1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_lru_pages(struct zone *zone, 152 struct scan_control *sc, enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 /* 290 * A freeable page cache page is referenced only by the caller 291 * that isolated the page, the page cache radix tree and 292 * optional buffer heads at page->private. 293 */ 294 return page_count(page) - page_has_private(page) == 2; 295 } 296 297 static int may_write_to_queue(struct backing_dev_info *bdi) 298 { 299 if (current->flags & PF_SWAPWRITE) 300 return 1; 301 if (!bdi_write_congested(bdi)) 302 return 1; 303 if (bdi == current->backing_dev_info) 304 return 1; 305 return 0; 306 } 307 308 /* 309 * We detected a synchronous write error writing a page out. Probably 310 * -ENOSPC. We need to propagate that into the address_space for a subsequent 311 * fsync(), msync() or close(). 312 * 313 * The tricky part is that after writepage we cannot touch the mapping: nothing 314 * prevents it from being freed up. But we have a ref on the page and once 315 * that page is locked, the mapping is pinned. 316 * 317 * We're allowed to run sleeping lock_page() here because we know the caller has 318 * __GFP_FS. 319 */ 320 static void handle_write_error(struct address_space *mapping, 321 struct page *page, int error) 322 { 323 lock_page(page); 324 if (page_mapping(page) == mapping) 325 mapping_set_error(mapping, error); 326 unlock_page(page); 327 } 328 329 /* Request for sync pageout. */ 330 enum pageout_io { 331 PAGEOUT_IO_ASYNC, 332 PAGEOUT_IO_SYNC, 333 }; 334 335 /* possible outcome of pageout() */ 336 typedef enum { 337 /* failed to write page out, page is locked */ 338 PAGE_KEEP, 339 /* move page to the active list, page is locked */ 340 PAGE_ACTIVATE, 341 /* page has been sent to the disk successfully, page is unlocked */ 342 PAGE_SUCCESS, 343 /* page is clean and locked */ 344 PAGE_CLEAN, 345 } pageout_t; 346 347 /* 348 * pageout is called by shrink_page_list() for each dirty page. 349 * Calls ->writepage(). 350 */ 351 static pageout_t pageout(struct page *page, struct address_space *mapping, 352 enum pageout_io sync_writeback) 353 { 354 /* 355 * If the page is dirty, only perform writeback if that write 356 * will be non-blocking. To prevent this allocation from being 357 * stalled by pagecache activity. But note that there may be 358 * stalls if we need to run get_block(). We could test 359 * PagePrivate for that. 360 * 361 * If this process is currently in generic_file_write() against 362 * this page's queue, we can perform writeback even if that 363 * will block. 364 * 365 * If the page is swapcache, write it back even if that would 366 * block, for some throttling. This happens by accident, because 367 * swap_backing_dev_info is bust: it doesn't reflect the 368 * congestion state of the swapdevs. Easy to fix, if needed. 369 */ 370 if (!is_page_cache_freeable(page)) 371 return PAGE_KEEP; 372 if (!mapping) { 373 /* 374 * Some data journaling orphaned pages can have 375 * page->mapping == NULL while being dirty with clean buffers. 376 */ 377 if (page_has_private(page)) { 378 if (try_to_free_buffers(page)) { 379 ClearPageDirty(page); 380 printk("%s: orphaned page\n", __func__); 381 return PAGE_CLEAN; 382 } 383 } 384 return PAGE_KEEP; 385 } 386 if (mapping->a_ops->writepage == NULL) 387 return PAGE_ACTIVATE; 388 if (!may_write_to_queue(mapping->backing_dev_info)) 389 return PAGE_KEEP; 390 391 if (clear_page_dirty_for_io(page)) { 392 int res; 393 struct writeback_control wbc = { 394 .sync_mode = WB_SYNC_NONE, 395 .nr_to_write = SWAP_CLUSTER_MAX, 396 .range_start = 0, 397 .range_end = LLONG_MAX, 398 .nonblocking = 1, 399 .for_reclaim = 1, 400 }; 401 402 SetPageReclaim(page); 403 res = mapping->a_ops->writepage(page, &wbc); 404 if (res < 0) 405 handle_write_error(mapping, page, res); 406 if (res == AOP_WRITEPAGE_ACTIVATE) { 407 ClearPageReclaim(page); 408 return PAGE_ACTIVATE; 409 } 410 411 /* 412 * Wait on writeback if requested to. This happens when 413 * direct reclaiming a large contiguous area and the 414 * first attempt to free a range of pages fails. 415 */ 416 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 417 wait_on_page_writeback(page); 418 419 if (!PageWriteback(page)) { 420 /* synchronous write or broken a_ops? */ 421 ClearPageReclaim(page); 422 } 423 inc_zone_page_state(page, NR_VMSCAN_WRITE); 424 return PAGE_SUCCESS; 425 } 426 427 return PAGE_CLEAN; 428 } 429 430 /* 431 * Same as remove_mapping, but if the page is removed from the mapping, it 432 * gets returned with a refcount of 0. 