xref: /openbmc/linux/mm/vmscan.c (revision e8e0929d)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 				struct scan_control *sc, enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	/*
290 	 * A freeable page cache page is referenced only by the caller
291 	 * that isolated the page, the page cache radix tree and
292 	 * optional buffer heads at page->private.
293 	 */
294 	return page_count(page) - page_has_private(page) == 2;
295 }
296 
297 static int may_write_to_queue(struct backing_dev_info *bdi)
298 {
299 	if (current->flags & PF_SWAPWRITE)
300 		return 1;
301 	if (!bdi_write_congested(bdi))
302 		return 1;
303 	if (bdi == current->backing_dev_info)
304 		return 1;
305 	return 0;
306 }
307 
308 /*
309  * We detected a synchronous write error writing a page out.  Probably
310  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
311  * fsync(), msync() or close().
312  *
313  * The tricky part is that after writepage we cannot touch the mapping: nothing
314  * prevents it from being freed up.  But we have a ref on the page and once
315  * that page is locked, the mapping is pinned.
316  *
317  * We're allowed to run sleeping lock_page() here because we know the caller has
318  * __GFP_FS.
319  */
320 static void handle_write_error(struct address_space *mapping,
321 				struct page *page, int error)
322 {
323 	lock_page(page);
324 	if (page_mapping(page) == mapping)
325 		mapping_set_error(mapping, error);
326 	unlock_page(page);
327 }
328 
329 /* Request for sync pageout. */
330 enum pageout_io {
331 	PAGEOUT_IO_ASYNC,
332 	PAGEOUT_IO_SYNC,
333 };
334 
335 /* possible outcome of pageout() */
336 typedef enum {
337 	/* failed to write page out, page is locked */
338 	PAGE_KEEP,
339 	/* move page to the active list, page is locked */
340 	PAGE_ACTIVATE,
341 	/* page has been sent to the disk successfully, page is unlocked */
342 	PAGE_SUCCESS,
343 	/* page is clean and locked */
344 	PAGE_CLEAN,
345 } pageout_t;
346 
347 /*
348  * pageout is called by shrink_page_list() for each dirty page.
349  * Calls ->writepage().
350  */
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352 						enum pageout_io sync_writeback)
353 {
354 	/*
355 	 * If the page is dirty, only perform writeback if that write
356 	 * will be non-blocking.  To prevent this allocation from being
357 	 * stalled by pagecache activity.  But note that there may be
358 	 * stalls if we need to run get_block().  We could test
359 	 * PagePrivate for that.
360 	 *
361 	 * If this process is currently in generic_file_write() against
362 	 * this page's queue, we can perform writeback even if that
363 	 * will block.
364 	 *
365 	 * If the page is swapcache, write it back even if that would
366 	 * block, for some throttling. This happens by accident, because
367 	 * swap_backing_dev_info is bust: it doesn't reflect the
368 	 * congestion state of the swapdevs.  Easy to fix, if needed.
369 	 */
370 	if (!is_page_cache_freeable(page))
371 		return PAGE_KEEP;
372 	if (!mapping) {
373 		/*
374 		 * Some data journaling orphaned pages can have
375 		 * page->mapping == NULL while being dirty with clean buffers.
376 		 */
377 		if (page_has_private(page)) {
378 			if (try_to_free_buffers(page)) {
379 				ClearPageDirty(page);
380 				printk("%s: orphaned page\n", __func__);
381 				return PAGE_CLEAN;
382 			}
383 		}
384 		return PAGE_KEEP;
385 	}
386 	if (mapping->a_ops->writepage == NULL)
387 		return PAGE_ACTIVATE;
388 	if (!may_write_to_queue(mapping->backing_dev_info))
389 		return PAGE_KEEP;
390 
391 	if (clear_page_dirty_for_io(page)) {
392 		int res;
393 		struct writeback_control wbc = {
394 			.sync_mode = WB_SYNC_NONE,
395 			.nr_to_write = SWAP_CLUSTER_MAX,
396 			.range_start = 0,
397 			.range_end = LLONG_MAX,
398 			.nonblocking = 1,
399 			.for_reclaim = 1,
400 		};
401 
402 		SetPageReclaim(page);
403 		res = mapping->a_ops->writepage(page, &wbc);
404 		if (res < 0)
405 			handle_write_error(mapping, page, res);
406 		if (res == AOP_WRITEPAGE_ACTIVATE) {
407 			ClearPageReclaim(page);
408 			return PAGE_ACTIVATE;
409 		}
410 
411 		/*
412 		 * Wait on writeback if requested to. This happens when
413 		 * direct reclaiming a large contiguous area and the
414 		 * first attempt to free a range of pages fails.
415 		 */
416 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417 			wait_on_page_writeback(page);
418 
419 		if (!PageWriteback(page)) {
420 			/* synchronous write or broken a_ops? */
421 			ClearPageReclaim(page);
422 		}
423 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
424 		return PAGE_SUCCESS;
425 	}
426 
427 	return PAGE_CLEAN;
428 }
429 
430 /*
431  * Same as remove_mapping, but if the page is removed from the mapping, it
432  * gets returned with a refcount of 0.
433  */
434 static int __remove_mapping(struct address_space *mapping, struct page *page)
435 {
436 	BUG_ON(!PageLocked(page));
437 	BUG_ON(mapping != page_mapping(page));
438 
439 	spin_lock_irq(&mapping->tree_lock);
440 	/*
441 	 * The non racy check for a busy page.
442 	 *
443 	 * Must be careful with the order of the tests. When someone has
444 	 * a ref to the page, it may be possible that they dirty it then
445 	 * drop the reference. So if PageDirty is tested before page_count
446 	 * here, then the following race may occur:
447 	 *
448 	 * get_user_pages(&page);
449 	 * [user mapping goes away]
450 	 * write_to(page);
451 	 *				!PageDirty(page)    [good]
452 	 * SetPageDirty(page);
453 	 * put_page(page);
454 	 *				!page_count(page)   [good, discard it]
455 	 *
456 	 * [oops, our write_to data is lost]
457 	 *
458 	 * Reversing the order of the tests ensures such a situation cannot
459 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460 	 * load is not satisfied before that of page->_count.
461 	 *
462 	 * Note that if SetPageDirty is always performed via set_page_dirty,
463 	 * and thus under tree_lock, then this ordering is not required.
464 	 */
465 	if (!page_freeze_refs(page, 2))
466 		goto cannot_free;
467 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468 	if (unlikely(PageDirty(page))) {
469 		page_unfreeze_refs(page, 2);
470 		goto cannot_free;
471 	}
472 
473 	if (PageSwapCache(page)) {
474 		swp_entry_t swap = { .val = page_private(page) };
475 		__delete_from_swap_cache(page);
476 		spin_unlock_irq(&mapping->tree_lock);
477 		swapcache_free(swap, page);
478 	} else {
479 		__remove_from_page_cache(page);
480 		spin_unlock_irq(&mapping->tree_lock);
481 		mem_cgroup_uncharge_cache_page(page);
482 	}
483 
484 	return 1;
485 
486 cannot_free:
487 	spin_unlock_irq(&mapping->tree_lock);
488 	return 0;
489 }
490 
491 /*
492  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
493  * someone else has a ref on the page, abort and return 0.  If it was
494  * successfully detached, return 1.  Assumes the caller has a single ref on
495  * this page.
496  */
497 int remove_mapping(struct address_space *mapping, struct page *page)
498 {
499 	if (__remove_mapping(mapping, page)) {
500 		/*
501 		 * Unfreezing the refcount with 1 rather than 2 effectively
502 		 * drops the pagecache ref for us without requiring another
503 		 * atomic operation.
504 		 */
505 		page_unfreeze_refs(page, 1);
506 		return 1;
507 	}
508 	return 0;
509 }
510 
511 /**
512  * putback_lru_page - put previously isolated page onto appropriate LRU list
513  * @page: page to be put back to appropriate lru list
514  *
515  * Add previously isolated @page to appropriate LRU list.
516  * Page may still be unevictable for other reasons.
517  *
518  * lru_lock must not be held, interrupts must be enabled.
519  */
520 void putback_lru_page(struct page *page)
521 {
522 	int lru;
523 	int active = !!TestClearPageActive(page);
524 	int was_unevictable = PageUnevictable(page);
525 
526 	VM_BUG_ON(PageLRU(page));
527 
528 redo:
529 	ClearPageUnevictable(page);
530 
531 	if (page_evictable(page, NULL)) {
532 		/*
533 		 * For evictable pages, we can use the cache.
534 		 * In event of a race, worst case is we end up with an
535 		 * unevictable page on [in]active list.
536 		 * We know how to handle that.
537 		 */
538 		lru = active + page_lru_base_type(page);
539 		lru_cache_add_lru(page, lru);
540 	} else {
541 		/*
542 		 * Put unevictable pages directly on zone's unevictable
543 		 * list.
544 		 */
545 		lru = LRU_UNEVICTABLE;
546 		add_page_to_unevictable_list(page);
547 	}
548 
549 	/*
550 	 * page's status can change while we move it among lru. If an evictable
551 	 * page is on unevictable list, it never be freed. To avoid that,
552 	 * check after we added it to the list, again.
553 	 */
554 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
555 		if (!isolate_lru_page(page)) {
556 			put_page(page);
557 			goto redo;
558 		}
559 		/* This means someone else dropped this page from LRU
560 		 * So, it will be freed or putback to LRU again. There is
561 		 * nothing to do here.
562 		 */
563 	}
564 
565 	if (was_unevictable && lru != LRU_UNEVICTABLE)
566 		count_vm_event(UNEVICTABLE_PGRESCUED);
567 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
568 		count_vm_event(UNEVICTABLE_PGCULLED);
569 
570 	put_page(page);		/* drop ref from isolate */
571 }
572 
573 /*
574  * shrink_page_list() returns the number of reclaimed pages
575  */
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 					struct scan_control *sc,
578 					enum pageout_io sync_writeback)
579 {
580 	LIST_HEAD(ret_pages);
581 	struct pagevec freed_pvec;
582 	int pgactivate = 0;
583 	unsigned long nr_reclaimed = 0;
584 	unsigned long vm_flags;
585 
586 	cond_resched();
587 
588 	pagevec_init(&freed_pvec, 1);
589 	while (!list_empty(page_list)) {
590 		struct address_space *mapping;
591 		struct page *page;
592 		int may_enter_fs;
593 		int referenced;
594 
595 		cond_resched();
596 
597 		page = lru_to_page(page_list);
598 		list_del(&page->lru);
599 
600 		if (!trylock_page(page))
601 			goto keep;
602 
603 		VM_BUG_ON(PageActive(page));
604 
605 		sc->nr_scanned++;
606 
607 		if (unlikely(!page_evictable(page, NULL)))
608 			goto cull_mlocked;
609 
610 		if (!sc->may_unmap && page_mapped(page))
611 			goto keep_locked;
612 
613 		/* Double the slab pressure for mapped and swapcache pages */
614 		if (page_mapped(page) || PageSwapCache(page))
615 			sc->nr_scanned++;
616 
617 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
619 
620 		if (PageWriteback(page)) {
621 			/*
622 			 * Synchronous reclaim is performed in two passes,
623 			 * first an asynchronous pass over the list to
624 			 * start parallel writeback, and a second synchronous
625 			 * pass to wait for the IO to complete.  Wait here
626 			 * for any page for which writeback has already
627 			 * started.
