1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 /* Can active folios be deactivated as part of reclaim? */ 97 #define DEACTIVATE_ANON 1 98 #define DEACTIVATE_FILE 2 99 unsigned int may_deactivate:2; 100 unsigned int force_deactivate:1; 101 unsigned int skipped_deactivate:1; 102 103 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 104 unsigned int may_writepage:1; 105 106 /* Can mapped folios be reclaimed? */ 107 unsigned int may_unmap:1; 108 109 /* Can folios be swapped as part of reclaim? */ 110 unsigned int may_swap:1; 111 112 /* Proactive reclaim invoked by userspace through memory.reclaim */ 113 unsigned int proactive:1; 114 115 /* 116 * Cgroup memory below memory.low is protected as long as we 117 * don't threaten to OOM. If any cgroup is reclaimed at 118 * reduced force or passed over entirely due to its memory.low 119 * setting (memcg_low_skipped), and nothing is reclaimed as a 120 * result, then go back for one more cycle that reclaims the protected 121 * memory (memcg_low_reclaim) to avert OOM. 122 */ 123 unsigned int memcg_low_reclaim:1; 124 unsigned int memcg_low_skipped:1; 125 126 unsigned int hibernation_mode:1; 127 128 /* One of the zones is ready for compaction */ 129 unsigned int compaction_ready:1; 130 131 /* There is easily reclaimable cold cache in the current node */ 132 unsigned int cache_trim_mode:1; 133 134 /* The file folios on the current node are dangerously low */ 135 unsigned int file_is_tiny:1; 136 137 /* Always discard instead of demoting to lower tier memory */ 138 unsigned int no_demotion:1; 139 140 /* Allocation order */ 141 s8 order; 142 143 /* Scan (total_size >> priority) pages at once */ 144 s8 priority; 145 146 /* The highest zone to isolate folios for reclaim from */ 147 s8 reclaim_idx; 148 149 /* This context's GFP mask */ 150 gfp_t gfp_mask; 151 152 /* Incremented by the number of inactive pages that were scanned */ 153 unsigned long nr_scanned; 154 155 /* Number of pages freed so far during a call to shrink_zones() */ 156 unsigned long nr_reclaimed; 157 158 struct { 159 unsigned int dirty; 160 unsigned int unqueued_dirty; 161 unsigned int congested; 162 unsigned int writeback; 163 unsigned int immediate; 164 unsigned int file_taken; 165 unsigned int taken; 166 } nr; 167 168 /* for recording the reclaimed slab by now */ 169 struct reclaim_state reclaim_state; 170 }; 171 172 #ifdef ARCH_HAS_PREFETCHW 173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 174 do { \ 175 if ((_folio)->lru.prev != _base) { \ 176 struct folio *prev; \ 177 \ 178 prev = lru_to_folio(&(_folio->lru)); \ 179 prefetchw(&prev->_field); \ 180 } \ 181 } while (0) 182 #else 183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 184 #endif 185 186 /* 187 * From 0 .. 200. Higher means more swappy. 188 */ 189 int vm_swappiness = 60; 190 191 static void set_task_reclaim_state(struct task_struct *task, 192 struct reclaim_state *rs) 193 { 194 /* Check for an overwrite */ 195 WARN_ON_ONCE(rs && task->reclaim_state); 196 197 /* Check for the nulling of an already-nulled member */ 198 WARN_ON_ONCE(!rs && !task->reclaim_state); 199 200 task->reclaim_state = rs; 201 } 202 203 LIST_HEAD(shrinker_list); 204 DECLARE_RWSEM(shrinker_rwsem); 205 206 #ifdef CONFIG_MEMCG 207 static int shrinker_nr_max; 208 209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 210 static inline int shrinker_map_size(int nr_items) 211 { 212 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 213 } 214 215 static inline int shrinker_defer_size(int nr_items) 216 { 217 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 218 } 219 220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 221 int nid) 222 { 223 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 224 lockdep_is_held(&shrinker_rwsem)); 225 } 226 227 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 228 int map_size, int defer_size, 229 int old_map_size, int old_defer_size) 230 { 231 struct shrinker_info *new, *old; 232 struct mem_cgroup_per_node *pn; 233 int nid; 234 int size = map_size + defer_size; 235 236 for_each_node(nid) { 237 pn = memcg->nodeinfo[nid]; 238 old = shrinker_info_protected(memcg, nid); 239 /* Not yet online memcg */ 240 if (!old) 241 return 0; 242 243 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 244 if (!new) 245 return -ENOMEM; 246 247 new->nr_deferred = (atomic_long_t *)(new + 1); 248 new->map = (void *)new->nr_deferred + defer_size; 249 250 /* map: set all old bits, clear all new bits */ 251 memset(new->map, (int)0xff, old_map_size); 252 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 253 /* nr_deferred: copy old values, clear all new values */ 254 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 255 memset((void *)new->nr_deferred + old_defer_size, 0, 256 defer_size - old_defer_size); 257 258 rcu_assign_pointer(pn->shrinker_info, new); 259 kvfree_rcu(old, rcu); 260 } 261 262 return 0; 263 } 264 265 void free_shrinker_info(struct mem_cgroup *memcg) 266 { 267 struct mem_cgroup_per_node *pn; 268 struct shrinker_info *info; 269 int nid; 270 271 for_each_node(nid) { 272 pn = memcg->nodeinfo[nid]; 273 info = rcu_dereference_protected(pn->shrinker_info, true); 274 kvfree(info); 275 rcu_assign_pointer(pn->shrinker_info, NULL); 276 } 277 } 278 279 int alloc_shrinker_info(struct mem_cgroup *memcg) 280 { 281 struct shrinker_info *info; 282 int nid, size, ret = 0; 283 int map_size, defer_size = 0; 284 285 down_write(&shrinker_rwsem); 286 map_size = shrinker_map_size(shrinker_nr_max); 287 defer_size = shrinker_defer_size(shrinker_nr_max); 288 size = map_size + defer_size; 289 for_each_node(nid) { 290 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 291 if (!info) { 292 free_shrinker_info(memcg); 293 ret = -ENOMEM; 294 break; 295 } 296 info->nr_deferred = (atomic_long_t *)(info + 1); 297 info->map = (void *)info->nr_deferred + defer_size; 298 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 299 } 300 up_write(&shrinker_rwsem); 301 302 return ret; 303 } 304 305 static inline bool need_expand(int nr_max) 306 { 307 return round_up(nr_max, BITS_PER_LONG) > 308 round_up(shrinker_nr_max, BITS_PER_LONG); 309 } 310 311 static int expand_shrinker_info(int new_id) 312 { 313 int ret = 0; 314 int new_nr_max = new_id + 1; 315 int map_size, defer_size = 0; 316 int old_map_size, old_defer_size = 0; 317 struct mem_cgroup *memcg; 318 319 if (!need_expand(new_nr_max)) 320 goto out; 321 322 if (!root_mem_cgroup) 323 goto out; 324 325 lockdep_assert_held(&shrinker_rwsem); 326 327 map_size = shrinker_map_size(new_nr_max); 328 defer_size = shrinker_defer_size(new_nr_max); 329 old_map_size = shrinker_map_size(shrinker_nr_max); 330 old_defer_size = shrinker_defer_size(shrinker_nr_max); 331 332 memcg = mem_cgroup_iter(NULL, NULL, NULL); 333 do { 334 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 335 old_map_size, old_defer_size); 336 if (ret) { 337 mem_cgroup_iter_break(NULL, memcg); 338 goto out; 339 } 340 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 341 out: 342 if (!ret) 343 shrinker_nr_max = new_nr_max; 344 345 return ret; 346 } 347 348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 349 { 350 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 351 struct shrinker_info *info; 352 353 rcu_read_lock(); 354 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 355 /* Pairs with smp mb in shrink_slab() */ 356 smp_mb__before_atomic(); 357 set_bit(shrinker_id, info->map); 358 rcu_read_unlock(); 359 } 360 } 361 362 static DEFINE_IDR(shrinker_idr); 363 364 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 365 { 366 int id, ret = -ENOMEM; 367 368 if (mem_cgroup_disabled()) 369 return -ENOSYS; 370 371 down_write(&shrinker_rwsem); 372 /* This may call shrinker, so it must use down_read_trylock() */ 373 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 374 if (id < 0) 375 goto unlock; 376 377 if (id >= shrinker_nr_max) { 378 if (expand_shrinker_info(id)) { 379 idr_remove(&shrinker_idr, id); 380 goto unlock; 381 } 382 } 383 shrinker->id = id; 384 ret = 0; 385 unlock: 386 up_write(&shrinker_rwsem); 387 return ret; 388 } 389 390 static void unregister_memcg_shrinker(struct shrinker *shrinker) 391 { 392 int id = shrinker->id; 393 394 BUG_ON(id < 0); 395 396 lockdep_assert_held(&shrinker_rwsem); 397 398 idr_remove(&shrinker_idr, id); 399 } 400 401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 402 struct mem_cgroup *memcg) 403 { 404 struct shrinker_info *info; 405 406 info = shrinker_info_protected(memcg, nid); 407 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 408 } 409 410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 411 struct mem_cgroup *memcg) 412 { 413 struct shrinker_info *info; 414 415 info = shrinker_info_protected(memcg, nid); 416 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 417 } 418 419 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 420 { 421 int i, nid; 422 long nr; 423 struct mem_cgroup *parent; 424 struct shrinker_info *child_info, *parent_info; 425 426 parent = parent_mem_cgroup(memcg); 427 if (!parent) 428 parent = root_mem_cgroup; 429 430 /* Prevent from concurrent shrinker_info expand */ 431 down_read(&shrinker_rwsem); 432 for_each_node(nid) { 433 child_info = shrinker_info_protected(memcg, nid); 434 parent_info = shrinker_info_protected(parent, nid); 435 for (i = 0; i < shrinker_nr_max; i++) { 436 nr = atomic_long_read(&child_info->nr_deferred[i]); 437 atomic_long_add(nr, &parent_info->nr_deferred[i]); 438 } 439 } 440 up_read(&shrinker_rwsem); 441 } 442 443 static bool cgroup_reclaim(struct scan_control *sc) 444 { 445 return sc->target_mem_cgroup; 446 } 447 448 static bool global_reclaim(struct scan_control *sc) 449 { 450 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 451 } 452 453 /** 454 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 455 * @sc: scan_control in question 456 * 457 * The normal page dirty throttling mechanism in balance_dirty_pages() is 458 * completely broken with the legacy memcg and direct stalling in 459 * shrink_folio_list() is used for throttling instead, which lacks all the 460 * niceties such as fairness, adaptive pausing, bandwidth proportional 461 * allocation and configurability. 462 * 463 * This function tests whether the vmscan currently in progress can assume 464 * that the normal dirty throttling mechanism is operational. 465 */ 466 static bool writeback_throttling_sane(struct scan_control *sc) 467 { 468 if (!cgroup_reclaim(sc)) 469 return true; 470 #ifdef CONFIG_CGROUP_WRITEBACK 471 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 472 return true; 473 #endif 474 return false; 475 } 476 #else 477 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 478 { 479 return -ENOSYS; 480 } 481 482 static void unregister_memcg_shrinker(struct shrinker *shrinker) 483 { 484 } 485 486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 487 struct mem_cgroup *memcg) 488 { 489 return 0; 490 } 491 492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 493 struct mem_cgroup *memcg) 494 { 495 return 0; 496 } 497 498 static bool cgroup_reclaim(struct scan_control *sc) 499 { 500 return false; 501 } 502 503 static bool global_reclaim(struct scan_control *sc) 504 { 505 return true; 506 } 507 508 static bool writeback_throttling_sane(struct scan_control *sc) 509 { 510 return true; 511 } 512 #endif 513 514 static long xchg_nr_deferred(struct shrinker *shrinker, 515 struct shrink_control *sc) 516 { 517 int nid = sc->nid; 518 519 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 520 nid = 0; 521 522 if (sc->memcg && 523 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 524 return xchg_nr_deferred_memcg(nid, shrinker, 525 sc->memcg); 526 527 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 528 } 529 530 531 static long add_nr_deferred(long nr, struct shrinker *shrinker, 532 struct shrink_control *sc) 533 { 534 int nid = sc->nid; 535 536 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 537 nid = 0; 538 539 if (sc->memcg && 540 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 541 return add_nr_deferred_memcg(nr, nid, shrinker, 542 sc->memcg); 543 544 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 545 } 546 547 static bool can_demote(int nid, struct scan_control *sc) 548 { 549 if (!numa_demotion_enabled) 550 return false; 551 if (sc && sc->no_demotion) 552 return false; 553 if (next_demotion_node(nid) == NUMA_NO_NODE) 554 return false; 555 556 return true; 557 } 558 559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 560 int nid, 561 struct scan_control *sc) 562 { 563 if (memcg == NULL) { 564 /* 565 * For non-memcg reclaim, is there 566 * space in any swap device? 567 */ 568 if (get_nr_swap_pages() > 0) 569 return true; 570 } else { 571 /* Is the memcg below its swap limit? */ 572 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 573 return true; 574 } 575 576 /* 577 * The page can not be swapped. 578 * 579 * Can it be reclaimed from this node via demotion? 580 */ 581 return can_demote(nid, sc); 582 } 583 584 /* 585 * This misses isolated folios which are not accounted for to save counters. 586 * As the data only determines if reclaim or compaction continues, it is 587 * not expected that isolated folios will be a dominating factor. 588 */ 589 unsigned long zone_reclaimable_pages(struct zone *zone) 590 { 591 unsigned long nr; 592 593 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 594 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 595 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 596 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 597 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 598 599 return nr; 600 } 601 602 /** 603 * lruvec_lru_size - Returns the number of pages on the given LRU list. 604 * @lruvec: lru vector 605 * @lru: lru to use 606 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 607 */ 608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 609 int zone_idx) 610 { 611 unsigned long size = 0; 612 int zid; 613 614 for (zid = 0; zid <= zone_idx; zid++) { 615 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 616 617 if (!managed_zone(zone)) 618 continue; 619 620 if (!mem_cgroup_disabled()) 621 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 622 else 623 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 624 } 625 return size; 626 } 627 628 /* 629 * Add a shrinker callback to be called from the vm. 630 */ 631 static int __prealloc_shrinker(struct shrinker *shrinker) 632 { 633 unsigned int size; 634 int err; 635 636 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 637 err = prealloc_memcg_shrinker(shrinker); 638 if (err != -ENOSYS) 639 return err; 640 641 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 642 } 643 644 size = sizeof(*shrinker->nr_deferred); 645 if (shrinker->flags & SHRINKER_NUMA_AWARE) 646 size *= nr_node_ids; 647 648 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 649 if (!shrinker->nr_deferred) 650 return -ENOMEM; 651 652 return 0; 653 } 654 655 #ifdef CONFIG_SHRINKER_DEBUG 656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 657 { 658 va_list ap; 659 int err; 660 661 va_start(ap, fmt); 662 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 663 va_end(ap); 664 if (!shrinker->name) 665 return -ENOMEM; 666 667 err = __prealloc_shrinker(shrinker); 668 if (err) { 669 kfree_const(shrinker->name); 670 shrinker->name = NULL; 671 } 672 673 return err; 674 } 675 #else 676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 677 { 678 return __prealloc_shrinker(shrinker); 679 } 680 #endif 681 682 void free_prealloced_shrinker(struct shrinker *shrinker) 683 { 684 #ifdef CONFIG_SHRINKER_DEBUG 685 kfree_const(shrinker->name); 686 shrinker->name = NULL; 687 #endif 688 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 689 down_write(&shrinker_rwsem); 690 unregister_memcg_shrinker(shrinker); 691 up_write(&shrinker_rwsem); 692 return; 693 } 694 695 kfree(shrinker->nr_deferred); 696 shrinker->nr_deferred = NULL; 697 } 698 699 void register_shrinker_prepared(struct shrinker *shrinker) 700 { 701 down_write(&shrinker_rwsem); 702 list_add_tail(&shrinker->list, &shrinker_list); 703 shrinker->flags |= SHRINKER_REGISTERED; 704 shrinker_debugfs_add(shrinker); 705 up_write(&shrinker_rwsem); 706 } 707 708 static int __register_shrinker(struct shrinker *shrinker) 709 { 710 int err = __prealloc_shrinker(shrinker); 711 712 if (err) 713 return err; 714 register_shrinker_prepared(shrinker); 715 return 0; 716 } 717 718 #ifdef CONFIG_SHRINKER_DEBUG 719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 720 { 721 va_list ap; 722 int err; 723 724 va_start(ap, fmt); 725 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 726 va_end(ap); 727 if (!shrinker->name) 728 return -ENOMEM; 729 730 err = __register_shrinker(shrinker); 731 if (err) { 732 kfree_const(shrinker->name); 733 shrinker->name = NULL; 734 } 735 return err; 736 } 737 #else 738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 739 { 740 return __register_shrinker(shrinker); 741 } 742 #endif 743 EXPORT_SYMBOL(register_shrinker); 744 745 /* 746 * Remove one 747 */ 748 void unregister_shrinker(struct shrinker *shrinker) 749 { 750 if (!(shrinker->flags & SHRINKER_REGISTERED)) 751 return; 752 753 down_write(&shrinker_rwsem); 754 list_del(&shrinker->list); 755 shrinker->flags &= ~SHRINKER_REGISTERED; 756 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 757 unregister_memcg_shrinker(shrinker); 758 shrinker_debugfs_remove(shrinker); 759 up_write(&shrinker_rwsem); 760 761 kfree(shrinker->nr_deferred); 762 shrinker->nr_deferred = NULL; 763 } 764 EXPORT_SYMBOL(unregister_shrinker); 765 766 /** 767 * synchronize_shrinkers - Wait for all running shrinkers to complete. 768 * 769 * This is equivalent to calling unregister_shrink() and register_shrinker(), 770 * but atomically and with less overhead. This is useful to guarantee that all 771 * shrinker invocations have seen an update, before freeing memory, similar to 772 * rcu. 773 */ 774 void synchronize_shrinkers(void) 775 { 776 down_write(&shrinker_rwsem); 777 up_write(&shrinker_rwsem); 778 } 779 EXPORT_SYMBOL(synchronize_shrinkers); 780 781 #define SHRINK_BATCH 128 782 783 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 784 struct shrinker *shrinker, int priority) 785 { 786 unsigned long freed = 0; 787 unsigned long long delta; 788 long total_scan; 789 long freeable; 790 long nr; 791 long new_nr; 792 long batch_size = shrinker->batch ? shrinker->batch 793 : SHRINK_BATCH; 794 long scanned = 0, next_deferred; 795 796 freeable = shrinker->count_objects(shrinker, shrinkctl); 797 if (freeable == 0 || freeable == SHRINK_EMPTY) 798 return freeable; 799 800 /* 801 * copy the current shrinker scan count into a local variable 802 * and zero it so that other concurrent shrinker invocations 803 * don't also do this scanning work. 804 */ 805 nr = xchg_nr_deferred(shrinker, shrinkctl); 806 807 if (shrinker->seeks) { 808 delta = freeable >> priority; 809 delta *= 4; 810 do_div(delta, shrinker->seeks); 811 } else { 812 /* 813 * These objects don't require any IO to create. Trim 814 * them aggressively under memory pressure to keep 815 * them from causing refetches in the IO caches. 816 */ 817 delta = freeable / 2; 818 } 819 820 total_scan = nr >> priority; 821 total_scan += delta; 822 total_scan = min(total_scan, (2 * freeable)); 823 824 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 825 freeable, delta, total_scan, priority); 826 827 /* 828 * Normally, we should not scan less than batch_size objects in one 829 * pass to avoid too frequent shrinker calls, but if the slab has less 830 * than batch_size objects in total and we are really tight on memory, 831 * we will try to reclaim all available objects, otherwise we can end 832 * up failing allocations although there are plenty of reclaimable 833 * objects spread over several slabs with usage less than the 834 * batch_size. 835 * 836 * We detect the "tight on memory" situations by looking at the total 837 * number of objects we want to scan (total_scan). If it is greater 838 * than the total number of objects on slab (freeable), we must be 839 * scanning at high prio and therefore should try to reclaim as much as 840 * possible. 841 */ 842 while (total_scan >= batch_size || 843 total_scan >= freeable) { 844 unsigned long ret; 845 unsigned long nr_to_scan = min(batch_size, total_scan); 846 847 shrinkctl->nr_to_scan = nr_to_scan; 848 shrinkctl->nr_scanned = nr_to_scan; 849 ret = shrinker->scan_objects(shrinker, shrinkctl); 850 if (ret == SHRINK_STOP) 851 break; 852 freed += ret; 853 854 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 855 total_scan -= shrinkctl->nr_scanned; 856 scanned += shrinkctl->nr_scanned; 857 858 cond_resched(); 859 } 860 861 /* 862 * The deferred work is increased by any new work (delta) that wasn't 863 * done, decreased by old deferred work that was done now. 864 * 865 * And it is capped to two times of the freeable items. 866 */ 867 next_deferred = max_t(long, (nr + delta - scanned), 0); 868 next_deferred = min(next_deferred, (2 * freeable)); 869 870 /* 871 * move the unused scan count back into the shrinker in a 872 * manner that handles concurrent updates. 873 */ 874 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 875 876 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 877 return freed; 878 } 879 880 #ifdef CONFIG_MEMCG 881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 882 struct mem_cgroup *memcg, int priority) 883 { 884 struct shrinker_info *info; 885 unsigned long ret, freed = 0; 886 int i; 887 888 if (!mem_cgroup_online(memcg)) 889 return 0; 890 891 if (!down_read_trylock(&shrinker_rwsem)) 892 return 0; 893 894 info = shrinker_info_protected(memcg, nid); 895 if (unlikely(!info)) 896 goto unlock; 897 898 for_each_set_bit(i, info->map, shrinker_nr_max) { 899 struct shrink_control sc = { 900 .gfp_mask = gfp_mask, 901 .nid = nid, 902 .memcg = memcg, 903 }; 904 struct shrinker *shrinker; 905 906 shrinker = idr_find(&shrinker_idr, i); 907 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 908 if (!shrinker) 909 clear_bit(i, info->map); 910 continue; 911 } 912 913 /* Call non-slab shrinkers even though kmem is disabled */ 914 if (!memcg_kmem_enabled() && 915 !(shrinker->flags & SHRINKER_NONSLAB)) 916 continue; 917 918 ret = do_shrink_slab(&sc, shrinker, priority); 919 if (ret == SHRINK_EMPTY) { 920 clear_bit(i, info->map); 921 /* 922 * After the shrinker reported that it had no objects to 923 * free, but before we cleared the corresponding bit in 924 * the memcg shrinker map, a new object might have been 925 * added. To make sure, we have the bit set in this 926 * case, we invoke the shrinker one more time and reset 927 * the bit if it reports that it is not empty anymore. 928 * The memory barrier here pairs with the barrier in 929 * set_shrinker_bit(): 930 * 931 * list_lru_add() shrink_slab_memcg() 932 * list_add_tail() clear_bit() 933 * <MB> <MB> 934 * set_bit() do_shrink_slab() 935 */ 936 smp_mb__after_atomic(); 937 ret = do_shrink_slab(&sc, shrinker, priority); 938 if (ret == SHRINK_EMPTY) 939 ret = 0; 940 else 941 set_shrinker_bit(memcg, nid, i); 942 } 943 freed += ret; 944 945 if (rwsem_is_contended(&shrinker_rwsem)) { 946 freed = freed ? : 1; 947 break; 948 } 949 } 950 unlock: 951 up_read(&shrinker_rwsem); 952 return freed; 953 } 954 #else /* CONFIG_MEMCG */ 955 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 956 struct mem_cgroup *memcg, int priority) 957 { 958 return 0; 959 } 960 #endif /* CONFIG_MEMCG */ 961 962 /** 963 * shrink_slab - shrink slab caches 964 * @gfp_mask: allocation context 965 * @nid: node whose slab caches to target 966 * @memcg: memory cgroup whose slab caches to target 967 * @priority: the reclaim priority 968 * 969 * Call the shrink functions to age shrinkable caches. 970 * 971 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 972 * unaware shrinkers will receive a node id of 0 instead. 973 * 974 * @memcg specifies the memory cgroup to target. Unaware shrinkers 975 * are called only if it is the root cgroup. 976 * 977 * @priority is sc->priority, we take the number of objects and >> by priority 978 * in order to get the scan target. 979 * 980 * Returns the number of reclaimed slab objects. 981 */ 982 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 983 struct mem_cgroup *memcg, 984 int priority) 985 { 986 unsigned long ret, freed = 0; 987 struct shrinker *shrinker; 988 989 /* 990 * The root memcg might be allocated even though memcg is disabled 991 * via "cgroup_disable=memory" boot parameter. This could make 992 * mem_cgroup_is_root() return false, then just run memcg slab 993 * shrink, but skip global shrink. This may result in premature 994 * oom. 995 */ 996 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 997 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 998 999 if (!down_read_trylock(&shrinker_rwsem)) 1000 goto out; 1001 1002 list_for_each_entry(shrinker, &shrinker_list, list) { 1003 struct shrink_control sc = { 1004 .gfp_mask = gfp_mask, 1005 .nid = nid, 1006 .memcg = memcg, 1007 }; 1008 1009 ret = do_shrink_slab(&sc, shrinker, priority); 1010 if (ret == SHRINK_EMPTY) 1011 ret = 0; 1012 freed += ret; 1013 /* 1014 * Bail out if someone want to register a new shrinker to 1015 * prevent the registration from being stalled for long periods 1016 * by parallel ongoing shrinking. 1017 */ 1018 if (rwsem_is_contended(&shrinker_rwsem)) { 1019 freed = freed ? : 1; 1020 break; 1021 } 1022 } 1023 1024 up_read(&shrinker_rwsem); 1025 out: 1026 cond_resched(); 1027 return freed; 1028 } 1029 1030 static unsigned long drop_slab_node(int nid) 1031 { 1032 unsigned long freed = 0; 1033 struct mem_cgroup *memcg = NULL; 1034 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1036 do { 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1039 1040 return freed; 1041 } 1042 1043 void drop_slab(void) 1044 { 1045 int nid; 1046 int shift = 0; 1047 unsigned long freed; 1048 1049 do { 1050 freed = 0; 1051 for_each_online_node(nid) { 1052 if (fatal_signal_pending(current)) 1053 return; 1054 1055 freed += drop_slab_node(nid); 1056 } 1057 } while ((freed >> shift++) > 1); 1058 } 1059 1060 static int reclaimer_offset(void) 1061 { 1062 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1063 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1064 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1065 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1066 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1067 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1068 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1069 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1070 1071 if (current_is_kswapd()) 1072 return 0; 1073 if (current_is_khugepaged()) 1074 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1075 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1076 } 1077 1078 static inline int is_page_cache_freeable(struct folio *folio) 1079 { 1080 /* 1081 * A freeable page cache folio is referenced only by the caller 1082 * that isolated the folio, the page cache and optional filesystem 1083 * private data at folio->private. 1084 */ 1085 return folio_ref_count(folio) - folio_test_private(folio) == 1086 1 + folio_nr_pages(folio); 1087 } 1088 1089 /* 1090 * We detected a synchronous write error writing a folio out. Probably 1091 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1092 * fsync(), msync() or close(). 1093 * 1094 * The tricky part is that after writepage we cannot touch the mapping: nothing 1095 * prevents it from being freed up. But we have a ref on the folio and once 1096 * that folio is locked, the mapping is pinned. 1097 * 1098 * We're allowed to run sleeping folio_lock() here because we know the caller has 1099 * __GFP_FS. 1100 */ 1101 static void handle_write_error(struct address_space *mapping, 1102 struct folio *folio, int error) 1103 { 1104 folio_lock(folio); 1105 if (folio_mapping(folio) == mapping) 1106 mapping_set_error(mapping, error); 1107 folio_unlock(folio); 1108 } 1109 1110 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1111 { 1112 int reclaimable = 0, write_pending = 0; 1113 int i; 1114 1115 /* 1116 * If kswapd is disabled, reschedule if necessary but do not 1117 * throttle as the system is likely near OOM. 1118 */ 1119 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1120 return true; 1121 1122 /* 1123 * If there are a lot of dirty/writeback folios then do not 1124 * throttle as throttling will occur when the folios cycle 1125 * towards the end of the LRU if still under writeback. 1126 */ 1127 for (i = 0; i < MAX_NR_ZONES; i++) { 1128 struct zone *zone = pgdat->node_zones + i; 1129 1130 if (!managed_zone(zone)) 1131 continue; 1132 1133 reclaimable += zone_reclaimable_pages(zone); 1134 write_pending += zone_page_state_snapshot(zone, 1135 NR_ZONE_WRITE_PENDING); 1136 } 1137 if (2 * write_pending <= reclaimable) 1138 return true; 1139 1140 return false; 1141 } 1142 1143 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1144 { 1145 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1146 long timeout, ret; 1147 DEFINE_WAIT(wait); 1148 1149 /* 1150 * Do not throttle IO workers, kthreads other than kswapd or 1151 * workqueues. They may be required for reclaim to make 1152 * forward progress (e.g. journalling workqueues or kthreads). 