576 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5577 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5578 			     const char *buf, size_t len)
5579 {
5580 	unsigned int msecs;
5581 
5582 	if (kstrtouint(buf, 0, &msecs))
5583 		return -EINVAL;
5584 
5585 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5586 
5587 	return len;
5588 }
5589 
5590 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5591 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5592 );
5593 
5594 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5595 {
5596 	unsigned int caps = 0;
5597 
5598 	if (get_cap(LRU_GEN_CORE))
5599 		caps |= BIT(LRU_GEN_CORE);
5600 
5601 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5602 		caps |= BIT(LRU_GEN_MM_WALK);
5603 
5604 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5605 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5606 
5607 	return sysfs_emit(buf, "0x%04x\n", caps);
5608 }
5609 
5610 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5611 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5612 			     const char *buf, size_t len)
5613 {
5614 	int i;
5615 	unsigned int caps;
5616 
5617 	if (tolower(*buf) == 'n')
5618 		caps = 0;
5619 	else if (tolower(*buf) == 'y')
5620 		caps = -1;
5621 	else if (kstrtouint(buf, 0, &caps))
5622 		return -EINVAL;
5623 
5624 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5625 		bool enabled = caps & BIT(i);
5626 
5627 		if (i == LRU_GEN_CORE)
5628 			lru_gen_change_state(enabled);
5629 		else if (enabled)
5630 			static_branch_enable(&lru_gen_caps[i]);
5631 		else
5632 			static_branch_disable(&lru_gen_caps[i]);
5633 	}
5634 
5635 	return len;
5636 }
5637 
5638 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5639 	enabled, 0644, show_enabled, store_enabled
5640 );
5641 
5642 static struct attribute *lru_gen_attrs[] = {
5643 	&lru_gen_min_ttl_attr.attr,
5644 	&lru_gen_enabled_attr.attr,
5645 	NULL
5646 };
5647 
5648 static struct attribute_group lru_gen_attr_group = {
5649 	.name = "lru_gen",
5650 	.attrs = lru_gen_attrs,
5651 };
5652 
5653 /******************************************************************************
5654  *                          debugfs interface
5655  ******************************************************************************/
5656 
5657 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5658 {
5659 	struct mem_cgroup *memcg;
5660 	loff_t nr_to_skip = *pos;
5661 
5662 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5663 	if (!m->private)
5664 		return ERR_PTR(-ENOMEM);
5665 
5666 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5667 	do {
5668 		int nid;
5669 
5670 		for_each_node_state(nid, N_MEMORY) {
5671 			if (!nr_to_skip--)
5672 				return get_lruvec(memcg, nid);
5673 		}
5674 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5675 
5676 	return NULL;
5677 }
5678 
5679 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5680 {
5681 	if (!IS_ERR_OR_NULL(v))
5682 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5683 
5684 	kvfree(m->private);
5685 	m->private = NULL;
5686 }
5687 
5688 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5689 {
5690 	int nid = lruvec_pgdat(v)->node_id;
5691 	struct mem_cgroup *memcg = lruvec_memcg(v);
5692 
5693 	++*pos;
5694 
5695 	nid = next_memory_node(nid);
5696 	if (nid == MAX_NUMNODES) {
5697 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5698 		if (!memcg)
5699 			return NULL;
5700 
5701 		nid = first_memory_node;
5702 	}
5703 
5704 	return get_lruvec(memcg, nid);
5705 }
5706 
5707 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5708 				  unsigned long max_seq, unsigned long *min_seq,
5709 				  unsigned long seq)
5710 {
5711 	int i;
5712 	int type, tier;
5713 	int hist = lru_hist_from_seq(seq);
5714 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5715 
5716 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5717 		seq_printf(m, "            %10d", tier);
5718 		for (type = 0; type < ANON_AND_FILE; type++) {
5719 			const char *s = "   ";
5720 			unsigned long n[3] = {};
5721 
5722 			if (seq == max_seq) {
5723 				s = "RT ";
5724 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5725 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5726 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5727 				s = "rep";
5728 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5729 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5730 				if (tier)
5731 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5732 			}
5733 
5734 			for (i = 0; i < 3; i++)
5735 				seq_printf(m, " %10lu%c", n[i], s[i]);
5736 		}
5737 		seq_putc(m, '\n');
5738 	}
5739 
5740 	seq_puts(m, "                      ");
5741 	for (i = 0; i < NR_MM_STATS; i++) {
5742 		const char *s = "      ";
5743 		unsigned long n = 0;
5744 
5745 		if (seq == max_seq && NR_HIST_GENS == 1) {
5746 			s = "LOYNFA";
5747 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5748 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5749 			s = "loynfa";
5750 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5751 		}
5752 
5753 		seq_printf(m, " %10lu%c", n, s[i]);
5754 	}
5755 	seq_putc(m, '\n');
5756 }
5757 
5758 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5759 static int lru_gen_seq_show(struct seq_file *m, void *v)
5760 {
5761 	unsigned long seq;
5762 	bool full = !debugfs_real_fops(m->file)->write;
5763 	struct lruvec *lruvec = v;
5764 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5765 	int nid = lruvec_pgdat(lruvec)->node_id;
5766 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5767 	DEFINE_MAX_SEQ(lruvec);
5768 	DEFINE_MIN_SEQ(lruvec);
5769 
5770 	if (nid == first_memory_node) {
5771 		const char *path = memcg ? m->private : "";
5772 
5773 #ifdef CONFIG_MEMCG
5774 		if (memcg)
5775 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5776 #endif
5777 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5778 	}
5779 
5780 	seq_printf(m, " node %5d\n", nid);
5781 
5782 	if (!full)
5783 		seq = min_seq[LRU_GEN_ANON];
5784 	else if (max_seq >= MAX_NR_GENS)
5785 		seq = max_seq - MAX_NR_GENS + 1;
5786 	else
5787 		seq = 0;
5788 
5789 	for (; seq <= max_seq; seq++) {
5790 		int type, zone;
5791 		int gen = lru_gen_from_seq(seq);
5792 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5793 
5794 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5795 
5796 		for (type = 0; type < ANON_AND_FILE; type++) {
5797 			unsigned long size = 0;
5798 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5799 
5800 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5801 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5802 
5803 			seq_printf(m, " %10lu%c", size, mark);
5804 		}
5805 
5806 		seq_putc(m, '\n');
5807 
5808 		if (full)
5809 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5810 	}
5811 
5812 	return 0;
5813 }
5814 
5815 static const struct seq_operations lru_gen_seq_ops = {
5816 	.start = lru_gen_seq_start,
5817 	.stop = lru_gen_seq_stop,
5818 	.next = lru_gen_seq_next,
5819 	.show = lru_gen_seq_show,
5820 };
5821 
5822 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5823 		     bool can_swap, bool force_scan)
5824 {
5825 	DEFINE_MAX_SEQ(lruvec);
5826 	DEFINE_MIN_SEQ(lruvec);
5827 
5828 	if (seq < max_seq)
5829 		return 0;
5830 
5831 	if (seq > max_seq)
5832 		return -EINVAL;
5833 
5834 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5835 		return -ERANGE;
5836 
5837 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5838 
5839 	return 0;
5840 }
5841 
5842 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5843 			int swappiness, unsigned long nr_to_reclaim)
5844 {
5845 	DEFINE_MAX_SEQ(lruvec);
5846 
5847 	if (seq + MIN_NR_GENS > max_seq)
5848 		return -EINVAL;
5849 
5850 	sc->nr_reclaimed = 0;
5851 
5852 	while (!signal_pending(current)) {
5853 		DEFINE_MIN_SEQ(lruvec);
5854 
5855 		if (seq < min_seq[!swappiness])
5856 			return 0;
5857 
5858 		if (sc->nr_reclaimed >= nr_to_reclaim)
5859 			return 0;
5860 
5861 		if (!evict_folios(lruvec, sc, swappiness))
5862 			return 0;
5863 
5864 		cond_resched();
5865 	}
5866 
5867 	return -EINTR;
5868 }
5869 
5870 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5871 		   struct scan_control *sc, int swappiness, unsigned long opt)
5872 {
5873 	struct lruvec *lruvec;
5874 	int err = -EINVAL;
5875 	struct mem_cgroup *memcg = NULL;
5876 
5877 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5878 		return -EINVAL;
5879 
5880 	if (!mem_cgroup_disabled()) {
5881 		rcu_read_lock();
5882 
5883 		memcg = mem_cgroup_from_id(memcg_id);
5884 		if (!mem_cgroup_tryget(memcg))
5885 			memcg = NULL;
5886 
5887 		rcu_read_unlock();
5888 
5889 		if (!memcg)
5890 			return -EINVAL;
5891 	}
5892 
5893 	if (memcg_id != mem_cgroup_id(memcg))
5894 		goto done;
5895 
5896 	lruvec = get_lruvec(memcg, nid);
5897 
5898 	if (swappiness < 0)
5899 		swappiness = get_swappiness(lruvec, sc);
5900 	else if (swappiness > 200)
5901 		goto done;
5902 
5903 	switch (cmd) {
5904 	case '+':
5905 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5906 		break;
5907 	case '-':
5908 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5909 		break;
5910 	}
5911 done:
5912 	mem_cgroup_put(memcg);
5913 
5914 	return err;
5915 }
5916 
5917 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5918 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5919 				 size_t len, loff_t *pos)
5920 {
5921 	void *buf;
5922 	char *cur, *next;
5923 	unsigned int flags;
5924 	struct blk_plug plug;
5925 	int err = -EINVAL;
5926 	struct scan_control sc = {
5927 		.may_writepage = true,
5928 		.may_unmap = true,
5929 		.may_swap = true,
5930 		.reclaim_idx = MAX_NR_ZONES - 1,
5931 		.gfp_mask = GFP_KERNEL,
5932 	};
5933 
5934 	buf = kvmalloc(len + 1, GFP_KERNEL);
5935 	if (!buf)
5936 		return -ENOMEM;
5937 
5938 	if (copy_from_user(buf, src, len)) {
5939 		kvfree(buf);
5940 		return -EFAULT;
5941 	}
5942 
5943 	set_task_reclaim_state(current, &sc.reclaim_state);