628 			 */
629 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630 				wait_on_page_writeback(page);
631 			else
632 				goto keep_locked;
633 		}
634 
635 		referenced = page_referenced(page, 1,
636 						sc->mem_cgroup, &vm_flags);
637 		/*
638 		 * In active use or really unfreeable?  Activate it.
639 		 * If page which have PG_mlocked lost isoltation race,
640 		 * try_to_unmap moves it to unevictable list
641 		 */
642 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
643 					referenced && page_mapping_inuse(page)
644 					&& !(vm_flags & VM_LOCKED))
645 			goto activate_locked;
646 
647 		/*
648 		 * Anonymous process memory has backing store?
649 		 * Try to allocate it some swap space here.
650 		 */
651 		if (PageAnon(page) && !PageSwapCache(page)) {
652 			if (!(sc->gfp_mask & __GFP_IO))
653 				goto keep_locked;
654 			if (!add_to_swap(page))
655 				goto activate_locked;
656 			may_enter_fs = 1;
657 		}
658 
659 		mapping = page_mapping(page);
660 
661 		/*
662 		 * The page is mapped into the page tables of one or more
663 		 * processes. Try to unmap it here.
664 		 */
665 		if (page_mapped(page) && mapping) {
666 			switch (try_to_unmap(page, TTU_UNMAP)) {
667 			case SWAP_FAIL:
668 				goto activate_locked;
669 			case SWAP_AGAIN:
670 				goto keep_locked;
671 			case SWAP_MLOCK:
672 				goto cull_mlocked;
673 			case SWAP_SUCCESS:
674 				; /* try to free the page below */
675 			}
676 		}
677 
678 		if (PageDirty(page)) {
679 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680 				goto keep_locked;
681 			if (!may_enter_fs)
682 				goto keep_locked;
683 			if (!sc->may_writepage)
684 				goto keep_locked;
685 
686 			/* Page is dirty, try to write it out here */
687 			switch (pageout(page, mapping, sync_writeback)) {
688 			case PAGE_KEEP:
689 				goto keep_locked;
690 			case PAGE_ACTIVATE:
691 				goto activate_locked;
692 			case PAGE_SUCCESS:
693 				if (PageWriteback(page) || PageDirty(page))
694 					goto keep;
695 				/*
696 				 * A synchronous write - probably a ramdisk.  Go
697 				 * ahead and try to reclaim the page.
698 				 */
699 				if (!trylock_page(page))
700 					goto keep;
701 				if (PageDirty(page) || PageWriteback(page))
702 					goto keep_locked;
703 				mapping = page_mapping(page);
704 			case PAGE_CLEAN:
705 				; /* try to free the page below */
706 			}
707 		}
708 
709 		/*
710 		 * If the page has buffers, try to free the buffer mappings
711 		 * associated with this page. If we succeed we try to free
712 		 * the page as well.
713 		 *
714 		 * We do this even if the page is PageDirty().
715 		 * try_to_release_page() does not perform I/O, but it is
716 		 * possible for a page to have PageDirty set, but it is actually
717 		 * clean (all its buffers are clean).  This happens if the
718 		 * buffers were written out directly, with submit_bh(). ext3
719 		 * will do this, as well as the blockdev mapping.
720 		 * try_to_release_page() will discover that cleanness and will
721 		 * drop the buffers and mark the page clean - it can be freed.
722 		 *
723 		 * Rarely, pages can have buffers and no ->mapping.  These are
724 		 * the pages which were not successfully invalidated in
725 		 * truncate_complete_page().  We try to drop those buffers here
726 		 * and if that worked, and the page is no longer mapped into
727 		 * process address space (page_count == 1) it can be freed.
728 		 * Otherwise, leave the page on the LRU so it is swappable.
729 		 */
730 		if (page_has_private(page)) {
731 			if (!try_to_release_page(page, sc->gfp_mask))
732 				goto activate_locked;
733 			if (!mapping && page_count(page) == 1) {
734 				unlock_page(page);
735 				if (put_page_testzero(page))
736 					goto free_it;
737 				else {
738 					/*
739 					 * rare race with speculative reference.
740 					 * the speculative reference will free
741 					 * this page shortly, so we may
742 					 * increment nr_reclaimed here (and
743 					 * leave it off the LRU).
744 					 */
745 					nr_reclaimed++;
746 					continue;
747 				}
748 			}
749 		}
750 
751 		if (!mapping || !__remove_mapping(mapping, page))
752 			goto keep_locked;
753 
754 		/*
755 		 * At this point, we have no other references and there is
756 		 * no way to pick any more up (removed from LRU, removed
757 		 * from pagecache). Can use non-atomic bitops now (and
758 		 * we obviously don't have to worry about waking up a process
759 		 * waiting on the page lock, because there are no references.
760 		 */
761 		__clear_page_locked(page);
762 free_it:
763 		nr_reclaimed++;
764 		if (!pagevec_add(&freed_pvec, page)) {
765 			__pagevec_free(&freed_pvec);
766 			pagevec_reinit(&freed_pvec);
767 		}
768 		continue;
769 
770 cull_mlocked:
771 		if (PageSwapCache(page))
772 			try_to_free_swap(page);
773 		unlock_page(page);
774 		putback_lru_page(page);
775 		continue;
776 
777 activate_locked:
778 		/* Not a candidate for swapping, so reclaim swap space. */
779 		if (PageSwapCache(page) && vm_swap_full())
780 			try_to_free_swap(page);
781 		VM_BUG_ON(PageActive(page));
782 		SetPageActive(page);
783 		pgactivate++;
784 keep_locked:
785 		unlock_page(page);
786 keep:
787 		list_add(&page->lru, &ret_pages);
788 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
789 	}
790 	list_splice(&ret_pages, page_list);
791 	if (pagevec_count(&freed_pvec))
792 		__pagevec_free(&freed_pvec);
793 	count_vm_events(PGACTIVATE, pgactivate);
794 	return nr_reclaimed;
795 }
796 
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
800 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
801 
802 /*
803  * Attempt to remove the specified page from its LRU.  Only take this page
804  * if it is of the appropriate PageActive status.  Pages which are being
805  * freed elsewhere are also ignored.
806  *
807  * page:	page to consider
808  * mode:	one of the LRU isolation modes defined above
809  *
810  * returns 0 on success, -ve errno on failure.
811  */
812 int __isolate_lru_page(struct page *page, int mode, int file)
813 {
814 	int ret = -EINVAL;
815 
816 	/* Only take pages on the LRU. */
817 	if (!PageLRU(page))
818 		return ret;
819 
820 	/*
821 	 * When checking the active state, we need to be sure we are
822 	 * dealing with comparible boolean values.  Take the logical not
823 	 * of each.
824 	 */
825 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826 		return ret;
827 
828 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
829 		return ret;
830 
831 	/*
832 	 * When this function is being called for lumpy reclaim, we
833 	 * initially look into all LRU pages, active, inactive and
834 	 * unevictable; only give shrink_page_list evictable pages.
835 	 */
836 	if (PageUnevictable(page))
837 		return ret;
838 
839 	ret = -EBUSY;
840 
841 	if (likely(get_page_unless_zero(page))) {
842 		/*
843 		 * Be careful not to clear PageLRU until after we're
844 		 * sure the page is not being freed elsewhere -- the
845 		 * page release code relies on it.
846 		 */
847 		ClearPageLRU(page);
848 		ret = 0;
849 	}
850 
851 	return ret;
852 }
853 
854 /*
855  * zone->lru_lock is heavily contended.  Some of the functions that
856  * shrink the lists perform better by taking out a batch of pages
857  * and working on them outside the LRU lock.
858  *
859  * For pagecache intensive workloads, this function is the hottest
860  * spot in the kernel (apart from copy_*_user functions).
861  *
862  * Appropriate locks must be held before calling this function.
863  *
864  * @nr_to_scan:	The number of pages to look through on the list.
865  * @src:	The LRU list to pull pages off.
866  * @dst:	The temp list to put pages on to.
867  * @scanned:	The number of pages that were scanned.
868  * @order:	The caller's attempted allocation order
869  * @mode:	One of the LRU isolation modes
870  * @file:	True [1] if isolating file [!anon] pages
871  *
872  * returns how many pages were moved onto *@dst.
873  */
874 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
875 		struct list_head *src, struct list_head *dst,
876 		unsigned long *scanned, int order, int mode, int file)
877 {
878 	unsigned long nr_taken = 0;
879 	unsigned long scan;
880 
881 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
882 		struct page *page;
883 		unsigned long pfn;
884 		unsigned long end_pfn;
885 		unsigned long page_pfn;
886 		int zone_id;
887 
888 		page = lru_to_page(src);
889 		prefetchw_prev_lru_page(page, src, flags);
890 
891 		VM_BUG_ON(!PageLRU(page));
892 
893 		switch (__isolate_lru_page(page, mode, file)) {
894 		case 0:
895 			list_move(&page->lru, dst);
896 			mem_cgroup_del_lru(page);
897 			nr_taken++;
898 			break;
899 
900 		case -EBUSY:
901 			/* else it is being freed elsewhere */
902 			list_move(&page->lru, src);
903 			mem_cgroup_rotate_lru_list(page, page_lru(page));
904 			continue;
905 
906 		default:
907 			BUG();
908 		}
909 
910 		if (!order)
911 			continue;
912 
913 		/*
914 		 * Attempt to take all pages in the order aligned region
915 		 * surrounding the tag page.  Only take those pages of
916 		 * the same active state as that tag page.  We may safely
917 		 * round the target page pfn down to the requested order
918 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
919 		 * where that page is in a different zone we will detect
920 		 * it from its zone id and abort this block scan.