433 */ 434 static int __remove_mapping(struct address_space *mapping, struct page *page) 435 { 436 BUG_ON(!PageLocked(page)); 437 BUG_ON(mapping != page_mapping(page)); 438 439 spin_lock_irq(&mapping->tree_lock); 440 /* 441 * The non racy check for a busy page. 442 * 443 * Must be careful with the order of the tests. When someone has 444 * a ref to the page, it may be possible that they dirty it then 445 * drop the reference. So if PageDirty is tested before page_count 446 * here, then the following race may occur: 447 * 448 * get_user_pages(&page); 449 * [user mapping goes away] 450 * write_to(page); 451 * !PageDirty(page) [good] 452 * SetPageDirty(page); 453 * put_page(page); 454 * !page_count(page) [good, discard it] 455 * 456 * [oops, our write_to data is lost] 457 * 458 * Reversing the order of the tests ensures such a situation cannot 459 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 460 * load is not satisfied before that of page->_count. 461 * 462 * Note that if SetPageDirty is always performed via set_page_dirty, 463 * and thus under tree_lock, then this ordering is not required. 464 */ 465 if (!page_freeze_refs(page, 2)) 466 goto cannot_free; 467 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 468 if (unlikely(PageDirty(page))) { 469 page_unfreeze_refs(page, 2); 470 goto cannot_free; 471 } 472 473 if (PageSwapCache(page)) { 474 swp_entry_t swap = { .val = page_private(page) }; 475 __delete_from_swap_cache(page); 476 spin_unlock_irq(&mapping->tree_lock); 477 swapcache_free(swap, page); 478 } else { 479 __remove_from_page_cache(page); 480 spin_unlock_irq(&mapping->tree_lock); 481 mem_cgroup_uncharge_cache_page(page); 482 } 483 484 return 1; 485 486 cannot_free: 487 spin_unlock_irq(&mapping->tree_lock); 488 return 0; 489 } 490 491 /* 492 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 493 * someone else has a ref on the page, abort and return 0. If it was 494 * successfully detached, return 1. Assumes the caller has a single ref on 495 * this page. 496 */ 497 int remove_mapping(struct address_space *mapping, struct page *page) 498 { 499 if (__remove_mapping(mapping, page)) { 500 /* 501 * Unfreezing the refcount with 1 rather than 2 effectively 502 * drops the pagecache ref for us without requiring another 503 * atomic operation. 504 */ 505 page_unfreeze_refs(page, 1); 506 return 1; 507 } 508 return 0; 509 } 510 511 /** 512 * putback_lru_page - put previously isolated page onto appropriate LRU list 513 * @page: page to be put back to appropriate lru list 514 * 515 * Add previously isolated @page to appropriate LRU list. 516 * Page may still be unevictable for other reasons. 517 * 518 * lru_lock must not be held, interrupts must be enabled. 519 */ 520 void putback_lru_page(struct page *page) 521 { 522 int lru; 523 int active = !!TestClearPageActive(page); 524 int was_unevictable = PageUnevictable(page); 525 526 VM_BUG_ON(PageLRU(page)); 527 528 redo: 529 ClearPageUnevictable(page); 530 531 if (page_evictable(page, NULL)) { 532 /* 533 * For evictable pages, we can use the cache. 534 * In event of a race, worst case is we end up with an 535 * unevictable page on [in]active list. 536 * We know how to handle that. 537 */ 538 lru = active + page_lru_base_type(page); 539 lru_cache_add_lru(page, lru); 540 } else { 541 /* 542 * Put unevictable pages directly on zone's unevictable 543 * list. 544 */ 545 lru = LRU_UNEVICTABLE; 546 add_page_to_unevictable_list(page); 547 } 548 549 /* 550 * page's status can change while we move it among lru. If an evictable 551 * page is on unevictable list, it never be freed. To avoid that, 552 * check after we added it to the list, again. 553 */ 554 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 555 if (!isolate_lru_page(page)) { 556 put_page(page); 557 goto redo; 558 } 559 /* This means someone else dropped this page from LRU 560 * So, it will be freed or putback to LRU again. There is 561 * nothing to do here. 562 */ 563 } 564 565 if (was_unevictable && lru != LRU_UNEVICTABLE) 566 count_vm_event(UNEVICTABLE_PGRESCUED); 567 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 568 count_vm_event(UNEVICTABLE_PGCULLED); 569 570 put_page(page); /* drop ref from isolate */ 571 } 572 573 /* 574 * shrink_page_list() returns the number of reclaimed pages 575 */ 576 static unsigned long shrink_page_list(struct list_head *page_list, 577 struct scan_control *sc, 578 enum pageout_io sync_writeback) 579 { 580 LIST_HEAD(ret_pages); 581 struct pagevec freed_pvec; 582 int pgactivate = 0; 583 unsigned long nr_reclaimed = 0; 584 unsigned long vm_flags; 