1153 */ 1154 if (!current_is_kswapd() && 1155 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1156 cond_resched(); 1157 return; 1158 } 1159 1160 /* 1161 * These figures are pulled out of thin air. 1162 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1163 * parallel reclaimers which is a short-lived event so the timeout is 1164 * short. Failing to make progress or waiting on writeback are 1165 * potentially long-lived events so use a longer timeout. This is shaky 1166 * logic as a failure to make progress could be due to anything from 1167 * writeback to a slow device to excessive referenced folios at the tail 1168 * of the inactive LRU. 1169 */ 1170 switch(reason) { 1171 case VMSCAN_THROTTLE_WRITEBACK: 1172 timeout = HZ/10; 1173 1174 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1175 WRITE_ONCE(pgdat->nr_reclaim_start, 1176 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1177 } 1178 1179 break; 1180 case VMSCAN_THROTTLE_CONGESTED: 1181 fallthrough; 1182 case VMSCAN_THROTTLE_NOPROGRESS: 1183 if (skip_throttle_noprogress(pgdat)) { 1184 cond_resched(); 1185 return; 1186 } 1187 1188 timeout = 1; 1189 1190 break; 1191 case VMSCAN_THROTTLE_ISOLATED: 1192 timeout = HZ/50; 1193 break; 1194 default: 1195 WARN_ON_ONCE(1); 1196 timeout = HZ; 1197 break; 1198 } 1199 1200 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1201 ret = schedule_timeout(timeout); 1202 finish_wait(wqh, &wait); 1203 1204 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1205 atomic_dec(&pgdat->nr_writeback_throttled); 1206 1207 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1208 jiffies_to_usecs(timeout - ret), 1209 reason); 1210 } 1211 1212 /* 1213 * Account for folios written if tasks are throttled waiting on dirty 1214 * folios to clean. If enough folios have been cleaned since throttling 1215 * started then wakeup the throttled tasks. 1216 */ 1217 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1218 int nr_throttled) 1219 { 1220 unsigned long nr_written; 1221 1222 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1223 1224 /* 1225 * This is an inaccurate read as the per-cpu deltas may not 1226 * be synchronised. However, given that the system is 1227 * writeback throttled, it is not worth taking the penalty 1228 * of getting an accurate count. At worst, the throttle 1229 * timeout guarantees forward progress. 1230 */ 1231 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1232 READ_ONCE(pgdat->nr_reclaim_start); 1233 1234 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1235 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1236 } 1237 1238 /* possible outcome of pageout() */ 1239 typedef enum { 1240 /* failed to write folio out, folio is locked */ 1241 PAGE_KEEP, 1242 /* move folio to the active list, folio is locked */ 1243 PAGE_ACTIVATE, 1244 /* folio has been sent to the disk successfully, folio is unlocked */ 1245 PAGE_SUCCESS, 1246 /* folio is clean and locked */ 1247 PAGE_CLEAN, 1248 } pageout_t; 1249 1250 /* 1251 * pageout is called by shrink_folio_list() for each dirty folio. 1252 * Calls ->writepage(). 1253 */ 1254 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1255 struct swap_iocb **plug) 1256 { 1257 /* 1258 * If the folio is dirty, only perform writeback if that write 1259 * will be non-blocking. To prevent this allocation from being 1260 * stalled by pagecache activity. But note that there may be 1261 * stalls if we need to run get_block(). We could test 1262 * PagePrivate for that. 1263 * 1264 * If this process is currently in __generic_file_write_iter() against 1265 * this folio's queue, we can perform writeback even if that 1266 * will block. 1267 * 1268 * If the folio is swapcache, write it back even if that would 1269 * block, for some throttling. This happens by accident, because 1270 * swap_backing_dev_info is bust: it doesn't reflect the 1271 * congestion state of the swapdevs. Easy to fix, if needed. 1272 */ 1273 if (!is_page_cache_freeable(folio)) 1274 return PAGE_KEEP; 1275 if (!mapping) { 1276 /* 1277 * Some data journaling orphaned folios can have 1278 * folio->mapping == NULL while being dirty with clean buffers. 1279 */ 1280 if (folio_test_private(folio)) { 1281 if (try_to_free_buffers(folio)) { 1282 folio_clear_dirty(folio); 1283 pr_info("%s: orphaned folio\n", __func__); 1284 return PAGE_CLEAN; 1285 } 1286 } 1287 return PAGE_KEEP; 1288 } 1289 if (mapping->a_ops->writepage == NULL) 1290 return PAGE_ACTIVATE; 1291 1292 if (folio_clear_dirty_for_io(folio)) { 1293 int res; 1294 struct writeback_control wbc = { 1295 .sync_mode = WB_SYNC_NONE, 1296 .nr_to_write = SWAP_CLUSTER_MAX, 1297 .range_start = 0, 1298 .range_end = LLONG_MAX, 1299 .for_reclaim = 1, 1300 .swap_plug = plug, 1301 }; 1302 1303 folio_set_reclaim(folio); 1304 res = mapping->a_ops->writepage(&folio->page, &wbc); 1305 if (res < 0) 1306 handle_write_error(mapping, folio, res); 1307 if (res == AOP_WRITEPAGE_ACTIVATE) { 1308 folio_clear_reclaim(folio); 1309 return PAGE_ACTIVATE; 1310 } 1311 1312 if (!folio_test_writeback(folio)) { 1313 /* synchronous write or broken a_ops? */ 1314 folio_clear_reclaim(folio); 1315 } 1316 trace_mm_vmscan_write_folio(folio); 1317 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1318 return PAGE_SUCCESS; 1319 } 1320 1321 return PAGE_CLEAN; 1322 } 1323 1324 /* 1325 * Same as remove_mapping, but if the folio is removed from the mapping, it 1326 * gets returned with a refcount of 0. 1327 */ 1328 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1329 bool reclaimed, struct mem_cgroup *target_memcg) 1330 { 1331 int refcount; 1332 void *shadow = NULL; 1333 1334 BUG_ON(!folio_test_locked(folio)); 1335 BUG_ON(mapping != folio_mapping(folio)); 1336 1337 if (!folio_test_swapcache(folio)) 1338 spin_lock(&mapping->host->i_lock); 1339 xa_lock_irq(&mapping->i_pages); 1340 /* 1341 * The non racy check for a busy folio. 1342 * 1343 * Must be careful with the order of the tests. When someone has 1344 * a ref to the folio, it may be possible that they dirty it then 1345 * drop the reference. So if the dirty flag is tested before the 1346 * refcount here, then the following race may occur: 1347 * 1348 * get_user_pages(&page); 1349 * [user mapping goes away] 1350 * write_to(page); 1351 * !folio_test_dirty(folio) [good] 1352 * folio_set_dirty(folio); 1353 * folio_put(folio); 1354 * !refcount(folio) [good, discard it] 1355 * 1356 * [oops, our write_to data is lost] 1357 * 1358 * Reversing the order of the tests ensures such a situation cannot 1359 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1360 * load is not satisfied before that of folio->_refcount. 1361 * 1362 * Note that if the dirty flag is always set via folio_mark_dirty, 1363 * and thus under the i_pages lock, then this ordering is not required. 1364 */ 1365 refcount = 1 + folio_nr_pages(folio); 1366 if (!folio_ref_freeze(folio, refcount)) 1367 goto cannot_free; 1368 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1369 if (unlikely(folio_test_dirty(folio))) { 1370 folio_ref_unfreeze(folio, refcount); 1371 goto cannot_free; 1372 } 1373 1374 if (folio_test_swapcache(folio)) { 1375 swp_entry_t swap = folio_swap_entry(folio); 1376 1377 if (reclaimed && !mapping_exiting(mapping)) 1378 shadow = workingset_eviction(folio, target_memcg); 1379 __delete_from_swap_cache(folio, swap, shadow); 1380 mem_cgroup_swapout(folio, swap); 1381 xa_unlock_irq(&mapping->i_pages); 1382 put_swap_folio(folio, swap); 1383 } else { 1384 void (*free_folio)(struct folio *); 1385 1386 free_folio = mapping->a_ops->free_folio; 1387 /* 1388 * Remember a shadow entry for reclaimed file cache in 1389 * order to detect refaults, thus thrashing, later on. 1390 * 1391 * But don't store shadows in an address space that is 1392 * already exiting. This is not just an optimization, 1393 * inode reclaim needs to empty out the radix tree or 1394 * the nodes are lost. Don't plant shadows behind its 1395 * back. 1396 * 1397 * We also don't store shadows for DAX mappings because the 1398 * only page cache folios found in these are zero pages 1399 * covering holes, and because we don't want to mix DAX 1400 * exceptional entries and shadow exceptional entries in the 1401 * same address_space. 1402 */ 1403 if (reclaimed && folio_is_file_lru(folio) && 1404 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1405 shadow = workingset_eviction(folio, target_memcg); 1406 __filemap_remove_folio(folio, shadow); 1407 xa_unlock_irq(&mapping->i_pages); 1408 if (mapping_shrinkable(mapping)) 1409 inode_add_lru(mapping->host); 1410 spin_unlock(&mapping->host->i_lock); 1411 1412 if (free_folio) 1413 free_folio(folio); 1414 } 1415 1416 return 1; 1417 1418 cannot_free: 1419 xa_unlock_irq(&mapping->i_pages); 1420 if (!folio_test_swapcache(folio)) 1421 spin_unlock(&mapping->host->i_lock); 1422 return 0; 1423 } 1424 1425 /** 1426 * remove_mapping() - Attempt to remove a folio from its mapping. 1427 * @mapping: The address space. 1428 * @folio: The folio to remove. 1429 * 1430 * If the folio is dirty, under writeback or if someone else has a ref 1431 * on it, removal will fail. 1432 * Return: The number of pages removed from the mapping. 0 if the folio 1433 * could not be removed. 1434 * Context: The caller should have a single refcount on the folio and 1435 * hold its lock. 1436 */ 1437 long remove_mapping(struct address_space *mapping, struct folio *folio) 1438 { 1439 if (__remove_mapping(mapping, folio, false, NULL)) { 1440 /* 1441 * Unfreezing the refcount with 1 effectively 1442 * drops the pagecache ref for us without requiring another 1443 * atomic operation. 1444 */ 1445 folio_ref_unfreeze(folio, 1); 1446 return folio_nr_pages(folio); 1447 } 1448 return 0; 1449 } 1450 1451 /** 1452 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1453 * @folio: Folio to be returned to an LRU list. 1454 * 1455 * Add previously isolated @folio to appropriate LRU list. 1456 * The folio may still be unevictable for other reasons. 1457 * 1458 * Context: lru_lock must not be held, interrupts must be enabled. 1459 */ 1460 void folio_putback_lru(struct folio *folio) 1461 { 1462 folio_add_lru(folio); 1463 folio_put(folio); /* drop ref from isolate */ 1464 } 1465 1466 enum folio_references { 1467 FOLIOREF_RECLAIM, 1468 FOLIOREF_RECLAIM_CLEAN, 1469 FOLIOREF_KEEP, 1470 FOLIOREF_ACTIVATE, 1471 }; 1472 1473 static enum folio_references folio_check_references(struct folio *folio, 1474 struct scan_control *sc) 1475 { 1476 int referenced_ptes, referenced_folio; 1477 unsigned long vm_flags; 1478 1479 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1480 &vm_flags); 1481 referenced_folio = folio_test_clear_referenced(folio); 1482 1483 /* 1484 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1485 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1486 */ 1487 if (vm_flags & VM_LOCKED) 1488 return FOLIOREF_ACTIVATE; 1489 1490 /* rmap lock contention: rotate */ 1491 if (referenced_ptes == -1) 1492 return FOLIOREF_KEEP; 1493 1494 if (referenced_ptes) { 1495 /* 1496 * All mapped folios start out with page table 1497 * references from the instantiating fault, so we need 1498 * to look twice if a mapped file/anon folio is used more 1499 * than once. 1500 * 1501 * Mark it and spare it for another trip around the 1502 * inactive list. Another page table reference will 1503 * lead to its activation. 1504 * 1505 * Note: the mark is set for activated folios as well 1506 * so that recently deactivated but used folios are 1507 * quickly recovered. 1508 */ 1509 folio_set_referenced(folio); 1510 1511 if (referenced_folio || referenced_ptes > 1) 1512 return FOLIOREF_ACTIVATE; 1513 1514 /* 1515 * Activate file-backed executable folios after first usage. 1516 */ 1517 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1518 return FOLIOREF_ACTIVATE; 1519 1520 return FOLIOREF_KEEP; 1521 } 1522 1523 /* Reclaim if clean, defer dirty folios to writeback */ 1524 if (referenced_folio && folio_is_file_lru(folio)) 1525 return FOLIOREF_RECLAIM_CLEAN; 1526 1527 return FOLIOREF_RECLAIM; 1528 } 1529 1530 /* Check if a folio is dirty or under writeback */ 1531 static void folio_check_dirty_writeback(struct folio *folio, 1532 bool *dirty, bool *writeback) 1533 { 1534 struct address_space *mapping; 1535 1536 /* 1537 * Anonymous folios are not handled by flushers and must be written 1538 * from reclaim context. Do not stall reclaim based on them. 1539 * MADV_FREE anonymous folios are put into inactive file list too. 1540 * They could be mistakenly treated as file lru. So further anon 1541 * test is needed. 1542 */ 1543 if (!folio_is_file_lru(folio) || 1544 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1545 *dirty = false; 1546 *writeback = false; 1547 return; 1548 } 1549 1550 /* By default assume that the folio flags are accurate */ 1551 *dirty = folio_test_dirty(folio); 1552 *writeback = folio_test_writeback(folio); 1553 1554 /* Verify dirty/writeback state if the filesystem supports it */ 1555 if (!folio_test_private(folio)) 1556 return; 1557 1558 mapping = folio_mapping(folio); 1559 if (mapping && mapping->a_ops->is_dirty_writeback) 1560 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1561 } 1562 1563 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1564 { 1565 struct page *target_page; 1566 nodemask_t *allowed_mask; 1567 struct migration_target_control *mtc; 1568 1569 mtc = (struct migration_target_control *)private; 1570 1571 allowed_mask = mtc->nmask; 1572 /* 1573 * make sure we allocate from the target node first also trying to 1574 * demote or reclaim pages from the target node via kswapd if we are 1575 * low on free memory on target node. If we don't do this and if 1576 * we have free memory on the slower(lower) memtier, we would start 1577 * allocating pages from slower(lower) memory tiers without even forcing 1578 * a demotion of cold pages from the target memtier. This can result 1579 * in the kernel placing hot pages in slower(lower) memory tiers. 1580 */ 1581 mtc->nmask = NULL; 1582 mtc->gfp_mask |= __GFP_THISNODE; 1583 target_page = alloc_migration_target(page, (unsigned long)mtc); 1584 if (target_page) 1585 return target_page; 1586 1587 mtc->gfp_mask &= ~__GFP_THISNODE; 1588 mtc->nmask = allowed_mask; 1589 1590 return alloc_migration_target(page, (unsigned long)mtc); 1591 } 1592 1593 /* 1594 * Take folios on @demote_folios and attempt to demote them to another node. 1595 * Folios which are not demoted are left on @demote_folios. 1596 */ 1597 static unsigned int demote_folio_list(struct list_head *demote_folios, 1598 struct pglist_data *pgdat) 1599 { 1600 int target_nid = next_demotion_node(pgdat->node_id); 1601 unsigned int nr_succeeded; 1602 nodemask_t allowed_mask; 1603 1604 struct migration_target_control mtc = { 1605 /* 1606 * Allocate from 'node', or fail quickly and quietly. 1607 * When this happens, 'page' will likely just be discarded 1608 * instead of migrated. 1609 */ 1610 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1611 __GFP_NOMEMALLOC | GFP_NOWAIT, 1612 .nid = target_nid, 1613 .nmask = &allowed_mask 1614 }; 1615 1616 if (list_empty(demote_folios)) 1617 return 0; 1618 1619 if (target_nid == NUMA_NO_NODE) 1620 return 0; 1621 1622 node_get_allowed_targets(pgdat, &allowed_mask); 1623 1624 /* Demotion ignores all cpuset and mempolicy settings */ 1625 migrate_pages(demote_folios, alloc_demote_page, NULL, 1626 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1627 &nr_succeeded); 1628 1629 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1630 1631 return nr_succeeded; 1632 } 1633 1634 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1635 { 1636 if (gfp_mask & __GFP_FS) 1637 return true; 1638 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1639 return false; 1640 /* 1641 * We can "enter_fs" for swap-cache with only __GFP_IO 1642 * providing this isn't SWP_FS_OPS. 1643 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1644 * but that will never affect SWP_FS_OPS, so the data_race 1645 * is safe. 1646 */ 1647 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1648 } 1649 1650 /* 1651 * shrink_folio_list() returns the number of reclaimed pages 1652 */ 1653 static unsigned int shrink_folio_list(struct list_head *folio_list, 1654 struct pglist_data *pgdat, struct scan_control *sc, 1655 struct reclaim_stat *stat, bool ignore_references) 1656 { 1657 LIST_HEAD(ret_folios); 1658 LIST_HEAD(free_folios); 1659 LIST_HEAD(demote_folios); 1660 unsigned int nr_reclaimed = 0; 1661 unsigned int pgactivate = 0; 1662 bool do_demote_pass; 1663 struct swap_iocb *plug = NULL; 1664 1665 memset(stat, 0, sizeof(*stat)); 1666 cond_resched(); 1667 do_demote_pass = can_demote(pgdat->node_id, sc); 1668 1669 retry: 1670 while (!list_empty(folio_list)) { 1671 struct address_space *mapping; 1672 struct folio *folio; 1673 enum folio_references references = FOLIOREF_RECLAIM; 1674 bool dirty, writeback; 1675 unsigned int nr_pages; 1676 1677 cond_resched(); 1678 1679 folio = lru_to_folio(folio_list); 1680 list_del(&folio->lru); 1681 1682 if (!folio_trylock(folio)) 1683 goto keep; 1684 1685 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1686 1687 nr_pages = folio_nr_pages(folio); 1688 1689 /* Account the number of base pages */ 1690 sc->nr_scanned += nr_pages; 1691 1692 if (unlikely(!folio_evictable(folio))) 1693 goto activate_locked; 1694 1695 if (!sc->may_unmap && folio_mapped(folio)) 1696 goto keep_locked; 1697 1698 /* folio_update_gen() tried to promote this page? */ 1699 if (lru_gen_enabled() && !ignore_references && 1700 folio_mapped(folio) && folio_test_referenced(folio)) 1701 goto keep_locked; 1702 1703 /* 1704 * The number of dirty pages determines if a node is marked 1705 * reclaim_congested. kswapd will stall and start writing 1706 * folios if the tail of the LRU is all dirty unqueued folios. 1707 */ 1708 folio_check_dirty_writeback(folio, &dirty, &writeback); 1709 if (dirty || writeback) 1710 stat->nr_dirty += nr_pages; 1711 1712 if (dirty && !writeback) 1713 stat->nr_unqueued_dirty += nr_pages; 1714 1715 /* 1716 * Treat this folio as congested if folios are cycling 1717 * through the LRU so quickly that the folios marked 1718 * for immediate reclaim are making it to the end of 1719 * the LRU a second time. 1720 */ 1721 if (writeback && folio_test_reclaim(folio)) 1722 stat->nr_congested += nr_pages; 1723 1724 /* 1725 * If a folio at the tail of the LRU is under writeback, there 1726 * are three cases to consider. 1727 * 1728 * 1) If reclaim is encountering an excessive number 1729 * of folios under writeback and this folio has both 1730 * the writeback and reclaim flags set, then it 1731 * indicates that folios are being queued for I/O but 1732 * are being recycled through the LRU before the I/O 1733 * can complete. Waiting on the folio itself risks an 1734 * indefinite stall if it is impossible to writeback 1735 * the folio due to I/O error or disconnected storage 1736 * so instead note that the LRU is being scanned too 1737 * quickly and the caller can stall after the folio 1738 * list has been processed. 1739 * 1740 * 2) Global or new memcg reclaim encounters a folio that is 1741 * not marked for immediate reclaim, or the caller does not 1742 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1743 * not to fs). In this case mark the folio for immediate 1744 * reclaim and continue scanning. 1745 * 1746 * Require may_enter_fs() because we would wait on fs, which 1747 * may not have submitted I/O yet. And the loop driver might 1748 * enter reclaim, and deadlock if it waits on a folio for 1749 * which it is needed to do the write (loop masks off 1750 * __GFP_IO|__GFP_FS for this reason); but more thought 1751 * would probably show more reasons. 1752 * 1753 * 3) Legacy memcg encounters a folio that already has the 1754 * reclaim flag set. memcg does not have any dirty folio 1755 * throttling so we could easily OOM just because too many 1756 * folios are in writeback and there is nothing else to 1757 * reclaim. Wait for the writeback to complete. 1758 * 1759 * In cases 1) and 2) we activate the folios to get them out of 1760 * the way while we continue scanning for clean folios on the 1761 * inactive list and refilling from the active list. The 1762 * observation here is that waiting for disk writes is more 1763 * expensive than potentially causing reloads down the line. 1764 * Since they're marked for immediate reclaim, they won't put 1765 * memory pressure on the cache working set any longer than it 1766 * takes to write them to disk. 1767 */ 1768 if (folio_test_writeback(folio)) { 1769 /* Case 1 above */ 1770 if (current_is_kswapd() && 1771 folio_test_reclaim(folio) && 1772 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1773 stat->nr_immediate += nr_pages; 1774 goto activate_locked; 1775 1776 /* Case 2 above */ 1777 } else if (writeback_throttling_sane(sc) || 1778 !folio_test_reclaim(folio) || 1779 !may_enter_fs(folio, sc->gfp_mask)) { 1780 /* 1781 * This is slightly racy - 1782 * folio_end_writeback() might have 1783 * just cleared the reclaim flag, then 1784 * setting the reclaim flag here ends up 1785 * interpreted as the readahead flag - but 1786 * that does not matter enough to care. 1787 * What we do want is for this folio to 1788 * have the reclaim flag set next time 1789 * memcg reclaim reaches the tests above, 1790 * so it will then wait for writeback to 1791 * avoid OOM; and it's also appropriate 1792 * in global reclaim. 1793 */ 1794 folio_set_reclaim(folio); 1795 stat->nr_writeback += nr_pages; 1796 goto activate_locked; 1797 1798 /* Case 3 above */ 1799 } else { 1800 folio_unlock(folio); 1801 folio_wait_writeback(folio); 1802 /* then go back and try same folio again */ 1803 list_add_tail(&folio->lru, folio_list); 1804 continue; 1805 } 1806 } 1807 1808 if (!ignore_references) 1809 references = folio_check_references(folio, sc); 1810 1811 switch (references) { 1812 case FOLIOREF_ACTIVATE: 1813 goto activate_locked; 1814 case FOLIOREF_KEEP: 1815 stat->nr_ref_keep += nr_pages; 1816 goto keep_locked; 1817 case FOLIOREF_RECLAIM: 1818 case FOLIOREF_RECLAIM_CLEAN: 1819 ; /* try to reclaim the folio below */ 1820 } 1821 1822 /* 1823 * Before reclaiming the folio, try to relocate 1824 * its contents to another node. 1825 */ 1826 if (do_demote_pass && 1827 (thp_migration_supported() || !folio_test_large(folio))) { 1828 list_add(&folio->lru, &demote_folios); 1829 folio_unlock(folio); 1830 continue; 1831 } 1832 1833 /* 1834 * Anonymous process memory has backing store? 1835 * Try to allocate it some swap space here. 1836 * Lazyfree folio could be freed directly 1837 */ 1838 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1839 if (!folio_test_swapcache(folio)) { 1840 if (!(sc->gfp_mask & __GFP_IO)) 1841 goto keep_locked; 1842 if (folio_maybe_dma_pinned(folio)) 1843 goto keep_locked; 1844 if (folio_test_large(folio)) { 1845 /* cannot split folio, skip it */ 1846 if (!can_split_folio(folio, NULL)) 1847 goto activate_locked; 1848 /* 1849 * Split folios without a PMD map right 1850 * away. Chances are some or all of the 1851 * tail pages can be freed without IO. 1852 */ 1853 if (!folio_entire_mapcount(folio) && 1854 split_folio_to_list(folio, 1855 folio_list)) 1856 goto activate_locked; 1857 } 1858 if (!add_to_swap(folio)) { 1859 if (!folio_test_large(folio)) 1860 goto activate_locked_split; 1861 /* Fallback to swap normal pages */ 1862 if (split_folio_to_list(folio, 1863 folio_list)) 1864 goto activate_locked; 1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1866 count_vm_event(THP_SWPOUT_FALLBACK); 1867 #endif 1868 if (!add_to_swap(folio)) 1869 goto activate_locked_split; 1870 } 1871 } 1872 } else if (folio_test_swapbacked(folio) && 1873 folio_test_large(folio)) { 1874 /* Split shmem folio */ 1875 if (split_folio_to_list(folio, folio_list)) 1876 goto keep_locked; 1877 } 1878 1879 /* 1880 * If the folio was split above, the tail pages will make 1881 * their own pass through this function and be accounted 1882 * then. 1883 */ 1884 if ((nr_pages > 1) && !folio_test_large(folio)) { 1885 sc->nr_scanned -= (nr_pages - 1); 1886 nr_pages = 1; 1887 } 1888 1889 /* 1890 * The folio is mapped into the page tables of one or more 1891 * processes. Try to unmap it here. 1892 */ 1893 if (folio_mapped(folio)) { 1894 enum ttu_flags flags = TTU_BATCH_FLUSH; 1895 bool was_swapbacked = folio_test_swapbacked(folio); 1896 1897 if (folio_test_pmd_mappable(folio)) 1898 flags |= TTU_SPLIT_HUGE_PMD; 1899 1900 try_to_unmap(folio, flags); 1901 if (folio_mapped(folio)) { 1902 stat->nr_unmap_fail += nr_pages; 1903 if (!was_swapbacked && 1904 folio_test_swapbacked(folio)) 1905 stat->nr_lazyfree_fail += nr_pages; 1906 goto activate_locked; 1907 } 1908 } 1909 1910 mapping = folio_mapping(folio); 1911 if (folio_test_dirty(folio)) { 1912 /* 1913 * Only kswapd can writeback filesystem folios 1914 * to avoid risk of stack overflow. But avoid 1915 * injecting inefficient single-folio I/O into 1916 * flusher writeback as much as possible: only 1917 * write folios when we've encountered many 1918 * dirty folios, and when we've already scanned 1919 * the rest of the LRU for clean folios and see 1920 * the same dirty folios again (with the reclaim 1921 * flag set). 1922 */ 1923 if (folio_is_file_lru(folio) && 1924 (!current_is_kswapd() || 1925 !folio_test_reclaim(folio) || 1926 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1927 /* 1928 * Immediately reclaim when written back. 1929 * Similar in principle to folio_deactivate() 1930 * except we already have the folio isolated 1931 * and know it's dirty 1932 */ 1933 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1934 nr_pages); 1935 folio_set_reclaim(folio); 1936 1937 goto activate_locked; 1938 } 1939 1940 if (references == FOLIOREF_RECLAIM_CLEAN) 1941 goto keep_locked; 1942 if (!may_enter_fs(folio, sc->gfp_mask)) 1943 goto keep_locked; 1944 if (!sc->may_writepage) 1945 goto keep_locked; 1946 1947 /* 1948 * Folio is dirty. Flush the TLB if a writable entry 1949 * potentially exists to avoid CPU writes after I/O 1950 * starts and then write it out here. 1951 */ 1952 try_to_unmap_flush_dirty(); 1953 switch (pageout(folio, mapping, &plug)) { 1954 case PAGE_KEEP: 1955 goto keep_locked; 1956 case PAGE_ACTIVATE: 1957 goto activate_locked; 1958 case PAGE_SUCCESS: 1959 stat->nr_pageout += nr_pages; 1960 1961 if (folio_test_writeback(folio)) 1962 goto keep; 1963 if (folio_test_dirty(folio)) 1964 goto keep; 1965 1966 /* 1967 * A synchronous write - probably a ramdisk. Go 1968 * ahead and try to reclaim the folio. 1969 */ 1970 if (!folio_trylock(folio)) 1971 goto keep; 1972 if (folio_test_dirty(folio) || 1973 folio_test_writeback(folio)) 1974 goto keep_locked; 1975 mapping = folio_mapping(folio); 1976 fallthrough; 1977 case PAGE_CLEAN: 1978 ; /* try to free the folio below */ 1979 } 1980 } 1981 1982 /* 1983 * If the folio has buffers, try to free the buffer 1984 * mappings associated with this folio. If we succeed 1985 * we try to free the folio as well. 1986 * 1987 * We do this even if the folio is dirty. 1988 * filemap_release_folio() does not perform I/O, but it 1989 * is possible for a folio to have the dirty flag set, 1990 * but it is actually clean (all its buffers are clean). 1991 * This happens if the buffers were written out directly, 1992 * with submit_bh(). ext3 will do this, as well as 1993 * the blockdev mapping. filemap_release_folio() will 1994 * discover that cleanness and will drop the buffers 1995 * and mark the folio clean - it can be freed. 1996 * 1997 * Rarely, folios can have buffers and no ->mapping. 1998 * These are the folios which were not successfully 1999 * invalidated in truncate_cleanup_folio(). We try to 2000 * drop those buffers here and if that worked, and the 2001 * folio is no longer mapped into process address space 2002 * (refcount == 1) it can be freed. Otherwise, leave 2003 * the folio on the LRU so it is swappable. 2004 */ 2005 if (folio_has_private(folio)) { 2006 if (!filemap_release_folio(folio, sc->gfp_mask)) 2007 goto activate_locked; 2008 if (!mapping && folio_ref_count(folio) == 1) { 2009 folio_unlock(folio); 2010 if (folio_put_testzero(folio)) 2011 goto free_it; 2012 else { 2013 /* 2014 * rare race with speculative reference. 2015 * the speculative reference will free 2016 * this folio shortly, so we may 2017 * increment nr_reclaimed here (and 2018 * leave it off the LRU). 2019 */ 2020 nr_reclaimed += nr_pages; 2021 continue; 2022 } 2023 } 2024 } 2025 2026 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2027 /* follow __remove_mapping for reference */ 2028 if (!folio_ref_freeze(folio, 1)) 2029 goto keep_locked; 2030 /* 2031 * The folio has only one reference left, which is 2032 * from the isolation. After the caller puts the 2033 * folio back on the lru and drops the reference, the 2034 * folio will be freed anyway. It doesn't matter 2035 * which lru it goes on. So we don't bother checking 2036 * the dirty flag here. 2037 */ 2038 count_vm_events(PGLAZYFREED, nr_pages); 2039 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2040 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2041 sc->target_mem_cgroup)) 2042 goto keep_locked; 2043 2044 folio_unlock(folio); 2045 free_it: 2046 /* 2047 * Folio may get swapped out as a whole, need to account 2048 * all pages in it. 2049 */ 2050 nr_reclaimed += nr_pages; 2051 2052 /* 2053 * Is there need to periodically free_folio_list? It would 2054 * appear not as the counts should be low 2055 */ 2056 if (unlikely(folio_test_large(folio))) 2057 destroy_large_folio(folio); 2058 else 2059 list_add(&folio->lru, &free_folios); 2060 continue; 2061 2062 activate_locked_split: 2063 /* 2064 * The tail pages that are failed to add into swap cache 2065 * reach here. Fixup nr_scanned and nr_pages. 2066 */ 2067 if (nr_pages > 1) { 2068 sc->nr_scanned -= (nr_pages - 1); 2069 nr_pages = 1; 2070 } 2071 activate_locked: 2072 /* Not a candidate for swapping, so reclaim swap space. */ 2073 if (folio_test_swapcache(folio) && 2074 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2075 folio_free_swap(folio); 2076 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2077 if (!folio_test_mlocked(folio)) { 2078 int type = folio_is_file_lru(folio); 2079 folio_set_active(folio); 2080 stat->nr_activate[type] += nr_pages; 2081 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2082 } 2083 keep_locked: 2084 folio_unlock(folio); 2085 keep: 2086 list_add(&folio->lru, &ret_folios); 2087 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2088 folio_test_unevictable(folio), folio); 2089 } 2090 /* 'folio_list' is always empty here */ 2091 2092 /* Migrate folios selected for demotion */ 2093 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2094 /* Folios that could not be demoted are still in @demote_folios */ 2095 if (!list_empty(&demote_folios)) { 2096 /* Folios which weren't demoted go back on @folio_list */ 2097 list_splice_init(&demote_folios, folio_list); 2098 2099 /* 2100 * goto retry to reclaim the undemoted folios in folio_list if 2101 * desired. 