5944 	flags = memalloc_noreclaim_save();
5945 	blk_start_plug(&plug);
5946 	if (!set_mm_walk(NULL, true)) {
5947 		err = -ENOMEM;
5948 		goto done;
5949 	}
5950 
5951 	next = buf;
5952 	next[len] = '\0';
5953 
5954 	while ((cur = strsep(&next, ",;\n"))) {
5955 		int n;
5956 		int end;
5957 		char cmd;
5958 		unsigned int memcg_id;
5959 		unsigned int nid;
5960 		unsigned long seq;
5961 		unsigned int swappiness = -1;
5962 		unsigned long opt = -1;
5963 
5964 		cur = skip_spaces(cur);
5965 		if (!*cur)
5966 			continue;
5967 
5968 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5969 			   &seq, &end, &swappiness, &end, &opt, &end);
5970 		if (n < 4 || cur[end]) {
5971 			err = -EINVAL;
5972 			break;
5973 		}
5974 
5975 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5976 		if (err)
5977 			break;
5978 	}
5979 done:
5980 	clear_mm_walk();
5981 	blk_finish_plug(&plug);
5982 	memalloc_noreclaim_restore(flags);
5983 	set_task_reclaim_state(current, NULL);
5984 
5985 	kvfree(buf);
5986 
5987 	return err ? : len;
5988 }
5989 
5990 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5991 {
5992 	return seq_open(file, &lru_gen_seq_ops);
5993 }
5994 
5995 static const struct file_operations lru_gen_rw_fops = {
5996 	.open = lru_gen_seq_open,
5997 	.read = seq_read,
5998 	.write = lru_gen_seq_write,
5999 	.llseek = seq_lseek,
6000 	.release = seq_release,
6001 };
6002 
6003 static const struct file_operations lru_gen_ro_fops = {
6004 	.open = lru_gen_seq_open,
6005 	.read = seq_read,
6006 	.llseek = seq_lseek,
6007 	.release = seq_release,
6008 };
6009 
6010 /******************************************************************************
6011  *                          initialization
6012  ******************************************************************************/
6013 
6014 void lru_gen_init_lruvec(struct lruvec *lruvec)
6015 {
6016 	int i;
6017 	int gen, type, zone;
6018 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6019 
6020 	lrugen->max_seq = MIN_NR_GENS + 1;
6021 	lrugen->enabled = lru_gen_enabled();
6022 
6023 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6024 		lrugen->timestamps[i] = jiffies;
6025 
6026 	for_each_gen_type_zone(gen, type, zone)
6027 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6028 
6029 	lruvec->mm_state.seq = MIN_NR_GENS;
6030 	init_waitqueue_head(&lruvec->mm_state.wait);
6031 }
6032 
6033 #ifdef CONFIG_MEMCG
6034 
6035 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6036 {
6037 	int i, j;
6038 
6039 	spin_lock_init(&pgdat->memcg_lru.lock);
6040 
6041 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6042 		for (j = 0; j < MEMCG_NR_BINS; j++)
6043 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6044 	}
6045 }
6046 
6047 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6048 {
6049 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6050 	spin_lock_init(&memcg->mm_list.lock);
6051 }
6052 
6053 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6054 {
6055 	int i;
6056 	int nid;
6057 
6058 	for_each_node(nid) {
6059 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6060 
6061 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6062 					   sizeof(lruvec->lrugen.nr_pages)));
6063 
6064 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6065 			bitmap_free(lruvec->mm_state.filters[i]);
6066 			lruvec->mm_state.filters[i] = NULL;
6067 		}
6068 	}
6069 }
6070 
6071 void lru_gen_online_memcg(struct mem_cgroup *memcg)
6072 {
6073 	int gen;
6074 	int nid;
6075 	int bin = get_random_u32_below(MEMCG_NR_BINS);
6076 
6077 	for_each_node(nid) {
6078 		struct pglist_data *pgdat = NODE_DATA(nid);
6079 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6080 
6081 		spin_lock(&pgdat->memcg_lru.lock);
6082 
6083 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
6084 
6085 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
6086 
6087 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
6088 		pgdat->memcg_lru.nr_memcgs[gen]++;
6089 
6090 		lruvec->lrugen.gen = gen;
6091 
6092 		spin_unlock(&pgdat->memcg_lru.lock);
6093 	}
6094 }
6095 
6096 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
6097 {
6098 	int nid;
6099 
6100 	for_each_node(nid) {
6101 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6102 
6103 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
6104 	}
6105 }
6106 
6107 void lru_gen_release_memcg(struct mem_cgroup *memcg)
6108 {
6109 	int gen;
6110 	int nid;
6111 
6112 	for_each_node(nid) {
6113 		struct pglist_data *pgdat = NODE_DATA(nid);
6114 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6115 
6116 		spin_lock(&pgdat->memcg_lru.lock);
6117 
6118 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
6119 
6120 		gen = lruvec->lrugen.gen;
6121 
6122 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
6123 		pgdat->memcg_lru.nr_memcgs[gen]--;
6124 
6125 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
6126 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
6127 
6128 		spin_unlock(&pgdat->memcg_lru.lock);
6129 	}
6130 }
6131 
6132 #endif /* CONFIG_MEMCG */
6133 
6134 static int __init init_lru_gen(void)
6135 {
6136 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6137 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6138 
6139 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6140 		pr_err("lru_gen: failed to create sysfs group\n");
6141 
6142 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6143 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6144 
6145 	return 0;
6146 };
6147 late_initcall(init_lru_gen);
6148 
6149 #else /* !CONFIG_LRU_GEN */
6150 
6151 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6152 {
6153 }
6154 
6155 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6156 {
6157 }
6158 
6159 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6160 {
6161 }
6162 
6163 #endif /* CONFIG_LRU_GEN */
6164 
6165 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6166 {
6167 	unsigned long nr[NR_LRU_LISTS];
6168 	unsigned long targets[NR_LRU_LISTS];
6169 	unsigned long nr_to_scan;
6170 	enum lru_list lru;
6171 	unsigned long nr_reclaimed = 0;
6172 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6173 	bool proportional_reclaim;
6174 	struct blk_plug plug;
6175 
6176 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6177 		lru_gen_shrink_lruvec(lruvec, sc);
6178 		return;
6179 	}
6180 
6181 	get_scan_count(lruvec, sc, nr);
6182 
6183 	/* Record the original scan target for proportional adjustments later */
6184 	memcpy(targets, nr, sizeof(nr));
6185 
6186 	/*
6187 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6188 	 * event that can occur when there is little memory pressure e.g.
6189 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6190 	 * when the requested number of pages are reclaimed when scanning at
6191 	 * DEF_PRIORITY on the assumption that the fact we are direct
6192 	 * reclaiming implies that kswapd is not keeping up and it is best to
6193 	 * do a batch of work at once. For memcg reclaim one check is made to
6194 	 * abort proportional reclaim if either the file or anon lru has already
6195 	 * dropped to zero at the first pass.
6196 	 */
6197 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6198 				sc->priority == DEF_PRIORITY);
6199 
6200 	blk_start_plug(&plug);
6201 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6202 					nr[LRU_INACTIVE_FILE]) {
6203 		unsigned long nr_anon, nr_file, percentage;
6204 		unsigned long nr_scanned;
6205 
6206 		for_each_evictable_lru(lru) {
6207 			if (nr[lru]) {
6208 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6209 				nr[lru] -= nr_to_scan;
6210 
6211 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6212 							    lruvec, sc);
6213 			}
6214 		}
6215 
6216 		cond_resched();
6217 
6218 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6219 			continue;
6220 
6221 		/*
6222 		 * For kswapd and memcg, reclaim at least the number of pages
6223 		 * requested. Ensure that the anon and file LRUs are scanned
6224 		 * proportionally what was requested by get_scan_count(). We
6225 		 * stop reclaiming one LRU and reduce the amount scanning
6226 		 * proportional to the original scan target.
6227 		 */
6228 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6229 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6230 
6231 		/*
6232 		 * It's just vindictive to attack the larger once the smaller
6233 		 * has gone to zero.  And given the way we stop scanning the
6234 		 * smaller below, this makes sure that we only make one nudge
6235 		 * towards proportionality once we've got nr_to_reclaim.
6236 		 */
6237 		if (!nr_file || !nr_anon)
6238 			break;
6239 
6240 		if (nr_file > nr_anon) {
6241 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6242 						targets[LRU_ACTIVE_ANON] + 1;
6243 			lru = LRU_BASE;
6244 			percentage = nr_anon * 100 / scan_target;
6245 		} else {
6246 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6247 						targets[LRU_ACTIVE_FILE] + 1;
6248 			lru = LRU_FILE;
6249 			percentage = nr_file * 100 / scan_target;
6250 		}
6251 
6252 		/* Stop scanning the smaller of the LRU */
6253 		nr[lru] = 0;
6254 		nr[lru + LRU_ACTIVE] = 0;
6255 
6256 		/*
6257 		 * Recalculate the other LRU scan count based on its original
6258 		 * scan target and the percentage scanning already complete
6259 		 */
6260 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6261 		nr_scanned = targets[lru] - nr[lru];
6262 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6263 		nr[lru] -= min(nr[lru], nr_scanned);
6264 
6265 		lru += LRU_ACTIVE;
6266 		nr_scanned = targets[lru] - nr[lru];
6267 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6268 		nr[lru] -= min(nr[lru], nr_scanned);
6269 	}
6270 	blk_finish_plug(&plug);
6271 	sc->nr_reclaimed += nr_reclaimed;
6272 
6273 	/*
6274 	 * Even if we did not try to evict anon pages at all, we want to
6275 	 * rebalance the anon lru active/inactive ratio.