585 586 cond_resched(); 587 588 pagevec_init(&freed_pvec, 1); 589 while (!list_empty(page_list)) { 590 struct address_space *mapping; 591 struct page *page; 592 int may_enter_fs; 593 int referenced; 594 595 cond_resched(); 596 597 page = lru_to_page(page_list); 598 list_del(&page->lru); 599 600 if (!trylock_page(page)) 601 goto keep; 602 603 VM_BUG_ON(PageActive(page)); 604 605 sc->nr_scanned++; 606 607 if (unlikely(!page_evictable(page, NULL))) 608 goto cull_mlocked; 609 610 if (!sc->may_unmap && page_mapped(page)) 611 goto keep_locked; 612 613 /* Double the slab pressure for mapped and swapcache pages */ 614 if (page_mapped(page) || PageSwapCache(page)) 615 sc->nr_scanned++; 616 617 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 618 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 619 620 if (PageWriteback(page)) { 621 /* 622 * Synchronous reclaim is performed in two passes, 623 * first an asynchronous pass over the list to 624 * start parallel writeback, and a second synchronous 625 * pass to wait for the IO to complete. Wait here 626 * for any page for which writeback has already 627 * started. 628 */ 629 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 630 wait_on_page_writeback(page); 631 else 632 goto keep_locked; 633 } 634 635 referenced = page_referenced(page, 1, 636 sc->mem_cgroup, &vm_flags); 637 /* 638 * In active use or really unfreeable? Activate it. 639 * If page which have PG_mlocked lost isoltation race, 640 * try_to_unmap moves it to unevictable list 641 */ 642 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 643 referenced && page_mapping_inuse(page) 644 && !(vm_flags & VM_LOCKED)) 645 goto activate_locked; 646 647 /* 648 * Anonymous process memory has backing store? 649 * Try to allocate it some swap space here. 650 */ 651 if (PageAnon(page) && !PageSwapCache(page)) { 652 if (!(sc->gfp_mask & __GFP_IO)) 653 goto keep_locked; 654 if (!add_to_swap(page)) 655 goto activate_locked; 656 may_enter_fs = 1; 657 } 658 659 mapping = page_mapping(page); 660 661 /* 662 * The page is mapped into the page tables of one or more 663 * processes. Try to unmap it here. 664 */ 665 if (page_mapped(page) && mapping) { 666 switch (try_to_unmap(page, TTU_UNMAP)) { 667 case SWAP_FAIL: 668 goto activate_locked; 669 case SWAP_AGAIN: 670 goto keep_locked; 671 case SWAP_MLOCK: 672 goto cull_mlocked; 673 case SWAP_SUCCESS: 674 ; /* try to free the page below */ 675 } 676 } 677 678 if (PageDirty(page)) { 679 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 680 goto keep_locked; 681 if (!may_enter_fs) 682 goto keep_locked; 683 if (!sc->may_writepage) 684 goto keep_locked; 685 686 /* Page is dirty, try to write it out here */ 687 switch (pageout(page, mapping, sync_writeback)) { 688 case PAGE_KEEP: 689 goto keep_locked; 690 case PAGE_ACTIVATE: 691 goto activate_locked; 692 case PAGE_SUCCESS: 693 if (PageWriteback(page) || PageDirty(page)) 694 goto keep; 695 /* 696 * A synchronous write - probably a ramdisk. Go 697 * ahead and try to reclaim the page. 698 */ 699 if (!trylock_page(page)) 700 goto keep; 701 if (PageDirty(page) || PageWriteback(page)) 702 goto keep_locked; 703 mapping = page_mapping(page); 704 case PAGE_CLEAN: 705 ; /* try to free the page below */ 706 } 707 } 708 709 /* 710 * If the page has buffers, try to free the buffer mappings 711 * associated with this page. If we succeed we try to free 712 * the page as well. 713 * 714 * We do this even if the page is PageDirty(). 715 * try_to_release_page() does not perform I/O, but it is 716 * possible for a page to have PageDirty set, but it is actually 717 * clean (all its buffers are clean). This happens if the 718 * buffers were written out directly, with submit_bh(). ext3 719 * will do this, as well as the blockdev mapping. 720 * try_to_release_page() will discover that cleanness and will 721 * drop the buffers and mark the page clean - it can be freed. 722 * 723 * Rarely, pages can have buffers and no ->mapping. These are 724 * the pages which were not successfully invalidated in 725 * truncate_complete_page(). We try to drop those buffers here 726 * and if that worked, and the page is no longer mapped into 727 * process address space (page_count == 1) it can be freed. 728 * Otherwise, leave the page on the LRU so it is swappable. 729 */ 730 if (page_has_private(page)) { 731 if (!try_to_release_page(page, sc->gfp_mask)) 732 goto activate_locked; 733 if (!mapping && page_count(page) == 1) { 734 unlock_page(page); 735 if (put_page_testzero(page)) 736 goto free_it; 737 else { 738 /* 739 * rare race with speculative reference. 