2102 * 2103 * Reclaiming directly from top tier nodes is not often desired 2104 * due to it breaking the LRU ordering: in general memory 2105 * should be reclaimed from lower tier nodes and demoted from 2106 * top tier nodes. 2107 * 2108 * However, disabling reclaim from top tier nodes entirely 2109 * would cause ooms in edge scenarios where lower tier memory 2110 * is unreclaimable for whatever reason, eg memory being 2111 * mlocked or too hot to reclaim. We can disable reclaim 2112 * from top tier nodes in proactive reclaim though as that is 2113 * not real memory pressure. 2114 */ 2115 if (!sc->proactive) { 2116 do_demote_pass = false; 2117 goto retry; 2118 } 2119 } 2120 2121 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2122 2123 mem_cgroup_uncharge_list(&free_folios); 2124 try_to_unmap_flush(); 2125 free_unref_page_list(&free_folios); 2126 2127 list_splice(&ret_folios, folio_list); 2128 count_vm_events(PGACTIVATE, pgactivate); 2129 2130 if (plug) 2131 swap_write_unplug(plug); 2132 return nr_reclaimed; 2133 } 2134 2135 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2136 struct list_head *folio_list) 2137 { 2138 struct scan_control sc = { 2139 .gfp_mask = GFP_KERNEL, 2140 .may_unmap = 1, 2141 }; 2142 struct reclaim_stat stat; 2143 unsigned int nr_reclaimed; 2144 struct folio *folio, *next; 2145 LIST_HEAD(clean_folios); 2146 unsigned int noreclaim_flag; 2147 2148 list_for_each_entry_safe(folio, next, folio_list, lru) { 2149 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2150 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2151 !folio_test_unevictable(folio)) { 2152 folio_clear_active(folio); 2153 list_move(&folio->lru, &clean_folios); 2154 } 2155 } 2156 2157 /* 2158 * We should be safe here since we are only dealing with file pages and 2159 * we are not kswapd and therefore cannot write dirty file pages. But 2160 * call memalloc_noreclaim_save() anyway, just in case these conditions 2161 * change in the future. 2162 */ 2163 noreclaim_flag = memalloc_noreclaim_save(); 2164 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2165 &stat, true); 2166 memalloc_noreclaim_restore(noreclaim_flag); 2167 2168 list_splice(&clean_folios, folio_list); 2169 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2170 -(long)nr_reclaimed); 2171 /* 2172 * Since lazyfree pages are isolated from file LRU from the beginning, 2173 * they will rotate back to anonymous LRU in the end if it failed to 2174 * discard so isolated count will be mismatched. 2175 * Compensate the isolated count for both LRU lists. 2176 */ 2177 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2178 stat.nr_lazyfree_fail); 2179 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2180 -(long)stat.nr_lazyfree_fail); 2181 return nr_reclaimed; 2182 } 2183 2184 /* 2185 * Update LRU sizes after isolating pages. The LRU size updates must 2186 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2187 */ 2188 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2189 enum lru_list lru, unsigned long *nr_zone_taken) 2190 { 2191 int zid; 2192 2193 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2194 if (!nr_zone_taken[zid]) 2195 continue; 2196 2197 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2198 } 2199 2200 } 2201 2202 /* 2203 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2204 * 2205 * lruvec->lru_lock is heavily contended. Some of the functions that 2206 * shrink the lists perform better by taking out a batch of pages 2207 * and working on them outside the LRU lock. 2208 * 2209 * For pagecache intensive workloads, this function is the hottest 2210 * spot in the kernel (apart from copy_*_user functions). 2211 * 2212 * Lru_lock must be held before calling this function. 2213 * 2214 * @nr_to_scan: The number of eligible pages to look through on the list. 2215 * @lruvec: The LRU vector to pull pages from. 2216 * @dst: The temp list to put pages on to. 2217 * @nr_scanned: The number of pages that were scanned. 2218 * @sc: The scan_control struct for this reclaim session 2219 * @lru: LRU list id for isolating 2220 * 2221 * returns how many pages were moved onto *@dst. 2222 */ 2223 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2224 struct lruvec *lruvec, struct list_head *dst, 2225 unsigned long *nr_scanned, struct scan_control *sc, 2226 enum lru_list lru) 2227 { 2228 struct list_head *src = &lruvec->lists[lru]; 2229 unsigned long nr_taken = 0; 2230 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2231 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2232 unsigned long skipped = 0; 2233 unsigned long scan, total_scan, nr_pages; 2234 LIST_HEAD(folios_skipped); 2235 2236 total_scan = 0; 2237 scan = 0; 2238 while (scan < nr_to_scan && !list_empty(src)) { 2239 struct list_head *move_to = src; 2240 struct folio *folio; 2241 2242 folio = lru_to_folio(src); 2243 prefetchw_prev_lru_folio(folio, src, flags); 2244 2245 nr_pages = folio_nr_pages(folio); 2246 total_scan += nr_pages; 2247 2248 if (folio_zonenum(folio) > sc->reclaim_idx) { 2249 nr_skipped[folio_zonenum(folio)] += nr_pages; 2250 move_to = &folios_skipped; 2251 goto move; 2252 } 2253 2254 /* 2255 * Do not count skipped folios because that makes the function 2256 * return with no isolated folios if the LRU mostly contains 2257 * ineligible folios. This causes the VM to not reclaim any 2258 * folios, triggering a premature OOM. 2259 * Account all pages in a folio. 2260 */ 2261 scan += nr_pages; 2262 2263 if (!folio_test_lru(folio)) 2264 goto move; 2265 if (!sc->may_unmap && folio_mapped(folio)) 2266 goto move; 2267 2268 /* 2269 * Be careful not to clear the lru flag until after we're 2270 * sure the folio is not being freed elsewhere -- the 2271 * folio release code relies on it. 2272 */ 2273 if (unlikely(!folio_try_get(folio))) 2274 goto move; 2275 2276 if (!folio_test_clear_lru(folio)) { 2277 /* Another thread is already isolating this folio */ 2278 folio_put(folio); 2279 goto move; 2280 } 2281 2282 nr_taken += nr_pages; 2283 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2284 move_to = dst; 2285 move: 2286 list_move(&folio->lru, move_to); 2287 } 2288 2289 /* 2290 * Splice any skipped folios to the start of the LRU list. Note that 2291 * this disrupts the LRU order when reclaiming for lower zones but 2292 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2293 * scanning would soon rescan the same folios to skip and waste lots 2294 * of cpu cycles. 2295 */ 2296 if (!list_empty(&folios_skipped)) { 2297 int zid; 2298 2299 list_splice(&folios_skipped, src); 2300 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2301 if (!nr_skipped[zid]) 2302 continue; 2303 2304 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2305 skipped += nr_skipped[zid]; 2306 } 2307 } 2308 *nr_scanned = total_scan; 2309 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2310 total_scan, skipped, nr_taken, 2311 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2312 update_lru_sizes(lruvec, lru, nr_zone_taken); 2313 return nr_taken; 2314 } 2315 2316 /** 2317 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2318 * @folio: Folio to isolate from its LRU list. 2319 * 2320 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2321 * corresponding to whatever LRU list the folio was on. 2322 * 2323 * The folio will have its LRU flag cleared. If it was found on the 2324 * active list, it will have the Active flag set. If it was found on the 2325 * unevictable list, it will have the Unevictable flag set. These flags 2326 * may need to be cleared by the caller before letting the page go. 2327 * 2328 * Context: 2329 * 2330 * (1) Must be called with an elevated refcount on the folio. This is a 2331 * fundamental difference from isolate_lru_folios() (which is called 2332 * without a stable reference). 2333 * (2) The lru_lock must not be held. 2334 * (3) Interrupts must be enabled. 2335 * 2336 * Return: 0 if the folio was removed from an LRU list. 2337 * -EBUSY if the folio was not on an LRU list. 2338 */ 2339 int folio_isolate_lru(struct folio *folio) 2340 { 2341 int ret = -EBUSY; 2342 2343 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2344 2345 if (folio_test_clear_lru(folio)) { 2346 struct lruvec *lruvec; 2347 2348 folio_get(folio); 2349 lruvec = folio_lruvec_lock_irq(folio); 2350 lruvec_del_folio(lruvec, folio); 2351 unlock_page_lruvec_irq(lruvec); 2352 ret = 0; 2353 } 2354 2355 return ret; 2356 } 2357 2358 /* 2359 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2360 * then get rescheduled. When there are massive number of tasks doing page 2361 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2362 * the LRU list will go small and be scanned faster than necessary, leading to 2363 * unnecessary swapping, thrashing and OOM. 2364 */ 2365 static int too_many_isolated(struct pglist_data *pgdat, int file, 2366 struct scan_control *sc) 2367 { 2368 unsigned long inactive, isolated; 2369 bool too_many; 2370 2371 if (current_is_kswapd()) 2372 return 0; 2373 2374 if (!writeback_throttling_sane(sc)) 2375 return 0; 2376 2377 if (file) { 2378 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2379 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2380 } else { 2381 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2382 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2383 } 2384 2385 /* 2386 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2387 * won't get blocked by normal direct-reclaimers, forming a circular 2388 * deadlock. 2389 */ 2390 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2391 inactive >>= 3; 2392 2393 too_many = isolated > inactive; 2394 2395 /* Wake up tasks throttled due to too_many_isolated. */ 2396 if (!too_many) 2397 wake_throttle_isolated(pgdat); 2398 2399 return too_many; 2400 } 2401 2402 /* 2403 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2404 * On return, @list is reused as a list of folios to be freed by the caller. 2405 * 2406 * Returns the number of pages moved to the given lruvec. 2407 */ 2408 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2409 struct list_head *list) 2410 { 2411 int nr_pages, nr_moved = 0; 2412 LIST_HEAD(folios_to_free); 2413 2414 while (!list_empty(list)) { 2415 struct folio *folio = lru_to_folio(list); 2416 2417 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2418 list_del(&folio->lru); 2419 if (unlikely(!folio_evictable(folio))) { 2420 spin_unlock_irq(&lruvec->lru_lock); 2421 folio_putback_lru(folio); 2422 spin_lock_irq(&lruvec->lru_lock); 2423 continue; 2424 } 2425 2426 /* 2427 * The folio_set_lru needs to be kept here for list integrity. 2428 * Otherwise: 2429 * #0 move_folios_to_lru #1 release_pages 2430 * if (!folio_put_testzero()) 2431 * if (folio_put_testzero()) 2432 * !lru //skip lru_lock 2433 * folio_set_lru() 2434 * list_add(&folio->lru,) 2435 * list_add(&folio->lru,) 2436 */ 2437 folio_set_lru(folio); 2438 2439 if (unlikely(folio_put_testzero(folio))) { 2440 __folio_clear_lru_flags(folio); 2441 2442 if (unlikely(folio_test_large(folio))) { 2443 spin_unlock_irq(&lruvec->lru_lock); 2444 destroy_large_folio(folio); 2445 spin_lock_irq(&lruvec->lru_lock); 2446 } else 2447 list_add(&folio->lru, &folios_to_free); 2448 2449 continue; 2450 } 2451 2452 /* 2453 * All pages were isolated from the same lruvec (and isolation 2454 * inhibits memcg migration). 2455 */ 2456 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2457 lruvec_add_folio(lruvec, folio); 2458 nr_pages = folio_nr_pages(folio); 2459 nr_moved += nr_pages; 2460 if (folio_test_active(folio)) 2461 workingset_age_nonresident(lruvec, nr_pages); 2462 } 2463 2464 /* 2465 * To save our caller's stack, now use input list for pages to free. 2466 */ 2467 list_splice(&folios_to_free, list); 2468 2469 return nr_moved; 2470 } 2471 2472 /* 2473 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2474 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2475 * we should not throttle. Otherwise it is safe to do so. 2476 */ 2477 static int current_may_throttle(void) 2478 { 2479 return !(current->flags & PF_LOCAL_THROTTLE); 2480 } 2481 2482 /* 2483 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2484 * of reclaimed pages 2485 */ 2486 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2487 struct lruvec *lruvec, struct scan_control *sc, 2488 enum lru_list lru) 2489 { 2490 LIST_HEAD(folio_list); 2491 unsigned long nr_scanned; 2492 unsigned int nr_reclaimed = 0; 2493 unsigned long nr_taken; 2494 struct reclaim_stat stat; 2495 bool file = is_file_lru(lru); 2496 enum vm_event_item item; 2497 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2498 bool stalled = false; 2499 2500 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2501 if (stalled) 2502 return 0; 2503 2504 /* wait a bit for the reclaimer. */ 2505 stalled = true; 2506 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2507 2508 /* We are about to die and free our memory. Return now. */ 2509 if (fatal_signal_pending(current)) 2510 return SWAP_CLUSTER_MAX; 2511 } 2512 2513 lru_add_drain(); 2514 2515 spin_lock_irq(&lruvec->lru_lock); 2516 2517 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2518 &nr_scanned, sc, lru); 2519 2520 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2521 item = PGSCAN_KSWAPD + reclaimer_offset(); 2522 if (!cgroup_reclaim(sc)) 2523 __count_vm_events(item, nr_scanned); 2524 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2525 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2526 2527 spin_unlock_irq(&lruvec->lru_lock); 2528 2529 if (nr_taken == 0) 2530 return 0; 2531 2532 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2533 2534 spin_lock_irq(&lruvec->lru_lock); 2535 move_folios_to_lru(lruvec, &folio_list); 2536 2537 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2538 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2539 if (!cgroup_reclaim(sc)) 2540 __count_vm_events(item, nr_reclaimed); 2541 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2542 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2543 spin_unlock_irq(&lruvec->lru_lock); 2544 2545 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2546 mem_cgroup_uncharge_list(&folio_list); 2547 free_unref_page_list(&folio_list); 2548 2549 /* 2550 * If dirty folios are scanned that are not queued for IO, it 2551 * implies that flushers are not doing their job. This can 2552 * happen when memory pressure pushes dirty folios to the end of 2553 * the LRU before the dirty limits are breached and the dirty 2554 * data has expired. It can also happen when the proportion of 2555 * dirty folios grows not through writes but through memory 2556 * pressure reclaiming all the clean cache. And in some cases, 2557 * the flushers simply cannot keep up with the allocation 2558 * rate. Nudge the flusher threads in case they are asleep. 2559 */ 2560 if (stat.nr_unqueued_dirty == nr_taken) { 2561 wakeup_flusher_threads(WB_REASON_VMSCAN); 2562 /* 2563 * For cgroupv1 dirty throttling is achieved by waking up 2564 * the kernel flusher here and later waiting on folios 2565 * which are in writeback to finish (see shrink_folio_list()). 2566 * 2567 * Flusher may not be able to issue writeback quickly 2568 * enough for cgroupv1 writeback throttling to work 2569 * on a large system. 2570 */ 2571 if (!writeback_throttling_sane(sc)) 2572 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2573 } 2574 2575 sc->nr.dirty += stat.nr_dirty; 2576 sc->nr.congested += stat.nr_congested; 2577 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2578 sc->nr.writeback += stat.nr_writeback; 2579 sc->nr.immediate += stat.nr_immediate; 2580 sc->nr.taken += nr_taken; 2581 if (file) 2582 sc->nr.file_taken += nr_taken; 2583 2584 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2585 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2586 return nr_reclaimed; 2587 } 2588 2589 /* 2590 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2591 * 2592 * We move them the other way if the folio is referenced by one or more 2593 * processes. 2594 * 2595 * If the folios are mostly unmapped, the processing is fast and it is 2596 * appropriate to hold lru_lock across the whole operation. But if 2597 * the folios are mapped, the processing is slow (folio_referenced()), so 2598 * we should drop lru_lock around each folio. It's impossible to balance 2599 * this, so instead we remove the folios from the LRU while processing them. 2600 * It is safe to rely on the active flag against the non-LRU folios in here 2601 * because nobody will play with that bit on a non-LRU folio. 2602 * 2603 * The downside is that we have to touch folio->_refcount against each folio. 2604 * But we had to alter folio->flags anyway. 2605 */ 2606 static void shrink_active_list(unsigned long nr_to_scan, 2607 struct lruvec *lruvec, 2608 struct scan_control *sc, 2609 enum lru_list lru) 2610 { 2611 unsigned long nr_taken; 2612 unsigned long nr_scanned; 2613 unsigned long vm_flags; 2614 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2615 LIST_HEAD(l_active); 2616 LIST_HEAD(l_inactive); 2617 unsigned nr_deactivate, nr_activate; 2618 unsigned nr_rotated = 0; 2619 int file = is_file_lru(lru); 2620 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2621 2622 lru_add_drain(); 2623 2624 spin_lock_irq(&lruvec->lru_lock); 2625 2626 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2627 &nr_scanned, sc, lru); 2628 2629 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2630 2631 if (!cgroup_reclaim(sc)) 2632 __count_vm_events(PGREFILL, nr_scanned); 2633 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2634 2635 spin_unlock_irq(&lruvec->lru_lock); 2636 2637 while (!list_empty(&l_hold)) { 2638 struct folio *folio; 2639 2640 cond_resched(); 2641 folio = lru_to_folio(&l_hold); 2642 list_del(&folio->lru); 2643 2644 if (unlikely(!folio_evictable(folio))) { 2645 folio_putback_lru(folio); 2646 continue; 2647 } 2648 2649 if (unlikely(buffer_heads_over_limit)) { 2650 if (folio_test_private(folio) && folio_trylock(folio)) { 2651 if (folio_test_private(folio)) 2652 filemap_release_folio(folio, 0); 2653 folio_unlock(folio); 2654 } 2655 } 2656 2657 /* Referenced or rmap lock contention: rotate */ 2658 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2659 &vm_flags) != 0) { 2660 /* 2661 * Identify referenced, file-backed active folios and 2662 * give them one more trip around the active list. So 2663 * that executable code get better chances to stay in 2664 * memory under moderate memory pressure. Anon folios 2665 * are not likely to be evicted by use-once streaming 2666 * IO, plus JVM can create lots of anon VM_EXEC folios, 2667 * so we ignore them here. 2668 */ 2669 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2670 nr_rotated += folio_nr_pages(folio); 2671 list_add(&folio->lru, &l_active); 2672 continue; 2673 } 2674 } 2675 2676 folio_clear_active(folio); /* we are de-activating */ 2677 folio_set_workingset(folio); 2678 list_add(&folio->lru, &l_inactive); 2679 } 2680 2681 /* 2682 * Move folios back to the lru list. 2683 */ 2684 spin_lock_irq(&lruvec->lru_lock); 2685 2686 nr_activate = move_folios_to_lru(lruvec, &l_active); 2687 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2688 /* Keep all free folios in l_active list */ 2689 list_splice(&l_inactive, &l_active); 2690 2691 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2692 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2693 2694 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2695 spin_unlock_irq(&lruvec->lru_lock); 2696 2697 if (nr_rotated) 2698 lru_note_cost(lruvec, file, 0, nr_rotated); 2699 mem_cgroup_uncharge_list(&l_active); 2700 free_unref_page_list(&l_active); 2701 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2702 nr_deactivate, nr_rotated, sc->priority, file); 2703 } 2704 2705 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2706 struct pglist_data *pgdat) 2707 { 2708 struct reclaim_stat dummy_stat; 2709 unsigned int nr_reclaimed; 2710 struct folio *folio; 2711 struct scan_control sc = { 2712 .gfp_mask = GFP_KERNEL, 2713 .may_writepage = 1, 2714 .may_unmap = 1, 2715 .may_swap = 1, 2716 .no_demotion = 1, 2717 }; 2718 2719 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2720 while (!list_empty(folio_list)) { 2721 folio = lru_to_folio(folio_list); 2722 list_del(&folio->lru); 2723 folio_putback_lru(folio); 2724 } 2725 2726 return nr_reclaimed; 2727 } 2728 2729 unsigned long reclaim_pages(struct list_head *folio_list) 2730 { 2731 int nid; 2732 unsigned int nr_reclaimed = 0; 2733 LIST_HEAD(node_folio_list); 2734 unsigned int noreclaim_flag; 2735 2736 if (list_empty(folio_list)) 2737 return nr_reclaimed; 2738 2739 noreclaim_flag = memalloc_noreclaim_save(); 2740 2741 nid = folio_nid(lru_to_folio(folio_list)); 2742 do { 2743 struct folio *folio = lru_to_folio(folio_list); 2744 2745 if (nid == folio_nid(folio)) { 2746 folio_clear_active(folio); 2747 list_move(&folio->lru, &node_folio_list); 2748 continue; 2749 } 2750 2751 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2752 nid = folio_nid(lru_to_folio(folio_list)); 2753 } while (!list_empty(folio_list)); 2754 2755 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2756 2757 memalloc_noreclaim_restore(noreclaim_flag); 2758 2759 return nr_reclaimed; 2760 } 2761 2762 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2763 struct lruvec *lruvec, struct scan_control *sc) 2764 { 2765 if (is_active_lru(lru)) { 2766 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2767 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2768 else 2769 sc->skipped_deactivate = 1; 2770 return 0; 2771 } 2772 2773 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2774 } 2775 2776 /* 2777 * The inactive anon list should be small enough that the VM never has 2778 * to do too much work. 2779 * 2780 * The inactive file list should be small enough to leave most memory 2781 * to the established workingset on the scan-resistant active list, 2782 * but large enough to avoid thrashing the aggregate readahead window. 2783 * 2784 * Both inactive lists should also be large enough that each inactive 2785 * folio has a chance to be referenced again before it is reclaimed. 2786 * 2787 * If that fails and refaulting is observed, the inactive list grows. 2788 * 2789 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2790 * on this LRU, maintained by the pageout code. An inactive_ratio 2791 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2792 * 2793 * total target max 2794 * memory ratio inactive 2795 * ------------------------------------- 2796 * 10MB 1 5MB 2797 * 100MB 1 50MB 2798 * 1GB 3 250MB 2799 * 10GB 10 0.9GB 2800 * 100GB 31 3GB 2801 * 1TB 101 10GB 2802 * 10TB 320 32GB 2803 */ 2804 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2805 { 2806 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2807 unsigned long inactive, active; 2808 unsigned long inactive_ratio; 2809 unsigned long gb; 2810 2811 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2812 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2813 2814 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2815 if (gb) 2816 inactive_ratio = int_sqrt(10 * gb); 2817 else 2818 inactive_ratio = 1; 2819 2820 return inactive * inactive_ratio < active; 2821 } 2822 2823 enum scan_balance { 2824 SCAN_EQUAL, 2825 SCAN_FRACT, 2826 SCAN_ANON, 2827 SCAN_FILE, 2828 }; 2829 2830 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2831 { 2832 unsigned long file; 2833 struct lruvec *target_lruvec; 2834 2835 if (lru_gen_enabled()) 2836 return; 2837 2838 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2839 2840 /* 2841 * Flush the memory cgroup stats, so that we read accurate per-memcg 2842 * lruvec stats for heuristics. 2843 */ 2844 mem_cgroup_flush_stats(); 2845 2846 /* 2847 * Determine the scan balance between anon and file LRUs. 2848 */ 2849 spin_lock_irq(&target_lruvec->lru_lock); 2850 sc->anon_cost = target_lruvec->anon_cost; 2851 sc->file_cost = target_lruvec->file_cost; 2852 spin_unlock_irq(&target_lruvec->lru_lock); 2853 2854 /* 2855 * Target desirable inactive:active list ratios for the anon 2856 * and file LRU lists. 2857 */ 2858 if (!sc->force_deactivate) { 2859 unsigned long refaults; 2860 2861 /* 2862 * When refaults are being observed, it means a new 2863 * workingset is being established. Deactivate to get 2864 * rid of any stale active pages quickly. 2865 */ 2866 refaults = lruvec_page_state(target_lruvec, 2867 WORKINGSET_ACTIVATE_ANON); 2868 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2869 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2870 sc->may_deactivate |= DEACTIVATE_ANON; 2871 else 2872 sc->may_deactivate &= ~DEACTIVATE_ANON; 2873 2874 refaults = lruvec_page_state(target_lruvec, 2875 WORKINGSET_ACTIVATE_FILE); 2876 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2877 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2878 sc->may_deactivate |= DEACTIVATE_FILE; 2879 else 2880 sc->may_deactivate &= ~DEACTIVATE_FILE; 2881 } else 2882 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2883 2884 /* 2885 * If we have plenty of inactive file pages that aren't 2886 * thrashing, try to reclaim those first before touching 2887 * anonymous pages. 2888 */ 2889 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2890 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2891 sc->cache_trim_mode = 1; 2892 else 2893 sc->cache_trim_mode = 0; 2894 2895 /* 2896 * Prevent the reclaimer from falling into the cache trap: as 2897 * cache pages start out inactive, every cache fault will tip 2898 * the scan balance towards the file LRU. And as the file LRU 2899 * shrinks, so does the window for rotation from references. 2900 * This means we have a runaway feedback loop where a tiny 2901 * thrashing file LRU becomes infinitely more attractive than 2902 * anon pages. Try to detect this based on file LRU size. 2903 */ 2904 if (!cgroup_reclaim(sc)) { 2905 unsigned long total_high_wmark = 0; 2906 unsigned long free, anon; 2907 int z; 2908 2909 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2910 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2911 node_page_state(pgdat, NR_INACTIVE_FILE); 2912 2913 for (z = 0; z < MAX_NR_ZONES; z++) { 2914 struct zone *zone = &pgdat->node_zones[z]; 2915 2916 if (!managed_zone(zone)) 2917 continue; 2918 2919 total_high_wmark += high_wmark_pages(zone); 2920 } 2921 2922 /* 2923 * Consider anon: if that's low too, this isn't a 2924 * runaway file reclaim problem, but rather just 2925 * extreme pressure. Reclaim as per usual then. 2926 */ 2927 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2928 2929 sc->file_is_tiny = 2930 file + free <= total_high_wmark && 2931 !(sc->may_deactivate & DEACTIVATE_ANON) && 2932 anon >> sc->priority; 2933 } 2934 } 2935 2936 /* 2937 * Determine how aggressively the anon and file LRU lists should be 2938 * scanned. 2939 * 2940 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2941 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2942 */ 2943 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2944 unsigned long *nr) 2945 { 2946 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2947 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2948 unsigned long anon_cost, file_cost, total_cost; 2949 int swappiness = mem_cgroup_swappiness(memcg); 2950 u64 fraction[ANON_AND_FILE]; 2951 u64 denominator = 0; /* gcc */ 2952 enum scan_balance scan_balance; 2953 unsigned long ap, fp; 2954 enum lru_list lru; 2955 2956 /* If we have no swap space, do not bother scanning anon folios. */ 2957 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2958 scan_balance = SCAN_FILE; 2959 goto out; 2960 } 2961 2962 /* 2963 * Global reclaim will swap to prevent OOM even with no 2964 * swappiness, but memcg users want to use this knob to 2965 * disable swapping for individual groups completely when 2966 * using the memory controller's swap limit feature would be 2967 * too expensive. 2968 */ 2969 if (cgroup_reclaim(sc) && !swappiness) { 2970 scan_balance = SCAN_FILE; 2971 goto out; 2972 } 2973 2974 /* 2975 * Do not apply any pressure balancing cleverness when the 2976 * system is close to OOM, scan both anon and file equally 2977 * (unless the swappiness setting disagrees with swapping). 2978 */ 2979 if (!sc->priority && swappiness) { 2980 scan_balance = SCAN_EQUAL; 2981 goto out; 2982 } 2983 2984 /* 2985 * If the system is almost out of file pages, force-scan anon. 2986 */ 2987 if (sc->file_is_tiny) { 2988 scan_balance = SCAN_ANON; 2989 goto out; 2990 } 2991 2992 /* 2993 * If there is enough inactive page cache, we do not reclaim 2994 * anything from the anonymous working right now. 2995 */ 2996 if (sc->cache_trim_mode) { 2997 scan_balance = SCAN_FILE; 2998 goto out; 2999 } 3000 3001 scan_balance = SCAN_FRACT; 3002 /* 3003 * Calculate the pressure balance between anon and file pages. 3004 * 3005 * The amount of pressure we put on each LRU is inversely 3006 * proportional to the cost of reclaiming each list, as 3007 * determined by the share of pages that are refaulting, times 3008 * the relative IO cost of bringing back a swapped out 3009 * anonymous page vs reloading a filesystem page (swappiness). 3010 * 3011 * Although we limit that influence to ensure no list gets 3012 * left behind completely: at least a third of the pressure is 3013 * applied, before swappiness. 3014 * 3015 * With swappiness at 100, anon and file have equal IO cost. 3016 */ 3017 total_cost = sc->anon_cost + sc->file_cost; 3018 anon_cost = total_cost + sc->anon_cost; 3019 file_cost = total_cost + sc->file_cost; 3020 total_cost = anon_cost + file_cost; 3021 3022 ap = swappiness * (total_cost + 1); 3023 ap /= anon_cost + 1; 3024 3025 fp = (200 - swappiness) * (total_cost + 1); 3026 fp /= file_cost + 1; 3027 3028 fraction[0] = ap; 3029 fraction[1] = fp; 3030 denominator = ap + fp; 3031 out: 3032 for_each_evictable_lru(lru) { 3033 int file = is_file_lru(lru); 3034 unsigned long lruvec_size; 3035 unsigned long low, min; 3036 unsigned long scan; 3037 3038 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3039 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3040 &min, &low); 3041 3042 if (min || low) { 3043 /* 3044 * Scale a cgroup's reclaim pressure by proportioning 3045 * its current usage to its memory.low or memory.min 3046 * setting. 