6276 	 */
6277 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6278 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6279 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6280 				   sc, LRU_ACTIVE_ANON);
6281 }
6282 
6283 /* Use reclaim/compaction for costly allocs or under memory pressure */
6284 static bool in_reclaim_compaction(struct scan_control *sc)
6285 {
6286 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6287 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6288 			 sc->priority < DEF_PRIORITY - 2))
6289 		return true;
6290 
6291 	return false;
6292 }
6293 
6294 /*
6295  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6296  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6297  * true if more pages should be reclaimed such that when the page allocator
6298  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6299  * It will give up earlier than that if there is difficulty reclaiming pages.
6300  */
6301 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6302 					unsigned long nr_reclaimed,
6303 					struct scan_control *sc)
6304 {
6305 	unsigned long pages_for_compaction;
6306 	unsigned long inactive_lru_pages;
6307 	int z;
6308 
6309 	/* If not in reclaim/compaction mode, stop */
6310 	if (!in_reclaim_compaction(sc))
6311 		return false;
6312 
6313 	/*
6314 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6315 	 * number of pages that were scanned. This will return to the caller
6316 	 * with the risk reclaim/compaction and the resulting allocation attempt
6317 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6318 	 * allocations through requiring that the full LRU list has been scanned
6319 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6320 	 * scan, but that approximation was wrong, and there were corner cases
6321 	 * where always a non-zero amount of pages were scanned.
6322 	 */
6323 	if (!nr_reclaimed)
6324 		return false;
6325 
6326 	/* If compaction would go ahead or the allocation would succeed, stop */
6327 	for (z = 0; z <= sc->reclaim_idx; z++) {
6328 		struct zone *zone = &pgdat->node_zones[z];
6329 		if (!managed_zone(zone))
6330 			continue;
6331 
6332 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6333 		case COMPACT_SUCCESS:
6334 		case COMPACT_CONTINUE:
6335 			return false;
6336 		default:
6337 			/* check next zone */
6338 			;
6339 		}
6340 	}
6341 
6342 	/*
6343 	 * If we have not reclaimed enough pages for compaction and the
6344 	 * inactive lists are large enough, continue reclaiming
6345 	 */
6346 	pages_for_compaction = compact_gap(sc->order);
6347 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6348 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6349 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6350 
6351 	return inactive_lru_pages > pages_for_compaction;
6352 }
6353 
6354 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6355 {
6356 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6357 	struct mem_cgroup *memcg;
6358 
6359 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6360 	do {
6361 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6362 		unsigned long reclaimed;
6363 		unsigned long scanned;
6364 
6365 		/*
6366 		 * This loop can become CPU-bound when target memcgs
6367 		 * aren't eligible for reclaim - either because they
6368 		 * don't have any reclaimable pages, or because their
6369 		 * memory is explicitly protected. Avoid soft lockups.
6370 		 */
6371 		cond_resched();
6372 
6373 		mem_cgroup_calculate_protection(target_memcg, memcg);
6374 
6375 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6376 			/*
6377 			 * Hard protection.
6378 			 * If there is no reclaimable memory, OOM.
6379 			 */
6380 			continue;
6381 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6382 			/*
6383 			 * Soft protection.
6384 			 * Respect the protection only as long as
6385 			 * there is an unprotected supply
6386 			 * of reclaimable memory from other cgroups.
6387 			 */
6388 			if (!sc->memcg_low_reclaim) {
6389 				sc->memcg_low_skipped = 1;
6390 				continue;
6391 			}
6392 			memcg_memory_event(memcg, MEMCG_LOW);
6393 		}
6394 
6395 		reclaimed = sc->nr_reclaimed;
6396 		scanned = sc->nr_scanned;
6397 
6398 		shrink_lruvec(lruvec, sc);
6399 
6400 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6401 			    sc->priority);
6402 
6403 		/* Record the group's reclaim efficiency */
6404 		if (!sc->proactive)
6405 			vmpressure(sc->gfp_mask, memcg, false,
6406 				   sc->nr_scanned - scanned,
6407 				   sc->nr_reclaimed - reclaimed);
6408 
6409 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6410 }
6411 
6412 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6413 {
6414 	struct reclaim_state *reclaim_state = current->reclaim_state;
6415 	unsigned long nr_reclaimed, nr_scanned;
6416 	struct lruvec *target_lruvec;
6417 	bool reclaimable = false;
6418 
6419 	if (lru_gen_enabled() && global_reclaim(sc)) {
6420 		lru_gen_shrink_node(pgdat, sc);
6421 		return;
6422 	}
6423 
6424 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6425 
6426 again:
6427 	memset(&sc->nr, 0, sizeof(sc->nr));
6428 
6429 	nr_reclaimed = sc->nr_reclaimed;
6430 	nr_scanned = sc->nr_scanned;
6431 
6432 	prepare_scan_count(pgdat, sc);
6433 
6434 	shrink_node_memcgs(pgdat, sc);
6435 
6436 	if (reclaim_state) {
6437 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6438 		reclaim_state->reclaimed_slab = 0;
6439 	}
6440 
6441 	/* Record the subtree's reclaim efficiency */
6442 	if (!sc->proactive)
6443 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6444 			   sc->nr_scanned - nr_scanned,
6445 			   sc->nr_reclaimed - nr_reclaimed);
6446 
6447 	if (sc->nr_reclaimed - nr_reclaimed)
6448 		reclaimable = true;
6449 
6450 	if (current_is_kswapd()) {
6451 		/*
6452 		 * If reclaim is isolating dirty pages under writeback,
6453 		 * it implies that the long-lived page allocation rate
6454 		 * is exceeding the page laundering rate. Either the
6455 		 * global limits are not being effective at throttling
6456 		 * processes due to the page distribution throughout
6457 		 * zones or there is heavy usage of a slow backing
6458 		 * device. The only option is to throttle from reclaim
6459 		 * context which is not ideal as there is no guarantee
6460 		 * the dirtying process is throttled in the same way
6461 		 * balance_dirty_pages() manages.
6462 		 *
6463 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6464 		 * count the number of pages under pages flagged for
6465 		 * immediate reclaim and stall if any are encountered
6466 		 * in the nr_immediate check below.
6467 		 */
6468 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6469 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6470 
6471 		/* Allow kswapd to start writing pages during reclaim.*/
6472 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6473 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6474 
6475 		/*
6476 		 * If kswapd scans pages marked for immediate
6477 		 * reclaim and under writeback (nr_immediate), it
6478 		 * implies that pages are cycling through the LRU
6479 		 * faster than they are written so forcibly stall
6480 		 * until some pages complete writeback.
6481 		 */
6482 		if (sc->nr.immediate)
6483 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6484 	}
6485 
6486 	/*
6487 	 * Tag a node/memcg as congested if all the dirty pages were marked
6488 	 * for writeback and immediate reclaim (counted in nr.congested).
6489 	 *
6490 	 * Legacy memcg will stall in page writeback so avoid forcibly
6491 	 * stalling in reclaim_throttle().
6492 	 */
6493 	if ((current_is_kswapd() ||
6494 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6495 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6496 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6497 
6498 	/*
6499 	 * Stall direct reclaim for IO completions if the lruvec is
6500 	 * node is congested. Allow kswapd to continue until it
6501 	 * starts encountering unqueued dirty pages or cycling through
6502 	 * the LRU too quickly.
6503 	 */
6504 	if (!current_is_kswapd() && current_may_throttle() &&
6505 	    !sc->hibernation_mode &&
6506 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6507 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6508 
6509 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6510 				    sc))
6511 		goto again;
6512 
6513 	/*
6514 	 * Kswapd gives up on balancing particular nodes after too
6515 	 * many failures to reclaim anything from them and goes to
6516 	 * sleep. On reclaim progress, reset the failure counter. A
6517 	 * successful direct reclaim run will revive a dormant kswapd.
6518 	 */
6519 	if (reclaimable)
6520 		pgdat->kswapd_failures = 0;
6521 }
6522 
6523 /*
6524  * Returns true if compaction should go ahead for a costly-order request, or
6525  * the allocation would already succeed without compaction. Return false if we
6526  * should reclaim first.
6527  */
6528 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6529 {
6530 	unsigned long watermark;
6531 	enum compact_result suitable;
6532 
6533 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6534 	if (suitable == COMPACT_SUCCESS)
6535 		/* Allocation should succeed already. Don't reclaim. */
6536 		return true;
6537 	if (suitable == COMPACT_SKIPPED)
6538 		/* Compaction cannot yet proceed. Do reclaim. */
6539 		return false;
6540 
6541 	/*
6542 	 * Compaction is already possible, but it takes time to run and there
6543 	 * are potentially other callers using the pages just freed. So proceed
6544 	 * with reclaim to make a buffer of free pages available to give
6545 	 * compaction a reasonable chance of completing and allocating the page.
6546 	 * Note that we won't actually reclaim the whole buffer in one attempt
6547 	 * as the target watermark in should_continue_reclaim() is lower. But if
6548 	 * we are already above the high+gap watermark, don't reclaim at all.