740 * the speculative reference will free 741 * this page shortly, so we may 742 * increment nr_reclaimed here (and 743 * leave it off the LRU). 744 */ 745 nr_reclaimed++; 746 continue; 747 } 748 } 749 } 750 751 if (!mapping || !__remove_mapping(mapping, page)) 752 goto keep_locked; 753 754 /* 755 * At this point, we have no other references and there is 756 * no way to pick any more up (removed from LRU, removed 757 * from pagecache). Can use non-atomic bitops now (and 758 * we obviously don't have to worry about waking up a process 759 * waiting on the page lock, because there are no references. 760 */ 761 __clear_page_locked(page); 762 free_it: 763 nr_reclaimed++; 764 if (!pagevec_add(&freed_pvec, page)) { 765 __pagevec_free(&freed_pvec); 766 pagevec_reinit(&freed_pvec); 767 } 768 continue; 769 770 cull_mlocked: 771 if (PageSwapCache(page)) 772 try_to_free_swap(page); 773 unlock_page(page); 774 putback_lru_page(page); 775 continue; 776 777 activate_locked: 778 /* Not a candidate for swapping, so reclaim swap space. */ 779 if (PageSwapCache(page) && vm_swap_full()) 780 try_to_free_swap(page); 781 VM_BUG_ON(PageActive(page)); 782 SetPageActive(page); 783 pgactivate++; 784 keep_locked: 785 unlock_page(page); 786 keep: 787 list_add(&page->lru, &ret_pages); 788 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 789 } 790 list_splice(&ret_pages, page_list); 791 if (pagevec_count(&freed_pvec)) 792 __pagevec_free(&freed_pvec); 793 count_vm_events(PGACTIVATE, pgactivate); 794 return nr_reclaimed; 795 } 796 797 /* LRU Isolation modes. */ 798 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 799 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 800 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 801 802 /* 803 * Attempt to remove the specified page from its LRU. Only take this page 804 * if it is of the appropriate PageActive status. Pages which are being 805 * freed elsewhere are also ignored. 806 * 807 * page: page to consider 808 * mode: one of the LRU isolation modes defined above 809 * 810 * returns 0 on success, -ve errno on failure. 811 */ 812 int __isolate_lru_page(struct page *page, int mode, int file) 813 { 814 int ret = -EINVAL; 815 816 /* Only take pages on the LRU. */ 817 if (!PageLRU(page)) 818 return ret; 819 820 /* 821 * When checking the active state, we need to be sure we are 822 * dealing with comparible boolean values. Take the logical not 823 * of each. 824 */ 825 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 826 return ret; 827 828 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 829 return ret; 830 831 /* 832 * When this function is being called for lumpy reclaim, we 833 * initially look into all LRU pages, active, inactive and 834 * unevictable; only give shrink_page_list evictable pages. 835 */ 836 if (PageUnevictable(page)) 837 return ret; 838 839 ret = -EBUSY; 840 841 if (likely(get_page_unless_zero(page))) { 842 /* 843 * Be careful not to clear PageLRU until after we're 844 * sure the page is not being freed elsewhere -- the 845 * page release code relies on it. 846 */ 847 ClearPageLRU(page); 848 ret = 0; 849 } 850 851 return ret; 852 } 853 854 /* 855 * zone->lru_lock is heavily contended. Some of the functions that 856 * shrink the lists perform better by taking out a batch of pages 857 * and working on them outside the LRU lock. 858 * 859 * For pagecache intensive workloads, this function is the hottest 860 * spot in the kernel (apart from copy_*_user functions). 861 * 862 * Appropriate locks must be held before calling this function. 863 * 864 * @nr_to_scan: The number of pages to look through on the list. 865 * @src: The LRU list to pull pages off. 866 * @dst: The temp list to put pages on to. 867 * @scanned: The number of pages that were scanned. 868 * @order: The caller's attempted allocation order 869 * @mode: One of the LRU isolation modes 870 * @file: True [1] if isolating file [!anon] pages 871 * 872 * returns how many pages were moved onto *@dst. 873 */ 874 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 875 struct list_head *src, struct list_head *dst, 876 unsigned long *scanned, int order, int mode, int file) 877 { 878 unsigned long nr_taken = 0; 879 unsigned long scan; 880 881 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 882 struct page *page; 883 unsigned long pfn; 884 unsigned long end_pfn; 885 unsigned long page_pfn; 886 int zone_id; 887 888 page = lru_to_page(src); 889 prefetchw_prev_lru_page(page, src, flags); 890 891 VM_BUG_ON(!PageLRU(page)); 892 893 switch (__isolate_lru_page(page, mode, file)) { 894 case 0: 895 list_move(&page->lru, dst); 896 mem_cgroup_del_lru(page); 897 nr_taken++; 898 break; 899 900 case -EBUSY: 901 /* else it is being freed elsewhere */ 902 list_move(&page->lru, src); 903 mem_cgroup_rotate_lru_list(page, page_lru(page)); 904 continue; 905 906 default: 907 BUG(); 908 } 909 910 if (!order) 911 continue; 912 913 /* 914 * Attempt to take all pages in the order aligned region 915 * surrounding the tag page. Only take those pages of 916 * the same active state as that tag page. We may safely 917 * round the target page pfn down to the requested order 918 * as the mem_map is guarenteed valid out to MAX_ORDER, 919 * where that page is in a different zone we will detect 920 * it from its zone id and abort this block scan. 921 */ 922 zone_id = page_zone_id(page); 923 page_pfn = page_to_pfn(page); 924 pfn = page_pfn & ~((1 << order) - 1); 925 end_pfn = pfn + (1 << order); 926 for (; pfn < end_pfn; pfn++) { 927 struct page *cursor_page; 928 929 /* The target page is in the block, ignore it. */ 930 if (unlikely(pfn == page_pfn)) 931 continue; 932 933 /* Avoid holes within the zone. */ 934 if (unlikely(!pfn_valid_within(pfn))) 935 break; 936 937 cursor_page = pfn_to_page(pfn); 938 939 /* Check that we have not crossed a zone boundary. */ 940 if (unlikely(page_zone_id(cursor_page) != zone_id)) 941 continue; 942 943 /* 944 * If we don't have enough swap space, reclaiming of 945 * anon page which don't already have a swap slot is 946 * pointless. 947 */ 948 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 949 !PageSwapCache(cursor_page)) 950 continue; 951 952 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 953 list_move(&cursor_page->lru, dst); 954 mem_cgroup_del_lru(cursor_page); 955 nr_taken++; 956 scan++; 957 } 958 } 959 } 960 961 *scanned = scan; 962 return nr_taken; 963 } 964 965 static unsigned long isolate_pages_global(unsigned long nr, 966 struct list_head *dst, 967 unsigned long *scanned, int order, 968 int mode, struct zone *z, 969 struct mem_cgroup *mem_cont, 970 int active, int file) 971 { 972 int lru = LRU_BASE; 973 if (active) 974 lru += LRU_ACTIVE; 975 if (file) 976 lru += LRU_FILE; 977 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 978 mode, file); 979 } 980 981 /* 982 * clear_active_flags() is a helper for shrink_active_list(), clearing 983 * any active bits from the pages in the list. 984 */ 985 static unsigned long clear_active_flags(struct list_head *page_list, 986 unsigned int *count) 987 { 988 int nr_active = 0; 989 int lru; 990 struct page *page; 991 992 list_for_each_entry(page, page_list, lru) { 993 lru = page_lru_base_type(page); 994 if (PageActive(page)) { 995 lru += LRU_ACTIVE; 996 ClearPageActive(page); 997 nr_active++; 998 } 999 count[lru]++; 1000 } 1001 1002 return nr_active; 1003 } 1004 1005 /** 1006 * isolate_lru_page - tries to isolate a page from its LRU list 1007 * @page: page to isolate from its LRU list 1008 * 1009 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1010 * vmstat statistic corresponding to whatever LRU list the page was on. 1011 * 1012 * Returns 0 if the page was removed from an LRU list. 1013 * Returns -EBUSY if the page was not on an LRU list. 1014 * 1015 * The returned page will have PageLRU() cleared. If it was found on 1016 * the active list, it will have PageActive set. If it was found on 1017 * the unevictable list, it will have the PageUnevictable bit set. That flag 1018 * may need to be cleared by the caller before letting the page go. 1019 * 1020 * The vmstat statistic corresponding to the list on which the page was 1021 * found will be decremented. 1022 * 1023 * Restrictions: 1024 * (1) Must be called with an elevated refcount on the page. This is a 1025 * fundamentnal difference from isolate_lru_pages (which is called 1026 * without a stable reference). 1027 * (2) the lru_lock must not be held. 1028 * (3) interrupts must be enabled. 1029 */ 1030 int isolate_lru_page(struct page *page) 1031 { 1032 int ret = -EBUSY; 1033 1034 if (PageLRU(page)) { 1035 struct zone *zone = page_zone(page); 1036 1037 spin_lock_irq(&zone->lru_lock); 1038 if (PageLRU(page) && get_page_unless_zero(page)) { 1039 int lru = page_lru(page); 1040 ret = 0; 1041 ClearPageLRU(page); 1042 1043 del_page_from_lru_list(zone, page, lru); 1044 } 1045 spin_unlock_irq(&zone->lru_lock); 1046 } 1047 return ret; 1048 } 1049 1050 /* 1051 * Are there way too many processes in the direct reclaim path already? 