3047 * 3048 * This is important, as otherwise scanning aggression 3049 * becomes extremely binary -- from nothing as we 3050 * approach the memory protection threshold, to totally 3051 * nominal as we exceed it. This results in requiring 3052 * setting extremely liberal protection thresholds. It 3053 * also means we simply get no protection at all if we 3054 * set it too low, which is not ideal. 3055 * 3056 * If there is any protection in place, we reduce scan 3057 * pressure by how much of the total memory used is 3058 * within protection thresholds. 3059 * 3060 * There is one special case: in the first reclaim pass, 3061 * we skip over all groups that are within their low 3062 * protection. If that fails to reclaim enough pages to 3063 * satisfy the reclaim goal, we come back and override 3064 * the best-effort low protection. However, we still 3065 * ideally want to honor how well-behaved groups are in 3066 * that case instead of simply punishing them all 3067 * equally. As such, we reclaim them based on how much 3068 * memory they are using, reducing the scan pressure 3069 * again by how much of the total memory used is under 3070 * hard protection. 3071 */ 3072 unsigned long cgroup_size = mem_cgroup_size(memcg); 3073 unsigned long protection; 3074 3075 /* memory.low scaling, make sure we retry before OOM */ 3076 if (!sc->memcg_low_reclaim && low > min) { 3077 protection = low; 3078 sc->memcg_low_skipped = 1; 3079 } else { 3080 protection = min; 3081 } 3082 3083 /* Avoid TOCTOU with earlier protection check */ 3084 cgroup_size = max(cgroup_size, protection); 3085 3086 scan = lruvec_size - lruvec_size * protection / 3087 (cgroup_size + 1); 3088 3089 /* 3090 * Minimally target SWAP_CLUSTER_MAX pages to keep 3091 * reclaim moving forwards, avoiding decrementing 3092 * sc->priority further than desirable. 3093 */ 3094 scan = max(scan, SWAP_CLUSTER_MAX); 3095 } else { 3096 scan = lruvec_size; 3097 } 3098 3099 scan >>= sc->priority; 3100 3101 /* 3102 * If the cgroup's already been deleted, make sure to 3103 * scrape out the remaining cache. 3104 */ 3105 if (!scan && !mem_cgroup_online(memcg)) 3106 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3107 3108 switch (scan_balance) { 3109 case SCAN_EQUAL: 3110 /* Scan lists relative to size */ 3111 break; 3112 case SCAN_FRACT: 3113 /* 3114 * Scan types proportional to swappiness and 3115 * their relative recent reclaim efficiency. 3116 * Make sure we don't miss the last page on 3117 * the offlined memory cgroups because of a 3118 * round-off error. 3119 */ 3120 scan = mem_cgroup_online(memcg) ? 3121 div64_u64(scan * fraction[file], denominator) : 3122 DIV64_U64_ROUND_UP(scan * fraction[file], 3123 denominator); 3124 break; 3125 case SCAN_FILE: 3126 case SCAN_ANON: 3127 /* Scan one type exclusively */ 3128 if ((scan_balance == SCAN_FILE) != file) 3129 scan = 0; 3130 break; 3131 default: 3132 /* Look ma, no brain */ 3133 BUG(); 3134 } 3135 3136 nr[lru] = scan; 3137 } 3138 } 3139 3140 /* 3141 * Anonymous LRU management is a waste if there is 3142 * ultimately no way to reclaim the memory. 3143 */ 3144 static bool can_age_anon_pages(struct pglist_data *pgdat, 3145 struct scan_control *sc) 3146 { 3147 /* Aging the anon LRU is valuable if swap is present: */ 3148 if (total_swap_pages > 0) 3149 return true; 3150 3151 /* Also valuable if anon pages can be demoted: */ 3152 return can_demote(pgdat->node_id, sc); 3153 } 3154 3155 #ifdef CONFIG_LRU_GEN 3156 3157 #ifdef CONFIG_LRU_GEN_ENABLED 3158 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3159 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3160 #else 3161 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3162 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3163 #endif 3164 3165 /****************************************************************************** 3166 * shorthand helpers 3167 ******************************************************************************/ 3168 3169 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3170 3171 #define DEFINE_MAX_SEQ(lruvec) \ 3172 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3173 3174 #define DEFINE_MIN_SEQ(lruvec) \ 3175 unsigned long min_seq[ANON_AND_FILE] = { \ 3176 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3177 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3178 } 3179 3180 #define for_each_gen_type_zone(gen, type, zone) \ 3181 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3182 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3183 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3184 3185 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3186 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3187 3188 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3189 { 3190 struct pglist_data *pgdat = NODE_DATA(nid); 3191 3192 #ifdef CONFIG_MEMCG 3193 if (memcg) { 3194 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3195 3196 /* see the comment in mem_cgroup_lruvec() */ 3197 if (!lruvec->pgdat) 3198 lruvec->pgdat = pgdat; 3199 3200 return lruvec; 3201 } 3202 #endif 3203 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3204 3205 return &pgdat->__lruvec; 3206 } 3207 3208 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3209 { 3210 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3211 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3212 3213 if (!sc->may_swap) 3214 return 0; 3215 3216 if (!can_demote(pgdat->node_id, sc) && 3217 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3218 return 0; 3219 3220 return mem_cgroup_swappiness(memcg); 3221 } 3222 3223 static int get_nr_gens(struct lruvec *lruvec, int type) 3224 { 3225 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3226 } 3227 3228 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3229 { 3230 /* see the comment on lru_gen_folio */ 3231 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3232 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3233 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3234 } 3235 3236 /****************************************************************************** 3237 * mm_struct list 3238 ******************************************************************************/ 3239 3240 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3241 { 3242 static struct lru_gen_mm_list mm_list = { 3243 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3244 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3245 }; 3246 3247 #ifdef CONFIG_MEMCG 3248 if (memcg) 3249 return &memcg->mm_list; 3250 #endif 3251 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3252 3253 return &mm_list; 3254 } 3255 3256 void lru_gen_add_mm(struct mm_struct *mm) 3257 { 3258 int nid; 3259 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3260 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3261 3262 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3263 #ifdef CONFIG_MEMCG 3264 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3265 mm->lru_gen.memcg = memcg; 3266 #endif 3267 spin_lock(&mm_list->lock); 3268 3269 for_each_node_state(nid, N_MEMORY) { 3270 struct lruvec *lruvec = get_lruvec(memcg, nid); 3271 3272 /* the first addition since the last iteration */ 3273 if (lruvec->mm_state.tail == &mm_list->fifo) 3274 lruvec->mm_state.tail = &mm->lru_gen.list; 3275 } 3276 3277 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3278 3279 spin_unlock(&mm_list->lock); 3280 } 3281 3282 void lru_gen_del_mm(struct mm_struct *mm) 3283 { 3284 int nid; 3285 struct lru_gen_mm_list *mm_list; 3286 struct mem_cgroup *memcg = NULL; 3287 3288 if (list_empty(&mm->lru_gen.list)) 3289 return; 3290 3291 #ifdef CONFIG_MEMCG 3292 memcg = mm->lru_gen.memcg; 3293 #endif 3294 mm_list = get_mm_list(memcg); 3295 3296 spin_lock(&mm_list->lock); 3297 3298 for_each_node(nid) { 3299 struct lruvec *lruvec = get_lruvec(memcg, nid); 3300 3301 /* where the last iteration ended (exclusive) */ 3302 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3303 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3304 3305 /* where the current iteration continues (inclusive) */ 3306 if (lruvec->mm_state.head != &mm->lru_gen.list) 3307 continue; 3308 3309 lruvec->mm_state.head = lruvec->mm_state.head->next; 3310 /* the deletion ends the current iteration */ 3311 if (lruvec->mm_state.head == &mm_list->fifo) 3312 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3313 } 3314 3315 list_del_init(&mm->lru_gen.list); 3316 3317 spin_unlock(&mm_list->lock); 3318 3319 #ifdef CONFIG_MEMCG 3320 mem_cgroup_put(mm->lru_gen.memcg); 3321 mm->lru_gen.memcg = NULL; 3322 #endif 3323 } 3324 3325 #ifdef CONFIG_MEMCG 3326 void lru_gen_migrate_mm(struct mm_struct *mm) 3327 { 3328 struct mem_cgroup *memcg; 3329 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3330 3331 VM_WARN_ON_ONCE(task->mm != mm); 3332 lockdep_assert_held(&task->alloc_lock); 3333 3334 /* for mm_update_next_owner() */ 3335 if (mem_cgroup_disabled()) 3336 return; 3337 3338 rcu_read_lock(); 3339 memcg = mem_cgroup_from_task(task); 3340 rcu_read_unlock(); 3341 if (memcg == mm->lru_gen.memcg) 3342 return; 3343 3344 VM_WARN_ON_ONCE(!mm->lru_gen.memcg); 3345 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3346 3347 lru_gen_del_mm(mm); 3348 lru_gen_add_mm(mm); 3349 } 3350 #endif 3351 3352 /* 3353 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3354 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3355 * bits in a bitmap, k is the number of hash functions and n is the number of 3356 * inserted items. 3357 * 3358 * Page table walkers use one of the two filters to reduce their search space. 3359 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3360 * aging uses the double-buffering technique to flip to the other filter each 3361 * time it produces a new generation. For non-leaf entries that have enough 3362 * leaf entries, the aging carries them over to the next generation in 3363 * walk_pmd_range(); the eviction also report them when walking the rmap 3364 * in lru_gen_look_around(). 3365 * 3366 * For future optimizations: 3367 * 1. It's not necessary to keep both filters all the time. The spare one can be 3368 * freed after the RCU grace period and reallocated if needed again. 3369 * 2. And when reallocating, it's worth scaling its size according to the number 3370 * of inserted entries in the other filter, to reduce the memory overhead on 3371 * small systems and false positives on large systems. 3372 * 3. Jenkins' hash function is an alternative to Knuth's. 3373 */ 3374 #define BLOOM_FILTER_SHIFT 15 3375 3376 static inline int filter_gen_from_seq(unsigned long seq) 3377 { 3378 return seq % NR_BLOOM_FILTERS; 3379 } 3380 3381 static void get_item_key(void *item, int *key) 3382 { 3383 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3384 3385 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3386 3387 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3388 key[1] = hash >> BLOOM_FILTER_SHIFT; 3389 } 3390 3391 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3392 { 3393 unsigned long *filter; 3394 int gen = filter_gen_from_seq(seq); 3395 3396 filter = lruvec->mm_state.filters[gen]; 3397 if (filter) { 3398 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3399 return; 3400 } 3401 3402 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3403 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3404 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3405 } 3406 3407 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3408 { 3409 int key[2]; 3410 unsigned long *filter; 3411 int gen = filter_gen_from_seq(seq); 3412 3413 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3414 if (!filter) 3415 return; 3416 3417 get_item_key(item, key); 3418 3419 if (!test_bit(key[0], filter)) 3420 set_bit(key[0], filter); 3421 if (!test_bit(key[1], filter)) 3422 set_bit(key[1], filter); 3423 } 3424 3425 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3426 { 3427 int key[2]; 3428 unsigned long *filter; 3429 int gen = filter_gen_from_seq(seq); 3430 3431 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3432 if (!filter) 3433 return true; 3434 3435 get_item_key(item, key); 3436 3437 return test_bit(key[0], filter) && test_bit(key[1], filter); 3438 } 3439 3440 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3441 { 3442 int i; 3443 int hist; 3444 3445 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3446 3447 if (walk) { 3448 hist = lru_hist_from_seq(walk->max_seq); 3449 3450 for (i = 0; i < NR_MM_STATS; i++) { 3451 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3452 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3453 walk->mm_stats[i] = 0; 3454 } 3455 } 3456 3457 if (NR_HIST_GENS > 1 && last) { 3458 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3459 3460 for (i = 0; i < NR_MM_STATS; i++) 3461 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3462 } 3463 } 3464 3465 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3466 { 3467 int type; 3468 unsigned long size = 0; 3469 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3470 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3471 3472 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3473 return true; 3474 3475 clear_bit(key, &mm->lru_gen.bitmap); 3476 3477 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3478 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3479 get_mm_counter(mm, MM_ANONPAGES) + 3480 get_mm_counter(mm, MM_SHMEMPAGES); 3481 } 3482 3483 if (size < MIN_LRU_BATCH) 3484 return true; 3485 3486 return !mmget_not_zero(mm); 3487 } 3488 3489 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3490 struct mm_struct **iter) 3491 { 3492 bool first = false; 3493 bool last = true; 3494 struct mm_struct *mm = NULL; 3495 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3496 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3497 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3498 3499 /* 3500 * There are four interesting cases for this page table walker: 3501 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3502 * there is nothing left to do. 3503 * 2. It's the first of the current generation, and it needs to reset 3504 * the Bloom filter for the next generation. 3505 * 3. It reaches the end of mm_list, and it needs to increment 3506 * mm_state->seq; the iteration is done. 3507 * 4. It's the last of the current generation, and it needs to reset the 3508 * mm stats counters for the next generation. 3509 */ 3510 spin_lock(&mm_list->lock); 3511 3512 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3513 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3514 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3515 3516 if (walk->max_seq <= mm_state->seq) { 3517 if (!*iter) 3518 last = false; 3519 goto done; 3520 } 3521 3522 if (!mm_state->nr_walkers) { 3523 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3524 3525 mm_state->head = mm_list->fifo.next; 3526 first = true; 3527 } 3528 3529 while (!mm && mm_state->head != &mm_list->fifo) { 3530 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3531 3532 mm_state->head = mm_state->head->next; 3533 3534 /* force scan for those added after the last iteration */ 3535 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3536 mm_state->tail = mm_state->head; 3537 walk->force_scan = true; 3538 } 3539 3540 if (should_skip_mm(mm, walk)) 3541 mm = NULL; 3542 } 3543 3544 if (mm_state->head == &mm_list->fifo) 3545 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3546 done: 3547 if (*iter && !mm) 3548 mm_state->nr_walkers--; 3549 if (!*iter && mm) 3550 mm_state->nr_walkers++; 3551 3552 if (mm_state->nr_walkers) 3553 last = false; 3554 3555 if (*iter || last) 3556 reset_mm_stats(lruvec, walk, last); 3557 3558 spin_unlock(&mm_list->lock); 3559 3560 if (mm && first) 3561 reset_bloom_filter(lruvec, walk->max_seq + 1); 3562 3563 if (*iter) 3564 mmput_async(*iter); 3565 3566 *iter = mm; 3567 3568 return last; 3569 } 3570 3571 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3572 { 3573 bool success = false; 3574 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3575 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3576 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3577 3578 spin_lock(&mm_list->lock); 3579 3580 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3581 3582 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3583 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3584 3585 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3586 reset_mm_stats(lruvec, NULL, true); 3587 success = true; 3588 } 3589 3590 spin_unlock(&mm_list->lock); 3591 3592 return success; 3593 } 3594 3595 /****************************************************************************** 3596 * refault feedback loop 3597 ******************************************************************************/ 3598 3599 /* 3600 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3601 * 3602 * The P term is refaulted/(evicted+protected) from a tier in the generation 3603 * currently being evicted; the I term is the exponential moving average of the 3604 * P term over the generations previously evicted, using the smoothing factor 3605 * 1/2; the D term isn't supported. 3606 * 3607 * The setpoint (SP) is always the first tier of one type; the process variable 3608 * (PV) is either any tier of the other type or any other tier of the same 3609 * type. 3610 * 3611 * The error is the difference between the SP and the PV; the correction is to 3612 * turn off protection when SP>PV or turn on protection when SP<PV. 3613 * 3614 * For future optimizations: 3615 * 1. The D term may discount the other two terms over time so that long-lived 3616 * generations can resist stale information. 3617 */ 3618 struct ctrl_pos { 3619 unsigned long refaulted; 3620 unsigned long total; 3621 int gain; 3622 }; 3623 3624 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3625 struct ctrl_pos *pos) 3626 { 3627 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3628 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3629 3630 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3631 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3632 pos->total = lrugen->avg_total[type][tier] + 3633 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3634 if (tier) 3635 pos->total += lrugen->protected[hist][type][tier - 1]; 3636 pos->gain = gain; 3637 } 3638 3639 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3640 { 3641 int hist, tier; 3642 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3643 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3644 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3645 3646 lockdep_assert_held(&lruvec->lru_lock); 3647 3648 if (!carryover && !clear) 3649 return; 3650 3651 hist = lru_hist_from_seq(seq); 3652 3653 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3654 if (carryover) { 3655 unsigned long sum; 3656 3657 sum = lrugen->avg_refaulted[type][tier] + 3658 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3659 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3660 3661 sum = lrugen->avg_total[type][tier] + 3662 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3663 if (tier) 3664 sum += lrugen->protected[hist][type][tier - 1]; 3665 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3666 } 3667 3668 if (clear) { 3669 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3670 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3671 if (tier) 3672 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3673 } 3674 } 3675 } 3676 3677 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3678 { 3679 /* 3680 * Return true if the PV has a limited number of refaults or a lower 3681 * refaulted/total than the SP. 3682 */ 3683 return pv->refaulted < MIN_LRU_BATCH || 3684 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3685 (sp->refaulted + 1) * pv->total * pv->gain; 3686 } 3687 3688 /****************************************************************************** 3689 * the aging 3690 ******************************************************************************/ 3691 3692 /* promote pages accessed through page tables */ 3693 static int folio_update_gen(struct folio *folio, int gen) 3694 { 3695 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3696 3697 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3698 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3699 3700 do { 3701 /* lru_gen_del_folio() has isolated this page? */ 3702 if (!(old_flags & LRU_GEN_MASK)) { 3703 /* for shrink_folio_list() */ 3704 new_flags = old_flags | BIT(PG_referenced); 3705 continue; 3706 } 3707 3708 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3709 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3710 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3711 3712 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3713 } 3714 3715 /* protect pages accessed multiple times through file descriptors */ 3716 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3717 { 3718 int type = folio_is_file_lru(folio); 3719 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3720 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3721 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3722 3723 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3724 3725 do { 3726 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3727 /* folio_update_gen() has promoted this page? */ 3728 if (new_gen >= 0 && new_gen != old_gen) 3729 return new_gen; 3730 3731 new_gen = (old_gen + 1) % MAX_NR_GENS; 3732 3733 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3734 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3735 /* for folio_end_writeback() */ 3736 if (reclaiming) 3737 new_flags |= BIT(PG_reclaim); 3738 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3739 3740 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3741 3742 return new_gen; 3743 } 3744 3745 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3746 int old_gen, int new_gen) 3747 { 3748 int type = folio_is_file_lru(folio); 3749 int zone = folio_zonenum(folio); 3750 int delta = folio_nr_pages(folio); 3751 3752 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3753 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3754 3755 walk->batched++; 3756 3757 walk->nr_pages[old_gen][type][zone] -= delta; 3758 walk->nr_pages[new_gen][type][zone] += delta; 3759 } 3760 3761 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3762 { 3763 int gen, type, zone; 3764 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3765 3766 walk->batched = 0; 3767 3768 for_each_gen_type_zone(gen, type, zone) { 3769 enum lru_list lru = type * LRU_INACTIVE_FILE; 3770 int delta = walk->nr_pages[gen][type][zone]; 3771 3772 if (!delta) 3773 continue; 3774 3775 walk->nr_pages[gen][type][zone] = 0; 3776 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3777 lrugen->nr_pages[gen][type][zone] + delta); 3778 3779 if (lru_gen_is_active(lruvec, gen)) 3780 lru += LRU_ACTIVE; 3781 __update_lru_size(lruvec, lru, zone, delta); 3782 } 3783 } 3784 3785 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3786 { 3787 struct address_space *mapping; 3788 struct vm_area_struct *vma = args->vma; 3789 struct lru_gen_mm_walk *walk = args->private; 3790 3791 if (!vma_is_accessible(vma)) 3792 return true; 3793 3794 if (is_vm_hugetlb_page(vma)) 3795 return true; 3796 3797 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ)) 3798 return true; 3799 3800 if (vma == get_gate_vma(vma->vm_mm)) 3801 return true; 3802 3803 if (vma_is_anonymous(vma)) 3804 return !walk->can_swap; 3805 3806 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3807 return true; 3808 3809 mapping = vma->vm_file->f_mapping; 3810 if (mapping_unevictable(mapping)) 3811 return true; 3812 3813 if (shmem_mapping(mapping)) 3814 return !walk->can_swap; 3815 3816 /* to exclude special mappings like dax, etc. */ 3817 return !mapping->a_ops->read_folio; 3818 } 3819 3820 /* 3821 * Some userspace memory allocators map many single-page VMAs. Instead of 3822 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3823 * table to reduce zigzags and improve cache performance. 3824 */ 3825 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3826 unsigned long *vm_start, unsigned long *vm_end) 3827 { 3828 unsigned long start = round_up(*vm_end, size); 3829 unsigned long end = (start | ~mask) + 1; 3830 VMA_ITERATOR(vmi, args->mm, start); 3831 3832 VM_WARN_ON_ONCE(mask & size); 3833 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3834 3835 for_each_vma(vmi, args->vma) { 3836 if (end && end <= args->vma->vm_start) 3837 return false; 3838 3839 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3840 continue; 3841 3842 *vm_start = max(start, args->vma->vm_start); 3843 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3844 3845 return true; 3846 } 3847 3848 return false; 3849 } 3850 3851 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3852 { 3853 unsigned long pfn = pte_pfn(pte); 3854 3855 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3856 3857 if (!pte_present(pte) || is_zero_pfn(pfn)) 3858 return -1; 3859 3860 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3861 return -1; 3862 3863 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3864 return -1; 3865 3866 return pfn; 3867 } 3868 3869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3870 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3871 { 3872 unsigned long pfn = pmd_pfn(pmd); 3873 3874 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3875 3876 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3877 return -1; 3878 3879 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3880 return -1; 3881 3882 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3883 return -1; 3884 3885 return pfn; 3886 } 3887 #endif 3888 3889 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3890 struct pglist_data *pgdat, bool can_swap) 3891 { 3892 struct folio *folio; 3893 3894 /* try to avoid unnecessary memory loads */ 3895 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3896 return NULL; 3897 3898 folio = pfn_folio(pfn); 3899 if (folio_nid(folio) != pgdat->node_id) 3900 return NULL; 3901 3902 if (folio_memcg_rcu(folio) != memcg) 3903 return NULL; 3904 3905 /* file VMAs can contain anon pages from COW */ 3906 if (!folio_is_file_lru(folio) && !can_swap) 3907 return NULL; 3908 3909 return folio; 3910 } 3911 3912 static bool suitable_to_scan(int total, int young) 3913 { 3914 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3915 3916 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3917 return young * n >= total; 3918 } 3919 3920 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3921 struct mm_walk *args) 3922 { 3923 int i; 3924 pte_t *pte; 3925 spinlock_t *ptl; 3926 unsigned long addr; 3927 int total = 0; 3928 int young = 0; 3929 struct lru_gen_mm_walk *walk = args->private; 3930 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3931 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3932 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3933 3934 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3935 3936 ptl = pte_lockptr(args->mm, pmd); 3937 if (!spin_trylock(ptl)) 3938 return false; 3939 3940 arch_enter_lazy_mmu_mode(); 3941 3942 pte = pte_offset_map(pmd, start & PMD_MASK); 3943 restart: 3944 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3945 unsigned long pfn; 3946 struct folio *folio; 3947 3948 total++; 3949 walk->mm_stats[MM_LEAF_TOTAL]++; 3950 3951 pfn = get_pte_pfn(pte[i], args->vma, addr); 3952 if (pfn == -1) 3953 continue; 3954 3955 if (!pte_young(pte[i])) { 3956 walk->mm_stats[MM_LEAF_OLD]++; 3957 continue; 3958 } 3959 3960 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3961 if (!folio) 3962 continue; 3963 3964 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3965 VM_WARN_ON_ONCE(true); 3966 3967 young++; 3968 walk->mm_stats[MM_LEAF_YOUNG]++; 3969 3970 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3971 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3972 !folio_test_swapcache(folio))) 3973 folio_mark_dirty(folio); 3974 3975 old_gen = folio_update_gen(folio, new_gen); 3976 if (old_gen >= 0 && old_gen != new_gen) 3977 update_batch_size(walk, folio, old_gen, new_gen); 3978 } 3979 3980 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3981 goto restart; 3982 3983 pte_unmap(pte); 3984 3985 arch_leave_lazy_mmu_mode(); 3986 spin_unlock(ptl); 3987 3988 return suitable_to_scan(total, young); 3989 } 3990 3991 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3992 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 3993 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 3994 { 3995 int i; 3996 pmd_t *pmd; 3997 spinlock_t *ptl; 3998 struct lru_gen_mm_walk *walk = args->private; 3999 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4000 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4001 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4002 4003 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4004 4005 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4006 if (*start == -1) { 4007 *start = next; 4008 return; 4009 } 4010 4011 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start); 4012 if (i && i <= MIN_LRU_BATCH) { 4013 __set_bit(i - 1, bitmap); 4014 return; 4015 } 4016 4017 pmd = pmd_offset(pud, *start); 4018 4019 ptl = pmd_lockptr(args->mm, pmd); 4020 if (!spin_trylock(ptl)) 4021 goto done; 4022 4023 arch_enter_lazy_mmu_mode(); 4024 4025 do { 4026 unsigned long pfn; 4027 struct folio *folio; 4028 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start; 4029 4030 pfn = get_pmd_pfn(pmd[i], vma, addr); 4031 if (pfn == -1) 4032 goto next; 4033 4034 if (!pmd_trans_huge(pmd[i])) { 4035 if (arch_has_hw_nonleaf_pmd_young() && 4036 get_cap(LRU_GEN_NONLEAF_YOUNG)) 4037 pmdp_test_and_clear_young(vma, addr, pmd + i); 4038 goto next; 4039 } 4040 4041 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4042 if (!folio) 4043 goto next; 4044 4045 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4046 goto next; 4047 4048 walk->mm_stats[MM_LEAF_YOUNG]++; 4049 4050 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4051 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4052 !folio_test_swapcache(folio))) 4053 folio_mark_dirty(folio); 4054 4055 old_gen = folio_update_gen(folio, new_gen); 4056 if (old_gen >= 0 && old_gen != new_gen) 4057 update_batch_size(walk, folio, old_gen, new_gen); 4058 next: 4059 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4060 } while (i <= MIN_LRU_BATCH); 4061 4062 arch_leave_lazy_mmu_mode(); 4063 spin_unlock(ptl); 4064 done: 4065 *start = -1; 4066 bitmap_zero(bitmap, MIN_LRU_BATCH); 4067 } 4068 #else 4069 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 4070 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 4071 { 4072 } 4073 #endif 4074 4075 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4076 struct mm_walk *args) 4077 { 4078 int i; 4079 pmd_t *pmd; 4080 unsigned long next; 4081 unsigned long addr; 4082 struct vm_area_struct *vma; 4083 unsigned long pos = -1; 4084 struct lru_gen_mm_walk *walk = args->private; 4085 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4086 4087 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4088 4089 /* 4090 * Finish an entire PMD in two passes: the first only reaches to PTE 4091 * tables to avoid taking the PMD lock; the second, if necessary, takes 4092 * the PMD lock to clear the accessed bit in PMD entries. 