6549 	 */
6550 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6551 
6552 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6553 }
6554 
6555 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6556 {
6557 	/*
6558 	 * If reclaim is making progress greater than 12% efficiency then
6559 	 * wake all the NOPROGRESS throttled tasks.
6560 	 */
6561 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6562 		wait_queue_head_t *wqh;
6563 
6564 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6565 		if (waitqueue_active(wqh))
6566 			wake_up(wqh);
6567 
6568 		return;
6569 	}
6570 
6571 	/*
6572 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6573 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6574 	 * under writeback and marked for immediate reclaim at the tail of the
6575 	 * LRU.
6576 	 */
6577 	if (current_is_kswapd() || cgroup_reclaim(sc))
6578 		return;
6579 
6580 	/* Throttle if making no progress at high prioities. */
6581 	if (sc->priority == 1 && !sc->nr_reclaimed)
6582 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6583 }
6584 
6585 /*
6586  * This is the direct reclaim path, for page-allocating processes.  We only
6587  * try to reclaim pages from zones which will satisfy the caller's allocation
6588  * request.
6589  *
6590  * If a zone is deemed to be full of pinned pages then just give it a light
6591  * scan then give up on it.
6592  */
6593 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6594 {
6595 	struct zoneref *z;
6596 	struct zone *zone;
6597 	unsigned long nr_soft_reclaimed;
6598 	unsigned long nr_soft_scanned;
6599 	gfp_t orig_mask;
6600 	pg_data_t *last_pgdat = NULL;
6601 	pg_data_t *first_pgdat = NULL;
6602 
6603 	/*
6604 	 * If the number of buffer_heads in the machine exceeds the maximum
6605 	 * allowed level, force direct reclaim to scan the highmem zone as
6606 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6607 	 */
6608 	orig_mask = sc->gfp_mask;
6609 	if (buffer_heads_over_limit) {
6610 		sc->gfp_mask |= __GFP_HIGHMEM;
6611 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6612 	}
6613 
6614 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6615 					sc->reclaim_idx, sc->nodemask) {
6616 		/*
6617 		 * Take care memory controller reclaiming has small influence
6618 		 * to global LRU.
6619 		 */
6620 		if (!cgroup_reclaim(sc)) {
6621 			if (!cpuset_zone_allowed(zone,
6622 						 GFP_KERNEL | __GFP_HARDWALL))
6623 				continue;
6624 
6625 			/*
6626 			 * If we already have plenty of memory free for
6627 			 * compaction in this zone, don't free any more.
6628 			 * Even though compaction is invoked for any
6629 			 * non-zero order, only frequent costly order
6630 			 * reclamation is disruptive enough to become a
6631 			 * noticeable problem, like transparent huge
6632 			 * page allocations.
6633 			 */
6634 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6635 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6636 			    compaction_ready(zone, sc)) {
6637 				sc->compaction_ready = true;
6638 				continue;
6639 			}
6640 
6641 			/*
6642 			 * Shrink each node in the zonelist once. If the
6643 			 * zonelist is ordered by zone (not the default) then a
6644 			 * node may be shrunk multiple times but in that case
6645 			 * the user prefers lower zones being preserved.
6646 			 */
6647 			if (zone->zone_pgdat == last_pgdat)
6648 				continue;
6649 
6650 			/*
6651 			 * This steals pages from memory cgroups over softlimit
6652 			 * and returns the number of reclaimed pages and
6653 			 * scanned pages. This works for global memory pressure
6654 			 * and balancing, not for a memcg's limit.
6655 			 */
6656 			nr_soft_scanned = 0;
6657 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6658 						sc->order, sc->gfp_mask,
6659 						&nr_soft_scanned);
6660 			sc->nr_reclaimed += nr_soft_reclaimed;
6661 			sc->nr_scanned += nr_soft_scanned;
6662 			/* need some check for avoid more shrink_zone() */
6663 		}
6664 
6665 		if (!first_pgdat)
6666 			first_pgdat = zone->zone_pgdat;
6667 
6668 		/* See comment about same check for global reclaim above */
6669 		if (zone->zone_pgdat == last_pgdat)
6670 			continue;
6671 		last_pgdat = zone->zone_pgdat;
6672 		shrink_node(zone->zone_pgdat, sc);
6673 	}
6674 
6675 	if (first_pgdat)
6676 		consider_reclaim_throttle(first_pgdat, sc);
6677 
6678 	/*
6679 	 * Restore to original mask to avoid the impact on the caller if we
6680 	 * promoted it to __GFP_HIGHMEM.
6681 	 */
6682 	sc->gfp_mask = orig_mask;
6683 }
6684 
6685 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6686 {
6687 	struct lruvec *target_lruvec;
6688 	unsigned long refaults;
6689 
6690 	if (lru_gen_enabled())
6691 		return;
6692 
6693 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6694 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6695 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6696 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6697 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6698 }
6699 
6700 /*
6701  * This is the main entry point to direct page reclaim.
6702  *
6703  * If a full scan of the inactive list fails to free enough memory then we
6704  * are "out of memory" and something needs to be killed.
6705  *
6706  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6707  * high - the zone may be full of dirty or under-writeback pages, which this
6708  * caller can't do much about.  We kick the writeback threads and take explicit
6709  * naps in the hope that some of these pages can be written.  But if the
6710  * allocating task holds filesystem locks which prevent writeout this might not
6711  * work, and the allocation attempt will fail.
6712  *
6713  * returns:	0, if no pages reclaimed
6714  * 		else, the number of pages reclaimed
6715  */
6716 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6717 					  struct scan_control *sc)
6718 {
6719 	int initial_priority = sc->priority;
6720 	pg_data_t *last_pgdat;
6721 	struct zoneref *z;
6722 	struct zone *zone;
6723 retry:
6724 	delayacct_freepages_start();
6725 
6726 	if (!cgroup_reclaim(sc))
6727 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6728 
6729 	do {
6730 		if (!sc->proactive)
6731 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6732 					sc->priority);
6733 		sc->nr_scanned = 0;
6734 		shrink_zones(zonelist, sc);
6735 
6736 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6737 			break;
6738 
6739 		if (sc->compaction_ready)
6740 			break;
6741 
6742 		/*
6743 		 * If we're getting trouble reclaiming, start doing
6744 		 * writepage even in laptop mode.
6745 		 */
6746 		if (sc->priority < DEF_PRIORITY - 2)
6747 			sc->may_writepage = 1;
6748 	} while (--sc->priority >= 0);
6749 
6750 	last_pgdat = NULL;
6751 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6752 					sc->nodemask) {
6753 		if (zone->zone_pgdat == last_pgdat)
6754 			continue;
6755 		last_pgdat = zone->zone_pgdat;
6756 
6757 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6758 
6759 		if (cgroup_reclaim(sc)) {
6760 			struct lruvec *lruvec;
6761 
6762 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6763 						   zone->zone_pgdat);
6764 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6765 		}
6766 	}
6767 
6768 	delayacct_freepages_end();
6769 
6770 	if (sc->nr_reclaimed)
6771 		return sc->nr_reclaimed;
6772 
6773 	/* Aborted reclaim to try compaction? don't OOM, then */
6774 	if (sc->compaction_ready)
6775 		return 1;
6776 
6777 	/*
6778 	 * We make inactive:active ratio decisions based on the node's
6779 	 * composition of memory, but a restrictive reclaim_idx or a
6780 	 * memory.low cgroup setting can exempt large amounts of
6781 	 * memory from reclaim. Neither of which are very common, so
6782 	 * instead of doing costly eligibility calculations of the
6783 	 * entire cgroup subtree up front, we assume the estimates are
6784 	 * good, and retry with forcible deactivation if that fails.
6785 	 */
6786 	if (sc->skipped_deactivate) {
6787 		sc->priority = initial_priority;
6788 		sc->force_deactivate = 1;
6789 		sc->skipped_deactivate = 0;
6790 		goto retry;
6791 	}
6792 
6793 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6794 	if (sc->memcg_low_skipped) {
6795 		sc->priority = initial_priority;
6796 		sc->force_deactivate = 0;
6797 		sc->memcg_low_reclaim = 1;
6798 		sc->memcg_low_skipped = 0;
6799 		goto retry;
6800 	}
6801 
6802 	return 0;
6803 }
6804 
6805 static bool allow_direct_reclaim(pg_data_t *pgdat)
6806 {
6807 	struct zone *zone;
6808 	unsigned long pfmemalloc_reserve = 0;
6809 	unsigned long free_pages = 0;
6810 	int i;
6811 	bool wmark_ok;
6812 
6813 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6814 		return true;
6815 
6816 	for (i = 0; i <= ZONE_NORMAL; i++) {
6817 		zone = &pgdat->node_zones[i];
6818 		if (!managed_zone(zone))
6819 			continue;
6820 
6821 		if (!zone_reclaimable_pages(zone))
6822 			continue;
6823 
6824 		pfmemalloc_reserve += min_wmark_pages(zone);
6825 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6826 	}
6827 
6828 	/* If there are no reserves (unexpected config) then do not throttle */
6829 	if (!pfmemalloc_reserve)
6830 		return true;
6831 
6832 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6833 
6834 	/* kswapd must be awake if processes are being throttled */
6835 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6836 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6837 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6838 
6839 		wake_up_interruptible(&pgdat->kswapd_wait);
6840 	}
6841 
6842 	return wmark_ok;
6843 }
6844 
6845 /*
6846  * Throttle direct reclaimers if backing storage is backed by the network
6847  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6848  * depleted. kswapd will continue to make progress and wake the processes
6849  * when the low watermark is reached.