921 		 */
922 		zone_id = page_zone_id(page);
923 		page_pfn = page_to_pfn(page);
924 		pfn = page_pfn & ~((1 << order) - 1);
925 		end_pfn = pfn + (1 << order);
926 		for (; pfn < end_pfn; pfn++) {
927 			struct page *cursor_page;
928 
929 			/* The target page is in the block, ignore it. */
930 			if (unlikely(pfn == page_pfn))
931 				continue;
932 
933 			/* Avoid holes within the zone. */
934 			if (unlikely(!pfn_valid_within(pfn)))
935 				break;
936 
937 			cursor_page = pfn_to_page(pfn);
938 
939 			/* Check that we have not crossed a zone boundary. */
940 			if (unlikely(page_zone_id(cursor_page) != zone_id))
941 				continue;
942 
943 			/*
944 			 * If we don't have enough swap space, reclaiming of
945 			 * anon page which don't already have a swap slot is
946 			 * pointless.
947 			 */
948 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
949 					!PageSwapCache(cursor_page))
950 				continue;
951 
952 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
953 				list_move(&cursor_page->lru, dst);
954 				mem_cgroup_del_lru(cursor_page);
955 				nr_taken++;
956 				scan++;
957 			}
958 		}
959 	}
960 
961 	*scanned = scan;
962 	return nr_taken;
963 }
964 
965 static unsigned long isolate_pages_global(unsigned long nr,
966 					struct list_head *dst,
967 					unsigned long *scanned, int order,
968 					int mode, struct zone *z,
969 					struct mem_cgroup *mem_cont,
970 					int active, int file)
971 {
972 	int lru = LRU_BASE;
973 	if (active)
974 		lru += LRU_ACTIVE;
975 	if (file)
976 		lru += LRU_FILE;
977 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
978 								mode, file);
979 }
980 
981 /*
982  * clear_active_flags() is a helper for shrink_active_list(), clearing
983  * any active bits from the pages in the list.
984  */
985 static unsigned long clear_active_flags(struct list_head *page_list,
986 					unsigned int *count)
987 {
988 	int nr_active = 0;
989 	int lru;
990 	struct page *page;
991 
992 	list_for_each_entry(page, page_list, lru) {
993 		lru = page_lru_base_type(page);
994 		if (PageActive(page)) {
995 			lru += LRU_ACTIVE;
996 			ClearPageActive(page);
997 			nr_active++;
998 		}
999 		count[lru]++;
1000 	}
1001 
1002 	return nr_active;
1003 }
1004 
1005 /**
1006  * isolate_lru_page - tries to isolate a page from its LRU list
1007  * @page: page to isolate from its LRU list
1008  *
1009  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1010  * vmstat statistic corresponding to whatever LRU list the page was on.
1011  *
1012  * Returns 0 if the page was removed from an LRU list.
1013  * Returns -EBUSY if the page was not on an LRU list.
1014  *
1015  * The returned page will have PageLRU() cleared.  If it was found on
1016  * the active list, it will have PageActive set.  If it was found on
1017  * the unevictable list, it will have the PageUnevictable bit set. That flag
1018  * may need to be cleared by the caller before letting the page go.
1019  *
1020  * The vmstat statistic corresponding to the list on which the page was
1021  * found will be decremented.
1022  *
1023  * Restrictions:
1024  * (1) Must be called with an elevated refcount on the page. This is a
1025  *     fundamentnal difference from isolate_lru_pages (which is called
1026  *     without a stable reference).
1027  * (2) the lru_lock must not be held.
1028  * (3) interrupts must be enabled.
1029  */
1030 int isolate_lru_page(struct page *page)
1031 {
1032 	int ret = -EBUSY;
1033 
1034 	if (PageLRU(page)) {
1035 		struct zone *zone = page_zone(page);
1036 
1037 		spin_lock_irq(&zone->lru_lock);
1038 		if (PageLRU(page) && get_page_unless_zero(page)) {
1039 			int lru = page_lru(page);
1040 			ret = 0;
1041 			ClearPageLRU(page);
1042 
1043 			del_page_from_lru_list(zone, page, lru);
1044 		}
1045 		spin_unlock_irq(&zone->lru_lock);
1046 	}
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Are there way too many processes in the direct reclaim path already?
1052  */
1053 static int too_many_isolated(struct zone *zone, int file,
1054 		struct scan_control *sc)
1055 {
1056 	unsigned long inactive, isolated;
1057 
1058 	if (current_is_kswapd())
1059 		return 0;
1060 
1061 	if (!scanning_global_lru(sc))
1062 		return 0;
1063 
1064 	if (file) {
1065 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1066 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1067 	} else {
1068 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1069 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1070 	}
1071 
1072 	return isolated > inactive;
1073 }
1074 
1075 /*
1076  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1077  * of reclaimed pages
1078  */
1079 static unsigned long shrink_inactive_list(unsigned long max_scan,
1080 			struct zone *zone, struct scan_control *sc,
1081 			int priority, int file)
1082 {
1083 	LIST_HEAD(page_list);
1084 	struct pagevec pvec;
1085 	unsigned long nr_scanned = 0;
1086 	unsigned long nr_reclaimed = 0;
1087 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1088 	int lumpy_reclaim = 0;
1089 
1090 	while (unlikely(too_many_isolated(zone, file, sc))) {
1091 		congestion_wait(WRITE, HZ/10);
1092 
1093 		/* We are about to die and free our memory. Return now. */
1094 		if (fatal_signal_pending(current))
1095 			return SWAP_CLUSTER_MAX;
1096 	}
1097 
1098 	/*
1099 	 * If we need a large contiguous chunk of memory, or have
1100 	 * trouble getting a small set of contiguous pages, we
1101 	 * will reclaim both active and inactive pages.
1102 	 *
1103 	 * We use the same threshold as pageout congestion_wait below.
1104 	 */
1105 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1106 		lumpy_reclaim = 1;
1107 	else if (sc->order && priority < DEF_PRIORITY - 2)
1108 		lumpy_reclaim = 1;
1109 
1110 	pagevec_init(&pvec, 1);
1111 
1112 	lru_add_drain();
1113 	spin_lock_irq(&zone->lru_lock);
1114 	do {
1115 		struct page *page;
1116 		unsigned long nr_taken;
1117 		unsigned long nr_scan;
1118 		unsigned long nr_freed;
1119 		unsigned long nr_active;
1120 		unsigned int count[NR_LRU_LISTS] = { 0, };
1121 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1122 		unsigned long nr_anon;
1123 		unsigned long nr_file;
1124 
1125 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1126 			     &page_list, &nr_scan, sc->order, mode,
1127 				zone, sc->mem_cgroup, 0, file);
1128 
1129 		if (scanning_global_lru(sc)) {
1130 			zone->pages_scanned += nr_scan;
1131 			if (current_is_kswapd())
1132 				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1133 						       nr_scan);
1134 			else
1135 				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1136 						       nr_scan);
1137 		}
1138 
1139 		if (nr_taken == 0)
1140 			goto done;
1141 
1142 		nr_active = clear_active_flags(&page_list, count);
1143 		__count_vm_events(PGDEACTIVATE, nr_active);
1144 
1145 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1146 						-count[LRU_ACTIVE_FILE]);
1147 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1148 						-count[LRU_INACTIVE_FILE]);
1149 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1150 						-count[LRU_ACTIVE_ANON]);
1151 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1152 						-count[LRU_INACTIVE_ANON]);
1153 
1154 		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1155 		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1156 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1157 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1158 
1159 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1160 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1161 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1162 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1163 
1164 		spin_unlock_irq(&zone->lru_lock);
1165 
1166 		nr_scanned += nr_scan;
1167 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1168 
1169 		/*
1170 		 * If we are direct reclaiming for contiguous pages and we do
1171 		 * not reclaim everything in the list, try again and wait
1172 		 * for IO to complete. This will stall high-order allocations
1173 		 * but that should be acceptable to the caller
1174 		 */
1175 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1176 		    lumpy_reclaim) {
1177 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1178 
1179 			/*
1180 			 * The attempt at page out may have made some
1181 			 * of the pages active, mark them inactive again.
1182 			 */
1183 			nr_active = clear_active_flags(&page_list, count);
1184 			count_vm_events(PGDEACTIVATE, nr_active);
1185 
1186 			nr_freed += shrink_page_list(&page_list, sc,
1187 							PAGEOUT_IO_SYNC);
1188 		}
1189 
1190 		nr_reclaimed += nr_freed;
1191 
1192 		local_irq_disable();
1193 		if (current_is_kswapd())
1194 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1195 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1196 
1197 		spin_lock(&zone->lru_lock);
1198 		/*
1199 		 * Put back any unfreeable pages.
1200 		 */
1201 		while (!list_empty(&page_list)) {
1202 			int lru;
1203 			page = lru_to_page(&page_list);
1204 			VM_BUG_ON(PageLRU(page));
1205 			list_del(&page->lru);
1206 			if (unlikely(!page_evictable(page, NULL))) {
1207 				spin_unlock_irq(&zone->lru_lock);
1208 				putback_lru_page(page);
1209 				spin_lock_irq(&zone->lru_lock);
1210 				continue;
1211 			}
1212 			SetPageLRU(page);
1213 			lru = page_lru(page);
1214 			add_page_to_lru_list(zone, page, lru);
1215 			if (is_active_lru(lru)) {
1216 				int file = is_file_lru(lru);
1217 				reclaim_stat->recent_rotated[file]++;
1218 			}
1219 			if (!pagevec_add(&pvec, page)) {
1220 				spin_unlock_irq(&zone->lru_lock);
1221 				__pagevec_release(&pvec);
1222 				spin_lock_irq(&zone->lru_lock);
1223 			}
1224 		}
1225 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1226 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1227 
1228   	} while (nr_scanned < max_scan);
1229 
1230 done:
1231 	spin_unlock_irq(&zone->lru_lock);
1232 	pagevec_release(&pvec);
1233 	return nr_reclaimed;
1234 }
1235 
1236 /*
1237  * We are about to scan this zone at a certain priority level.  If that priority
1238  * level is smaller (ie: more urgent) than the previous priority, then note
1239  * that priority level within the zone.  This is done so that when the next
1240  * process comes in to scan this zone, it will immediately start out at this
1241  * priority level rather than having to build up its own scanning priority.
1242  * Here, this priority affects only the reclaim-mapped threshold.
1243  */
1244 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1245 {
1246 	if (priority < zone->prev_priority)
1247 		zone->prev_priority = priority;
1248 }
1249 
1250 /*
1251  * This moves pages from the active list to the inactive list.