1052 */ 1053 static int too_many_isolated(struct zone *zone, int file, 1054 struct scan_control *sc) 1055 { 1056 unsigned long inactive, isolated; 1057 1058 if (current_is_kswapd()) 1059 return 0; 1060 1061 if (!scanning_global_lru(sc)) 1062 return 0; 1063 1064 if (file) { 1065 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1066 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1067 } else { 1068 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1069 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1070 } 1071 1072 return isolated > inactive; 1073 } 1074 1075 /* 1076 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1077 * of reclaimed pages 1078 */ 1079 static unsigned long shrink_inactive_list(unsigned long max_scan, 1080 struct zone *zone, struct scan_control *sc, 1081 int priority, int file) 1082 { 1083 LIST_HEAD(page_list); 1084 struct pagevec pvec; 1085 unsigned long nr_scanned = 0; 1086 unsigned long nr_reclaimed = 0; 1087 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1088 int lumpy_reclaim = 0; 1089 1090 while (unlikely(too_many_isolated(zone, file, sc))) { 1091 congestion_wait(WRITE, HZ/10); 1092 1093 /* We are about to die and free our memory. Return now. */ 1094 if (fatal_signal_pending(current)) 1095 return SWAP_CLUSTER_MAX; 1096 } 1097 1098 /* 1099 * If we need a large contiguous chunk of memory, or have 1100 * trouble getting a small set of contiguous pages, we 1101 * will reclaim both active and inactive pages. 1102 * 1103 * We use the same threshold as pageout congestion_wait below. 1104 */ 1105 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1106 lumpy_reclaim = 1; 1107 else if (sc->order && priority < DEF_PRIORITY - 2) 1108 lumpy_reclaim = 1; 1109 1110 pagevec_init(&pvec, 1); 1111 1112 lru_add_drain(); 1113 spin_lock_irq(&zone->lru_lock); 1114 do { 1115 struct page *page; 1116 unsigned long nr_taken; 1117 unsigned long nr_scan; 1118 unsigned long nr_freed; 1119 unsigned long nr_active; 1120 unsigned int count[NR_LRU_LISTS] = { 0, }; 1121 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1122 unsigned long nr_anon; 1123 unsigned long nr_file; 1124 1125 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1126 &page_list, &nr_scan, sc->order, mode, 1127 zone, sc->mem_cgroup, 0, file); 1128 1129 if (scanning_global_lru(sc)) { 1130 zone->pages_scanned += nr_scan; 1131 if (current_is_kswapd()) 1132 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1133 nr_scan); 1134 else 1135 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1136 nr_scan); 1137 } 1138 1139 if (nr_taken == 0) 1140 goto done; 1141 1142 nr_active = clear_active_flags(&page_list, count); 1143 __count_vm_events(PGDEACTIVATE, nr_active); 1144 1145 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1146 -count[LRU_ACTIVE_FILE]); 1147 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1148 -count[LRU_INACTIVE_FILE]); 1149 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1150 -count[LRU_ACTIVE_ANON]); 1151 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1152 -count[LRU_INACTIVE_ANON]); 1153 1154 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1155 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1156 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); 1157 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); 1158 1159 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1160 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1161 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1162 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1163 1164 spin_unlock_irq(&zone->lru_lock); 1165 1166 nr_scanned += nr_scan; 1167 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1168 1169 /* 1170 * If we are direct reclaiming for contiguous pages and we do 1171 * not reclaim everything in the list, try again and wait 1172 * for IO to complete. This will stall high-order allocations 1173 * but that should be acceptable to the caller 1174 */ 1175 if (nr_freed < nr_taken && !current_is_kswapd() && 1176 lumpy_reclaim) { 1177 congestion_wait(BLK_RW_ASYNC, HZ/10); 1178 1179 /* 1180 * The attempt at page out may have made some 1181 * of the pages active, mark them inactive again. 1182 */ 1183 nr_active = clear_active_flags(&page_list, count); 1184 count_vm_events(PGDEACTIVATE, nr_active); 1185 1186 nr_freed += shrink_page_list(&page_list, sc, 1187 PAGEOUT_IO_SYNC); 1188 } 1189 1190 nr_reclaimed += nr_freed; 1191 1192 local_irq_disable(); 1193 if (current_is_kswapd()) 1194 __count_vm_events(KSWAPD_STEAL, nr_freed); 1195 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1196 1197 spin_lock(&zone->lru_lock); 1198 /* 1199 * Put back any unfreeable pages. 