6850  *
6851  * Returns true if a fatal signal was delivered during throttling. If this
6852  * happens, the page allocator should not consider triggering the OOM killer.
6853  */
6854 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6855 					nodemask_t *nodemask)
6856 {
6857 	struct zoneref *z;
6858 	struct zone *zone;
6859 	pg_data_t *pgdat = NULL;
6860 
6861 	/*
6862 	 * Kernel threads should not be throttled as they may be indirectly
6863 	 * responsible for cleaning pages necessary for reclaim to make forward
6864 	 * progress. kjournald for example may enter direct reclaim while
6865 	 * committing a transaction where throttling it could forcing other
6866 	 * processes to block on log_wait_commit().
6867 	 */
6868 	if (current->flags & PF_KTHREAD)
6869 		goto out;
6870 
6871 	/*
6872 	 * If a fatal signal is pending, this process should not throttle.
6873 	 * It should return quickly so it can exit and free its memory
6874 	 */
6875 	if (fatal_signal_pending(current))
6876 		goto out;
6877 
6878 	/*
6879 	 * Check if the pfmemalloc reserves are ok by finding the first node
6880 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6881 	 * GFP_KERNEL will be required for allocating network buffers when
6882 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6883 	 *
6884 	 * Throttling is based on the first usable node and throttled processes
6885 	 * wait on a queue until kswapd makes progress and wakes them. There
6886 	 * is an affinity then between processes waking up and where reclaim
6887 	 * progress has been made assuming the process wakes on the same node.
6888 	 * More importantly, processes running on remote nodes will not compete
6889 	 * for remote pfmemalloc reserves and processes on different nodes
6890 	 * should make reasonable progress.
6891 	 */
6892 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6893 					gfp_zone(gfp_mask), nodemask) {
6894 		if (zone_idx(zone) > ZONE_NORMAL)
6895 			continue;
6896 
6897 		/* Throttle based on the first usable node */
6898 		pgdat = zone->zone_pgdat;
6899 		if (allow_direct_reclaim(pgdat))
6900 			goto out;
6901 		break;
6902 	}
6903 
6904 	/* If no zone was usable by the allocation flags then do not throttle */
6905 	if (!pgdat)
6906 		goto out;
6907 
6908 	/* Account for the throttling */
6909 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6910 
6911 	/*
6912 	 * If the caller cannot enter the filesystem, it's possible that it
6913 	 * is due to the caller holding an FS lock or performing a journal
6914 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6915 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6916 	 * blocked waiting on the same lock. Instead, throttle for up to a
6917 	 * second before continuing.
6918 	 */
6919 	if (!(gfp_mask & __GFP_FS))
6920 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6921 			allow_direct_reclaim(pgdat), HZ);
6922 	else
6923 		/* Throttle until kswapd wakes the process */
6924 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6925 			allow_direct_reclaim(pgdat));
6926 
6927 	if (fatal_signal_pending(current))
6928 		return true;
6929 
6930 out:
6931 	return false;
6932 }
6933 
6934 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6935 				gfp_t gfp_mask, nodemask_t *nodemask)
6936 {
6937 	unsigned long nr_reclaimed;
6938 	struct scan_control sc = {
6939 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6940 		.gfp_mask = current_gfp_context(gfp_mask),
6941 		.reclaim_idx = gfp_zone(gfp_mask),
6942 		.order = order,
6943 		.nodemask = nodemask,
6944 		.priority = DEF_PRIORITY,
6945 		.may_writepage = !laptop_mode,
6946 		.may_unmap = 1,
6947 		.may_swap = 1,
6948 	};
6949 
6950 	/*
6951 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6952 	 * Confirm they are large enough for max values.
6953 	 */
6954 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6955 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6956 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6957 
6958 	/*
6959 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6960 	 * 1 is returned so that the page allocator does not OOM kill at this
6961 	 * point.
6962 	 */
6963 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6964 		return 1;
6965 
6966 	set_task_reclaim_state(current, &sc.reclaim_state);
6967 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6968 
6969 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6970 
6971 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6972 	set_task_reclaim_state(current, NULL);
6973 
6974 	return nr_reclaimed;
6975 }
6976 
6977 #ifdef CONFIG_MEMCG
6978 
6979 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6980 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6981 						gfp_t gfp_mask, bool noswap,
6982 						pg_data_t *pgdat,
6983 						unsigned long *nr_scanned)
6984 {
6985 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6986 	struct scan_control sc = {
6987 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6988 		.target_mem_cgroup = memcg,
6989 		.may_writepage = !laptop_mode,
6990 		.may_unmap = 1,
6991 		.reclaim_idx = MAX_NR_ZONES - 1,
6992 		.may_swap = !noswap,
6993 	};
6994 
6995 	WARN_ON_ONCE(!current->reclaim_state);
6996 
6997 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6998 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6999 
7000 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7001 						      sc.gfp_mask);
7002 
7003 	/*
7004 	 * NOTE: Although we can get the priority field, using it
7005 	 * here is not a good idea, since it limits the pages we can scan.
7006 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7007 	 * will pick up pages from other mem cgroup's as well. We hack
7008 	 * the priority and make it zero.
7009 	 */
7010 	shrink_lruvec(lruvec, &sc);
7011 
7012 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7013 
7014 	*nr_scanned = sc.nr_scanned;
7015 
7016 	return sc.nr_reclaimed;
7017 }
7018 
7019 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7020 					   unsigned long nr_pages,
7021 					   gfp_t gfp_mask,
7022 					   unsigned int reclaim_options,
7023 					   nodemask_t *nodemask)
7024 {
7025 	unsigned long nr_reclaimed;
7026 	unsigned int noreclaim_flag;
7027 	struct scan_control sc = {
7028 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7029 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7030 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7031 		.reclaim_idx = MAX_NR_ZONES - 1,
7032 		.target_mem_cgroup = memcg,
7033 		.priority = DEF_PRIORITY,
7034 		.may_writepage = !laptop_mode,
7035 		.may_unmap = 1,
7036 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7037 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7038 		.nodemask = nodemask,
7039 	};
7040 	/*
7041 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7042 	 * equal pressure on all the nodes. This is based on the assumption that
7043 	 * the reclaim does not bail out early.
7044 	 */
7045 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7046 
7047 	set_task_reclaim_state(current, &sc.reclaim_state);
7048 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7049 	noreclaim_flag = memalloc_noreclaim_save();
7050 
7051 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7052 
7053 	memalloc_noreclaim_restore(noreclaim_flag);
7054 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7055 	set_task_reclaim_state(current, NULL);
7056 
7057 	return nr_reclaimed;
7058 }
7059 #endif
7060 
7061 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7062 {
7063 	struct mem_cgroup *memcg;
7064 	struct lruvec *lruvec;
7065 
7066 	if (lru_gen_enabled()) {
7067 		lru_gen_age_node(pgdat, sc);
7068 		return;
7069 	}
7070 
7071 	if (!can_age_anon_pages(pgdat, sc))
7072 		return;
7073 
7074 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7075 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7076 		return;
7077 
7078 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7079 	do {
7080 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7081 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7082 				   sc, LRU_ACTIVE_ANON);
7083 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7084 	} while (memcg);
7085 }
7086 
7087 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7088 {
7089 	int i;
7090 	struct zone *zone;
7091 
7092 	/*
7093 	 * Check for watermark boosts top-down as the higher zones
7094 	 * are more likely to be boosted. Both watermarks and boosts
7095 	 * should not be checked at the same time as reclaim would
7096 	 * start prematurely when there is no boosting and a lower
7097 	 * zone is balanced.
7098 	 */
7099 	for (i = highest_zoneidx; i >= 0; i--) {
7100 		zone = pgdat->node_zones + i;
7101 		if (!managed_zone(zone))
7102 			continue;
7103 
7104 		if (zone->watermark_boost)
7105 			return true;
7106 	}
7107 
7108 	return false;
7109 }
7110 
7111 /*
7112  * Returns true if there is an eligible zone balanced for the request order
7113  * and highest_zoneidx
7114  */
7115 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7116 {
7117 	int i;
7118 	unsigned long mark = -1;
7119 	struct zone *zone;
7120 
7121 	/*
7122 	 * Check watermarks bottom-up as lower zones are more likely to
7123 	 * meet watermarks.
7124 	 */
7125 	for (i = 0; i <= highest_zoneidx; i++) {
7126 		zone = pgdat->node_zones + i;
7127 
7128 		if (!managed_zone(zone))
7129 			continue;
7130 
7131 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7132 			mark = wmark_pages(zone, WMARK_PROMO);
7133 		else
7134 			mark = high_wmark_pages(zone);
7135 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7136 			return true;
7137 	}
7138 
7139 	/*
7140 	 * If a node has no managed zone within highest_zoneidx, it does not
7141 	 * need balancing by definition. This can happen if a zone-restricted
7142 	 * allocation tries to wake a remote kswapd.
7143 	 */
7144 	if (mark == -1)
7145 		return true;
7146 
7147 	return false;
7148 }
7149 
7150 /* Clear pgdat state for congested, dirty or under writeback. */
7151 static void clear_pgdat_congested(pg_data_t *pgdat)
7152 {
7153 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7154 
7155 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7156 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7157 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7158 }
7159 
7160 /*
7161  * Prepare kswapd for sleeping. This verifies that there are no processes
7162  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7163  *
7164  * Returns true if kswapd is ready to sleep
7165  */
7166 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7167 				int highest_zoneidx)
7168 {
7169 	/*
7170 	 * The throttled processes are normally woken up in balance_pgdat() as
7171 	 * soon as allow_direct_reclaim() is true. But there is a potential
7172 	 * race between when kswapd checks the watermarks and a process gets
7173 	 * throttled. There is also a potential race if processes get
7174 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7175 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7176 	 * the wake up checks. If kswapd is going to sleep, no process should
7177 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7178 	 * the wake up is premature, processes will wake kswapd and get
7179 	 * throttled again. The difference from wake ups in balance_pgdat() is
7180 	 * that here we are under prepare_to_wait().