4093 */ 4094 pmd = pmd_offset(pud, start & PUD_MASK); 4095 restart: 4096 /* walk_pte_range() may call get_next_vma() */ 4097 vma = args->vma; 4098 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4099 pmd_t val = pmdp_get_lockless(pmd + i); 4100 4101 next = pmd_addr_end(addr, end); 4102 4103 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4104 walk->mm_stats[MM_LEAF_TOTAL]++; 4105 continue; 4106 } 4107 4108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4109 if (pmd_trans_huge(val)) { 4110 unsigned long pfn = pmd_pfn(val); 4111 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4112 4113 walk->mm_stats[MM_LEAF_TOTAL]++; 4114 4115 if (!pmd_young(val)) { 4116 walk->mm_stats[MM_LEAF_OLD]++; 4117 continue; 4118 } 4119 4120 /* try to avoid unnecessary memory loads */ 4121 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4122 continue; 4123 4124 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4125 continue; 4126 } 4127 #endif 4128 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4129 4130 if (arch_has_hw_nonleaf_pmd_young() && 4131 get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4132 if (!pmd_young(val)) 4133 continue; 4134 4135 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4136 } 4137 4138 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4139 continue; 4140 4141 walk->mm_stats[MM_NONLEAF_FOUND]++; 4142 4143 if (!walk_pte_range(&val, addr, next, args)) 4144 continue; 4145 4146 walk->mm_stats[MM_NONLEAF_ADDED]++; 4147 4148 /* carry over to the next generation */ 4149 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4150 } 4151 4152 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos); 4153 4154 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4155 goto restart; 4156 } 4157 4158 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4159 struct mm_walk *args) 4160 { 4161 int i; 4162 pud_t *pud; 4163 unsigned long addr; 4164 unsigned long next; 4165 struct lru_gen_mm_walk *walk = args->private; 4166 4167 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4168 4169 pud = pud_offset(p4d, start & P4D_MASK); 4170 restart: 4171 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4172 pud_t val = READ_ONCE(pud[i]); 4173 4174 next = pud_addr_end(addr, end); 4175 4176 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4177 continue; 4178 4179 walk_pmd_range(&val, addr, next, args); 4180 4181 /* a racy check to curtail the waiting time */ 4182 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4183 return 1; 4184 4185 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4186 end = (addr | ~PUD_MASK) + 1; 4187 goto done; 4188 } 4189 } 4190 4191 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4192 goto restart; 4193 4194 end = round_up(end, P4D_SIZE); 4195 done: 4196 if (!end || !args->vma) 4197 return 1; 4198 4199 walk->next_addr = max(end, args->vma->vm_start); 4200 4201 return -EAGAIN; 4202 } 4203 4204 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4205 { 4206 static const struct mm_walk_ops mm_walk_ops = { 4207 .test_walk = should_skip_vma, 4208 .p4d_entry = walk_pud_range, 4209 }; 4210 4211 int err; 4212 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4213 4214 walk->next_addr = FIRST_USER_ADDRESS; 4215 4216 do { 4217 err = -EBUSY; 4218 4219 /* folio_update_gen() requires stable folio_memcg() */ 4220 if (!mem_cgroup_trylock_pages(memcg)) 4221 break; 4222 4223 /* the caller might be holding the lock for write */ 4224 if (mmap_read_trylock(mm)) { 4225 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4226 4227 mmap_read_unlock(mm); 4228 } 4229 4230 mem_cgroup_unlock_pages(); 4231 4232 if (walk->batched) { 4233 spin_lock_irq(&lruvec->lru_lock); 4234 reset_batch_size(lruvec, walk); 4235 spin_unlock_irq(&lruvec->lru_lock); 4236 } 4237 4238 cond_resched(); 4239 } while (err == -EAGAIN); 4240 } 4241 4242 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4243 { 4244 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4245 4246 if (pgdat && current_is_kswapd()) { 4247 VM_WARN_ON_ONCE(walk); 4248 4249 walk = &pgdat->mm_walk; 4250 } else if (!walk && force_alloc) { 4251 VM_WARN_ON_ONCE(current_is_kswapd()); 4252 4253 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4254 } 4255 4256 current->reclaim_state->mm_walk = walk; 4257 4258 return walk; 4259 } 4260 4261 static void clear_mm_walk(void) 4262 { 4263 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4264 4265 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4266 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4267 4268 current->reclaim_state->mm_walk = NULL; 4269 4270 if (!current_is_kswapd()) 4271 kfree(walk); 4272 } 4273 4274 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4275 { 4276 int zone; 4277 int remaining = MAX_LRU_BATCH; 4278 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4279 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4280 4281 if (type == LRU_GEN_ANON && !can_swap) 4282 goto done; 4283 4284 /* prevent cold/hot inversion if force_scan is true */ 4285 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4286 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4287 4288 while (!list_empty(head)) { 4289 struct folio *folio = lru_to_folio(head); 4290 4291 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4292 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4293 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4294 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4295 4296 new_gen = folio_inc_gen(lruvec, folio, false); 4297 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4298 4299 if (!--remaining) 4300 return false; 4301 } 4302 } 4303 done: 4304 reset_ctrl_pos(lruvec, type, true); 4305 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4306 4307 return true; 4308 } 4309 4310 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4311 { 4312 int gen, type, zone; 4313 bool success = false; 4314 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4315 DEFINE_MIN_SEQ(lruvec); 4316 4317 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4318 4319 /* find the oldest populated generation */ 4320 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4321 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4322 gen = lru_gen_from_seq(min_seq[type]); 4323 4324 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4325 if (!list_empty(&lrugen->folios[gen][type][zone])) 4326 goto next; 4327 } 4328 4329 min_seq[type]++; 4330 } 4331 next: 4332 ; 4333 } 4334 4335 /* see the comment on lru_gen_folio */ 4336 if (can_swap) { 4337 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4338 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4339 } 4340 4341 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4342 if (min_seq[type] == lrugen->min_seq[type]) 4343 continue; 4344 4345 reset_ctrl_pos(lruvec, type, true); 4346 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4347 success = true; 4348 } 4349 4350 return success; 4351 } 4352 4353 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4354 { 4355 int prev, next; 4356 int type, zone; 4357 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4358 4359 spin_lock_irq(&lruvec->lru_lock); 4360 4361 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4362 4363 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4364 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4365 continue; 4366 4367 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4368 4369 while (!inc_min_seq(lruvec, type, can_swap)) { 4370 spin_unlock_irq(&lruvec->lru_lock); 4371 cond_resched(); 4372 spin_lock_irq(&lruvec->lru_lock); 4373 } 4374 } 4375 4376 /* 4377 * Update the active/inactive LRU sizes for compatibility. Both sides of 4378 * the current max_seq need to be covered, since max_seq+1 can overlap 4379 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4380 * overlap, cold/hot inversion happens. 4381 */ 4382 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4383 next = lru_gen_from_seq(lrugen->max_seq + 1); 4384 4385 for (type = 0; type < ANON_AND_FILE; type++) { 4386 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4387 enum lru_list lru = type * LRU_INACTIVE_FILE; 4388 long delta = lrugen->nr_pages[prev][type][zone] - 4389 lrugen->nr_pages[next][type][zone]; 4390 4391 if (!delta) 4392 continue; 4393 4394 __update_lru_size(lruvec, lru, zone, delta); 4395 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4396 } 4397 } 4398 4399 for (type = 0; type < ANON_AND_FILE; type++) 4400 reset_ctrl_pos(lruvec, type, false); 4401 4402 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4403 /* make sure preceding modifications appear */ 4404 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4405 4406 spin_unlock_irq(&lruvec->lru_lock); 4407 } 4408 4409 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4410 struct scan_control *sc, bool can_swap, bool force_scan) 4411 { 4412 bool success; 4413 struct lru_gen_mm_walk *walk; 4414 struct mm_struct *mm = NULL; 4415 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4416 4417 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4418 4419 /* see the comment in iterate_mm_list() */ 4420 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4421 success = false; 4422 goto done; 4423 } 4424 4425 /* 4426 * If the hardware doesn't automatically set the accessed bit, fallback 4427 * to lru_gen_look_around(), which only clears the accessed bit in a 4428 * handful of PTEs. Spreading the work out over a period of time usually 4429 * is less efficient, but it avoids bursty page faults. 4430 */ 4431 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4432 success = iterate_mm_list_nowalk(lruvec, max_seq); 4433 goto done; 4434 } 4435 4436 walk = set_mm_walk(NULL, true); 4437 if (!walk) { 4438 success = iterate_mm_list_nowalk(lruvec, max_seq); 4439 goto done; 4440 } 4441 4442 walk->lruvec = lruvec; 4443 walk->max_seq = max_seq; 4444 walk->can_swap = can_swap; 4445 walk->force_scan = force_scan; 4446 4447 do { 4448 success = iterate_mm_list(lruvec, walk, &mm); 4449 if (mm) 4450 walk_mm(lruvec, mm, walk); 4451 4452 cond_resched(); 4453 } while (mm); 4454 done: 4455 if (!success) { 4456 if (sc->priority <= DEF_PRIORITY - 2) 4457 wait_event_killable(lruvec->mm_state.wait, 4458 max_seq < READ_ONCE(lrugen->max_seq)); 4459 return false; 4460 } 4461 4462 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4463 4464 inc_max_seq(lruvec, can_swap, force_scan); 4465 /* either this sees any waiters or they will see updated max_seq */ 4466 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4467 wake_up_all(&lruvec->mm_state.wait); 4468 4469 return true; 4470 } 4471 4472 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4473 { 4474 int gen, type, zone; 4475 unsigned long total = 0; 4476 bool can_swap = get_swappiness(lruvec, sc); 4477 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4478 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4479 DEFINE_MAX_SEQ(lruvec); 4480 DEFINE_MIN_SEQ(lruvec); 4481 4482 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4483 unsigned long seq; 4484 4485 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4486 gen = lru_gen_from_seq(seq); 4487 4488 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4489 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4490 } 4491 } 4492 4493 /* whether the size is big enough to be helpful */ 4494 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4495 } 4496 4497 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4498 unsigned long min_ttl) 4499 { 4500 int gen; 4501 unsigned long birth; 4502 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4503 DEFINE_MIN_SEQ(lruvec); 4504 4505 /* see the comment on lru_gen_folio */ 4506 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4507 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4508 4509 if (time_is_after_jiffies(birth + min_ttl)) 4510 return false; 4511 4512 if (!lruvec_is_sizable(lruvec, sc)) 4513 return false; 4514 4515 mem_cgroup_calculate_protection(NULL, memcg); 4516 4517 return !mem_cgroup_below_min(NULL, memcg); 4518 } 4519 4520 /* to protect the working set of the last N jiffies */ 4521 static unsigned long lru_gen_min_ttl __read_mostly; 4522 4523 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4524 { 4525 struct mem_cgroup *memcg; 4526 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4527 4528 VM_WARN_ON_ONCE(!current_is_kswapd()); 4529 4530 /* check the order to exclude compaction-induced reclaim */ 4531 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4532 return; 4533 4534 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4535 do { 4536 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4537 4538 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4539 mem_cgroup_iter_break(NULL, memcg); 4540 return; 4541 } 4542 4543 cond_resched(); 4544 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4545 4546 /* 4547 * The main goal is to OOM kill if every generation from all memcgs is 4548 * younger than min_ttl. However, another possibility is all memcgs are 4549 * either too small or below min. 4550 */ 4551 if (mutex_trylock(&oom_lock)) { 4552 struct oom_control oc = { 4553 .gfp_mask = sc->gfp_mask, 4554 }; 4555 4556 out_of_memory(&oc); 4557 4558 mutex_unlock(&oom_lock); 4559 } 4560 } 4561 4562 /* 4563 * This function exploits spatial locality when shrink_folio_list() walks the 4564 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4565 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4566 * the PTE table to the Bloom filter. This forms a feedback loop between the 4567 * eviction and the aging. 4568 */ 4569 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4570 { 4571 int i; 4572 pte_t *pte; 4573 unsigned long start; 4574 unsigned long end; 4575 unsigned long addr; 4576 struct lru_gen_mm_walk *walk; 4577 int young = 0; 4578 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4579 struct folio *folio = pfn_folio(pvmw->pfn); 4580 struct mem_cgroup *memcg = folio_memcg(folio); 4581 struct pglist_data *pgdat = folio_pgdat(folio); 4582 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4583 DEFINE_MAX_SEQ(lruvec); 4584 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4585 4586 lockdep_assert_held(pvmw->ptl); 4587 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4588 4589 if (spin_is_contended(pvmw->ptl)) 4590 return; 4591 4592 /* avoid taking the LRU lock under the PTL when possible */ 4593 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4594 4595 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start); 4596 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4597 4598 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4599 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4600 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4601 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2) 4602 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4603 else { 4604 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2; 4605 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2; 4606 } 4607 } 4608 4609 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE; 4610 4611 rcu_read_lock(); 4612 arch_enter_lazy_mmu_mode(); 4613 4614 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4615 unsigned long pfn; 4616 4617 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4618 if (pfn == -1) 4619 continue; 4620 4621 if (!pte_young(pte[i])) 4622 continue; 4623 4624 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4625 if (!folio) 4626 continue; 4627 4628 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4629 VM_WARN_ON_ONCE(true); 4630 4631 young++; 4632 4633 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4634 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4635 !folio_test_swapcache(folio))) 4636 folio_mark_dirty(folio); 4637 4638 old_gen = folio_lru_gen(folio); 4639 if (old_gen < 0) 4640 folio_set_referenced(folio); 4641 else if (old_gen != new_gen) 4642 __set_bit(i, bitmap); 4643 } 4644 4645 arch_leave_lazy_mmu_mode(); 4646 rcu_read_unlock(); 4647 4648 /* feedback from rmap walkers to page table walkers */ 4649 if (suitable_to_scan(i, young)) 4650 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4651 4652 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) { 4653 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4654 folio = pfn_folio(pte_pfn(pte[i])); 4655 folio_activate(folio); 4656 } 4657 return; 4658 } 4659 4660 /* folio_update_gen() requires stable folio_memcg() */ 4661 if (!mem_cgroup_trylock_pages(memcg)) 4662 return; 4663 4664 if (!walk) { 4665 spin_lock_irq(&lruvec->lru_lock); 4666 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq); 4667 } 4668 4669 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4670 folio = pfn_folio(pte_pfn(pte[i])); 4671 if (folio_memcg_rcu(folio) != memcg) 4672 continue; 4673 4674 old_gen = folio_update_gen(folio, new_gen); 4675 if (old_gen < 0 || old_gen == new_gen) 4676 continue; 4677 4678 if (walk) 4679 update_batch_size(walk, folio, old_gen, new_gen); 4680 else 4681 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 4682 } 4683 4684 if (!walk) 4685 spin_unlock_irq(&lruvec->lru_lock); 4686 4687 mem_cgroup_unlock_pages(); 4688 } 4689 4690 /****************************************************************************** 4691 * the eviction 4692 ******************************************************************************/ 4693 4694 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4695 { 4696 bool success; 4697 int gen = folio_lru_gen(folio); 4698 int type = folio_is_file_lru(folio); 4699 int zone = folio_zonenum(folio); 4700 int delta = folio_nr_pages(folio); 4701 int refs = folio_lru_refs(folio); 4702 int tier = lru_tier_from_refs(refs); 4703 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4704 4705 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4706 4707 /* unevictable */ 4708 if (!folio_evictable(folio)) { 4709 success = lru_gen_del_folio(lruvec, folio, true); 4710 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4711 folio_set_unevictable(folio); 4712 lruvec_add_folio(lruvec, folio); 4713 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4714 return true; 4715 } 4716 4717 /* dirty lazyfree */ 4718 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4719 success = lru_gen_del_folio(lruvec, folio, true); 4720 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4721 folio_set_swapbacked(folio); 4722 lruvec_add_folio_tail(lruvec, folio); 4723 return true; 4724 } 4725 4726 /* promoted */ 4727 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4728 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4729 return true; 4730 } 4731 4732 /* protected */ 4733 if (tier > tier_idx) { 4734 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4735 4736 gen = folio_inc_gen(lruvec, folio, false); 4737 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4738 4739 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4740 lrugen->protected[hist][type][tier - 1] + delta); 4741 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4742 return true; 4743 } 4744 4745 /* waiting for writeback */ 4746 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4747 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4748 gen = folio_inc_gen(lruvec, folio, true); 4749 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4750 return true; 4751 } 4752 4753 return false; 4754 } 4755 4756 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4757 { 4758 bool success; 4759 4760 /* swapping inhibited */ 4761 if (!(sc->gfp_mask & __GFP_IO) && 4762 (folio_test_dirty(folio) || 4763 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4764 return false; 4765 4766 /* raced with release_pages() */ 4767 if (!folio_try_get(folio)) 4768 return false; 4769 4770 /* raced with another isolation */ 4771 if (!folio_test_clear_lru(folio)) { 4772 folio_put(folio); 4773 return false; 4774 } 4775 4776 /* see the comment on MAX_NR_TIERS */ 4777 if (!folio_test_referenced(folio)) 4778 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4779 4780 /* for shrink_folio_list() */ 4781 folio_clear_reclaim(folio); 4782 folio_clear_referenced(folio); 4783 4784 success = lru_gen_del_folio(lruvec, folio, true); 4785 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4786 4787 return true; 4788 } 4789 4790 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4791 int type, int tier, struct list_head *list) 4792 { 4793 int gen, zone; 4794 enum vm_event_item item; 4795 int sorted = 0; 4796 int scanned = 0; 4797 int isolated = 0; 4798 int remaining = MAX_LRU_BATCH; 4799 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4800 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4801 4802 VM_WARN_ON_ONCE(!list_empty(list)); 4803 4804 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4805 return 0; 4806 4807 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4808 4809 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4810 LIST_HEAD(moved); 4811 int skipped = 0; 4812 struct list_head *head = &lrugen->folios[gen][type][zone]; 4813 4814 while (!list_empty(head)) { 4815 struct folio *folio = lru_to_folio(head); 4816 int delta = folio_nr_pages(folio); 4817 4818 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4819 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4820 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4821 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4822 4823 scanned += delta; 4824 4825 if (sort_folio(lruvec, folio, tier)) 4826 sorted += delta; 4827 else if (isolate_folio(lruvec, folio, sc)) { 4828 list_add(&folio->lru, list); 4829 isolated += delta; 4830 } else { 4831 list_move(&folio->lru, &moved); 4832 skipped += delta; 4833 } 4834 4835 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4836 break; 4837 } 4838 4839 if (skipped) { 4840 list_splice(&moved, head); 4841 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4842 } 4843 4844 if (!remaining || isolated >= MIN_LRU_BATCH) 4845 break; 4846 } 4847 4848 item = PGSCAN_KSWAPD + reclaimer_offset(); 4849 if (!cgroup_reclaim(sc)) { 4850 __count_vm_events(item, isolated); 4851 __count_vm_events(PGREFILL, sorted); 4852 } 4853 __count_memcg_events(memcg, item, isolated); 4854 __count_memcg_events(memcg, PGREFILL, sorted); 4855 __count_vm_events(PGSCAN_ANON + type, isolated); 4856 4857 /* 4858 * There might not be eligible folios due to reclaim_idx. Check the 4859 * remaining to prevent livelock if it's not making progress. 4860 */ 4861 return isolated || !remaining ? scanned : 0; 4862 } 4863 4864 static int get_tier_idx(struct lruvec *lruvec, int type) 4865 { 4866 int tier; 4867 struct ctrl_pos sp, pv; 4868 4869 /* 4870 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4871 * This value is chosen because any other tier would have at least twice 4872 * as many refaults as the first tier. 4873 */ 4874 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4875 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4876 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4877 if (!positive_ctrl_err(&sp, &pv)) 4878 break; 4879 } 4880 4881 return tier - 1; 4882 } 4883 4884 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4885 { 4886 int type, tier; 4887 struct ctrl_pos sp, pv; 4888 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4889 4890 /* 4891 * Compare the first tier of anon with that of file to determine which 4892 * type to scan. Also need to compare other tiers of the selected type 4893 * with the first tier of the other type to determine the last tier (of 4894 * the selected type) to evict. 4895 */ 4896 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4897 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4898 type = positive_ctrl_err(&sp, &pv); 4899 4900 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4901 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4902 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4903 if (!positive_ctrl_err(&sp, &pv)) 4904 break; 4905 } 4906 4907 *tier_idx = tier - 1; 4908 4909 return type; 4910 } 4911 4912 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4913 int *type_scanned, struct list_head *list) 4914 { 4915 int i; 4916 int type; 4917 int scanned; 4918 int tier = -1; 4919 DEFINE_MIN_SEQ(lruvec); 4920 4921 /* 4922 * Try to make the obvious choice first. When anon and file are both 4923 * available from the same generation, interpret swappiness 1 as file 4924 * first and 200 as anon first. 4925 */ 4926 if (!swappiness) 4927 type = LRU_GEN_FILE; 4928 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4929 type = LRU_GEN_ANON; 4930 else if (swappiness == 1) 4931 type = LRU_GEN_FILE; 4932 else if (swappiness == 200) 4933 type = LRU_GEN_ANON; 4934 else 4935 type = get_type_to_scan(lruvec, swappiness, &tier); 4936 4937 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4938 if (tier < 0) 4939 tier = get_tier_idx(lruvec, type); 4940 4941 scanned = scan_folios(lruvec, sc, type, tier, list); 4942 if (scanned) 4943 break; 4944 4945 type = !type; 4946 tier = -1; 4947 } 4948 4949 *type_scanned = type; 4950 4951 return scanned; 4952 } 4953 4954 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4955 { 4956 int type; 4957 int scanned; 4958 int reclaimed; 4959 LIST_HEAD(list); 4960 LIST_HEAD(clean); 4961 struct folio *folio; 4962 struct folio *next; 4963 enum vm_event_item item; 4964 struct reclaim_stat stat; 4965 struct lru_gen_mm_walk *walk; 4966 bool skip_retry = false; 4967 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4968 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4969 4970 spin_lock_irq(&lruvec->lru_lock); 4971 4972 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4973 4974 scanned += try_to_inc_min_seq(lruvec, swappiness); 4975 4976 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4977 scanned = 0; 4978 4979 spin_unlock_irq(&lruvec->lru_lock); 4980 4981 if (list_empty(&list)) 4982 return scanned; 4983 retry: 4984 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4985 sc->nr_reclaimed += reclaimed; 4986 4987 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4988 if (!folio_evictable(folio)) { 4989 list_del(&folio->lru); 4990 folio_putback_lru(folio); 4991 continue; 4992 } 4993 4994 if (folio_test_reclaim(folio) && 4995 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4996 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4997 if (folio_test_workingset(folio)) 4998 folio_set_referenced(folio); 4999 continue; 5000 } 5001 5002 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5003 folio_mapped(folio) || folio_test_locked(folio) || 5004 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5005 /* don't add rejected folios to the oldest generation */ 5006 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5007 BIT(PG_active)); 5008 continue; 5009 } 5010 5011 /* retry folios that may have missed folio_rotate_reclaimable() */ 5012 list_move(&folio->lru, &clean); 5013 sc->nr_scanned -= folio_nr_pages(folio); 5014 } 5015 5016 spin_lock_irq(&lruvec->lru_lock); 5017 5018 move_folios_to_lru(lruvec, &list); 5019 5020 walk = current->reclaim_state->mm_walk; 5021 if (walk && walk->batched) 5022 reset_batch_size(lruvec, walk); 5023 5024 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5025 if (!cgroup_reclaim(sc)) 5026 __count_vm_events(item, reclaimed); 5027 __count_memcg_events(memcg, item, reclaimed); 5028 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5029 5030 spin_unlock_irq(&lruvec->lru_lock); 5031 5032 mem_cgroup_uncharge_list(&list); 5033 free_unref_page_list(&list); 5034 5035 INIT_LIST_HEAD(&list); 5036 list_splice_init(&clean, &list); 5037 5038 if (!list_empty(&list)) { 5039 skip_retry = true; 5040 goto retry; 5041 } 5042 5043 return scanned; 5044 } 5045 5046 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5047 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5048 { 5049 int gen, type, zone; 5050 unsigned long old = 0; 5051 unsigned long young = 0; 5052 unsigned long total = 0; 5053 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5054 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5055 DEFINE_MIN_SEQ(lruvec); 5056 5057 /* whether this lruvec is completely out of cold folios */ 5058 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5059 *nr_to_scan = 0; 5060 return true; 5061 } 5062 5063 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5064 unsigned long seq; 5065 5066 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5067 unsigned long size = 0; 5068 5069 gen = lru_gen_from_seq(seq); 5070 5071 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5072 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5073 5074 total += size; 5075 if (seq == max_seq) 5076 young += size; 5077 else if (seq + MIN_NR_GENS == max_seq) 5078 old += size; 5079 } 5080 } 5081 5082 /* try to scrape all its memory if this memcg was deleted */ 5083 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5084 5085 /* 5086 * The aging tries to be lazy to reduce the overhead, while the eviction 5087 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5088 * ideal number of generations is MIN_NR_GENS+1. 