1252  *
1253  * We move them the other way if the page is referenced by one or more
1254  * processes, from rmap.
1255  *
1256  * If the pages are mostly unmapped, the processing is fast and it is
1257  * appropriate to hold zone->lru_lock across the whole operation.  But if
1258  * the pages are mapped, the processing is slow (page_referenced()) so we
1259  * should drop zone->lru_lock around each page.  It's impossible to balance
1260  * this, so instead we remove the pages from the LRU while processing them.
1261  * It is safe to rely on PG_active against the non-LRU pages in here because
1262  * nobody will play with that bit on a non-LRU page.
1263  *
1264  * The downside is that we have to touch page->_count against each page.
1265  * But we had to alter page->flags anyway.
1266  */
1267 
1268 static void move_active_pages_to_lru(struct zone *zone,
1269 				     struct list_head *list,
1270 				     enum lru_list lru)
1271 {
1272 	unsigned long pgmoved = 0;
1273 	struct pagevec pvec;
1274 	struct page *page;
1275 
1276 	pagevec_init(&pvec, 1);
1277 
1278 	while (!list_empty(list)) {
1279 		page = lru_to_page(list);
1280 
1281 		VM_BUG_ON(PageLRU(page));
1282 		SetPageLRU(page);
1283 
1284 		list_move(&page->lru, &zone->lru[lru].list);
1285 		mem_cgroup_add_lru_list(page, lru);
1286 		pgmoved++;
1287 
1288 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1289 			spin_unlock_irq(&zone->lru_lock);
1290 			if (buffer_heads_over_limit)
1291 				pagevec_strip(&pvec);
1292 			__pagevec_release(&pvec);
1293 			spin_lock_irq(&zone->lru_lock);
1294 		}
1295 	}
1296 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297 	if (!is_active_lru(lru))
1298 		__count_vm_events(PGDEACTIVATE, pgmoved);
1299 }
1300 
1301 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1302 			struct scan_control *sc, int priority, int file)
1303 {
1304 	unsigned long nr_taken;
1305 	unsigned long pgscanned;
1306 	unsigned long vm_flags;
1307 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1308 	LIST_HEAD(l_active);
1309 	LIST_HEAD(l_inactive);
1310 	struct page *page;
1311 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1312 	unsigned long nr_rotated = 0;
1313 
1314 	lru_add_drain();
1315 	spin_lock_irq(&zone->lru_lock);
1316 	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1317 					ISOLATE_ACTIVE, zone,
1318 					sc->mem_cgroup, 1, file);
1319 	/*
1320 	 * zone->pages_scanned is used for detect zone's oom
1321 	 * mem_cgroup remembers nr_scan by itself.
1322 	 */
1323 	if (scanning_global_lru(sc)) {
1324 		zone->pages_scanned += pgscanned;
1325 	}
1326 	reclaim_stat->recent_scanned[file] += nr_taken;
1327 
1328 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1329 	if (file)
1330 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1331 	else
1332 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1333 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1334 	spin_unlock_irq(&zone->lru_lock);
1335 
1336 	while (!list_empty(&l_hold)) {
1337 		cond_resched();
1338 		page = lru_to_page(&l_hold);
1339 		list_del(&page->lru);
1340 
1341 		if (unlikely(!page_evictable(page, NULL))) {
1342 			putback_lru_page(page);
1343 			continue;
1344 		}
1345 
1346 		/* page_referenced clears PageReferenced */
1347 		if (page_mapping_inuse(page) &&
1348 		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1349 			nr_rotated++;
1350 			/*
1351 			 * Identify referenced, file-backed active pages and
1352 			 * give them one more trip around the active list. So
1353 			 * that executable code get better chances to stay in
1354 			 * memory under moderate memory pressure.  Anon pages
1355 			 * are not likely to be evicted by use-once streaming
1356 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1357 			 * so we ignore them here.
1358 			 */
1359 			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1360 				list_add(&page->lru, &l_active);
1361 				continue;
1362 			}
1363 		}
1364 
1365 		ClearPageActive(page);	/* we are de-activating */
1366 		list_add(&page->lru, &l_inactive);
1367 	}
1368 
1369 	/*
1370 	 * Move pages back to the lru list.
1371 	 */
1372 	spin_lock_irq(&zone->lru_lock);
1373 	/*
1374 	 * Count referenced pages from currently used mappings as rotated,
1375 	 * even though only some of them are actually re-activated.  This
1376 	 * helps balance scan pressure between file and anonymous pages in
1377 	 * get_scan_ratio.
1378 	 */
1379 	reclaim_stat->recent_rotated[file] += nr_rotated;
1380 
1381 	move_active_pages_to_lru(zone, &l_active,
1382 						LRU_ACTIVE + file * LRU_FILE);
1383 	move_active_pages_to_lru(zone, &l_inactive,
1384 						LRU_BASE   + file * LRU_FILE);
1385 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1386 	spin_unlock_irq(&zone->lru_lock);
1387 }
1388 
1389 static int inactive_anon_is_low_global(struct zone *zone)
1390 {
1391 	unsigned long active, inactive;
1392 
1393 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1394 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1395 
1396 	if (inactive * zone->inactive_ratio < active)
1397 		return 1;
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1404  * @zone: zone to check
1405  * @sc:   scan control of this context
1406  *
1407  * Returns true if the zone does not have enough inactive anon pages,
1408  * meaning some active anon pages need to be deactivated.
1409  */
1410 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1411 {
1412 	int low;
1413 
1414 	if (scanning_global_lru(sc))
1415 		low = inactive_anon_is_low_global(zone);
1416 	else
1417 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1418 	return low;
1419 }
1420 
1421 static int inactive_file_is_low_global(struct zone *zone)
1422 {
1423 	unsigned long active, inactive;
1424 
1425 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1426 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1427 
1428 	return (active > inactive);
1429 }
1430 
1431 /**
1432  * inactive_file_is_low - check if file pages need to be deactivated
1433  * @zone: zone to check
1434  * @sc:   scan control of this context
1435  *
1436  * When the system is doing streaming IO, memory pressure here
1437  * ensures that active file pages get deactivated, until more
1438  * than half of the file pages are on the inactive list.
1439  *
1440  * Once we get to that situation, protect the system's working
1441  * set from being evicted by disabling active file page aging.
1442  *
1443  * This uses a different ratio than the anonymous pages, because
1444  * the page cache uses a use-once replacement algorithm.
1445  */
1446 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1447 {
1448 	int low;
1449 
1450 	if (scanning_global_lru(sc))
1451 		low = inactive_file_is_low_global(zone);
1452 	else
1453 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1454 	return low;
1455 }
1456 
1457 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1458 	struct zone *zone, struct scan_control *sc, int priority)
1459 {
1460 	int file = is_file_lru(lru);
1461 
1462 	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1463 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1464 		return 0;
1465 	}
1466 
1467 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1468 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1469 		return 0;
1470 	}
1471 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1472 }
1473 
1474 /*
1475  * Determine how aggressively the anon and file LRU lists should be
1476  * scanned.  The relative value of each set of LRU lists is determined
1477  * by looking at the fraction of the pages scanned we did rotate back
1478  * onto the active list instead of evict.
1479  *
1480  * percent[0] specifies how much pressure to put on ram/swap backed
1481  * memory, while percent[1] determines pressure on the file LRUs.
1482  */
1483 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1484 					unsigned long *percent)
1485 {
1486 	unsigned long anon, file, free;
1487 	unsigned long anon_prio, file_prio;
1488 	unsigned long ap, fp;
1489 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1490 
1491 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1492 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1493 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1494 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1495 
1496 	if (scanning_global_lru(sc)) {
1497 		free  = zone_page_state(zone, NR_FREE_PAGES);
1498 		/* If we have very few page cache pages,
1499 		   force-scan anon pages. */
1500 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1501 			percent[0] = 100;
1502 			percent[1] = 0;
1503 			return;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * OK, so we have swap space and a fair amount of page cache
1509 	 * pages.  We use the recently rotated / recently scanned
1510 	 * ratios to determine how valuable each cache is.
1511 	 *
1512 	 * Because workloads change over time (and to avoid overflow)
1513 	 * we keep these statistics as a floating average, which ends
1514 	 * up weighing recent references more than old ones.
1515 	 *
1516 	 * anon in [0], file in [1]
1517 	 */
1518 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1519 		spin_lock_irq(&zone->lru_lock);
1520 		reclaim_stat->recent_scanned[0] /= 2;
1521 		reclaim_stat->recent_rotated[0] /= 2;
1522 		spin_unlock_irq(&zone->lru_lock);
1523 	}
1524 
1525 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1526 		spin_lock_irq(&zone->lru_lock);
1527 		reclaim_stat->recent_scanned[1] /= 2;
1528 		reclaim_stat->recent_rotated[1] /= 2;
1529 		spin_unlock_irq(&zone->lru_lock);
1530 	}
1531 
1532 	/*
1533 	 * With swappiness at 100, anonymous and file have the same priority.
1534 	 * This scanning priority is essentially the inverse of IO cost.
1535 	 */
1536 	anon_prio = sc->swappiness;
1537 	file_prio = 200 - sc->swappiness;
1538 
1539 	/*
1540 	 * The amount of pressure on anon vs file pages is inversely
1541 	 * proportional to the fraction of recently scanned pages on
1542 	 * each list that were recently referenced and in active use.
1543 	 */
1544 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1545 	ap /= reclaim_stat->recent_rotated[0] + 1;
1546 
1547 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1548 	fp /= reclaim_stat->recent_rotated[1] + 1;
1549 
1550 	/* Normalize to percentages */
1551 	percent[0] = 100 * ap / (ap + fp + 1);
1552 	percent[1] = 100 - percent[0];
1553 }
1554 
1555 /*
1556  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1557  * until we collected @swap_cluster_max pages to scan.