7181 	 */
7182 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7183 		wake_up_all(&pgdat->pfmemalloc_wait);
7184 
7185 	/* Hopeless node, leave it to direct reclaim */
7186 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7187 		return true;
7188 
7189 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7190 		clear_pgdat_congested(pgdat);
7191 		return true;
7192 	}
7193 
7194 	return false;
7195 }
7196 
7197 /*
7198  * kswapd shrinks a node of pages that are at or below the highest usable
7199  * zone that is currently unbalanced.
7200  *
7201  * Returns true if kswapd scanned at least the requested number of pages to
7202  * reclaim or if the lack of progress was due to pages under writeback.
7203  * This is used to determine if the scanning priority needs to be raised.
7204  */
7205 static bool kswapd_shrink_node(pg_data_t *pgdat,
7206 			       struct scan_control *sc)
7207 {
7208 	struct zone *zone;
7209 	int z;
7210 
7211 	/* Reclaim a number of pages proportional to the number of zones */
7212 	sc->nr_to_reclaim = 0;
7213 	for (z = 0; z <= sc->reclaim_idx; z++) {
7214 		zone = pgdat->node_zones + z;
7215 		if (!managed_zone(zone))
7216 			continue;
7217 
7218 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7219 	}
7220 
7221 	/*
7222 	 * Historically care was taken to put equal pressure on all zones but
7223 	 * now pressure is applied based on node LRU order.
7224 	 */
7225 	shrink_node(pgdat, sc);
7226 
7227 	/*
7228 	 * Fragmentation may mean that the system cannot be rebalanced for
7229 	 * high-order allocations. If twice the allocation size has been
7230 	 * reclaimed then recheck watermarks only at order-0 to prevent
7231 	 * excessive reclaim. Assume that a process requested a high-order
7232 	 * can direct reclaim/compact.
7233 	 */
7234 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7235 		sc->order = 0;
7236 
7237 	return sc->nr_scanned >= sc->nr_to_reclaim;
7238 }
7239 
7240 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7241 static inline void
7242 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7243 {
7244 	int i;
7245 	struct zone *zone;
7246 
7247 	for (i = 0; i <= highest_zoneidx; i++) {
7248 		zone = pgdat->node_zones + i;
7249 
7250 		if (!managed_zone(zone))
7251 			continue;
7252 
7253 		if (active)
7254 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7255 		else
7256 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7257 	}
7258 }
7259 
7260 static inline void
7261 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7262 {
7263 	update_reclaim_active(pgdat, highest_zoneidx, true);
7264 }
7265 
7266 static inline void
7267 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7268 {
7269 	update_reclaim_active(pgdat, highest_zoneidx, false);
7270 }
7271 
7272 /*
7273  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7274  * that are eligible for use by the caller until at least one zone is
7275  * balanced.
7276  *
7277  * Returns the order kswapd finished reclaiming at.
7278  *
7279  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7280  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7281  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7282  * or lower is eligible for reclaim until at least one usable zone is
7283  * balanced.
7284  */
7285 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7286 {
7287 	int i;
7288 	unsigned long nr_soft_reclaimed;
7289 	unsigned long nr_soft_scanned;
7290 	unsigned long pflags;
7291 	unsigned long nr_boost_reclaim;
7292 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7293 	bool boosted;
7294 	struct zone *zone;
7295 	struct scan_control sc = {
7296 		.gfp_mask = GFP_KERNEL,
7297 		.order = order,
7298 		.may_unmap = 1,
7299 	};
7300 
7301 	set_task_reclaim_state(current, &sc.reclaim_state);
7302 	psi_memstall_enter(&pflags);
7303 	__fs_reclaim_acquire(_THIS_IP_);
7304 
7305 	count_vm_event(PAGEOUTRUN);
7306 
7307 	/*
7308 	 * Account for the reclaim boost. Note that the zone boost is left in
7309 	 * place so that parallel allocations that are near the watermark will
7310 	 * stall or direct reclaim until kswapd is finished.
7311 	 */
7312 	nr_boost_reclaim = 0;
7313 	for (i = 0; i <= highest_zoneidx; i++) {
7314 		zone = pgdat->node_zones + i;
7315 		if (!managed_zone(zone))
7316 			continue;
7317 
7318 		nr_boost_reclaim += zone->watermark_boost;
7319 		zone_boosts[i] = zone->watermark_boost;
7320 	}
7321 	boosted = nr_boost_reclaim;
7322 
7323 restart:
7324 	set_reclaim_active(pgdat, highest_zoneidx);
7325 	sc.priority = DEF_PRIORITY;
7326 	do {
7327 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7328 		bool raise_priority = true;
7329 		bool balanced;
7330 		bool ret;
7331 
7332 		sc.reclaim_idx = highest_zoneidx;
7333 
7334 		/*
7335 		 * If the number of buffer_heads exceeds the maximum allowed
7336 		 * then consider reclaiming from all zones. This has a dual
7337 		 * purpose -- on 64-bit systems it is expected that
7338 		 * buffer_heads are stripped during active rotation. On 32-bit
7339 		 * systems, highmem pages can pin lowmem memory and shrinking
7340 		 * buffers can relieve lowmem pressure. Reclaim may still not
7341 		 * go ahead if all eligible zones for the original allocation
7342 		 * request are balanced to avoid excessive reclaim from kswapd.
7343 		 */
7344 		if (buffer_heads_over_limit) {
7345 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7346 				zone = pgdat->node_zones + i;
7347 				if (!managed_zone(zone))
7348 					continue;
7349 
7350 				sc.reclaim_idx = i;
7351 				break;
7352 			}
7353 		}
7354 
7355 		/*
7356 		 * If the pgdat is imbalanced then ignore boosting and preserve
7357 		 * the watermarks for a later time and restart. Note that the
7358 		 * zone watermarks will be still reset at the end of balancing
7359 		 * on the grounds that the normal reclaim should be enough to
7360 		 * re-evaluate if boosting is required when kswapd next wakes.
7361 		 */
7362 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7363 		if (!balanced && nr_boost_reclaim) {
7364 			nr_boost_reclaim = 0;
7365 			goto restart;
7366 		}
7367 
7368 		/*
7369 		 * If boosting is not active then only reclaim if there are no
7370 		 * eligible zones. Note that sc.reclaim_idx is not used as
7371 		 * buffer_heads_over_limit may have adjusted it.
7372 		 */
7373 		if (!nr_boost_reclaim && balanced)
7374 			goto out;
7375 
7376 		/* Limit the priority of boosting to avoid reclaim writeback */
7377 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7378 			raise_priority = false;
7379 
7380 		/*
7381 		 * Do not writeback or swap pages for boosted reclaim. The
7382 		 * intent is to relieve pressure not issue sub-optimal IO
7383 		 * from reclaim context. If no pages are reclaimed, the
7384 		 * reclaim will be aborted.
7385 		 */
7386 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7387 		sc.may_swap = !nr_boost_reclaim;
7388 
7389 		/*
7390 		 * Do some background aging, to give pages a chance to be
7391 		 * referenced before reclaiming. All pages are rotated
7392 		 * regardless of classzone as this is about consistent aging.
7393 		 */
7394 		kswapd_age_node(pgdat, &sc);
7395 
7396 		/*
7397 		 * If we're getting trouble reclaiming, start doing writepage
7398 		 * even in laptop mode.
7399 		 */
7400 		if (sc.priority < DEF_PRIORITY - 2)
7401 			sc.may_writepage = 1;
7402 
7403 		/* Call soft limit reclaim before calling shrink_node. */
7404 		sc.nr_scanned = 0;
7405 		nr_soft_scanned = 0;
7406 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7407 						sc.gfp_mask, &nr_soft_scanned);
7408 		sc.nr_reclaimed += nr_soft_reclaimed;
7409 
7410 		/*
7411 		 * There should be no need to raise the scanning priority if
7412 		 * enough pages are already being scanned that that high
7413 		 * watermark would be met at 100% efficiency.
7414 		 */
7415 		if (kswapd_shrink_node(pgdat, &sc))
7416 			raise_priority = false;
7417 
7418 		/*
7419 		 * If the low watermark is met there is no need for processes
7420 		 * to be throttled on pfmemalloc_wait as they should not be
7421 		 * able to safely make forward progress. Wake them
7422 		 */
7423 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7424 				allow_direct_reclaim(pgdat))
7425 			wake_up_all(&pgdat->pfmemalloc_wait);
7426 
7427 		/* Check if kswapd should be suspending */
7428 		__fs_reclaim_release(_THIS_IP_);
7429 		ret = try_to_freeze();
7430 		__fs_reclaim_acquire(_THIS_IP_);
7431 		if (ret || kthread_should_stop())
7432 			break;
7433 
7434 		/*
7435 		 * Raise priority if scanning rate is too low or there was no
7436 		 * progress in reclaiming pages
7437 		 */
7438 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7439 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7440 
7441 		/*
7442 		 * If reclaim made no progress for a boost, stop reclaim as
7443 		 * IO cannot be queued and it could be an infinite loop in
7444 		 * extreme circumstances.