5089 */ 5090 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5091 return false; 5092 5093 /* 5094 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5095 * of the total number of pages for each generation. A reasonable range 5096 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5097 * aging cares about the upper bound of hot pages, while the eviction 5098 * cares about the lower bound of cold pages. 5099 */ 5100 if (young * MIN_NR_GENS > total) 5101 return true; 5102 if (old * (MIN_NR_GENS + 2) < total) 5103 return true; 5104 5105 return false; 5106 } 5107 5108 /* 5109 * For future optimizations: 5110 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5111 * reclaim. 5112 */ 5113 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5114 { 5115 unsigned long nr_to_scan; 5116 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5117 DEFINE_MAX_SEQ(lruvec); 5118 5119 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5120 return 0; 5121 5122 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5123 return nr_to_scan; 5124 5125 /* skip the aging path at the default priority */ 5126 if (sc->priority == DEF_PRIORITY) 5127 return nr_to_scan; 5128 5129 /* skip this lruvec as it's low on cold folios */ 5130 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5131 } 5132 5133 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5134 { 5135 /* don't abort memcg reclaim to ensure fairness */ 5136 if (!global_reclaim(sc)) 5137 return -1; 5138 5139 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5140 } 5141 5142 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5143 { 5144 long nr_to_scan; 5145 unsigned long scanned = 0; 5146 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5147 int swappiness = get_swappiness(lruvec, sc); 5148 5149 /* clean file folios are more likely to exist */ 5150 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5151 swappiness = 1; 5152 5153 while (true) { 5154 int delta; 5155 5156 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5157 if (nr_to_scan <= 0) 5158 break; 5159 5160 delta = evict_folios(lruvec, sc, swappiness); 5161 if (!delta) 5162 break; 5163 5164 scanned += delta; 5165 if (scanned >= nr_to_scan) 5166 break; 5167 5168 if (sc->nr_reclaimed >= nr_to_reclaim) 5169 break; 5170 5171 cond_resched(); 5172 } 5173 5174 /* whether try_to_inc_max_seq() was successful */ 5175 return nr_to_scan < 0; 5176 } 5177 5178 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5179 { 5180 bool success; 5181 unsigned long scanned = sc->nr_scanned; 5182 unsigned long reclaimed = sc->nr_reclaimed; 5183 int seg = lru_gen_memcg_seg(lruvec); 5184 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5185 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5186 5187 /* see the comment on MEMCG_NR_GENS */ 5188 if (!lruvec_is_sizable(lruvec, sc)) 5189 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5190 5191 mem_cgroup_calculate_protection(NULL, memcg); 5192 5193 if (mem_cgroup_below_min(NULL, memcg)) 5194 return MEMCG_LRU_YOUNG; 5195 5196 if (mem_cgroup_below_low(NULL, memcg)) { 5197 /* see the comment on MEMCG_NR_GENS */ 5198 if (seg != MEMCG_LRU_TAIL) 5199 return MEMCG_LRU_TAIL; 5200 5201 memcg_memory_event(memcg, MEMCG_LOW); 5202 } 5203 5204 success = try_to_shrink_lruvec(lruvec, sc); 5205 5206 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5207 5208 if (!sc->proactive) 5209 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5210 sc->nr_reclaimed - reclaimed); 5211 5212 sc->nr_reclaimed += current->reclaim_state->reclaimed_slab; 5213 current->reclaim_state->reclaimed_slab = 0; 5214 5215 return success ? MEMCG_LRU_YOUNG : 0; 5216 } 5217 5218 #ifdef CONFIG_MEMCG 5219 5220 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5221 { 5222 int gen; 5223 int bin; 5224 int first_bin; 5225 struct lruvec *lruvec; 5226 struct lru_gen_folio *lrugen; 5227 const struct hlist_nulls_node *pos; 5228 int op = 0; 5229 struct mem_cgroup *memcg = NULL; 5230 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5231 5232 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5233 restart: 5234 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5235 5236 rcu_read_lock(); 5237 5238 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5239 if (op) 5240 lru_gen_rotate_memcg(lruvec, op); 5241 5242 mem_cgroup_put(memcg); 5243 5244 lruvec = container_of(lrugen, struct lruvec, lrugen); 5245 memcg = lruvec_memcg(lruvec); 5246 5247 if (!mem_cgroup_tryget(memcg)) { 5248 op = 0; 5249 memcg = NULL; 5250 continue; 5251 } 5252 5253 rcu_read_unlock(); 5254 5255 op = shrink_one(lruvec, sc); 5256 5257 if (sc->nr_reclaimed >= nr_to_reclaim) 5258 goto success; 5259 5260 rcu_read_lock(); 5261 } 5262 5263 rcu_read_unlock(); 5264 5265 /* restart if raced with lru_gen_rotate_memcg() */ 5266 if (gen != get_nulls_value(pos)) 5267 goto restart; 5268 5269 /* try the rest of the bins of the current generation */ 5270 bin = get_memcg_bin(bin + 1); 5271 if (bin != first_bin) 5272 goto restart; 5273 success: 5274 if (op) 5275 lru_gen_rotate_memcg(lruvec, op); 5276 5277 mem_cgroup_put(memcg); 5278 } 5279 5280 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5281 { 5282 struct blk_plug plug; 5283 5284 VM_WARN_ON_ONCE(global_reclaim(sc)); 5285 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5286 5287 lru_add_drain(); 5288 5289 blk_start_plug(&plug); 5290 5291 set_mm_walk(NULL, sc->proactive); 5292 5293 if (try_to_shrink_lruvec(lruvec, sc)) 5294 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5295 5296 clear_mm_walk(); 5297 5298 blk_finish_plug(&plug); 5299 } 5300 5301 #else /* !CONFIG_MEMCG */ 5302 5303 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5304 { 5305 BUILD_BUG(); 5306 } 5307 5308 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5309 { 5310 BUILD_BUG(); 5311 } 5312 5313 #endif 5314 5315 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5316 { 5317 int priority; 5318 unsigned long reclaimable; 5319 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5320 5321 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5322 return; 5323 /* 5324 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5325 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5326 * estimated reclaimed_to_scanned_ratio = inactive / total. 5327 */ 5328 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5329 if (get_swappiness(lruvec, sc)) 5330 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5331 5332 reclaimable /= MEMCG_NR_GENS; 5333 5334 /* round down reclaimable and round up sc->nr_to_reclaim */ 5335 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5336 5337 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5338 } 5339 5340 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5341 { 5342 struct blk_plug plug; 5343 unsigned long reclaimed = sc->nr_reclaimed; 5344 5345 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5346 5347 /* 5348 * Unmapped clean folios are already prioritized. Scanning for more of 5349 * them is likely futile and can cause high reclaim latency when there 5350 * is a large number of memcgs. 5351 */ 5352 if (!sc->may_writepage || !sc->may_unmap) 5353 goto done; 5354 5355 lru_add_drain(); 5356 5357 blk_start_plug(&plug); 5358 5359 set_mm_walk(pgdat, sc->proactive); 5360 5361 set_initial_priority(pgdat, sc); 5362 5363 if (current_is_kswapd()) 5364 sc->nr_reclaimed = 0; 5365 5366 if (mem_cgroup_disabled()) 5367 shrink_one(&pgdat->__lruvec, sc); 5368 else 5369 shrink_many(pgdat, sc); 5370 5371 if (current_is_kswapd()) 5372 sc->nr_reclaimed += reclaimed; 5373 5374 clear_mm_walk(); 5375 5376 blk_finish_plug(&plug); 5377 done: 5378 /* kswapd should never fail */ 5379 pgdat->kswapd_failures = 0; 5380 } 5381 5382 #ifdef CONFIG_MEMCG 5383 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 5384 { 5385 int seg; 5386 int old, new; 5387 int bin = get_random_u32_below(MEMCG_NR_BINS); 5388 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5389 5390 spin_lock(&pgdat->memcg_lru.lock); 5391 5392 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 5393 5394 seg = 0; 5395 new = old = lruvec->lrugen.gen; 5396 5397 /* see the comment on MEMCG_NR_GENS */ 5398 if (op == MEMCG_LRU_HEAD) 5399 seg = MEMCG_LRU_HEAD; 5400 else if (op == MEMCG_LRU_TAIL) 5401 seg = MEMCG_LRU_TAIL; 5402 else if (op == MEMCG_LRU_OLD) 5403 new = get_memcg_gen(pgdat->memcg_lru.seq); 5404 else if (op == MEMCG_LRU_YOUNG) 5405 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 5406 else 5407 VM_WARN_ON_ONCE(true); 5408 5409 hlist_nulls_del_rcu(&lruvec->lrugen.list); 5410 5411 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 5412 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 5413 else 5414 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 5415 5416 pgdat->memcg_lru.nr_memcgs[old]--; 5417 pgdat->memcg_lru.nr_memcgs[new]++; 5418 5419 lruvec->lrugen.gen = new; 5420 WRITE_ONCE(lruvec->lrugen.seg, seg); 5421 5422 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 5423 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 5424 5425 spin_unlock(&pgdat->memcg_lru.lock); 5426 } 5427 #endif 5428 5429 /****************************************************************************** 5430 * state change 5431 ******************************************************************************/ 5432 5433 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5434 { 5435 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5436 5437 if (lrugen->enabled) { 5438 enum lru_list lru; 5439 5440 for_each_evictable_lru(lru) { 5441 if (!list_empty(&lruvec->lists[lru])) 5442 return false; 5443 } 5444 } else { 5445 int gen, type, zone; 5446 5447 for_each_gen_type_zone(gen, type, zone) { 5448 if (!list_empty(&lrugen->folios[gen][type][zone])) 5449 return false; 5450 } 5451 } 5452 5453 return true; 5454 } 5455 5456 static bool fill_evictable(struct lruvec *lruvec) 5457 { 5458 enum lru_list lru; 5459 int remaining = MAX_LRU_BATCH; 5460 5461 for_each_evictable_lru(lru) { 5462 int type = is_file_lru(lru); 5463 bool active = is_active_lru(lru); 5464 struct list_head *head = &lruvec->lists[lru]; 5465 5466 while (!list_empty(head)) { 5467 bool success; 5468 struct folio *folio = lru_to_folio(head); 5469 5470 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5471 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5472 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5473 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5474 5475 lruvec_del_folio(lruvec, folio); 5476 success = lru_gen_add_folio(lruvec, folio, false); 5477 VM_WARN_ON_ONCE(!success); 5478 5479 if (!--remaining) 5480 return false; 5481 } 5482 } 5483 5484 return true; 5485 } 5486 5487 static bool drain_evictable(struct lruvec *lruvec) 5488 { 5489 int gen, type, zone; 5490 int remaining = MAX_LRU_BATCH; 5491 5492 for_each_gen_type_zone(gen, type, zone) { 5493 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5494 5495 while (!list_empty(head)) { 5496 bool success; 5497 struct folio *folio = lru_to_folio(head); 5498 5499 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5500 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5501 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5502 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5503 5504 success = lru_gen_del_folio(lruvec, folio, false); 5505 VM_WARN_ON_ONCE(!success); 5506 lruvec_add_folio(lruvec, folio); 5507 5508 if (!--remaining) 5509 return false; 5510 } 5511 } 5512 5513 return true; 5514 } 5515 5516 static void lru_gen_change_state(bool enabled) 5517 { 5518 static DEFINE_MUTEX(state_mutex); 5519 5520 struct mem_cgroup *memcg; 5521 5522 cgroup_lock(); 5523 cpus_read_lock(); 5524 get_online_mems(); 5525 mutex_lock(&state_mutex); 5526 5527 if (enabled == lru_gen_enabled()) 5528 goto unlock; 5529 5530 if (enabled) 5531 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5532 else 5533 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5534 5535 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5536 do { 5537 int nid; 5538 5539 for_each_node(nid) { 5540 struct lruvec *lruvec = get_lruvec(memcg, nid); 5541 5542 spin_lock_irq(&lruvec->lru_lock); 5543 5544 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5545 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5546 5547 lruvec->lrugen.enabled = enabled; 5548 5549 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5550 spin_unlock_irq(&lruvec->lru_lock); 5551 cond_resched(); 5552 spin_lock_irq(&lruvec->lru_lock); 5553 } 5554 5555 spin_unlock_irq(&lruvec->lru_lock); 5556 } 5557 5558 cond_resched(); 5559 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5560 unlock: 5561 mutex_unlock(&state_mutex); 5562 put_online_mems(); 5563 cpus_read_unlock(); 5564 cgroup_unlock(); 5565 } 5566 5567 /****************************************************************************** 5568 * sysfs interface 5569 ******************************************************************************/ 5570 5571 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5572 { 5573 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5574 } 5575 5576 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5577 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5578 const char *buf, size_t len) 5579 { 5580 unsigned int msecs; 5581 5582 if (kstrtouint(buf, 0, &msecs)) 5583 return -EINVAL; 5584 5585 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5586 5587 return len; 5588 } 5589 5590 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5591 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5592 ); 5593 5594 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5595 { 5596 unsigned int caps = 0; 5597 5598 if (get_cap(LRU_GEN_CORE)) 5599 caps |= BIT(LRU_GEN_CORE); 5600 5601 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5602 caps |= BIT(LRU_GEN_MM_WALK); 5603 5604 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5605 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5606 5607 return sysfs_emit(buf, "0x%04x\n", caps); 5608 } 5609 5610 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5611 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5612 const char *buf, size_t len) 5613 { 5614 int i; 5615 unsigned int caps; 5616 5617 if (tolower(*buf) == 'n') 5618 caps = 0; 5619 else if (tolower(*buf) == 'y') 5620 caps = -1; 5621 else if (kstrtouint(buf, 0, &caps)) 5622 return -EINVAL; 5623 5624 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5625 bool enabled = caps & BIT(i); 5626 5627 if (i == LRU_GEN_CORE) 5628 lru_gen_change_state(enabled); 5629 else if (enabled) 5630 static_branch_enable(&lru_gen_caps[i]); 5631 else 5632 static_branch_disable(&lru_gen_caps[i]); 5633 } 5634 5635 return len; 5636 } 5637 5638 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5639 enabled, 0644, show_enabled, store_enabled 5640 ); 5641 5642 static struct attribute *lru_gen_attrs[] = { 5643 &lru_gen_min_ttl_attr.attr, 5644 &lru_gen_enabled_attr.attr, 5645 NULL 5646 }; 5647 5648 static struct attribute_group lru_gen_attr_group = { 5649 .name = "lru_gen", 5650 .attrs = lru_gen_attrs, 5651 }; 5652 5653 /****************************************************************************** 5654 * debugfs interface 5655 ******************************************************************************/ 5656 5657 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5658 { 5659 struct mem_cgroup *memcg; 5660 loff_t nr_to_skip = *pos; 5661 5662 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5663 if (!m->private) 5664 return ERR_PTR(-ENOMEM); 5665 5666 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5667 do { 5668 int nid; 5669 5670 for_each_node_state(nid, N_MEMORY) { 5671 if (!nr_to_skip--) 5672 return get_lruvec(memcg, nid); 5673 } 5674 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5675 5676 return NULL; 5677 } 5678 5679 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5680 { 5681 if (!IS_ERR_OR_NULL(v)) 5682 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5683 5684 kvfree(m->private); 5685 m->private = NULL; 5686 } 5687 5688 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5689 { 5690 int nid = lruvec_pgdat(v)->node_id; 5691 struct mem_cgroup *memcg = lruvec_memcg(v); 5692 5693 ++*pos; 5694 5695 nid = next_memory_node(nid); 5696 if (nid == MAX_NUMNODES) { 5697 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5698 if (!memcg) 5699 return NULL; 5700 5701 nid = first_memory_node; 5702 } 5703 5704 return get_lruvec(memcg, nid); 5705 } 5706 5707 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5708 unsigned long max_seq, unsigned long *min_seq, 5709 unsigned long seq) 5710 { 5711 int i; 5712 int type, tier; 5713 int hist = lru_hist_from_seq(seq); 5714 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5715 5716 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5717 seq_printf(m, " %10d", tier); 5718 for (type = 0; type < ANON_AND_FILE; type++) { 5719 const char *s = " "; 5720 unsigned long n[3] = {}; 5721 5722 if (seq == max_seq) { 5723 s = "RT "; 5724 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5725 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5726 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5727 s = "rep"; 5728 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5729 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5730 if (tier) 5731 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5732 } 5733 5734 for (i = 0; i < 3; i++) 5735 seq_printf(m, " %10lu%c", n[i], s[i]); 5736 } 5737 seq_putc(m, '\n'); 5738 } 5739 5740 seq_puts(m, " "); 5741 for (i = 0; i < NR_MM_STATS; i++) { 5742 const char *s = " "; 5743 unsigned long n = 0; 5744 5745 if (seq == max_seq && NR_HIST_GENS == 1) { 5746 s = "LOYNFA"; 5747 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5748 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5749 s = "loynfa"; 5750 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5751 } 5752 5753 seq_printf(m, " %10lu%c", n, s[i]); 5754 } 5755 seq_putc(m, '\n'); 5756 } 5757 5758 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5759 static int lru_gen_seq_show(struct seq_file *m, void *v) 5760 { 5761 unsigned long seq; 5762 bool full = !debugfs_real_fops(m->file)->write; 5763 struct lruvec *lruvec = v; 5764 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5765 int nid = lruvec_pgdat(lruvec)->node_id; 5766 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5767 DEFINE_MAX_SEQ(lruvec); 5768 DEFINE_MIN_SEQ(lruvec); 5769 5770 if (nid == first_memory_node) { 5771 const char *path = memcg ? m->private : ""; 5772 5773 #ifdef CONFIG_MEMCG 5774 if (memcg) 5775 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5776 #endif 5777 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5778 } 5779 5780 seq_printf(m, " node %5d\n", nid); 5781 5782 if (!full) 5783 seq = min_seq[LRU_GEN_ANON]; 5784 else if (max_seq >= MAX_NR_GENS) 5785 seq = max_seq - MAX_NR_GENS + 1; 5786 else 5787 seq = 0; 5788 5789 for (; seq <= max_seq; seq++) { 5790 int type, zone; 5791 int gen = lru_gen_from_seq(seq); 5792 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5793 5794 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5795 5796 for (type = 0; type < ANON_AND_FILE; type++) { 5797 unsigned long size = 0; 5798 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5799 5800 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5801 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5802 5803 seq_printf(m, " %10lu%c", size, mark); 5804 } 5805 5806 seq_putc(m, '\n'); 5807 5808 if (full) 5809 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5810 } 5811 5812 return 0; 5813 } 5814 5815 static const struct seq_operations lru_gen_seq_ops = { 5816 .start = lru_gen_seq_start, 5817 .stop = lru_gen_seq_stop, 5818 .next = lru_gen_seq_next, 5819 .show = lru_gen_seq_show, 5820 }; 5821 5822 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5823 bool can_swap, bool force_scan) 5824 { 5825 DEFINE_MAX_SEQ(lruvec); 5826 DEFINE_MIN_SEQ(lruvec); 5827 5828 if (seq < max_seq) 5829 return 0; 5830 5831 if (seq > max_seq) 5832 return -EINVAL; 5833 5834 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5835 return -ERANGE; 5836 5837 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5838 5839 return 0; 5840 } 5841 5842 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5843 int swappiness, unsigned long nr_to_reclaim) 5844 { 5845 DEFINE_MAX_SEQ(lruvec); 5846 5847 if (seq + MIN_NR_GENS > max_seq) 5848 return -EINVAL; 5849 5850 sc->nr_reclaimed = 0; 5851 5852 while (!signal_pending(current)) { 5853 DEFINE_MIN_SEQ(lruvec); 5854 5855 if (seq < min_seq[!swappiness]) 5856 return 0; 5857 5858 if (sc->nr_reclaimed >= nr_to_reclaim) 5859 return 0; 5860 5861 if (!evict_folios(lruvec, sc, swappiness)) 5862 return 0; 5863 5864 cond_resched(); 5865 } 5866 5867 return -EINTR; 5868 } 5869 5870 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5871 struct scan_control *sc, int swappiness, unsigned long opt) 5872 { 5873 struct lruvec *lruvec; 5874 int err = -EINVAL; 5875 struct mem_cgroup *memcg = NULL; 5876 5877 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5878 return -EINVAL; 5879 5880 if (!mem_cgroup_disabled()) { 5881 rcu_read_lock(); 5882 5883 memcg = mem_cgroup_from_id(memcg_id); 5884 if (!mem_cgroup_tryget(memcg)) 5885 memcg = NULL; 5886 5887 rcu_read_unlock(); 5888 5889 if (!memcg) 5890 return -EINVAL; 5891 } 5892 5893 if (memcg_id != mem_cgroup_id(memcg)) 5894 goto done; 5895 5896 lruvec = get_lruvec(memcg, nid); 5897 5898 if (swappiness < 0) 5899 swappiness = get_swappiness(lruvec, sc); 5900 else if (swappiness > 200) 5901 goto done; 5902 5903 switch (cmd) { 5904 case '+': 5905 err = run_aging(lruvec, seq, sc, swappiness, opt); 5906 break; 5907 case '-': 5908 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5909 break; 5910 } 5911 done: 5912 mem_cgroup_put(memcg); 5913 5914 return err; 5915 } 5916 5917 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5918 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5919 size_t len, loff_t *pos) 5920 { 5921 void *buf; 5922 char *cur, *next; 5923 unsigned int flags; 5924 struct blk_plug plug; 5925 int err = -EINVAL; 5926 struct scan_control sc = { 5927 .may_writepage = true, 5928 .may_unmap = true, 5929 .may_swap = true, 5930 .reclaim_idx = MAX_NR_ZONES - 1, 5931 .gfp_mask = GFP_KERNEL, 5932 }; 5933 5934 buf = kvmalloc(len + 1, GFP_KERNEL); 5935 if (!buf) 5936 return -ENOMEM; 5937 5938 if (copy_from_user(buf, src, len)) { 5939 kvfree(buf); 5940 return -EFAULT; 5941 } 5942 5943 set_task_reclaim_state(current, &sc.reclaim_state); 5944 flags = memalloc_noreclaim_save(); 5945 blk_start_plug(&plug); 5946 if (!set_mm_walk(NULL, true)) { 5947 err = -ENOMEM; 5948 goto done; 5949 } 5950 5951 next = buf; 5952 next[len] = '\0'; 5953 5954 while ((cur = strsep(&next, ",;\n"))) { 5955 int n; 5956 int end; 5957 char cmd; 5958 unsigned int memcg_id; 5959 unsigned int nid; 5960 unsigned long seq; 5961 unsigned int swappiness = -1; 5962 unsigned long opt = -1; 5963 5964 cur = skip_spaces(cur); 5965 if (!*cur) 5966 continue; 5967 5968 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5969 &seq, &end, &swappiness, &end, &opt, &end); 5970 if (n < 4 || cur[end]) { 5971 err = -EINVAL; 5972 break; 5973 } 5974 5975 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5976 if (err) 5977 break; 5978 } 5979 done: 5980 clear_mm_walk(); 5981 blk_finish_plug(&plug); 5982 memalloc_noreclaim_restore(flags); 5983 set_task_reclaim_state(current, NULL); 5984 5985 kvfree(buf); 5986 5987 return err ? : len; 5988 } 5989 5990 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5991 { 5992 return seq_open(file, &lru_gen_seq_ops); 5993 } 5994 5995 static const struct file_operations lru_gen_rw_fops = { 5996 .open = lru_gen_seq_open, 5997 .read = seq_read, 5998 .write = lru_gen_seq_write, 5999 .llseek = seq_lseek, 6000 .release = seq_release, 6001 }; 6002 6003 static const struct file_operations lru_gen_ro_fops = { 6004 .open = lru_gen_seq_open, 6005 .read = seq_read, 6006 .llseek = seq_lseek, 6007 .release = seq_release, 6008 }; 6009 6010 /****************************************************************************** 6011 * initialization 6012 ******************************************************************************/ 6013 6014 void lru_gen_init_lruvec(struct lruvec *lruvec) 6015 { 6016 int i; 6017 int gen, type, zone; 6018 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6019 6020 lrugen->max_seq = MIN_NR_GENS + 1; 6021 lrugen->enabled = lru_gen_enabled(); 6022 6023 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6024 lrugen->timestamps[i] = jiffies; 6025 6026 for_each_gen_type_zone(gen, type, zone) 6027 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6028 6029 lruvec->mm_state.seq = MIN_NR_GENS; 6030 init_waitqueue_head(&lruvec->mm_state.wait); 6031 } 6032 6033 #ifdef CONFIG_MEMCG 6034 6035 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6036 { 6037 int i, j; 6038 6039 spin_lock_init(&pgdat->memcg_lru.lock); 6040 6041 for (i = 0; i < MEMCG_NR_GENS; i++) { 6042 for (j = 0; j < MEMCG_NR_BINS; j++) 6043 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6044 } 6045 } 6046 6047 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6048 { 6049 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6050 spin_lock_init(&memcg->mm_list.lock); 6051 } 6052 6053 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6054 { 6055 int i; 6056 int nid; 6057 6058 for_each_node(nid) { 6059 struct lruvec *lruvec = get_lruvec(memcg, nid); 6060 6061 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6062 sizeof(lruvec->lrugen.nr_pages))); 6063 6064 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6065 bitmap_free(lruvec->mm_state.filters[i]); 6066 lruvec->mm_state.filters[i] = NULL; 6067 } 6068 } 6069 } 6070 6071 void lru_gen_online_memcg(struct mem_cgroup *memcg) 6072 { 6073 int gen; 6074 int nid; 6075 int bin = get_random_u32_below(MEMCG_NR_BINS); 6076 6077 for_each_node(nid) { 6078 struct pglist_data *pgdat = NODE_DATA(nid); 6079 struct lruvec *lruvec = get_lruvec(memcg, nid); 6080 6081 spin_lock(&pgdat->memcg_lru.lock); 6082 6083 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 6084 6085 gen = get_memcg_gen(pgdat->memcg_lru.seq); 6086 6087 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 6088 pgdat->memcg_lru.nr_memcgs[gen]++; 6089 6090 lruvec->lrugen.gen = gen; 6091 6092 spin_unlock(&pgdat->memcg_lru.lock); 6093 } 6094 } 6095 6096 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 6097 { 6098 int nid; 6099 6100 for_each_node(nid) { 6101 struct lruvec *lruvec = get_lruvec(memcg, nid); 6102 6103 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 6104 } 6105 } 6106 6107 void lru_gen_release_memcg(struct mem_cgroup *memcg) 6108 { 6109 int gen; 6110 int nid; 6111 6112 for_each_node(nid) { 6113 struct pglist_data *pgdat = NODE_DATA(nid); 6114 struct lruvec *lruvec = get_lruvec(memcg, nid); 6115 6116 spin_lock(&pgdat->memcg_lru.lock); 6117 6118 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 6119 6120 gen = lruvec->lrugen.gen; 6121 6122 hlist_nulls_del_rcu(&lruvec->lrugen.list); 6123 pgdat->memcg_lru.nr_memcgs[gen]--; 6124 6125 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 6126 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 6127 6128 spin_unlock(&pgdat->memcg_lru.lock); 6129 } 6130 } 6131 6132 #endif /* CONFIG_MEMCG */ 6133 6134 static int __init init_lru_gen(void) 6135 { 6136 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6137 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6138 6139 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6140 pr_err("lru_gen: failed to create sysfs group\n"); 6141 6142 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6143 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6144 6145 return 0; 6146 }; 6147 late_initcall(init_lru_gen); 6148 6149 #else /* !CONFIG_LRU_GEN */ 6150 6151 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6152 { 6153 } 6154 6155 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6156 { 6157 } 6158 6159 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6160 { 6161 } 6162 6163 #endif /* CONFIG_LRU_GEN */ 6164 6165 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6166 { 6167 unsigned long nr[NR_LRU_LISTS]; 6168 unsigned long targets[NR_LRU_LISTS]; 6169 unsigned long nr_to_scan; 6170 enum lru_list lru; 6171 unsigned long nr_reclaimed = 0; 6172 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6173 bool proportional_reclaim; 6174 struct blk_plug plug; 6175 6176 if (lru_gen_enabled() && !global_reclaim(sc)) { 6177 lru_gen_shrink_lruvec(lruvec, sc); 6178 return; 6179 } 6180 6181 get_scan_count(lruvec, sc, nr); 6182 6183 /* Record the original scan target for proportional adjustments later */ 6184 memcpy(targets, nr, sizeof(nr)); 6185 6186 /* 6187 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6188 * event that can occur when there is little memory pressure e.g. 6189 * multiple streaming readers/writers. Hence, we do not abort scanning 6190 * when the requested number of pages are reclaimed when scanning at 6191 * DEF_PRIORITY on the assumption that the fact we are direct 6192 * reclaiming implies that kswapd is not keeping up and it is best to 6193 * do a batch of work at once. For memcg reclaim one check is made to 6194 * abort proportional reclaim if either the file or anon lru has already 6195 * dropped to zero at the first pass. 6196 */ 6197 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6198 sc->priority == DEF_PRIORITY); 6199 6200 blk_start_plug(&plug); 6201 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6202 nr[LRU_INACTIVE_FILE]) { 6203 unsigned long nr_anon, nr_file, percentage; 6204 unsigned long nr_scanned; 6205 6206 for_each_evictable_lru(lru) { 6207 if (nr[lru]) { 6208 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6209 nr[lru] -= nr_to_scan; 6210 6211 nr_reclaimed += shrink_list(lru, nr_to_scan, 6212 lruvec, sc); 6213 } 6214 } 6215 6216 cond_resched(); 6217 6218 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6219 continue; 6220 6221 /* 6222 * For kswapd and memcg, reclaim at least the number of pages 6223 * requested. Ensure that the anon and file LRUs are scanned 6224 * proportionally what was requested by get_scan_count(). We 6225 * stop reclaiming one LRU and reduce the amount scanning 6226 * proportional to the original scan target. 