1200 */ 1201 while (!list_empty(&page_list)) { 1202 int lru; 1203 page = lru_to_page(&page_list); 1204 VM_BUG_ON(PageLRU(page)); 1205 list_del(&page->lru); 1206 if (unlikely(!page_evictable(page, NULL))) { 1207 spin_unlock_irq(&zone->lru_lock); 1208 putback_lru_page(page); 1209 spin_lock_irq(&zone->lru_lock); 1210 continue; 1211 } 1212 SetPageLRU(page); 1213 lru = page_lru(page); 1214 add_page_to_lru_list(zone, page, lru); 1215 if (is_active_lru(lru)) { 1216 int file = is_file_lru(lru); 1217 reclaim_stat->recent_rotated[file]++; 1218 } 1219 if (!pagevec_add(&pvec, page)) { 1220 spin_unlock_irq(&zone->lru_lock); 1221 __pagevec_release(&pvec); 1222 spin_lock_irq(&zone->lru_lock); 1223 } 1224 } 1225 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1226 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1227 1228 } while (nr_scanned < max_scan); 1229 1230 done: 1231 spin_unlock_irq(&zone->lru_lock); 1232 pagevec_release(&pvec); 1233 return nr_reclaimed; 1234 } 1235 1236 /* 1237 * We are about to scan this zone at a certain priority level. If that priority 1238 * level is smaller (ie: more urgent) than the previous priority, then note 1239 * that priority level within the zone. This is done so that when the next 1240 * process comes in to scan this zone, it will immediately start out at this 1241 * priority level rather than having to build up its own scanning priority. 1242 * Here, this priority affects only the reclaim-mapped threshold. 1243 */ 1244 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1245 { 1246 if (priority < zone->prev_priority) 1247 zone->prev_priority = priority; 1248 } 1249 1250 /* 1251 * This moves pages from the active list to the inactive list. 1252 * 1253 * We move them the other way if the page is referenced by one or more 1254 * processes, from rmap. 1255 * 1256 * If the pages are mostly unmapped, the processing is fast and it is 1257 * appropriate to hold zone->lru_lock across the whole operation. But if 1258 * the pages are mapped, the processing is slow (page_referenced()) so we 1259 * should drop zone->lru_lock around each page. It's impossible to balance 1260 * this, so instead we remove the pages from the LRU while processing them. 1261 * It is safe to rely on PG_active against the non-LRU pages in here because 1262 * nobody will play with that bit on a non-LRU page. 1263 * 1264 * The downside is that we have to touch page->_count against each page. 1265 * But we had to alter page->flags anyway. 1266 */ 1267 1268 static void move_active_pages_to_lru(struct zone *zone, 1269 struct list_head *list, 1270 enum lru_list lru) 1271 { 1272 unsigned long pgmoved = 0; 1273 struct pagevec pvec; 1274 struct page *page; 1275 1276 pagevec_init(&pvec, 1); 1277 1278 while (!list_empty(list)) { 1279 page = lru_to_page(list); 1280 1281 VM_BUG_ON(PageLRU(page)); 1282 SetPageLRU(page); 1283 1284 list_move(&page->lru, &zone->lru[lru].list); 1285 mem_cgroup_add_lru_list(page, lru); 1286 pgmoved++; 1287 1288 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1289 spin_unlock_irq(&zone->lru_lock); 1290 if (buffer_heads_over_limit) 1291 pagevec_strip(&pvec); 1292 __pagevec_release(&pvec); 1293 spin_lock_irq(&zone->lru_lock); 1294 } 1295 } 1296 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1297 if (!is_active_lru(lru)) 1298 __count_vm_events(PGDEACTIVATE, pgmoved); 1299 } 1300 1301 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1302 struct scan_control *sc, int priority, int file) 1303 { 1304 unsigned long nr_taken; 1305 unsigned long pgscanned; 1306 unsigned long vm_flags; 1307 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1308 LIST_HEAD(l_active); 1309 LIST_HEAD(l_inactive); 1310 struct page *page; 1311 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1312 unsigned long nr_rotated = 0; 1313 1314 lru_add_drain(); 1315 spin_lock_irq(&zone->lru_lock); 1316 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1317 ISOLATE_ACTIVE, zone, 1318 sc->mem_cgroup, 1, file); 1319 /* 1320 * zone->pages_scanned is used for detect zone's oom 1321 * mem_cgroup remembers nr_scan by itself. 