1558  */
1559 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1560 				       unsigned long *nr_saved_scan,
1561 				       unsigned long swap_cluster_max)
1562 {
1563 	unsigned long nr;
1564 
1565 	*nr_saved_scan += nr_to_scan;
1566 	nr = *nr_saved_scan;
1567 
1568 	if (nr >= swap_cluster_max)
1569 		*nr_saved_scan = 0;
1570 	else
1571 		nr = 0;
1572 
1573 	return nr;
1574 }
1575 
1576 /*
1577  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1578  */
1579 static void shrink_zone(int priority, struct zone *zone,
1580 				struct scan_control *sc)
1581 {
1582 	unsigned long nr[NR_LRU_LISTS];
1583 	unsigned long nr_to_scan;
1584 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1585 	enum lru_list l;
1586 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1587 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1588 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1589 	int noswap = 0;
1590 
1591 	/* If we have no swap space, do not bother scanning anon pages. */
1592 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 		noswap = 1;
1594 		percent[0] = 0;
1595 		percent[1] = 100;
1596 	} else
1597 		get_scan_ratio(zone, sc, percent);
1598 
1599 	for_each_evictable_lru(l) {
1600 		int file = is_file_lru(l);
1601 		unsigned long scan;
1602 
1603 		scan = zone_nr_lru_pages(zone, sc, l);
1604 		if (priority || noswap) {
1605 			scan >>= priority;
1606 			scan = (scan * percent[file]) / 100;
1607 		}
1608 		nr[l] = nr_scan_try_batch(scan,
1609 					  &reclaim_stat->nr_saved_scan[l],
1610 					  swap_cluster_max);
1611 	}
1612 
1613 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1614 					nr[LRU_INACTIVE_FILE]) {
1615 		for_each_evictable_lru(l) {
1616 			if (nr[l]) {
1617 				nr_to_scan = min(nr[l], swap_cluster_max);
1618 				nr[l] -= nr_to_scan;
1619 
1620 				nr_reclaimed += shrink_list(l, nr_to_scan,
1621 							    zone, sc, priority);
1622 			}
1623 		}
1624 		/*
1625 		 * On large memory systems, scan >> priority can become
1626 		 * really large. This is fine for the starting priority;
1627 		 * we want to put equal scanning pressure on each zone.
1628 		 * However, if the VM has a harder time of freeing pages,
1629 		 * with multiple processes reclaiming pages, the total
1630 		 * freeing target can get unreasonably large.
1631 		 */
1632 		if (nr_reclaimed > swap_cluster_max &&
1633 			priority < DEF_PRIORITY && !current_is_kswapd())
1634 			break;
1635 	}
1636 
1637 	sc->nr_reclaimed = nr_reclaimed;
1638 
1639 	/*
1640 	 * Even if we did not try to evict anon pages at all, we want to
1641 	 * rebalance the anon lru active/inactive ratio.
1642 	 */
1643 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1644 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1645 
1646 	throttle_vm_writeout(sc->gfp_mask);
1647 }
1648 
1649 /*
1650  * This is the direct reclaim path, for page-allocating processes.  We only
1651  * try to reclaim pages from zones which will satisfy the caller's allocation
1652  * request.
1653  *
1654  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1655  * Because:
1656  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1657  *    allocation or
1658  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1659  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1660  *    zone defense algorithm.
1661  *
1662  * If a zone is deemed to be full of pinned pages then just give it a light
1663  * scan then give up on it.
1664  */
1665 static void shrink_zones(int priority, struct zonelist *zonelist,
1666 					struct scan_control *sc)
1667 {
1668 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1669 	struct zoneref *z;
1670 	struct zone *zone;
1671 
1672 	sc->all_unreclaimable = 1;
1673 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1674 					sc->nodemask) {
1675 		if (!populated_zone(zone))
1676 			continue;
1677 		/*
1678 		 * Take care memory controller reclaiming has small influence
1679 		 * to global LRU.
1680 		 */
1681 		if (scanning_global_lru(sc)) {
1682 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683 				continue;
1684 			note_zone_scanning_priority(zone, priority);
1685 
1686 			if (zone_is_all_unreclaimable(zone) &&
1687 						priority != DEF_PRIORITY)
1688 				continue;	/* Let kswapd poll it */
1689 			sc->all_unreclaimable = 0;
1690 		} else {
1691 			/*
1692 			 * Ignore cpuset limitation here. We just want to reduce
1693 			 * # of used pages by us regardless of memory shortage.
1694 			 */
1695 			sc->all_unreclaimable = 0;
1696 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1697 							priority);
1698 		}
1699 
1700 		shrink_zone(priority, zone, sc);
1701 	}
1702 }
1703 
1704 /*
1705  * This is the main entry point to direct page reclaim.
1706  *
1707  * If a full scan of the inactive list fails to free enough memory then we
1708  * are "out of memory" and something needs to be killed.
1709  *
1710  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1711  * high - the zone may be full of dirty or under-writeback pages, which this
1712  * caller can't do much about.  We kick the writeback threads and take explicit
1713  * naps in the hope that some of these pages can be written.  But if the
1714  * allocating task holds filesystem locks which prevent writeout this might not
1715  * work, and the allocation attempt will fail.
1716  *
1717  * returns:	0, if no pages reclaimed
1718  * 		else, the number of pages reclaimed
1719  */
1720 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1721 					struct scan_control *sc)
1722 {
1723 	int priority;
1724 	unsigned long ret = 0;
1725 	unsigned long total_scanned = 0;
1726 	struct reclaim_state *reclaim_state = current->reclaim_state;
1727 	unsigned long lru_pages = 0;
1728 	struct zoneref *z;
1729 	struct zone *zone;
1730 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1731 
1732 	delayacct_freepages_start();
1733 
1734 	if (scanning_global_lru(sc))
1735 		count_vm_event(ALLOCSTALL);
1736 	/*
1737 	 * mem_cgroup will not do shrink_slab.
1738 	 */
1739 	if (scanning_global_lru(sc)) {
1740 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1741 
1742 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1743 				continue;
1744 
1745 			lru_pages += zone_reclaimable_pages(zone);
1746 		}
1747 	}
1748 
1749 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1750 		sc->nr_scanned = 0;
1751 		if (!priority)
1752 			disable_swap_token();
1753 		shrink_zones(priority, zonelist, sc);
1754 		/*
1755 		 * Don't shrink slabs when reclaiming memory from
1756 		 * over limit cgroups
1757 		 */
1758 		if (scanning_global_lru(sc)) {
1759 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1760 			if (reclaim_state) {
1761 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1762 				reclaim_state->reclaimed_slab = 0;
1763 			}
1764 		}
1765 		total_scanned += sc->nr_scanned;
1766 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1767 			ret = sc->nr_reclaimed;
1768 			goto out;
1769 		}
1770 
1771 		/*
1772 		 * Try to write back as many pages as we just scanned.  This
1773 		 * tends to cause slow streaming writers to write data to the
1774 		 * disk smoothly, at the dirtying rate, which is nice.   But
1775 		 * that's undesirable in laptop mode, where we *want* lumpy
1776 		 * writeout.  So in laptop mode, write out the whole world.
1777 		 */
1778 		if (total_scanned > sc->swap_cluster_max +
1779 					sc->swap_cluster_max / 2) {
1780 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1781 			sc->may_writepage = 1;
1782 		}
1783 
1784 		/* Take a nap, wait for some writeback to complete */
1785 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1786 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1787 	}
1788 	/* top priority shrink_zones still had more to do? don't OOM, then */
1789 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1790 		ret = sc->nr_reclaimed;
1791 out:
1792 	/*
1793 	 * Now that we've scanned all the zones at this priority level, note
1794 	 * that level within the zone so that the next thread which performs
1795 	 * scanning of this zone will immediately start out at this priority
1796 	 * level.  This affects only the decision whether or not to bring
1797 	 * mapped pages onto the inactive list.
1798 	 */
1799 	if (priority < 0)
1800 		priority = 0;
1801 
1802 	if (scanning_global_lru(sc)) {
1803 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1804 
1805 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806 				continue;
1807 
1808 			zone->prev_priority = priority;
1809 		}
1810 	} else
1811 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1812 
1813 	delayacct_freepages_end();
1814 
1815 	return ret;
1816 }
1817 
1818 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1819 				gfp_t gfp_mask, nodemask_t *nodemask)
1820 {
1821 	struct scan_control sc = {
1822 		.gfp_mask = gfp_mask,
1823 		.may_writepage = !laptop_mode,
1824 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1825 		.may_unmap = 1,
1826 		.may_swap = 1,
1827 		.swappiness = vm_swappiness,
1828 		.order = order,
1829 		.mem_cgroup = NULL,
1830 		.isolate_pages = isolate_pages_global,
1831 		.nodemask = nodemask,
1832 	};
1833 
1834 	return do_try_to_free_pages(zonelist, &sc);
1835 }
1836 
1837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1838 
1839 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1840 						gfp_t gfp_mask, bool noswap,
1841 						unsigned int swappiness,
1842 						struct zone *zone, int nid)
1843 {
1844 	struct scan_control sc = {
1845 		.may_writepage = !laptop_mode,
1846 		.may_unmap = 1,
1847 		.may_swap = !noswap,
1848 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1849 		.swappiness = swappiness,
1850 		.order = 0,
1851 		.mem_cgroup = mem,
1852 		.isolate_pages = mem_cgroup_isolate_pages,
1853 	};
1854 	nodemask_t nm  = nodemask_of_node(nid);
1855 
1856 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1857 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1858 	sc.nodemask = &nm;
1859 	sc.nr_reclaimed = 0;
1860 	sc.nr_scanned = 0;
1861 	/*
1862 	 * NOTE: Although we can get the priority field, using it
1863 	 * here is not a good idea, since it limits the pages we can scan.
1864 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1865 	 * will pick up pages from other mem cgroup's as well. We hack
1866 	 * the priority and make it zero.
1867 	 */
1868 	shrink_zone(0, zone, &sc);
1869 	return sc.nr_reclaimed;
1870 }
1871 
1872 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1873 					   gfp_t gfp_mask,
1874 					   bool noswap,
1875 					   unsigned int swappiness)
1876 {
1877 	struct zonelist *zonelist;
1878 	struct scan_control sc = {
1879 		.may_writepage = !laptop_mode,
1880 		.may_unmap = 1,
1881 		.may_swap = !noswap,
1882 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1883 		.swappiness = swappiness,
1884 		.order = 0,
1885 		.mem_cgroup = mem_cont,
1886 		.isolate_pages = mem_cgroup_isolate_pages,
1887 		.nodemask = NULL, /* we don't care the placement */
1888 	};
1889 
1890 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1891 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1892 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1893 	return do_try_to_free_pages(zonelist, &sc);
1894 }
1895 #endif
1896 
1897 /*
1898  * For kswapd, balance_pgdat() will work across all this node's zones until
1899  * they are all at high_wmark_pages(zone).
1900  *
1901  * Returns the number of pages which were actually freed.
1902  *
1903  * There is special handling here for zones which are full of pinned pages.
1904  * This can happen if the pages are all mlocked, or if they are all used by
1905  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1906  * What we do is to detect the case where all pages in the zone have been
1907  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1908  * dead and from now on, only perform a short scan.  Basically we're polling
1909  * the zone for when the problem goes away.