6227 */ 6228 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6229 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6230 6231 /* 6232 * It's just vindictive to attack the larger once the smaller 6233 * has gone to zero. And given the way we stop scanning the 6234 * smaller below, this makes sure that we only make one nudge 6235 * towards proportionality once we've got nr_to_reclaim. 6236 */ 6237 if (!nr_file || !nr_anon) 6238 break; 6239 6240 if (nr_file > nr_anon) { 6241 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6242 targets[LRU_ACTIVE_ANON] + 1; 6243 lru = LRU_BASE; 6244 percentage = nr_anon * 100 / scan_target; 6245 } else { 6246 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6247 targets[LRU_ACTIVE_FILE] + 1; 6248 lru = LRU_FILE; 6249 percentage = nr_file * 100 / scan_target; 6250 } 6251 6252 /* Stop scanning the smaller of the LRU */ 6253 nr[lru] = 0; 6254 nr[lru + LRU_ACTIVE] = 0; 6255 6256 /* 6257 * Recalculate the other LRU scan count based on its original 6258 * scan target and the percentage scanning already complete 6259 */ 6260 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6261 nr_scanned = targets[lru] - nr[lru]; 6262 nr[lru] = targets[lru] * (100 - percentage) / 100; 6263 nr[lru] -= min(nr[lru], nr_scanned); 6264 6265 lru += LRU_ACTIVE; 6266 nr_scanned = targets[lru] - nr[lru]; 6267 nr[lru] = targets[lru] * (100 - percentage) / 100; 6268 nr[lru] -= min(nr[lru], nr_scanned); 6269 } 6270 blk_finish_plug(&plug); 6271 sc->nr_reclaimed += nr_reclaimed; 6272 6273 /* 6274 * Even if we did not try to evict anon pages at all, we want to 6275 * rebalance the anon lru active/inactive ratio. 6276 */ 6277 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6278 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6279 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6280 sc, LRU_ACTIVE_ANON); 6281 } 6282 6283 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6284 static bool in_reclaim_compaction(struct scan_control *sc) 6285 { 6286 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6287 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6288 sc->priority < DEF_PRIORITY - 2)) 6289 return true; 6290 6291 return false; 6292 } 6293 6294 /* 6295 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6296 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6297 * true if more pages should be reclaimed such that when the page allocator 6298 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6299 * It will give up earlier than that if there is difficulty reclaiming pages. 6300 */ 6301 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6302 unsigned long nr_reclaimed, 6303 struct scan_control *sc) 6304 { 6305 unsigned long pages_for_compaction; 6306 unsigned long inactive_lru_pages; 6307 int z; 6308 6309 /* If not in reclaim/compaction mode, stop */ 6310 if (!in_reclaim_compaction(sc)) 6311 return false; 6312 6313 /* 6314 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6315 * number of pages that were scanned. This will return to the caller 6316 * with the risk reclaim/compaction and the resulting allocation attempt 6317 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6318 * allocations through requiring that the full LRU list has been scanned 6319 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6320 * scan, but that approximation was wrong, and there were corner cases 6321 * where always a non-zero amount of pages were scanned. 6322 */ 6323 if (!nr_reclaimed) 6324 return false; 6325 6326 /* If compaction would go ahead or the allocation would succeed, stop */ 6327 for (z = 0; z <= sc->reclaim_idx; z++) { 6328 struct zone *zone = &pgdat->node_zones[z]; 6329 if (!managed_zone(zone)) 6330 continue; 6331 6332 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6333 case COMPACT_SUCCESS: 6334 case COMPACT_CONTINUE: 6335 return false; 6336 default: 6337 /* check next zone */ 6338 ; 6339 } 6340 } 6341 6342 /* 6343 * If we have not reclaimed enough pages for compaction and the 6344 * inactive lists are large enough, continue reclaiming 6345 */ 6346 pages_for_compaction = compact_gap(sc->order); 6347 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6348 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6349 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6350 6351 return inactive_lru_pages > pages_for_compaction; 6352 } 6353 6354 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6355 { 6356 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6357 struct mem_cgroup *memcg; 6358 6359 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6360 do { 6361 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6362 unsigned long reclaimed; 6363 unsigned long scanned; 6364 6365 /* 6366 * This loop can become CPU-bound when target memcgs 6367 * aren't eligible for reclaim - either because they 6368 * don't have any reclaimable pages, or because their 6369 * memory is explicitly protected. Avoid soft lockups. 6370 */ 6371 cond_resched(); 6372 6373 mem_cgroup_calculate_protection(target_memcg, memcg); 6374 6375 if (mem_cgroup_below_min(target_memcg, memcg)) { 6376 /* 6377 * Hard protection. 6378 * If there is no reclaimable memory, OOM. 6379 */ 6380 continue; 6381 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6382 /* 6383 * Soft protection. 6384 * Respect the protection only as long as 6385 * there is an unprotected supply 6386 * of reclaimable memory from other cgroups. 6387 */ 6388 if (!sc->memcg_low_reclaim) { 6389 sc->memcg_low_skipped = 1; 6390 continue; 6391 } 6392 memcg_memory_event(memcg, MEMCG_LOW); 6393 } 6394 6395 reclaimed = sc->nr_reclaimed; 6396 scanned = sc->nr_scanned; 6397 6398 shrink_lruvec(lruvec, sc); 6399 6400 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6401 sc->priority); 6402 6403 /* Record the group's reclaim efficiency */ 6404 if (!sc->proactive) 6405 vmpressure(sc->gfp_mask, memcg, false, 6406 sc->nr_scanned - scanned, 6407 sc->nr_reclaimed - reclaimed); 6408 6409 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6410 } 6411 6412 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6413 { 6414 struct reclaim_state *reclaim_state = current->reclaim_state; 6415 unsigned long nr_reclaimed, nr_scanned; 6416 struct lruvec *target_lruvec; 6417 bool reclaimable = false; 6418 6419 if (lru_gen_enabled() && global_reclaim(sc)) { 6420 lru_gen_shrink_node(pgdat, sc); 6421 return; 6422 } 6423 6424 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6425 6426 again: 6427 memset(&sc->nr, 0, sizeof(sc->nr)); 6428 6429 nr_reclaimed = sc->nr_reclaimed; 6430 nr_scanned = sc->nr_scanned; 6431 6432 prepare_scan_count(pgdat, sc); 6433 6434 shrink_node_memcgs(pgdat, sc); 6435 6436 if (reclaim_state) { 6437 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6438 reclaim_state->reclaimed_slab = 0; 6439 } 6440 6441 /* Record the subtree's reclaim efficiency */ 6442 if (!sc->proactive) 6443 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6444 sc->nr_scanned - nr_scanned, 6445 sc->nr_reclaimed - nr_reclaimed); 6446 6447 if (sc->nr_reclaimed - nr_reclaimed) 6448 reclaimable = true; 6449 6450 if (current_is_kswapd()) { 6451 /* 6452 * If reclaim is isolating dirty pages under writeback, 6453 * it implies that the long-lived page allocation rate 6454 * is exceeding the page laundering rate. Either the 6455 * global limits are not being effective at throttling 6456 * processes due to the page distribution throughout 6457 * zones or there is heavy usage of a slow backing 6458 * device. The only option is to throttle from reclaim 6459 * context which is not ideal as there is no guarantee 6460 * the dirtying process is throttled in the same way 6461 * balance_dirty_pages() manages. 6462 * 6463 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6464 * count the number of pages under pages flagged for 6465 * immediate reclaim and stall if any are encountered 6466 * in the nr_immediate check below. 6467 */ 6468 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6469 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6470 6471 /* Allow kswapd to start writing pages during reclaim.*/ 6472 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6473 set_bit(PGDAT_DIRTY, &pgdat->flags); 6474 6475 /* 6476 * If kswapd scans pages marked for immediate 6477 * reclaim and under writeback (nr_immediate), it 6478 * implies that pages are cycling through the LRU 6479 * faster than they are written so forcibly stall 6480 * until some pages complete writeback. 6481 */ 6482 if (sc->nr.immediate) 6483 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6484 } 6485 6486 /* 6487 * Tag a node/memcg as congested if all the dirty pages were marked 6488 * for writeback and immediate reclaim (counted in nr.congested). 6489 * 6490 * Legacy memcg will stall in page writeback so avoid forcibly 6491 * stalling in reclaim_throttle(). 6492 */ 6493 if ((current_is_kswapd() || 6494 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6495 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6496 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6497 6498 /* 6499 * Stall direct reclaim for IO completions if the lruvec is 6500 * node is congested. Allow kswapd to continue until it 6501 * starts encountering unqueued dirty pages or cycling through 6502 * the LRU too quickly. 6503 */ 6504 if (!current_is_kswapd() && current_may_throttle() && 6505 !sc->hibernation_mode && 6506 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6507 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6508 6509 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6510 sc)) 6511 goto again; 6512 6513 /* 6514 * Kswapd gives up on balancing particular nodes after too 6515 * many failures to reclaim anything from them and goes to 6516 * sleep. On reclaim progress, reset the failure counter. A 6517 * successful direct reclaim run will revive a dormant kswapd. 6518 */ 6519 if (reclaimable) 6520 pgdat->kswapd_failures = 0; 6521 } 6522 6523 /* 6524 * Returns true if compaction should go ahead for a costly-order request, or 6525 * the allocation would already succeed without compaction. Return false if we 6526 * should reclaim first. 6527 */ 6528 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6529 { 6530 unsigned long watermark; 6531 enum compact_result suitable; 6532 6533 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6534 if (suitable == COMPACT_SUCCESS) 6535 /* Allocation should succeed already. Don't reclaim. */ 6536 return true; 6537 if (suitable == COMPACT_SKIPPED) 6538 /* Compaction cannot yet proceed. Do reclaim. */ 6539 return false; 6540 6541 /* 6542 * Compaction is already possible, but it takes time to run and there 6543 * are potentially other callers using the pages just freed. So proceed 6544 * with reclaim to make a buffer of free pages available to give 6545 * compaction a reasonable chance of completing and allocating the page. 6546 * Note that we won't actually reclaim the whole buffer in one attempt 6547 * as the target watermark in should_continue_reclaim() is lower. But if 6548 * we are already above the high+gap watermark, don't reclaim at all. 6549 */ 6550 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6551 6552 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6553 } 6554 6555 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6556 { 6557 /* 6558 * If reclaim is making progress greater than 12% efficiency then 6559 * wake all the NOPROGRESS throttled tasks. 6560 */ 6561 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6562 wait_queue_head_t *wqh; 6563 6564 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6565 if (waitqueue_active(wqh)) 6566 wake_up(wqh); 6567 6568 return; 6569 } 6570 6571 /* 6572 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6573 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6574 * under writeback and marked for immediate reclaim at the tail of the 6575 * LRU. 6576 */ 6577 if (current_is_kswapd() || cgroup_reclaim(sc)) 6578 return; 6579 6580 /* Throttle if making no progress at high prioities. */ 6581 if (sc->priority == 1 && !sc->nr_reclaimed) 6582 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6583 } 6584 6585 /* 6586 * This is the direct reclaim path, for page-allocating processes. We only 6587 * try to reclaim pages from zones which will satisfy the caller's allocation 6588 * request. 6589 * 6590 * If a zone is deemed to be full of pinned pages then just give it a light 6591 * scan then give up on it. 6592 */ 6593 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6594 { 6595 struct zoneref *z; 6596 struct zone *zone; 6597 unsigned long nr_soft_reclaimed; 6598 unsigned long nr_soft_scanned; 6599 gfp_t orig_mask; 6600 pg_data_t *last_pgdat = NULL; 6601 pg_data_t *first_pgdat = NULL; 6602 6603 /* 6604 * If the number of buffer_heads in the machine exceeds the maximum 6605 * allowed level, force direct reclaim to scan the highmem zone as 6606 * highmem pages could be pinning lowmem pages storing buffer_heads 6607 */ 6608 orig_mask = sc->gfp_mask; 6609 if (buffer_heads_over_limit) { 6610 sc->gfp_mask |= __GFP_HIGHMEM; 6611 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6612 } 6613 6614 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6615 sc->reclaim_idx, sc->nodemask) { 6616 /* 6617 * Take care memory controller reclaiming has small influence 6618 * to global LRU. 6619 */ 6620 if (!cgroup_reclaim(sc)) { 6621 if (!cpuset_zone_allowed(zone, 6622 GFP_KERNEL | __GFP_HARDWALL)) 6623 continue; 6624 6625 /* 6626 * If we already have plenty of memory free for 6627 * compaction in this zone, don't free any more. 6628 * Even though compaction is invoked for any 6629 * non-zero order, only frequent costly order 6630 * reclamation is disruptive enough to become a 6631 * noticeable problem, like transparent huge 6632 * page allocations. 6633 */ 6634 if (IS_ENABLED(CONFIG_COMPACTION) && 6635 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6636 compaction_ready(zone, sc)) { 6637 sc->compaction_ready = true; 6638 continue; 6639 } 6640 6641 /* 6642 * Shrink each node in the zonelist once. If the 6643 * zonelist is ordered by zone (not the default) then a 6644 * node may be shrunk multiple times but in that case 6645 * the user prefers lower zones being preserved. 6646 */ 6647 if (zone->zone_pgdat == last_pgdat) 6648 continue; 6649 6650 /* 6651 * This steals pages from memory cgroups over softlimit 6652 * and returns the number of reclaimed pages and 6653 * scanned pages. This works for global memory pressure 6654 * and balancing, not for a memcg's limit. 6655 */ 6656 nr_soft_scanned = 0; 6657 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6658 sc->order, sc->gfp_mask, 6659 &nr_soft_scanned); 6660 sc->nr_reclaimed += nr_soft_reclaimed; 6661 sc->nr_scanned += nr_soft_scanned; 6662 /* need some check for avoid more shrink_zone() */ 6663 } 6664 6665 if (!first_pgdat) 6666 first_pgdat = zone->zone_pgdat; 6667 6668 /* See comment about same check for global reclaim above */ 6669 if (zone->zone_pgdat == last_pgdat) 6670 continue; 6671 last_pgdat = zone->zone_pgdat; 6672 shrink_node(zone->zone_pgdat, sc); 6673 } 6674 6675 if (first_pgdat) 6676 consider_reclaim_throttle(first_pgdat, sc); 6677 6678 /* 6679 * Restore to original mask to avoid the impact on the caller if we 6680 * promoted it to __GFP_HIGHMEM. 6681 */ 6682 sc->gfp_mask = orig_mask; 6683 } 6684 6685 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6686 { 6687 struct lruvec *target_lruvec; 6688 unsigned long refaults; 6689 6690 if (lru_gen_enabled()) 6691 return; 6692 6693 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6694 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6695 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6696 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6697 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6698 } 6699 6700 /* 6701 * This is the main entry point to direct page reclaim. 6702 * 6703 * If a full scan of the inactive list fails to free enough memory then we 6704 * are "out of memory" and something needs to be killed. 6705 * 6706 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6707 * high - the zone may be full of dirty or under-writeback pages, which this 6708 * caller can't do much about. We kick the writeback threads and take explicit 6709 * naps in the hope that some of these pages can be written. But if the 6710 * allocating task holds filesystem locks which prevent writeout this might not 6711 * work, and the allocation attempt will fail. 6712 * 6713 * returns: 0, if no pages reclaimed 6714 * else, the number of pages reclaimed 6715 */ 6716 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6717 struct scan_control *sc) 6718 { 6719 int initial_priority = sc->priority; 6720 pg_data_t *last_pgdat; 6721 struct zoneref *z; 6722 struct zone *zone; 6723 retry: 6724 delayacct_freepages_start(); 6725 6726 if (!cgroup_reclaim(sc)) 6727 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6728 6729 do { 6730 if (!sc->proactive) 6731 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6732 sc->priority); 6733 sc->nr_scanned = 0; 6734 shrink_zones(zonelist, sc); 6735 6736 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6737 break; 6738 6739 if (sc->compaction_ready) 6740 break; 6741 6742 /* 6743 * If we're getting trouble reclaiming, start doing 6744 * writepage even in laptop mode. 6745 */ 6746 if (sc->priority < DEF_PRIORITY - 2) 6747 sc->may_writepage = 1; 6748 } while (--sc->priority >= 0); 6749 6750 last_pgdat = NULL; 6751 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6752 sc->nodemask) { 6753 if (zone->zone_pgdat == last_pgdat) 6754 continue; 6755 last_pgdat = zone->zone_pgdat; 6756 6757 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6758 6759 if (cgroup_reclaim(sc)) { 6760 struct lruvec *lruvec; 6761 6762 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6763 zone->zone_pgdat); 6764 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6765 } 6766 } 6767 6768 delayacct_freepages_end(); 6769 6770 if (sc->nr_reclaimed) 6771 return sc->nr_reclaimed; 6772 6773 /* Aborted reclaim to try compaction? don't OOM, then */ 6774 if (sc->compaction_ready) 6775 return 1; 6776 6777 /* 6778 * We make inactive:active ratio decisions based on the node's 6779 * composition of memory, but a restrictive reclaim_idx or a 6780 * memory.low cgroup setting can exempt large amounts of 6781 * memory from reclaim. Neither of which are very common, so 6782 * instead of doing costly eligibility calculations of the 6783 * entire cgroup subtree up front, we assume the estimates are 6784 * good, and retry with forcible deactivation if that fails. 6785 */ 6786 if (sc->skipped_deactivate) { 6787 sc->priority = initial_priority; 6788 sc->force_deactivate = 1; 6789 sc->skipped_deactivate = 0; 6790 goto retry; 6791 } 6792 6793 /* Untapped cgroup reserves? Don't OOM, retry. */ 6794 if (sc->memcg_low_skipped) { 6795 sc->priority = initial_priority; 6796 sc->force_deactivate = 0; 6797 sc->memcg_low_reclaim = 1; 6798 sc->memcg_low_skipped = 0; 6799 goto retry; 6800 } 6801 6802 return 0; 6803 } 6804 6805 static bool allow_direct_reclaim(pg_data_t *pgdat) 6806 { 6807 struct zone *zone; 6808 unsigned long pfmemalloc_reserve = 0; 6809 unsigned long free_pages = 0; 6810 int i; 6811 bool wmark_ok; 6812 6813 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6814 return true; 6815 6816 for (i = 0; i <= ZONE_NORMAL; i++) { 6817 zone = &pgdat->node_zones[i]; 6818 if (!managed_zone(zone)) 6819 continue; 6820 6821 if (!zone_reclaimable_pages(zone)) 6822 continue; 6823 6824 pfmemalloc_reserve += min_wmark_pages(zone); 6825 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6826 } 6827 6828 /* If there are no reserves (unexpected config) then do not throttle */ 6829 if (!pfmemalloc_reserve) 6830 return true; 6831 6832 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6833 6834 /* kswapd must be awake if processes are being throttled */ 6835 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6836 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6837 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6838 6839 wake_up_interruptible(&pgdat->kswapd_wait); 6840 } 6841 6842 return wmark_ok; 6843 } 6844 6845 /* 6846 * Throttle direct reclaimers if backing storage is backed by the network 6847 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6848 * depleted. kswapd will continue to make progress and wake the processes 6849 * when the low watermark is reached. 6850 * 6851 * Returns true if a fatal signal was delivered during throttling. If this 6852 * happens, the page allocator should not consider triggering the OOM killer. 6853 */ 6854 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6855 nodemask_t *nodemask) 6856 { 6857 struct zoneref *z; 6858 struct zone *zone; 6859 pg_data_t *pgdat = NULL; 6860 6861 /* 6862 * Kernel threads should not be throttled as they may be indirectly 6863 * responsible for cleaning pages necessary for reclaim to make forward 6864 * progress. kjournald for example may enter direct reclaim while 6865 * committing a transaction where throttling it could forcing other 6866 * processes to block on log_wait_commit(). 6867 */ 6868 if (current->flags & PF_KTHREAD) 6869 goto out; 6870 6871 /* 6872 * If a fatal signal is pending, this process should not throttle. 6873 * It should return quickly so it can exit and free its memory 6874 */ 6875 if (fatal_signal_pending(current)) 6876 goto out; 6877 6878 /* 6879 * Check if the pfmemalloc reserves are ok by finding the first node 6880 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6881 * GFP_KERNEL will be required for allocating network buffers when 6882 * swapping over the network so ZONE_HIGHMEM is unusable. 6883 * 6884 * Throttling is based on the first usable node and throttled processes 6885 * wait on a queue until kswapd makes progress and wakes them. There 6886 * is an affinity then between processes waking up and where reclaim 6887 * progress has been made assuming the process wakes on the same node. 6888 * More importantly, processes running on remote nodes will not compete 6889 * for remote pfmemalloc reserves and processes on different nodes 6890 * should make reasonable progress. 6891 */ 6892 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6893 gfp_zone(gfp_mask), nodemask) { 6894 if (zone_idx(zone) > ZONE_NORMAL) 6895 continue; 6896 6897 /* Throttle based on the first usable node */ 6898 pgdat = zone->zone_pgdat; 6899 if (allow_direct_reclaim(pgdat)) 6900 goto out; 6901 break; 6902 } 6903 6904 /* If no zone was usable by the allocation flags then do not throttle */ 6905 if (!pgdat) 6906 goto out; 6907 6908 /* Account for the throttling */ 6909 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6910 6911 /* 6912 * If the caller cannot enter the filesystem, it's possible that it 6913 * is due to the caller holding an FS lock or performing a journal 6914 * transaction in the case of a filesystem like ext[3|4]. In this case, 6915 * it is not safe to block on pfmemalloc_wait as kswapd could be 6916 * blocked waiting on the same lock. Instead, throttle for up to a 6917 * second before continuing. 6918 */ 6919 if (!(gfp_mask & __GFP_FS)) 6920 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6921 allow_direct_reclaim(pgdat), HZ); 6922 else 6923 /* Throttle until kswapd wakes the process */ 6924 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6925 allow_direct_reclaim(pgdat)); 6926 6927 if (fatal_signal_pending(current)) 6928 return true; 6929 6930 out: 6931 return false; 6932 } 6933 6934 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6935 gfp_t gfp_mask, nodemask_t *nodemask) 6936 { 6937 unsigned long nr_reclaimed; 6938 struct scan_control sc = { 6939 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6940 .gfp_mask = current_gfp_context(gfp_mask), 6941 .reclaim_idx = gfp_zone(gfp_mask), 6942 .order = order, 6943 .nodemask = nodemask, 6944 .priority = DEF_PRIORITY, 6945 .may_writepage = !laptop_mode, 6946 .may_unmap = 1, 6947 .may_swap = 1, 6948 }; 6949 6950 /* 6951 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6952 * Confirm they are large enough for max values. 6953 */ 6954 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6955 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6956 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6957 6958 /* 6959 * Do not enter reclaim if fatal signal was delivered while throttled. 6960 * 1 is returned so that the page allocator does not OOM kill at this 6961 * point. 6962 */ 6963 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6964 return 1; 6965 6966 set_task_reclaim_state(current, &sc.reclaim_state); 6967 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6968 6969 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6970 6971 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6972 set_task_reclaim_state(current, NULL); 6973 6974 return nr_reclaimed; 6975 } 6976 6977 #ifdef CONFIG_MEMCG 6978 6979 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6980 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6981 gfp_t gfp_mask, bool noswap, 6982 pg_data_t *pgdat, 6983 unsigned long *nr_scanned) 6984 { 6985 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6986 struct scan_control sc = { 6987 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6988 .target_mem_cgroup = memcg, 6989 .may_writepage = !laptop_mode, 6990 .may_unmap = 1, 6991 .reclaim_idx = MAX_NR_ZONES - 1, 6992 .may_swap = !noswap, 6993 }; 6994 6995 WARN_ON_ONCE(!current->reclaim_state); 6996 6997 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6998 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6999 7000 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7001 sc.gfp_mask); 7002 7003 /* 7004 * NOTE: Although we can get the priority field, using it 7005 * here is not a good idea, since it limits the pages we can scan. 7006 * if we don't reclaim here, the shrink_node from balance_pgdat 7007 * will pick up pages from other mem cgroup's as well. We hack 7008 * the priority and make it zero. 7009 */ 7010 shrink_lruvec(lruvec, &sc); 7011 7012 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7013 7014 *nr_scanned = sc.nr_scanned; 7015 7016 return sc.nr_reclaimed; 7017 } 7018 7019 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7020 unsigned long nr_pages, 7021 gfp_t gfp_mask, 7022 unsigned int reclaim_options, 7023 nodemask_t *nodemask) 7024 { 7025 unsigned long nr_reclaimed; 7026 unsigned int noreclaim_flag; 7027 struct scan_control sc = { 7028 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7029 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7030 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7031 .reclaim_idx = MAX_NR_ZONES - 1, 7032 .target_mem_cgroup = memcg, 7033 .priority = DEF_PRIORITY, 7034 .may_writepage = !laptop_mode, 7035 .may_unmap = 1, 7036 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7037 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7038 .nodemask = nodemask, 7039 }; 7040 /* 7041 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7042 * equal pressure on all the nodes. This is based on the assumption that 7043 * the reclaim does not bail out early. 7044 */ 7045 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7046 7047 set_task_reclaim_state(current, &sc.reclaim_state); 7048 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7049 noreclaim_flag = memalloc_noreclaim_save(); 7050 7051 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7052 7053 memalloc_noreclaim_restore(noreclaim_flag); 7054 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7055 set_task_reclaim_state(current, NULL); 7056 7057 return nr_reclaimed; 7058 } 7059 #endif 7060 7061 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7062 { 7063 struct mem_cgroup *memcg; 7064 struct lruvec *lruvec; 7065 7066 if (lru_gen_enabled()) { 7067 lru_gen_age_node(pgdat, sc); 7068 return; 7069 } 7070 7071 if (!can_age_anon_pages(pgdat, sc)) 7072 return; 7073 7074 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7075 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7076 return; 7077 7078 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7079 do { 7080 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7081 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7082 sc, LRU_ACTIVE_ANON); 7083 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7084 } while (memcg); 7085 } 7086 7087 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7088 { 7089 int i; 7090 struct zone *zone; 7091 7092 /* 7093 * Check for watermark boosts top-down as the higher zones 7094 * are more likely to be boosted. Both watermarks and boosts 7095 * should not be checked at the same time as reclaim would 7096 * start prematurely when there is no boosting and a lower 7097 * zone is balanced. 7098 */ 7099 for (i = highest_zoneidx; i >= 0; i--) { 7100 zone = pgdat->node_zones + i; 7101 if (!managed_zone(zone)) 7102 continue; 7103 7104 if (zone->watermark_boost) 7105 return true; 7106 } 7107 7108 return false; 7109 } 7110 7111 /* 7112 * Returns true if there is an eligible zone balanced for the request order 7113 * and highest_zoneidx 7114 */ 7115 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7116 { 7117 int i; 7118 unsigned long mark = -1; 7119 struct zone *zone; 7120 7121 /* 7122 * Check watermarks bottom-up as lower zones are more likely to 7123 * meet watermarks. 7124 */ 7125 for (i = 0; i <= highest_zoneidx; i++) { 7126 zone = pgdat->node_zones + i; 7127 7128 if (!managed_zone(zone)) 7129 continue; 7130 7131 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7132 mark = wmark_pages(zone, WMARK_PROMO); 7133 else 7134 mark = high_wmark_pages(zone); 7135 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7136 return true; 7137 } 7138 7139 /* 7140 * If a node has no managed zone within highest_zoneidx, it does not 7141 * need balancing by definition. This can happen if a zone-restricted 7142 * allocation tries to wake a remote kswapd. 