7445 		 */
7446 		if (nr_boost_reclaim && !nr_reclaimed)
7447 			break;
7448 
7449 		if (raise_priority || !nr_reclaimed)
7450 			sc.priority--;
7451 	} while (sc.priority >= 1);
7452 
7453 	if (!sc.nr_reclaimed)
7454 		pgdat->kswapd_failures++;
7455 
7456 out:
7457 	clear_reclaim_active(pgdat, highest_zoneidx);
7458 
7459 	/* If reclaim was boosted, account for the reclaim done in this pass */
7460 	if (boosted) {
7461 		unsigned long flags;
7462 
7463 		for (i = 0; i <= highest_zoneidx; i++) {
7464 			if (!zone_boosts[i])
7465 				continue;
7466 
7467 			/* Increments are under the zone lock */
7468 			zone = pgdat->node_zones + i;
7469 			spin_lock_irqsave(&zone->lock, flags);
7470 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7471 			spin_unlock_irqrestore(&zone->lock, flags);
7472 		}
7473 
7474 		/*
7475 		 * As there is now likely space, wakeup kcompact to defragment
7476 		 * pageblocks.
7477 		 */
7478 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7479 	}
7480 
7481 	snapshot_refaults(NULL, pgdat);
7482 	__fs_reclaim_release(_THIS_IP_);
7483 	psi_memstall_leave(&pflags);
7484 	set_task_reclaim_state(current, NULL);
7485 
7486 	/*
7487 	 * Return the order kswapd stopped reclaiming at as
7488 	 * prepare_kswapd_sleep() takes it into account. If another caller
7489 	 * entered the allocator slow path while kswapd was awake, order will
7490 	 * remain at the higher level.
7491 	 */
7492 	return sc.order;
7493 }
7494 
7495 /*
7496  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7497  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7498  * not a valid index then either kswapd runs for first time or kswapd couldn't
7499  * sleep after previous reclaim attempt (node is still unbalanced). In that
7500  * case return the zone index of the previous kswapd reclaim cycle.
7501  */
7502 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7503 					   enum zone_type prev_highest_zoneidx)
7504 {
7505 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7506 
7507 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7508 }
7509 
7510 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7511 				unsigned int highest_zoneidx)
7512 {
7513 	long remaining = 0;
7514 	DEFINE_WAIT(wait);
7515 
7516 	if (freezing(current) || kthread_should_stop())
7517 		return;
7518 
7519 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7520 
7521 	/*
7522 	 * Try to sleep for a short interval. Note that kcompactd will only be
7523 	 * woken if it is possible to sleep for a short interval. This is
7524 	 * deliberate on the assumption that if reclaim cannot keep an
7525 	 * eligible zone balanced that it's also unlikely that compaction will
7526 	 * succeed.
7527 	 */
7528 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7529 		/*
7530 		 * Compaction records what page blocks it recently failed to
7531 		 * isolate pages from and skips them in the future scanning.
7532 		 * When kswapd is going to sleep, it is reasonable to assume
7533 		 * that pages and compaction may succeed so reset the cache.
7534 		 */
7535 		reset_isolation_suitable(pgdat);
7536 
7537 		/*
7538 		 * We have freed the memory, now we should compact it to make
7539 		 * allocation of the requested order possible.
7540 		 */
7541 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7542 
7543 		remaining = schedule_timeout(HZ/10);
7544 
7545 		/*
7546 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7547 		 * order. The values will either be from a wakeup request or
7548 		 * the previous request that slept prematurely.
7549 		 */
7550 		if (remaining) {
7551 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7552 					kswapd_highest_zoneidx(pgdat,
7553 							highest_zoneidx));
7554 
7555 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7556 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7557 		}
7558 
7559 		finish_wait(&pgdat->kswapd_wait, &wait);
7560 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7561 	}
7562 
7563 	/*
7564 	 * After a short sleep, check if it was a premature sleep. If not, then
7565 	 * go fully to sleep until explicitly woken up.
7566 	 */
7567 	if (!remaining &&
7568 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7569 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7570 
7571 		/*
7572 		 * vmstat counters are not perfectly accurate and the estimated
7573 		 * value for counters such as NR_FREE_PAGES can deviate from the
7574 		 * true value by nr_online_cpus * threshold. To avoid the zone
7575 		 * watermarks being breached while under pressure, we reduce the
7576 		 * per-cpu vmstat threshold while kswapd is awake and restore
7577 		 * them before going back to sleep.
7578 		 */
7579 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7580 
7581 		if (!kthread_should_stop())
7582 			schedule();
7583 
7584 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7585 	} else {
7586 		if (remaining)
7587 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7588 		else
7589 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7590 	}
7591 	finish_wait(&pgdat->kswapd_wait, &wait);
7592 }
7593 
7594 /*
7595  * The background pageout daemon, started as a kernel thread
7596  * from the init process.
7597  *
7598  * This basically trickles out pages so that we have _some_
7599  * free memory available even if there is no other activity
7600  * that frees anything up. This is needed for things like routing
7601  * etc, where we otherwise might have all activity going on in
7602  * asynchronous contexts that cannot page things out.
7603  *
7604  * If there are applications that are active memory-allocators
7605  * (most normal use), this basically shouldn't matter.
7606  */
7607 static int kswapd(void *p)
7608 {
7609 	unsigned int alloc_order, reclaim_order;
7610 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7611 	pg_data_t *pgdat = (pg_data_t *)p;
7612 	struct task_struct *tsk = current;
7613 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7614 
7615 	if (!cpumask_empty(cpumask))
7616 		set_cpus_allowed_ptr(tsk, cpumask);
7617 
7618 	/*
7619 	 * Tell the memory management that we're a "memory allocator",
7620 	 * and that if we need more memory we should get access to it
7621 	 * regardless (see "__alloc_pages()"). "kswapd" should
7622 	 * never get caught in the normal page freeing logic.
7623 	 *
7624 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7625 	 * you need a small amount of memory in order to be able to
7626 	 * page out something else, and this flag essentially protects
7627 	 * us from recursively trying to free more memory as we're
7628 	 * trying to free the first piece of memory in the first place).
7629 	 */
7630 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7631 	set_freezable();
7632 
7633 	WRITE_ONCE(pgdat->kswapd_order, 0);
7634 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7635 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7636 	for ( ; ; ) {
7637 		bool ret;
7638 
7639 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7640 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7641 							highest_zoneidx);
7642 
7643 kswapd_try_sleep:
7644 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7645 					highest_zoneidx);
7646 
7647 		/* Read the new order and highest_zoneidx */
7648 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7649 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7650 							highest_zoneidx);
7651 		WRITE_ONCE(pgdat->kswapd_order, 0);
7652 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7653 
7654 		ret = try_to_freeze();
7655 		if (kthread_should_stop())
7656 			break;
7657 
7658 		/*
7659 		 * We can speed up thawing tasks if we don't call balance_pgdat
7660 		 * after returning from the refrigerator
7661 		 */
7662 		if (ret)
7663 			continue;
7664 
7665 		/*
7666 		 * Reclaim begins at the requested order but if a high-order
7667 		 * reclaim fails then kswapd falls back to reclaiming for
7668 		 * order-0. If that happens, kswapd will consider sleeping
7669 		 * for the order it finished reclaiming at (reclaim_order)
7670 		 * but kcompactd is woken to compact for the original
7671 		 * request (alloc_order).
7672 		 */
7673 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7674 						alloc_order);
7675 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7676 						highest_zoneidx);
7677 		if (reclaim_order < alloc_order)
7678 			goto kswapd_try_sleep;
7679 	}
7680 
7681 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7682 
7683 	return 0;
7684 }
7685 
7686 /*
7687  * A zone is low on free memory or too fragmented for high-order memory.  If
7688  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7689  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7690  * has failed or is not needed, still wake up kcompactd if only compaction is
7691  * needed.
7692  */
7693 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7694 		   enum zone_type highest_zoneidx)
7695 {
7696 	pg_data_t *pgdat;
7697 	enum zone_type curr_idx;
7698 
7699 	if (!managed_zone(zone))
7700 		return;
7701 
7702 	if (!cpuset_zone_allowed(zone, gfp_flags))
7703 		return;
7704 
7705 	pgdat = zone->zone_pgdat;
7706 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7707 
7708 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7709 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7710 
7711 	if (READ_ONCE(pgdat->kswapd_order) < order)
7712 		WRITE_ONCE(pgdat->kswapd_order, order);
7713 
7714 	if (!waitqueue_active(&pgdat->kswapd_wait))
7715 		return;
7716 
7717 	/* Hopeless node, leave it to direct reclaim if possible */
7718 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7719 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7720 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7721 		/*
7722 		 * There may be plenty of free memory available, but it's too
7723 		 * fragmented for high-order allocations.  Wake up kcompactd
7724 		 * and rely on compaction_suitable() to determine if it's
7725 		 * needed.  If it fails, it will defer subsequent attempts to
7726 		 * ratelimit its work.
7727 		 */
7728 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7729 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7730 		return;
7731 	}
7732 
7733 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7734 				      gfp_flags);
7735 	wake_up_interruptible(&pgdat->kswapd_wait);
7736 }
7737 
7738 #ifdef CONFIG_HIBERNATION
7739 /*
7740  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7741  * freed pages.