1910  *
1911  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1912  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1913  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1914  * lower zones regardless of the number of free pages in the lower zones. This
1915  * interoperates with the page allocator fallback scheme to ensure that aging
1916  * of pages is balanced across the zones.
1917  */
1918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1919 {
1920 	int all_zones_ok;
1921 	int priority;
1922 	int i;
1923 	unsigned long total_scanned;
1924 	struct reclaim_state *reclaim_state = current->reclaim_state;
1925 	struct scan_control sc = {
1926 		.gfp_mask = GFP_KERNEL,
1927 		.may_unmap = 1,
1928 		.may_swap = 1,
1929 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1930 		.swappiness = vm_swappiness,
1931 		.order = order,
1932 		.mem_cgroup = NULL,
1933 		.isolate_pages = isolate_pages_global,
1934 	};
1935 	/*
1936 	 * temp_priority is used to remember the scanning priority at which
1937 	 * this zone was successfully refilled to
1938 	 * free_pages == high_wmark_pages(zone).
1939 	 */
1940 	int temp_priority[MAX_NR_ZONES];
1941 
1942 loop_again:
1943 	total_scanned = 0;
1944 	sc.nr_reclaimed = 0;
1945 	sc.may_writepage = !laptop_mode;
1946 	count_vm_event(PAGEOUTRUN);
1947 
1948 	for (i = 0; i < pgdat->nr_zones; i++)
1949 		temp_priority[i] = DEF_PRIORITY;
1950 
1951 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1952 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1953 		unsigned long lru_pages = 0;
1954 
1955 		/* The swap token gets in the way of swapout... */
1956 		if (!priority)
1957 			disable_swap_token();
1958 
1959 		all_zones_ok = 1;
1960 
1961 		/*
1962 		 * Scan in the highmem->dma direction for the highest
1963 		 * zone which needs scanning
1964 		 */
1965 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1966 			struct zone *zone = pgdat->node_zones + i;
1967 
1968 			if (!populated_zone(zone))
1969 				continue;
1970 
1971 			if (zone_is_all_unreclaimable(zone) &&
1972 			    priority != DEF_PRIORITY)
1973 				continue;
1974 
1975 			/*
1976 			 * Do some background aging of the anon list, to give
1977 			 * pages a chance to be referenced before reclaiming.
1978 			 */
1979 			if (inactive_anon_is_low(zone, &sc))
1980 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1981 							&sc, priority, 0);
1982 
1983 			if (!zone_watermark_ok(zone, order,
1984 					high_wmark_pages(zone), 0, 0)) {
1985 				end_zone = i;
1986 				break;
1987 			}
1988 		}
1989 		if (i < 0)
1990 			goto out;
1991 
1992 		for (i = 0; i <= end_zone; i++) {
1993 			struct zone *zone = pgdat->node_zones + i;
1994 
1995 			lru_pages += zone_reclaimable_pages(zone);
1996 		}
1997 
1998 		/*
1999 		 * Now scan the zone in the dma->highmem direction, stopping
2000 		 * at the last zone which needs scanning.
2001 		 *
2002 		 * We do this because the page allocator works in the opposite
2003 		 * direction.  This prevents the page allocator from allocating
2004 		 * pages behind kswapd's direction of progress, which would
2005 		 * cause too much scanning of the lower zones.
2006 		 */
2007 		for (i = 0; i <= end_zone; i++) {
2008 			struct zone *zone = pgdat->node_zones + i;
2009 			int nr_slab;
2010 			int nid, zid;
2011 
2012 			if (!populated_zone(zone))
2013 				continue;
2014 
2015 			if (zone_is_all_unreclaimable(zone) &&
2016 					priority != DEF_PRIORITY)
2017 				continue;
2018 
2019 			if (!zone_watermark_ok(zone, order,
2020 					high_wmark_pages(zone), end_zone, 0))
2021 				all_zones_ok = 0;
2022 			temp_priority[i] = priority;
2023 			sc.nr_scanned = 0;
2024 			note_zone_scanning_priority(zone, priority);
2025 
2026 			nid = pgdat->node_id;
2027 			zid = zone_idx(zone);
2028 			/*
2029 			 * Call soft limit reclaim before calling shrink_zone.
2030 			 * For now we ignore the return value
2031 			 */
2032 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2033 							nid, zid);
2034 			/*
2035 			 * We put equal pressure on every zone, unless one
2036 			 * zone has way too many pages free already.
2037 			 */
2038 			if (!zone_watermark_ok(zone, order,
2039 					8*high_wmark_pages(zone), end_zone, 0))
2040 				shrink_zone(priority, zone, &sc);
2041 			reclaim_state->reclaimed_slab = 0;
2042 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2043 						lru_pages);
2044 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2045 			total_scanned += sc.nr_scanned;
2046 			if (zone_is_all_unreclaimable(zone))
2047 				continue;
2048 			if (nr_slab == 0 && zone->pages_scanned >=
2049 					(zone_reclaimable_pages(zone) * 6))
2050 					zone_set_flag(zone,
2051 						      ZONE_ALL_UNRECLAIMABLE);
2052 			/*
2053 			 * If we've done a decent amount of scanning and
2054 			 * the reclaim ratio is low, start doing writepage
2055 			 * even in laptop mode
2056 			 */
2057 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2058 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2059 				sc.may_writepage = 1;
2060 		}
2061 		if (all_zones_ok)
2062 			break;		/* kswapd: all done */
2063 		/*
2064 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2065 		 * another pass across the zones.
2066 		 */
2067 		if (total_scanned && priority < DEF_PRIORITY - 2)
2068 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2069 
2070 		/*
2071 		 * We do this so kswapd doesn't build up large priorities for
2072 		 * example when it is freeing in parallel with allocators. It
2073 		 * matches the direct reclaim path behaviour in terms of impact
2074 		 * on zone->*_priority.
2075 		 */
2076 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2077 			break;
2078 	}
2079 out:
2080 	/*
2081 	 * Note within each zone the priority level at which this zone was
2082 	 * brought into a happy state.  So that the next thread which scans this
2083 	 * zone will start out at that priority level.
2084 	 */
2085 	for (i = 0; i < pgdat->nr_zones; i++) {
2086 		struct zone *zone = pgdat->node_zones + i;
2087 
2088 		zone->prev_priority = temp_priority[i];
2089 	}
2090 	if (!all_zones_ok) {
2091 		cond_resched();
2092 
2093 		try_to_freeze();
2094 
2095 		/*
2096 		 * Fragmentation may mean that the system cannot be
2097 		 * rebalanced for high-order allocations in all zones.
2098 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2099 		 * it means the zones have been fully scanned and are still
2100 		 * not balanced. For high-order allocations, there is
2101 		 * little point trying all over again as kswapd may
2102 		 * infinite loop.
2103 		 *
2104 		 * Instead, recheck all watermarks at order-0 as they
2105 		 * are the most important. If watermarks are ok, kswapd will go
2106 		 * back to sleep. High-order users can still perform direct
2107 		 * reclaim if they wish.
2108 		 */
2109 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2110 			order = sc.order = 0;
2111 
2112 		goto loop_again;
2113 	}
2114 
2115 	return sc.nr_reclaimed;
2116 }
2117 
2118 /*
2119  * The background pageout daemon, started as a kernel thread
2120  * from the init process.
2121  *
2122  * This basically trickles out pages so that we have _some_
2123  * free memory available even if there is no other activity
2124  * that frees anything up. This is needed for things like routing
2125  * etc, where we otherwise might have all activity going on in
2126  * asynchronous contexts that cannot page things out.
2127  *
2128  * If there are applications that are active memory-allocators
2129  * (most normal use), this basically shouldn't matter.
2130  */
2131 static int kswapd(void *p)
2132 {
2133 	unsigned long order;
2134 	pg_data_t *pgdat = (pg_data_t*)p;
2135 	struct task_struct *tsk = current;
2136 	DEFINE_WAIT(wait);
2137 	struct reclaim_state reclaim_state = {
2138 		.reclaimed_slab = 0,
2139 	};
2140 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2141 
2142 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2143 
2144 	if (!cpumask_empty(cpumask))
2145 		set_cpus_allowed_ptr(tsk, cpumask);
2146 	current->reclaim_state = &reclaim_state;
2147 
2148 	/*
2149 	 * Tell the memory management that we're a "memory allocator",
2150 	 * and that if we need more memory we should get access to it
2151 	 * regardless (see "__alloc_pages()"). "kswapd" should
2152 	 * never get caught in the normal page freeing logic.
2153 	 *
2154 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2155 	 * you need a small amount of memory in order to be able to
2156 	 * page out something else, and this flag essentially protects
2157 	 * us from recursively trying to free more memory as we're
2158 	 * trying to free the first piece of memory in the first place).
2159 	 */
2160 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2161 	set_freezable();
2162 
2163 	order = 0;
2164 	for ( ; ; ) {
2165 		unsigned long new_order;
2166 
2167 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2168 		new_order = pgdat->kswapd_max_order;
2169 		pgdat->kswapd_max_order = 0;
2170 		if (order < new_order) {
2171 			/*
2172 			 * Don't sleep if someone wants a larger 'order'
2173 			 * allocation
2174 			 */
2175 			order = new_order;
2176 		} else {
2177 			if (!freezing(current))
2178 				schedule();
2179 
2180 			order = pgdat->kswapd_max_order;
2181 		}
2182 		finish_wait(&pgdat->kswapd_wait, &wait);
2183 
2184 		if (!try_to_freeze()) {
2185 			/* We can speed up thawing tasks if we don't call
2186 			 * balance_pgdat after returning from the refrigerator
2187 			 */
2188 			balance_pgdat(pgdat, order);
2189 		}
2190 	}
2191 	return 0;
2192 }
2193 
2194 /*
2195  * A zone is low on free memory, so wake its kswapd task to service it.
2196  */
2197 void wakeup_kswapd(struct zone *zone, int order)
2198 {
2199 	pg_data_t *pgdat;
2200 
2201 	if (!populated_zone(zone))
2202 		return;
2203 
2204 	pgdat = zone->zone_pgdat;
2205 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2206 		return;
2207 	if (pgdat->kswapd_max_order < order)
2208 		pgdat->kswapd_max_order = order;
2209 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2210 		return;
2211 	if (!waitqueue_active(&pgdat->kswapd_wait))
2212 		return;
2213 	wake_up_interruptible(&pgdat->kswapd_wait);
2214 }
2215 
2216 /*
2217  * The reclaimable count would be mostly accurate.