7143 */ 7144 if (mark == -1) 7145 return true; 7146 7147 return false; 7148 } 7149 7150 /* Clear pgdat state for congested, dirty or under writeback. */ 7151 static void clear_pgdat_congested(pg_data_t *pgdat) 7152 { 7153 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7154 7155 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7156 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7157 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7158 } 7159 7160 /* 7161 * Prepare kswapd for sleeping. This verifies that there are no processes 7162 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7163 * 7164 * Returns true if kswapd is ready to sleep 7165 */ 7166 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7167 int highest_zoneidx) 7168 { 7169 /* 7170 * The throttled processes are normally woken up in balance_pgdat() as 7171 * soon as allow_direct_reclaim() is true. But there is a potential 7172 * race between when kswapd checks the watermarks and a process gets 7173 * throttled. There is also a potential race if processes get 7174 * throttled, kswapd wakes, a large process exits thereby balancing the 7175 * zones, which causes kswapd to exit balance_pgdat() before reaching 7176 * the wake up checks. If kswapd is going to sleep, no process should 7177 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7178 * the wake up is premature, processes will wake kswapd and get 7179 * throttled again. The difference from wake ups in balance_pgdat() is 7180 * that here we are under prepare_to_wait(). 7181 */ 7182 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7183 wake_up_all(&pgdat->pfmemalloc_wait); 7184 7185 /* Hopeless node, leave it to direct reclaim */ 7186 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7187 return true; 7188 7189 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7190 clear_pgdat_congested(pgdat); 7191 return true; 7192 } 7193 7194 return false; 7195 } 7196 7197 /* 7198 * kswapd shrinks a node of pages that are at or below the highest usable 7199 * zone that is currently unbalanced. 7200 * 7201 * Returns true if kswapd scanned at least the requested number of pages to 7202 * reclaim or if the lack of progress was due to pages under writeback. 7203 * This is used to determine if the scanning priority needs to be raised. 7204 */ 7205 static bool kswapd_shrink_node(pg_data_t *pgdat, 7206 struct scan_control *sc) 7207 { 7208 struct zone *zone; 7209 int z; 7210 7211 /* Reclaim a number of pages proportional to the number of zones */ 7212 sc->nr_to_reclaim = 0; 7213 for (z = 0; z <= sc->reclaim_idx; z++) { 7214 zone = pgdat->node_zones + z; 7215 if (!managed_zone(zone)) 7216 continue; 7217 7218 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7219 } 7220 7221 /* 7222 * Historically care was taken to put equal pressure on all zones but 7223 * now pressure is applied based on node LRU order. 7224 */ 7225 shrink_node(pgdat, sc); 7226 7227 /* 7228 * Fragmentation may mean that the system cannot be rebalanced for 7229 * high-order allocations. If twice the allocation size has been 7230 * reclaimed then recheck watermarks only at order-0 to prevent 7231 * excessive reclaim. Assume that a process requested a high-order 7232 * can direct reclaim/compact. 7233 */ 7234 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7235 sc->order = 0; 7236 7237 return sc->nr_scanned >= sc->nr_to_reclaim; 7238 } 7239 7240 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7241 static inline void 7242 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7243 { 7244 int i; 7245 struct zone *zone; 7246 7247 for (i = 0; i <= highest_zoneidx; i++) { 7248 zone = pgdat->node_zones + i; 7249 7250 if (!managed_zone(zone)) 7251 continue; 7252 7253 if (active) 7254 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7255 else 7256 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7257 } 7258 } 7259 7260 static inline void 7261 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7262 { 7263 update_reclaim_active(pgdat, highest_zoneidx, true); 7264 } 7265 7266 static inline void 7267 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7268 { 7269 update_reclaim_active(pgdat, highest_zoneidx, false); 7270 } 7271 7272 /* 7273 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7274 * that are eligible for use by the caller until at least one zone is 7275 * balanced. 7276 * 7277 * Returns the order kswapd finished reclaiming at. 7278 * 7279 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7280 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7281 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7282 * or lower is eligible for reclaim until at least one usable zone is 7283 * balanced. 7284 */ 7285 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7286 { 7287 int i; 7288 unsigned long nr_soft_reclaimed; 7289 unsigned long nr_soft_scanned; 7290 unsigned long pflags; 7291 unsigned long nr_boost_reclaim; 7292 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7293 bool boosted; 7294 struct zone *zone; 7295 struct scan_control sc = { 7296 .gfp_mask = GFP_KERNEL, 7297 .order = order, 7298 .may_unmap = 1, 7299 }; 7300 7301 set_task_reclaim_state(current, &sc.reclaim_state); 7302 psi_memstall_enter(&pflags); 7303 __fs_reclaim_acquire(_THIS_IP_); 7304 7305 count_vm_event(PAGEOUTRUN); 7306 7307 /* 7308 * Account for the reclaim boost. Note that the zone boost is left in 7309 * place so that parallel allocations that are near the watermark will 7310 * stall or direct reclaim until kswapd is finished. 7311 */ 7312 nr_boost_reclaim = 0; 7313 for (i = 0; i <= highest_zoneidx; i++) { 7314 zone = pgdat->node_zones + i; 7315 if (!managed_zone(zone)) 7316 continue; 7317 7318 nr_boost_reclaim += zone->watermark_boost; 7319 zone_boosts[i] = zone->watermark_boost; 7320 } 7321 boosted = nr_boost_reclaim; 7322 7323 restart: 7324 set_reclaim_active(pgdat, highest_zoneidx); 7325 sc.priority = DEF_PRIORITY; 7326 do { 7327 unsigned long nr_reclaimed = sc.nr_reclaimed; 7328 bool raise_priority = true; 7329 bool balanced; 7330 bool ret; 7331 7332 sc.reclaim_idx = highest_zoneidx; 7333 7334 /* 7335 * If the number of buffer_heads exceeds the maximum allowed 7336 * then consider reclaiming from all zones. This has a dual 7337 * purpose -- on 64-bit systems it is expected that 7338 * buffer_heads are stripped during active rotation. On 32-bit 7339 * systems, highmem pages can pin lowmem memory and shrinking 7340 * buffers can relieve lowmem pressure. Reclaim may still not 7341 * go ahead if all eligible zones for the original allocation 7342 * request are balanced to avoid excessive reclaim from kswapd. 7343 */ 7344 if (buffer_heads_over_limit) { 7345 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7346 zone = pgdat->node_zones + i; 7347 if (!managed_zone(zone)) 7348 continue; 7349 7350 sc.reclaim_idx = i; 7351 break; 7352 } 7353 } 7354 7355 /* 7356 * If the pgdat is imbalanced then ignore boosting and preserve 7357 * the watermarks for a later time and restart. Note that the 7358 * zone watermarks will be still reset at the end of balancing 7359 * on the grounds that the normal reclaim should be enough to 7360 * re-evaluate if boosting is required when kswapd next wakes. 7361 */ 7362 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7363 if (!balanced && nr_boost_reclaim) { 7364 nr_boost_reclaim = 0; 7365 goto restart; 7366 } 7367 7368 /* 7369 * If boosting is not active then only reclaim if there are no 7370 * eligible zones. Note that sc.reclaim_idx is not used as 7371 * buffer_heads_over_limit may have adjusted it. 7372 */ 7373 if (!nr_boost_reclaim && balanced) 7374 goto out; 7375 7376 /* Limit the priority of boosting to avoid reclaim writeback */ 7377 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7378 raise_priority = false; 7379 7380 /* 7381 * Do not writeback or swap pages for boosted reclaim. The 7382 * intent is to relieve pressure not issue sub-optimal IO 7383 * from reclaim context. If no pages are reclaimed, the 7384 * reclaim will be aborted. 7385 */ 7386 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7387 sc.may_swap = !nr_boost_reclaim; 7388 7389 /* 7390 * Do some background aging, to give pages a chance to be 7391 * referenced before reclaiming. All pages are rotated 7392 * regardless of classzone as this is about consistent aging. 7393 */ 7394 kswapd_age_node(pgdat, &sc); 7395 7396 /* 7397 * If we're getting trouble reclaiming, start doing writepage 7398 * even in laptop mode. 7399 */ 7400 if (sc.priority < DEF_PRIORITY - 2) 7401 sc.may_writepage = 1; 7402 7403 /* Call soft limit reclaim before calling shrink_node. */ 7404 sc.nr_scanned = 0; 7405 nr_soft_scanned = 0; 7406 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7407 sc.gfp_mask, &nr_soft_scanned); 7408 sc.nr_reclaimed += nr_soft_reclaimed; 7409 7410 /* 7411 * There should be no need to raise the scanning priority if 7412 * enough pages are already being scanned that that high 7413 * watermark would be met at 100% efficiency. 7414 */ 7415 if (kswapd_shrink_node(pgdat, &sc)) 7416 raise_priority = false; 7417 7418 /* 7419 * If the low watermark is met there is no need for processes 7420 * to be throttled on pfmemalloc_wait as they should not be 7421 * able to safely make forward progress. Wake them 7422 */ 7423 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7424 allow_direct_reclaim(pgdat)) 7425 wake_up_all(&pgdat->pfmemalloc_wait); 7426 7427 /* Check if kswapd should be suspending */ 7428 __fs_reclaim_release(_THIS_IP_); 7429 ret = try_to_freeze(); 7430 __fs_reclaim_acquire(_THIS_IP_); 7431 if (ret || kthread_should_stop()) 7432 break; 7433 7434 /* 7435 * Raise priority if scanning rate is too low or there was no 7436 * progress in reclaiming pages 7437 */ 7438 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7439 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7440 7441 /* 7442 * If reclaim made no progress for a boost, stop reclaim as 7443 * IO cannot be queued and it could be an infinite loop in 7444 * extreme circumstances. 7445 */ 7446 if (nr_boost_reclaim && !nr_reclaimed) 7447 break; 7448 7449 if (raise_priority || !nr_reclaimed) 7450 sc.priority--; 7451 } while (sc.priority >= 1); 7452 7453 if (!sc.nr_reclaimed) 7454 pgdat->kswapd_failures++; 7455 7456 out: 7457 clear_reclaim_active(pgdat, highest_zoneidx); 7458 7459 /* If reclaim was boosted, account for the reclaim done in this pass */ 7460 if (boosted) { 7461 unsigned long flags; 7462 7463 for (i = 0; i <= highest_zoneidx; i++) { 7464 if (!zone_boosts[i]) 7465 continue; 7466 7467 /* Increments are under the zone lock */ 7468 zone = pgdat->node_zones + i; 7469 spin_lock_irqsave(&zone->lock, flags); 7470 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7471 spin_unlock_irqrestore(&zone->lock, flags); 7472 } 7473 7474 /* 7475 * As there is now likely space, wakeup kcompact to defragment 7476 * pageblocks. 7477 */ 7478 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7479 } 7480 7481 snapshot_refaults(NULL, pgdat); 7482 __fs_reclaim_release(_THIS_IP_); 7483 psi_memstall_leave(&pflags); 7484 set_task_reclaim_state(current, NULL); 7485 7486 /* 7487 * Return the order kswapd stopped reclaiming at as 7488 * prepare_kswapd_sleep() takes it into account. If another caller 7489 * entered the allocator slow path while kswapd was awake, order will 7490 * remain at the higher level. 7491 */ 7492 return sc.order; 7493 } 7494 7495 /* 7496 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7497 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7498 * not a valid index then either kswapd runs for first time or kswapd couldn't 7499 * sleep after previous reclaim attempt (node is still unbalanced). In that 7500 * case return the zone index of the previous kswapd reclaim cycle. 7501 */ 7502 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7503 enum zone_type prev_highest_zoneidx) 7504 { 7505 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7506 7507 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7508 } 7509 7510 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7511 unsigned int highest_zoneidx) 7512 { 7513 long remaining = 0; 7514 DEFINE_WAIT(wait); 7515 7516 if (freezing(current) || kthread_should_stop()) 7517 return; 7518 7519 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7520 7521 /* 7522 * Try to sleep for a short interval. Note that kcompactd will only be 7523 * woken if it is possible to sleep for a short interval. This is 7524 * deliberate on the assumption that if reclaim cannot keep an 7525 * eligible zone balanced that it's also unlikely that compaction will 7526 * succeed. 7527 */ 7528 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7529 /* 7530 * Compaction records what page blocks it recently failed to 7531 * isolate pages from and skips them in the future scanning. 7532 * When kswapd is going to sleep, it is reasonable to assume 7533 * that pages and compaction may succeed so reset the cache. 7534 */ 7535 reset_isolation_suitable(pgdat); 7536 7537 /* 7538 * We have freed the memory, now we should compact it to make 7539 * allocation of the requested order possible. 7540 */ 7541 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7542 7543 remaining = schedule_timeout(HZ/10); 7544 7545 /* 7546 * If woken prematurely then reset kswapd_highest_zoneidx and 7547 * order. The values will either be from a wakeup request or 7548 * the previous request that slept prematurely. 7549 */ 7550 if (remaining) { 7551 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7552 kswapd_highest_zoneidx(pgdat, 7553 highest_zoneidx)); 7554 7555 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7556 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7557 } 7558 7559 finish_wait(&pgdat->kswapd_wait, &wait); 7560 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7561 } 7562 7563 /* 7564 * After a short sleep, check if it was a premature sleep. If not, then 7565 * go fully to sleep until explicitly woken up. 7566 */ 7567 if (!remaining && 7568 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7569 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7570 7571 /* 7572 * vmstat counters are not perfectly accurate and the estimated 7573 * value for counters such as NR_FREE_PAGES can deviate from the 7574 * true value by nr_online_cpus * threshold. To avoid the zone 7575 * watermarks being breached while under pressure, we reduce the 7576 * per-cpu vmstat threshold while kswapd is awake and restore 7577 * them before going back to sleep. 7578 */ 7579 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7580 7581 if (!kthread_should_stop()) 7582 schedule(); 7583 7584 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7585 } else { 7586 if (remaining) 7587 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7588 else 7589 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7590 } 7591 finish_wait(&pgdat->kswapd_wait, &wait); 7592 } 7593 7594 /* 7595 * The background pageout daemon, started as a kernel thread 7596 * from the init process. 7597 * 7598 * This basically trickles out pages so that we have _some_ 7599 * free memory available even if there is no other activity 7600 * that frees anything up. This is needed for things like routing 7601 * etc, where we otherwise might have all activity going on in 7602 * asynchronous contexts that cannot page things out. 7603 * 7604 * If there are applications that are active memory-allocators 7605 * (most normal use), this basically shouldn't matter. 7606 */ 7607 static int kswapd(void *p) 7608 { 7609 unsigned int alloc_order, reclaim_order; 7610 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7611 pg_data_t *pgdat = (pg_data_t *)p; 7612 struct task_struct *tsk = current; 7613 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7614 7615 if (!cpumask_empty(cpumask)) 7616 set_cpus_allowed_ptr(tsk, cpumask); 7617 7618 /* 7619 * Tell the memory management that we're a "memory allocator", 7620 * and that if we need more memory we should get access to it 7621 * regardless (see "__alloc_pages()"). "kswapd" should 7622 * never get caught in the normal page freeing logic. 7623 * 7624 * (Kswapd normally doesn't need memory anyway, but sometimes 7625 * you need a small amount of memory in order to be able to 7626 * page out something else, and this flag essentially protects 7627 * us from recursively trying to free more memory as we're 7628 * trying to free the first piece of memory in the first place). 7629 */ 7630 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7631 set_freezable(); 7632 7633 WRITE_ONCE(pgdat->kswapd_order, 0); 7634 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7635 atomic_set(&pgdat->nr_writeback_throttled, 0); 7636 for ( ; ; ) { 7637 bool ret; 7638 7639 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7640 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7641 highest_zoneidx); 7642 7643 kswapd_try_sleep: 7644 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7645 highest_zoneidx); 7646 7647 /* Read the new order and highest_zoneidx */ 7648 alloc_order = READ_ONCE(pgdat->kswapd_order); 7649 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7650 highest_zoneidx); 7651 WRITE_ONCE(pgdat->kswapd_order, 0); 7652 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7653 7654 ret = try_to_freeze(); 7655 if (kthread_should_stop()) 7656 break; 7657 7658 /* 7659 * We can speed up thawing tasks if we don't call balance_pgdat 7660 * after returning from the refrigerator 7661 */ 7662 if (ret) 7663 continue; 7664 7665 /* 7666 * Reclaim begins at the requested order but if a high-order 7667 * reclaim fails then kswapd falls back to reclaiming for 7668 * order-0. If that happens, kswapd will consider sleeping 7669 * for the order it finished reclaiming at (reclaim_order) 7670 * but kcompactd is woken to compact for the original 7671 * request (alloc_order). 7672 */ 7673 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7674 alloc_order); 7675 reclaim_order = balance_pgdat(pgdat, alloc_order, 7676 highest_zoneidx); 7677 if (reclaim_order < alloc_order) 7678 goto kswapd_try_sleep; 7679 } 7680 7681 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7682 7683 return 0; 7684 } 7685 7686 /* 7687 * A zone is low on free memory or too fragmented for high-order memory. If 7688 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7689 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7690 * has failed or is not needed, still wake up kcompactd if only compaction is 7691 * needed. 7692 */ 7693 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7694 enum zone_type highest_zoneidx) 7695 { 7696 pg_data_t *pgdat; 7697 enum zone_type curr_idx; 7698 7699 if (!managed_zone(zone)) 7700 return; 7701 7702 if (!cpuset_zone_allowed(zone, gfp_flags)) 7703 return; 7704 7705 pgdat = zone->zone_pgdat; 7706 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7707 7708 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7709 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7710 7711 if (READ_ONCE(pgdat->kswapd_order) < order) 7712 WRITE_ONCE(pgdat->kswapd_order, order); 7713 7714 if (!waitqueue_active(&pgdat->kswapd_wait)) 7715 return; 7716 7717 /* Hopeless node, leave it to direct reclaim if possible */ 7718 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7719 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7720 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7721 /* 7722 * There may be plenty of free memory available, but it's too 7723 * fragmented for high-order allocations. Wake up kcompactd 7724 * and rely on compaction_suitable() to determine if it's 7725 * needed. If it fails, it will defer subsequent attempts to 7726 * ratelimit its work. 7727 */ 7728 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7729 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7730 return; 7731 } 7732 7733 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7734 gfp_flags); 7735 wake_up_interruptible(&pgdat->kswapd_wait); 7736 } 7737 7738 #ifdef CONFIG_HIBERNATION 7739 /* 7740 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7741 * freed pages. 7742 * 7743 * Rather than trying to age LRUs the aim is to preserve the overall 7744 * LRU order by reclaiming preferentially 7745 * inactive > active > active referenced > active mapped 7746 */ 7747 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7748 { 7749 struct scan_control sc = { 7750 .nr_to_reclaim = nr_to_reclaim, 7751 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7752 .reclaim_idx = MAX_NR_ZONES - 1, 7753 .priority = DEF_PRIORITY, 7754 .may_writepage = 1, 7755 .may_unmap = 1, 7756 .may_swap = 1, 7757 .hibernation_mode = 1, 7758 }; 7759 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7760 unsigned long nr_reclaimed; 7761 unsigned int noreclaim_flag; 7762 7763 fs_reclaim_acquire(sc.gfp_mask); 7764 noreclaim_flag = memalloc_noreclaim_save(); 7765 set_task_reclaim_state(current, &sc.reclaim_state); 7766 7767 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7768 7769 set_task_reclaim_state(current, NULL); 7770 memalloc_noreclaim_restore(noreclaim_flag); 7771 fs_reclaim_release(sc.gfp_mask); 7772 7773 return nr_reclaimed; 7774 } 7775 #endif /* CONFIG_HIBERNATION */ 7776 7777 /* 7778 * This kswapd start function will be called by init and node-hot-add. 7779 */ 7780 void kswapd_run(int nid) 7781 { 7782 pg_data_t *pgdat = NODE_DATA(nid); 7783 7784 pgdat_kswapd_lock(pgdat); 7785 if (!pgdat->kswapd) { 7786 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7787 if (IS_ERR(pgdat->kswapd)) { 7788 /* failure at boot is fatal */ 7789 BUG_ON(system_state < SYSTEM_RUNNING); 7790 pr_err("Failed to start kswapd on node %d\n", nid); 7791 pgdat->kswapd = NULL; 7792 } 7793 } 7794 pgdat_kswapd_unlock(pgdat); 7795 } 7796 7797 /* 7798 * Called by memory hotplug when all memory in a node is offlined. Caller must 7799 * be holding mem_hotplug_begin/done(). 7800 */ 7801 void kswapd_stop(int nid) 7802 { 7803 pg_data_t *pgdat = NODE_DATA(nid); 7804 struct task_struct *kswapd; 7805 7806 pgdat_kswapd_lock(pgdat); 7807 kswapd = pgdat->kswapd; 7808 if (kswapd) { 7809 kthread_stop(kswapd); 7810 pgdat->kswapd = NULL; 7811 } 7812 pgdat_kswapd_unlock(pgdat); 7813 } 7814 7815 static int __init kswapd_init(void) 7816 { 7817 int nid; 7818 7819 swap_setup(); 7820 for_each_node_state(nid, N_MEMORY) 7821 kswapd_run(nid); 7822 return 0; 7823 } 7824 7825 module_init(kswapd_init) 7826 7827 #ifdef CONFIG_NUMA 7828 /* 7829 * Node reclaim mode 7830 * 7831 * If non-zero call node_reclaim when the number of free pages falls below 7832 * the watermarks. 7833 */ 7834 int node_reclaim_mode __read_mostly; 7835 7836 /* 7837 * Priority for NODE_RECLAIM. This determines the fraction of pages 7838 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7839 * a zone. 7840 */ 7841 #define NODE_RECLAIM_PRIORITY 4 7842 7843 /* 7844 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7845 * occur. 7846 */ 7847 int sysctl_min_unmapped_ratio = 1; 7848 7849 /* 7850 * If the number of slab pages in a zone grows beyond this percentage then 7851 * slab reclaim needs to occur. 7852 */ 7853 int sysctl_min_slab_ratio = 5; 7854 7855 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7856 { 7857 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7858 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7859 node_page_state(pgdat, NR_ACTIVE_FILE); 7860 7861 /* 7862 * It's possible for there to be more file mapped pages than 7863 * accounted for by the pages on the file LRU lists because 7864 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7865 */ 7866 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7867 } 7868 7869 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7870 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7871 { 7872 unsigned long nr_pagecache_reclaimable; 7873 unsigned long delta = 0; 7874 7875 /* 7876 * If RECLAIM_UNMAP is set, then all file pages are considered 7877 * potentially reclaimable. Otherwise, we have to worry about 7878 * pages like swapcache and node_unmapped_file_pages() provides 7879 * a better estimate 7880 */ 7881 if (node_reclaim_mode & RECLAIM_UNMAP) 7882 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7883 else 7884 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7885 7886 /* If we can't clean pages, remove dirty pages from consideration */ 7887 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7888 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7889 7890 /* Watch for any possible underflows due to delta */ 7891 if (unlikely(delta > nr_pagecache_reclaimable)) 7892 delta = nr_pagecache_reclaimable; 7893 7894 return nr_pagecache_reclaimable - delta; 7895 } 7896 7897 /* 7898 * Try to free up some pages from this node through reclaim. 7899 */ 7900 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7901 { 7902 /* Minimum pages needed in order to stay on node */ 7903 const unsigned long nr_pages = 1 << order; 7904 struct task_struct *p = current; 7905 unsigned int noreclaim_flag; 7906 struct scan_control sc = { 7907 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7908 .gfp_mask = current_gfp_context(gfp_mask), 7909 .order = order, 7910 .priority = NODE_RECLAIM_PRIORITY, 7911 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7912 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7913 .may_swap = 1, 7914 .reclaim_idx = gfp_zone(gfp_mask), 7915 }; 7916 unsigned long pflags; 7917 7918 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7919 sc.gfp_mask); 7920 7921 cond_resched(); 7922 psi_memstall_enter(&pflags); 7923 fs_reclaim_acquire(sc.gfp_mask); 7924 /* 7925 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7926 */ 7927 noreclaim_flag = memalloc_noreclaim_save(); 7928 set_task_reclaim_state(p, &sc.reclaim_state); 7929 7930 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7931 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7932 /* 7933 * Free memory by calling shrink node with increasing 7934 * priorities until we have enough memory freed. 7935 */ 7936 do { 7937 shrink_node(pgdat, &sc); 7938 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7939 } 7940 7941 set_task_reclaim_state(p, NULL); 7942 memalloc_noreclaim_restore(noreclaim_flag); 7943 fs_reclaim_release(sc.gfp_mask); 7944 psi_memstall_leave(&pflags); 7945 7946 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7947 7948 return sc.nr_reclaimed >= nr_pages; 7949 } 7950 7951 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7952 { 7953 int ret; 7954 7955 /* 7956 * Node reclaim reclaims unmapped file backed pages and 7957 * slab pages if we are over the defined limits. 7958 * 7959 * A small portion of unmapped file backed pages is needed for 7960 * file I/O otherwise pages read by file I/O will be immediately 7961 * thrown out if the node is overallocated. So we do not reclaim 7962 * if less than a specified percentage of the node is used by 7963 * unmapped file backed pages. 7964 */ 7965 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7966 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7967 pgdat->min_slab_pages) 7968 return NODE_RECLAIM_FULL; 7969 7970 /* 7971 * Do not scan if the allocation should not be delayed. 7972 */ 7973 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7974 return NODE_RECLAIM_NOSCAN; 7975 7976 /* 7977 * Only run node reclaim on the local node or on nodes that do not 7978 * have associated processors. This will favor the local processor 7979 * over remote processors and spread off node memory allocations 7980 * as wide as possible. 7981 */ 7982 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7983 return NODE_RECLAIM_NOSCAN; 7984 7985 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7986 return NODE_RECLAIM_NOSCAN; 7987 7988 ret = __node_reclaim(pgdat, gfp_mask, order); 7989 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7990 7991 if (!ret) 7992 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7993 7994 return ret; 7995 } 7996 #endif 7997 7998 void check_move_unevictable_pages(struct pagevec *pvec) 7999 { 8000 struct folio_batch fbatch; 8001 unsigned i; 8002 8003 folio_batch_init(&fbatch); 8004 for (i = 0; i < pvec->nr; i++) { 8005 struct page *page = pvec->pages[i]; 8006 8007 if (PageTransTail(page)) 8008 continue; 8009 folio_batch_add(&fbatch, page_folio(page)); 8010 } 8011 check_move_unevictable_folios(&fbatch); 8012 } 8013 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8014 8015 /** 8016 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8017 * lru list 8018 * @fbatch: Batch of lru folios to check. 8019 * 8020 * Checks folios for evictability, if an evictable folio is in the unevictable 8021 * lru list, moves it to the appropriate evictable lru list. This function 8022 * should be only used for lru folios. 8023 */ 8024 void check_move_unevictable_folios(struct folio_batch *fbatch) 8025 { 8026 struct lruvec *lruvec = NULL; 8027 int pgscanned = 0; 8028 int pgrescued = 0; 8029 int i; 8030 8031 for (i = 0; i < fbatch->nr; i++) { 8032 struct folio *folio = fbatch->folios[i]; 8033 int nr_pages = folio_nr_pages(folio); 8034 8035 pgscanned += nr_pages; 8036 8037 /* block memcg migration while the folio moves between lrus */ 8038 if (!folio_test_clear_lru(folio)) 8039 continue; 8040 8041 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8042 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8043 lruvec_del_folio(lruvec, folio); 8044 folio_clear_unevictable(folio); 8045 lruvec_add_folio(lruvec, folio); 8046 pgrescued += nr_pages; 8047 } 8048 folio_set_lru(folio); 8049 } 8050 8051 if (lruvec) { 8052 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8053 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8054 unlock_page_lruvec_irq(lruvec); 8055 } else if (pgscanned) { 8056 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8057 } 8058 } 8059 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8060