7742  *
7743  * Rather than trying to age LRUs the aim is to preserve the overall
7744  * LRU order by reclaiming preferentially
7745  * inactive > active > active referenced > active mapped
7746  */
7747 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7748 {
7749 	struct scan_control sc = {
7750 		.nr_to_reclaim = nr_to_reclaim,
7751 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7752 		.reclaim_idx = MAX_NR_ZONES - 1,
7753 		.priority = DEF_PRIORITY,
7754 		.may_writepage = 1,
7755 		.may_unmap = 1,
7756 		.may_swap = 1,
7757 		.hibernation_mode = 1,
7758 	};
7759 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7760 	unsigned long nr_reclaimed;
7761 	unsigned int noreclaim_flag;
7762 
7763 	fs_reclaim_acquire(sc.gfp_mask);
7764 	noreclaim_flag = memalloc_noreclaim_save();
7765 	set_task_reclaim_state(current, &sc.reclaim_state);
7766 
7767 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7768 
7769 	set_task_reclaim_state(current, NULL);
7770 	memalloc_noreclaim_restore(noreclaim_flag);
7771 	fs_reclaim_release(sc.gfp_mask);
7772 
7773 	return nr_reclaimed;
7774 }
7775 #endif /* CONFIG_HIBERNATION */
7776 
7777 /*
7778  * This kswapd start function will be called by init and node-hot-add.
7779  */
7780 void kswapd_run(int nid)
7781 {
7782 	pg_data_t *pgdat = NODE_DATA(nid);
7783 
7784 	pgdat_kswapd_lock(pgdat);
7785 	if (!pgdat->kswapd) {
7786 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7787 		if (IS_ERR(pgdat->kswapd)) {
7788 			/* failure at boot is fatal */
7789 			BUG_ON(system_state < SYSTEM_RUNNING);
7790 			pr_err("Failed to start kswapd on node %d\n", nid);
7791 			pgdat->kswapd = NULL;
7792 		}
7793 	}
7794 	pgdat_kswapd_unlock(pgdat);
7795 }
7796 
7797 /*
7798  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7799  * be holding mem_hotplug_begin/done().
7800  */
7801 void kswapd_stop(int nid)
7802 {
7803 	pg_data_t *pgdat = NODE_DATA(nid);
7804 	struct task_struct *kswapd;
7805 
7806 	pgdat_kswapd_lock(pgdat);
7807 	kswapd = pgdat->kswapd;
7808 	if (kswapd) {
7809 		kthread_stop(kswapd);
7810 		pgdat->kswapd = NULL;
7811 	}
7812 	pgdat_kswapd_unlock(pgdat);
7813 }
7814 
7815 static int __init kswapd_init(void)
7816 {
7817 	int nid;
7818 
7819 	swap_setup();
7820 	for_each_node_state(nid, N_MEMORY)
7821  		kswapd_run(nid);
7822 	return 0;
7823 }
7824 
7825 module_init(kswapd_init)
7826 
7827 #ifdef CONFIG_NUMA
7828 /*
7829  * Node reclaim mode
7830  *
7831  * If non-zero call node_reclaim when the number of free pages falls below
7832  * the watermarks.
7833  */
7834 int node_reclaim_mode __read_mostly;
7835 
7836 /*
7837  * Priority for NODE_RECLAIM. This determines the fraction of pages
7838  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7839  * a zone.
7840  */
7841 #define NODE_RECLAIM_PRIORITY 4
7842 
7843 /*
7844  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7845  * occur.
7846  */
7847 int sysctl_min_unmapped_ratio = 1;
7848 
7849 /*
7850  * If the number of slab pages in a zone grows beyond this percentage then
7851  * slab reclaim needs to occur.
7852  */
7853 int sysctl_min_slab_ratio = 5;
7854 
7855 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7856 {
7857 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7858 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7859 		node_page_state(pgdat, NR_ACTIVE_FILE);
7860 
7861 	/*
7862 	 * It's possible for there to be more file mapped pages than
7863 	 * accounted for by the pages on the file LRU lists because
7864 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7865 	 */
7866 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7867 }
7868 
7869 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7870 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7871 {
7872 	unsigned long nr_pagecache_reclaimable;
7873 	unsigned long delta = 0;
7874 
7875 	/*
7876 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7877 	 * potentially reclaimable. Otherwise, we have to worry about
7878 	 * pages like swapcache and node_unmapped_file_pages() provides
7879 	 * a better estimate
7880 	 */
7881 	if (node_reclaim_mode & RECLAIM_UNMAP)
7882 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7883 	else
7884 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7885 
7886 	/* If we can't clean pages, remove dirty pages from consideration */
7887 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7888 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7889 
7890 	/* Watch for any possible underflows due to delta */
7891 	if (unlikely(delta > nr_pagecache_reclaimable))
7892 		delta = nr_pagecache_reclaimable;
7893 
7894 	return nr_pagecache_reclaimable - delta;
7895 }
7896 
7897 /*
7898  * Try to free up some pages from this node through reclaim.
7899  */
7900 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7901 {
7902 	/* Minimum pages needed in order to stay on node */
7903 	const unsigned long nr_pages = 1 << order;
7904 	struct task_struct *p = current;
7905 	unsigned int noreclaim_flag;
7906 	struct scan_control sc = {
7907 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7908 		.gfp_mask = current_gfp_context(gfp_mask),
7909 		.order = order,
7910 		.priority = NODE_RECLAIM_PRIORITY,
7911 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7912 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7913 		.may_swap = 1,
7914 		.reclaim_idx = gfp_zone(gfp_mask),
7915 	};
7916 	unsigned long pflags;
7917 
7918 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7919 					   sc.gfp_mask);
7920 
7921 	cond_resched();
7922 	psi_memstall_enter(&pflags);
7923 	fs_reclaim_acquire(sc.gfp_mask);
7924 	/*
7925 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7926 	 */
7927 	noreclaim_flag = memalloc_noreclaim_save();
7928 	set_task_reclaim_state(p, &sc.reclaim_state);
7929 
7930 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7931 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7932 		/*
7933 		 * Free memory by calling shrink node with increasing
7934 		 * priorities until we have enough memory freed.
7935 		 */
7936 		do {
7937 			shrink_node(pgdat, &sc);
7938 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7939 	}
7940 
7941 	set_task_reclaim_state(p, NULL);
7942 	memalloc_noreclaim_restore(noreclaim_flag);
7943 	fs_reclaim_release(sc.gfp_mask);
7944 	psi_memstall_leave(&pflags);
7945 
7946 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7947 
7948 	return sc.nr_reclaimed >= nr_pages;
7949 }
7950 
7951 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7952 {
7953 	int ret;
7954 
7955 	/*
7956 	 * Node reclaim reclaims unmapped file backed pages and
7957 	 * slab pages if we are over the defined limits.
7958 	 *
7959 	 * A small portion of unmapped file backed pages is needed for
7960 	 * file I/O otherwise pages read by file I/O will be immediately
7961 	 * thrown out if the node is overallocated. So we do not reclaim
7962 	 * if less than a specified percentage of the node is used by
7963 	 * unmapped file backed pages.
7964 	 */
7965 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7966 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7967 	    pgdat->min_slab_pages)
7968 		return NODE_RECLAIM_FULL;
7969 
7970 	/*
7971 	 * Do not scan if the allocation should not be delayed.
7972 	 */
7973 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7974 		return NODE_RECLAIM_NOSCAN;
7975 
7976 	/*
7977 	 * Only run node reclaim on the local node or on nodes that do not
7978 	 * have associated processors. This will favor the local processor
7979 	 * over remote processors and spread off node memory allocations
7980 	 * as wide as possible.
7981 	 */
7982 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7983 		return NODE_RECLAIM_NOSCAN;
7984 
7985 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7986 		return NODE_RECLAIM_NOSCAN;
7987 
7988 	ret = __node_reclaim(pgdat, gfp_mask, order);
7989 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7990 
7991 	if (!ret)
7992 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7993 
7994 	return ret;
7995 }
7996 #endif
7997 
7998 void check_move_unevictable_pages(struct pagevec *pvec)
7999 {
8000 	struct folio_batch fbatch;
8001 	unsigned i;
8002 
8003 	folio_batch_init(&fbatch);
8004 	for (i = 0; i < pvec->nr; i++) {
8005 		struct page *page = pvec->pages[i];
8006 
8007 		if (PageTransTail(page))
8008 			continue;
8009 		folio_batch_add(&fbatch, page_folio(page));
8010 	}
8011 	check_move_unevictable_folios(&fbatch);
8012 }
8013 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8014 
8015 /**
8016  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8017  * lru list
8018  * @fbatch: Batch of lru folios to check.
8019  *
8020  * Checks folios for evictability, if an evictable folio is in the unevictable
8021  * lru list, moves it to the appropriate evictable lru list. This function
8022  * should be only used for lru folios.
8023  */
8024 void check_move_unevictable_folios(struct folio_batch *fbatch)
8025 {
8026 	struct lruvec *lruvec = NULL;
8027 	int pgscanned = 0;
8028 	int pgrescued = 0;
8029 	int i;
8030 
8031 	for (i = 0; i < fbatch->nr; i++) {
8032 		struct folio *folio = fbatch->folios[i];
8033 		int nr_pages = folio_nr_pages(folio);
8034 
8035 		pgscanned += nr_pages;
8036 
8037 		/* block memcg migration while the folio moves between lrus */
8038 		if (!folio_test_clear_lru(folio))
8039 			continue;
8040 
8041 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8042 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8043 			lruvec_del_folio(lruvec, folio);
8044 			folio_clear_unevictable(folio);
8045 			lruvec_add_folio(lruvec, folio);
8046 			pgrescued += nr_pages;
8047 		}
8048 		folio_set_lru(folio);
8049 	}
8050 
8051 	if (lruvec) {
8052 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8053 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8054 		unlock_page_lruvec_irq(lruvec);
8055 	} else if (pgscanned) {
8056 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8057 	}
8058 }
8059 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8060