2218  * The less reclaimable pages may be
2219  * - mlocked pages, which will be moved to unevictable list when encountered
2220  * - mapped pages, which may require several travels to be reclaimed
2221  * - dirty pages, which is not "instantly" reclaimable
2222  */
2223 unsigned long global_reclaimable_pages(void)
2224 {
2225 	int nr;
2226 
2227 	nr = global_page_state(NR_ACTIVE_FILE) +
2228 	     global_page_state(NR_INACTIVE_FILE);
2229 
2230 	if (nr_swap_pages > 0)
2231 		nr += global_page_state(NR_ACTIVE_ANON) +
2232 		      global_page_state(NR_INACTIVE_ANON);
2233 
2234 	return nr;
2235 }
2236 
2237 unsigned long zone_reclaimable_pages(struct zone *zone)
2238 {
2239 	int nr;
2240 
2241 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2242 	     zone_page_state(zone, NR_INACTIVE_FILE);
2243 
2244 	if (nr_swap_pages > 0)
2245 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2246 		      zone_page_state(zone, NR_INACTIVE_ANON);
2247 
2248 	return nr;
2249 }
2250 
2251 #ifdef CONFIG_HIBERNATION
2252 /*
2253  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2254  * from LRU lists system-wide, for given pass and priority.
2255  *
2256  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2257  */
2258 static void shrink_all_zones(unsigned long nr_pages, int prio,
2259 				      int pass, struct scan_control *sc)
2260 {
2261 	struct zone *zone;
2262 	unsigned long nr_reclaimed = 0;
2263 	struct zone_reclaim_stat *reclaim_stat;
2264 
2265 	for_each_populated_zone(zone) {
2266 		enum lru_list l;
2267 
2268 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2269 			continue;
2270 
2271 		for_each_evictable_lru(l) {
2272 			enum zone_stat_item ls = NR_LRU_BASE + l;
2273 			unsigned long lru_pages = zone_page_state(zone, ls);
2274 
2275 			/* For pass = 0, we don't shrink the active list */
2276 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2277 						l == LRU_ACTIVE_FILE))
2278 				continue;
2279 
2280 			reclaim_stat = get_reclaim_stat(zone, sc);
2281 			reclaim_stat->nr_saved_scan[l] +=
2282 						(lru_pages >> prio) + 1;
2283 			if (reclaim_stat->nr_saved_scan[l]
2284 						>= nr_pages || pass > 3) {
2285 				unsigned long nr_to_scan;
2286 
2287 				reclaim_stat->nr_saved_scan[l] = 0;
2288 				nr_to_scan = min(nr_pages, lru_pages);
2289 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2290 								sc, prio);
2291 				if (nr_reclaimed >= nr_pages) {
2292 					sc->nr_reclaimed += nr_reclaimed;
2293 					return;
2294 				}
2295 			}
2296 		}
2297 	}
2298 	sc->nr_reclaimed += nr_reclaimed;
2299 }
2300 
2301 /*
2302  * Try to free `nr_pages' of memory, system-wide, and return the number of
2303  * freed pages.
2304  *
2305  * Rather than trying to age LRUs the aim is to preserve the overall
2306  * LRU order by reclaiming preferentially
2307  * inactive > active > active referenced > active mapped
2308  */
2309 unsigned long shrink_all_memory(unsigned long nr_pages)
2310 {
2311 	unsigned long lru_pages, nr_slab;
2312 	int pass;
2313 	struct reclaim_state reclaim_state;
2314 	struct scan_control sc = {
2315 		.gfp_mask = GFP_KERNEL,
2316 		.may_unmap = 0,
2317 		.may_writepage = 1,
2318 		.isolate_pages = isolate_pages_global,
2319 		.nr_reclaimed = 0,
2320 	};
2321 
2322 	current->reclaim_state = &reclaim_state;
2323 
2324 	lru_pages = global_reclaimable_pages();
2325 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2326 	/* If slab caches are huge, it's better to hit them first */
2327 	while (nr_slab >= lru_pages) {
2328 		reclaim_state.reclaimed_slab = 0;
2329 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2330 		if (!reclaim_state.reclaimed_slab)
2331 			break;
2332 
2333 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2334 		if (sc.nr_reclaimed >= nr_pages)
2335 			goto out;
2336 
2337 		nr_slab -= reclaim_state.reclaimed_slab;
2338 	}
2339 
2340 	/*
2341 	 * We try to shrink LRUs in 5 passes:
2342 	 * 0 = Reclaim from inactive_list only
2343 	 * 1 = Reclaim from active list but don't reclaim mapped
2344 	 * 2 = 2nd pass of type 1
2345 	 * 3 = Reclaim mapped (normal reclaim)
2346 	 * 4 = 2nd pass of type 3
2347 	 */
2348 	for (pass = 0; pass < 5; pass++) {
2349 		int prio;
2350 
2351 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2352 		if (pass > 2)
2353 			sc.may_unmap = 1;
2354 
2355 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2356 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2357 
2358 			sc.nr_scanned = 0;
2359 			sc.swap_cluster_max = nr_to_scan;
2360 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2361 			if (sc.nr_reclaimed >= nr_pages)
2362 				goto out;
2363 
2364 			reclaim_state.reclaimed_slab = 0;
2365 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2366 				    global_reclaimable_pages());
2367 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2368 			if (sc.nr_reclaimed >= nr_pages)
2369 				goto out;
2370 
2371 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2372 				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2378 	 * something in slab caches
2379 	 */
2380 	if (!sc.nr_reclaimed) {
2381 		do {
2382 			reclaim_state.reclaimed_slab = 0;
2383 			shrink_slab(nr_pages, sc.gfp_mask,
2384 				    global_reclaimable_pages());
2385 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2386 		} while (sc.nr_reclaimed < nr_pages &&
2387 				reclaim_state.reclaimed_slab > 0);
2388 	}
2389 
2390 
2391 out:
2392 	current->reclaim_state = NULL;
2393 
2394 	return sc.nr_reclaimed;
2395 }
2396 #endif /* CONFIG_HIBERNATION */
2397 
2398 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2399    not required for correctness.  So if the last cpu in a node goes
2400    away, we get changed to run anywhere: as the first one comes back,
2401    restore their cpu bindings. */
2402 static int __devinit cpu_callback(struct notifier_block *nfb,
2403 				  unsigned long action, void *hcpu)
2404 {
2405 	int nid;
2406 
2407 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2408 		for_each_node_state(nid, N_HIGH_MEMORY) {
2409 			pg_data_t *pgdat = NODE_DATA(nid);
2410 			const struct cpumask *mask;
2411 
2412 			mask = cpumask_of_node(pgdat->node_id);
2413 
2414 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2415 				/* One of our CPUs online: restore mask */
2416 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2417 		}
2418 	}
2419 	return NOTIFY_OK;
2420 }
2421 
2422 /*
2423  * This kswapd start function will be called by init and node-hot-add.
2424  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2425  */
2426 int kswapd_run(int nid)
2427 {
2428 	pg_data_t *pgdat = NODE_DATA(nid);
2429 	int ret = 0;
2430 
2431 	if (pgdat->kswapd)
2432 		return 0;
2433 
2434 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2435 	if (IS_ERR(pgdat->kswapd)) {
2436 		/* failure at boot is fatal */
2437 		BUG_ON(system_state == SYSTEM_BOOTING);
2438 		printk("Failed to start kswapd on node %d\n",nid);
2439 		ret = -1;
2440 	}
2441 	return ret;
2442 }
2443 
2444 static int __init kswapd_init(void)
2445 {
2446 	int nid;
2447 
2448 	swap_setup();
2449 	for_each_node_state(nid, N_HIGH_MEMORY)
2450  		kswapd_run(nid);
2451 	hotcpu_notifier(cpu_callback, 0);
2452 	return 0;
2453 }
2454 
2455 module_init(kswapd_init)
2456 
2457 #ifdef CONFIG_NUMA
2458 /*
2459  * Zone reclaim mode
2460  *
2461  * If non-zero call zone_reclaim when the number of free pages falls below
2462  * the watermarks.
2463  */
2464 int zone_reclaim_mode __read_mostly;
2465 
2466 #define RECLAIM_OFF 0
2467 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2468 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2469 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2470 
2471 /*
2472  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2473  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2474  * a zone.
2475  */
2476 #define ZONE_RECLAIM_PRIORITY 4
2477 
2478 /*
2479  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2480  * occur.
2481  */
2482 int sysctl_min_unmapped_ratio = 1;
2483 
2484 /*
2485  * If the number of slab pages in a zone grows beyond this percentage then
2486  * slab reclaim needs to occur.
2487  */
2488 int sysctl_min_slab_ratio = 5;
2489 
2490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2491 {
2492 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2493 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2494 		zone_page_state(zone, NR_ACTIVE_FILE);
2495 
2496 	/*
2497 	 * It's possible for there to be more file mapped pages than
2498 	 * accounted for by the pages on the file LRU lists because
2499 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2500 	 */
2501 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2502 }
2503 
2504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2505 static long zone_pagecache_reclaimable(struct zone *zone)
2506 {
2507 	long nr_pagecache_reclaimable;
2508 	long delta = 0;
2509 
2510 	/*
2511 	 * If RECLAIM_SWAP is set, then all file pages are considered
2512 	 * potentially reclaimable. Otherwise, we have to worry about
2513 	 * pages like swapcache and zone_unmapped_file_pages() provides
2514 	 * a better estimate
2515 	 */
2516 	if (zone_reclaim_mode & RECLAIM_SWAP)
2517 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2518 	else
2519 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2520 
2521 	/* If we can't clean pages, remove dirty pages from consideration */
2522 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2523 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2524 
2525 	/* Watch for any possible underflows due to delta */
2526 	if (unlikely(delta > nr_pagecache_reclaimable))
2527 		delta = nr_pagecache_reclaimable;
2528 
2529 	return nr_pagecache_reclaimable - delta;
2530 }
2531 
2532 /*
2533  * Try to free up some pages from this zone through reclaim.
2534  */
2535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2536 {
2537 	/* Minimum pages needed in order to stay on node */
2538 	const unsigned long nr_pages = 1 << order;
2539 	struct task_struct *p = current;
2540 	struct reclaim_state reclaim_state;
2541 	int priority;
2542 	struct scan_control sc = {
2543 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2544 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2545 		.may_swap = 1,
2546 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2547 					SWAP_CLUSTER_MAX),
2548 		.gfp_mask = gfp_mask,
2549 		.swappiness = vm_swappiness,
2550 		.order = order,
2551 		.isolate_pages = isolate_pages_global,
2552 	};
2553 	unsigned long slab_reclaimable;
2554 
2555 	disable_swap_token();
2556 	cond_resched();
2557 	/*
2558 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2559 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2560 	 * and RECLAIM_SWAP.
2561 	 */
2562 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2563 	reclaim_state.reclaimed_slab = 0;
2564 	p->reclaim_state = &reclaim_state;
2565 
2566 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2567 		/*
2568 		 * Free memory by calling shrink zone with increasing
2569 		 * priorities until we have enough memory freed.
2570 		 */
2571 		priority = ZONE_RECLAIM_PRIORITY;
2572 		do {
2573 			note_zone_scanning_priority(zone, priority);
2574 			shrink_zone(priority, zone, &sc);
2575 			priority--;
2576 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2577 	}
2578 
2579 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2580 	if (slab_reclaimable > zone->min_slab_pages) {
2581 		/*
2582 		 * shrink_slab() does not currently allow us to determine how
2583 		 * many pages were freed in this zone. So we take the current
2584 		 * number of slab pages and shake the slab until it is reduced
2585 		 * by the same nr_pages that we used for reclaiming unmapped
2586 		 * pages.
2587 		 *
2588 		 * Note that shrink_slab will free memory on all zones and may
2589 		 * take a long time.
2590 		 */
2591 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2592 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2593 				slab_reclaimable - nr_pages)
2594 			;
2595 
2596 		/*
2597 		 * Update nr_reclaimed by the number of slab pages we
2598 		 * reclaimed from this zone.
2599 		 */
2600 		sc.nr_reclaimed += slab_reclaimable -
2601 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2602 	}
2603 
2604 	p->reclaim_state = NULL;
2605 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2606 	return sc.nr_reclaimed >= nr_pages;
2607 }
2608 
2609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2610 {
2611 	int node_id;
2612 	int ret;
2613 
2614 	/*
2615 	 * Zone reclaim reclaims unmapped file backed pages and
2616 	 * slab pages if we are over the defined limits.
2617 	 *
2618 	 * A small portion of unmapped file backed pages is needed for
2619 	 * file I/O otherwise pages read by file I/O will be immediately
2620 	 * thrown out if the zone is overallocated. So we do not reclaim
2621 	 * if less than a specified percentage of the zone is used by
2622 	 * unmapped file backed pages.
2623 	 */
2624 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2625 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2626 		return ZONE_RECLAIM_FULL;
2627 
2628 	if (zone_is_all_unreclaimable(zone))
2629 		return ZONE_RECLAIM_FULL;
2630 
2631 	/*
2632 	 * Do not scan if the allocation should not be delayed.
2633 	 */
2634 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2635 		return ZONE_RECLAIM_NOSCAN;
2636 
2637 	/*
2638 	 * Only run zone reclaim on the local zone or on zones that do not
2639 	 * have associated processors. This will favor the local processor
2640 	 * over remote processors and spread off node memory allocations
2641 	 * as wide as possible.
2642 	 */
2643 	node_id = zone_to_nid(zone);
2644 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2645 		return ZONE_RECLAIM_NOSCAN;
2646 
2647 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2648 		return ZONE_RECLAIM_NOSCAN;
2649 
2650 	ret = __zone_reclaim(zone, gfp_mask, order);
2651 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2652 
2653 	if (!ret)
2654 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2655 
2656 	return ret;
2657 }
2658 #endif
2659 
2660 /*
2661  * page_evictable - test whether a page is evictable
2662  * @page: the page to test
2663  * @vma: the VMA in which the page is or will be mapped, may be NULL
2664  *
2665  * Test whether page is evictable--i.e., should be placed on active/inactive
2666  * lists vs unevictable list.  The vma argument is !NULL when called from the
2667  * fault path to determine how to instantate a new page.
2668  *
2669  * Reasons page might not be evictable:
2670  * (1) page's mapping marked unevictable
2671  * (2) page is part of an mlocked VMA
2672  *
2673  */
2674 int page_evictable(struct page *page, struct vm_area_struct *vma)
2675 {
2676 
2677 	if (mapping_unevictable(page_mapping(page)))
2678 		return 0;
2679 
2680 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2681 		return 0;
2682 
2683 	return 1;
2684 }
2685 
2686 /**
2687  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2688  * @page: page to check evictability and move to appropriate lru list
2689  * @zone: zone page is in
2690  *
2691  * Checks a page for evictability and moves the page to the appropriate
2692  * zone lru list.
2693  *
2694  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2695  * have PageUnevictable set.
2696  */
2697 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2698 {
2699 	VM_BUG_ON(PageActive(page));
2700 
2701 retry:
2702 	ClearPageUnevictable(page);
2703 	if (page_evictable(page, NULL)) {
2704 		enum lru_list l = page_lru_base_type(page);
2705 
2706 		__dec_zone_state(zone, NR_UNEVICTABLE);
2707 		list_move(&page->lru, &zone->lru[l].list);
2708 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2709 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2710 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2711 	} else {
2712 		/*
2713 		 * rotate unevictable list
2714 		 */
2715 		SetPageUnevictable(page);
2716 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2717 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2718 		if (page_evictable(page, NULL))
2719 			goto retry;
2720 	}
2721 }
2722 
2723 /**
2724  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2725  * @mapping: struct address_space to scan for evictable pages
2726  *
2727  * Scan all pages in mapping.  Check unevictable pages for
2728  * evictability and move them to the appropriate zone lru list.
2729  */
2730 void scan_mapping_unevictable_pages(struct address_space *mapping)
2731 {
2732 	pgoff_t next = 0;
2733 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2734 			 PAGE_CACHE_SHIFT;
2735 	struct zone *zone;
2736 	struct pagevec pvec;
2737 
2738 	if (mapping->nrpages == 0)
2739 		return;
2740 
2741 	pagevec_init(&pvec, 0);
2742 	while (next < end &&
2743 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2744 		int i;
2745 		int pg_scanned = 0;
2746 
2747 		zone = NULL;
2748 
2749 		for (i = 0; i < pagevec_count(&pvec); i++) {
2750 			struct page *page = pvec.pages[i];
2751 			pgoff_t page_index = page->index;
2752 			struct zone *pagezone = page_zone(page);
2753 
2754 			pg_scanned++;
2755 			if (page_index > next)
2756 				next = page_index;
2757 			next++;
2758 
2759 			if (pagezone != zone) {
2760 				if (zone)
2761 					spin_unlock_irq(&zone->lru_lock);
2762 				zone = pagezone;
2763 				spin_lock_irq(&zone->lru_lock);
2764 			}
2765 
2766 			if (PageLRU(page) && PageUnevictable(page))
2767 				check_move_unevictable_page(page, zone);
2768 		}
2769 		if (zone)
2770 			spin_unlock_irq(&zone->lru_lock);
2771 		pagevec_release(&pvec);
2772 
2773 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2774 	}
2775 
2776 }
2777 
2778 /**
2779  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2780  * @zone - zone of which to scan the unevictable list
2781  *
2782  * Scan @zone's unevictable LRU lists to check for pages that have become
2783  * evictable.  Move those that have to @zone's inactive list where they
2784  * become candidates for reclaim, unless shrink_inactive_zone() decides
2785  * to reactivate them.  Pages that are still unevictable are rotated
2786  * back onto @zone's unevictable list.
2787  */
2788 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2789 static void scan_zone_unevictable_pages(struct zone *zone)
2790 {
2791 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2792 	unsigned long scan;
2793 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2794 
2795 	while (nr_to_scan > 0) {
2796 		unsigned long batch_size = min(nr_to_scan,
2797 						SCAN_UNEVICTABLE_BATCH_SIZE);
2798 
2799 		spin_lock_irq(&zone->lru_lock);
2800 		for (scan = 0;  scan < batch_size; scan++) {
2801 			struct page *page = lru_to_page(l_unevictable);
2802 
2803 			if (!trylock_page(page))
2804 				continue;
2805 
2806 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2807 
2808 			if (likely(PageLRU(page) && PageUnevictable(page)))
2809 				check_move_unevictable_page(page, zone);
2810 
2811 			unlock_page(page);
2812 		}
2813 		spin_unlock_irq(&zone->lru_lock);
2814 
2815 		nr_to_scan -= batch_size;
2816 	}
2817 }
2818 
2819 
2820 /**
2821  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2822  *
2823  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2824  * pages that have become evictable.  Move those back to the zones'
2825  * inactive list where they become candidates for reclaim.
2826  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2827  * and we add swap to the system.  As such, it runs in the context of a task
2828  * that has possibly/probably made some previously unevictable pages
2829  * evictable.
2830  */
2831 static void scan_all_zones_unevictable_pages(void)
2832 {
2833 	struct zone *zone;
2834 
2835 	for_each_zone(zone) {
2836 		scan_zone_unevictable_pages(zone);
2837 	}
2838 }
2839 
2840 /*
2841  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2842  * all nodes' unevictable lists for evictable pages
2843  */
2844 unsigned long scan_unevictable_pages;
2845 
2846 int scan_unevictable_handler(struct ctl_table *table, int write,
2847 			   void __user *buffer,
2848 			   size_t *length, loff_t *ppos)
2849 {
2850 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2851 
2852 	if (write && *(unsigned long *)table->data)
2853 		scan_all_zones_unevictable_pages();
2854 
2855 	scan_unevictable_pages = 0;
2856 	return 0;
2857 }
2858 
2859 /*
2860  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2861  * a specified node's per zone unevictable lists for evictable pages.
2862  */
2863 
2864 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2865 					  struct sysdev_attribute *attr,
2866 					  char *buf)
2867 {
2868 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2869 }
2870 
2871 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2872 					   struct sysdev_attribute *attr,
2873 					const char *buf, size_t count)
2874 {
2875 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2876 	struct zone *zone;
2877 	unsigned long res;
2878 	unsigned long req = strict_strtoul(buf, 10, &res);
2879 
2880 	if (!req)
2881 		return 1;	/* zero is no-op */
2882 
2883 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2884 		if (!populated_zone(zone))
2885 			continue;
2886 		scan_zone_unevictable_pages(zone);
2887 	}
2888 	return 1;
2889 }
2890 
2891 
2892 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2893 			read_scan_unevictable_node,
2894 			write_scan_unevictable_node);
2895 
2896 int scan_unevictable_register_node(struct node *node)
2897 {
2898 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2899 }
2900 
2901 void scan_unevictable_unregister_node(struct node *node)
2902 {
2903 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2904 }
2905 
2906