1322 */ 1323 if (scanning_global_lru(sc)) { 1324 zone->pages_scanned += pgscanned; 1325 } 1326 reclaim_stat->recent_scanned[file] += nr_taken; 1327 1328 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1329 if (file) 1330 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1331 else 1332 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1333 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1334 spin_unlock_irq(&zone->lru_lock); 1335 1336 while (!list_empty(&l_hold)) { 1337 cond_resched(); 1338 page = lru_to_page(&l_hold); 1339 list_del(&page->lru); 1340 1341 if (unlikely(!page_evictable(page, NULL))) { 1342 putback_lru_page(page); 1343 continue; 1344 } 1345 1346 /* page_referenced clears PageReferenced */ 1347 if (page_mapping_inuse(page) && 1348 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1349 nr_rotated++; 1350 /* 1351 * Identify referenced, file-backed active pages and 1352 * give them one more trip around the active list. So 1353 * that executable code get better chances to stay in 1354 * memory under moderate memory pressure. Anon pages 1355 * are not likely to be evicted by use-once streaming 1356 * IO, plus JVM can create lots of anon VM_EXEC pages, 1357 * so we ignore them here. 1358 */ 1359 if ((vm_flags & VM_EXEC) && !PageAnon(page)) { 1360 list_add(&page->lru, &l_active); 1361 continue; 1362 } 1363 } 1364 1365 ClearPageActive(page); /* we are de-activating */ 1366 list_add(&page->lru, &l_inactive); 1367 } 1368 1369 /* 1370 * Move pages back to the lru list. 1371 */ 1372 spin_lock_irq(&zone->lru_lock); 1373 /* 1374 * Count referenced pages from currently used mappings as rotated, 1375 * even though only some of them are actually re-activated. This 1376 * helps balance scan pressure between file and anonymous pages in 1377 * get_scan_ratio. 1378 */ 1379 reclaim_stat->recent_rotated[file] += nr_rotated; 1380 1381 move_active_pages_to_lru(zone, &l_active, 1382 LRU_ACTIVE + file * LRU_FILE); 1383 move_active_pages_to_lru(zone, &l_inactive, 1384 LRU_BASE + file * LRU_FILE); 1385 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1386 spin_unlock_irq(&zone->lru_lock); 1387 } 1388 1389 static int inactive_anon_is_low_global(struct zone *zone) 1390 { 1391 unsigned long active, inactive; 1392 1393 active = zone_page_state(zone, NR_ACTIVE_ANON); 1394 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1395 1396 if (inactive * zone->inactive_ratio < active) 1397 return 1; 1398 1399 return 0; 1400 } 1401 1402 /** 1403 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1404 * @zone: zone to check 1405 * @sc: scan control of this context 1406 * 1407 * Returns true if the zone does not have enough inactive anon pages, 1408 * meaning some active anon pages need to be deactivated. 1409 */ 1410 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1411 { 1412 int low; 1413 1414 if (scanning_global_lru(sc)) 1415 low = inactive_anon_is_low_global(zone); 1416 else 1417 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1418 return low; 1419 } 1420 1421 static int inactive_file_is_low_global(struct zone *zone) 1422 { 1423 unsigned long active, inactive; 1424 1425 active = zone_page_state(zone, NR_ACTIVE_FILE); 1426 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1427 1428 return (active > inactive); 1429 } 1430 1431 /** 1432 * inactive_file_is_low - check if file pages need to be deactivated 1433 * @zone: zone to check 1434 * @sc: scan control of this context 1435 * 1436 * When the system is doing streaming IO, memory pressure here 1437 * ensures that active file pages get deactivated, until more 1438 * than half of the file pages are on the inactive list. 1439 * 1440 * Once we get to that situation, protect the system's working 1441 * set from being evicted by disabling active file page aging. 1442 * 1443 * This uses a different ratio than the anonymous pages, because 1444 * the page cache uses a use-once replacement algorithm. 1445 */ 1446 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1447 { 1448 int low; 1449 1450 if (scanning_global_lru(sc)) 1451 low = inactive_file_is_low_global(zone); 1452 else 1453 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1454 return low; 1455 } 1456 1457 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1458 struct zone *zone, struct scan_control *sc, int priority) 1459 { 1460 int file = is_file_lru(lru); 1461 1462 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) { 1463 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1464 return 0; 1465 } 1466 1467 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1468 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1469 return 0; 1470 } 1471 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1472 } 1473 1474 /* 1475 * Determine how aggressively the anon and file LRU lists should be 1476 * scanned. The relative value of each set of LRU lists is determined 1477 * by looking at the fraction of the pages scanned we did rotate back 1478 * onto the active list instead of evict. 1479 * 1480 * percent[0] specifies how much pressure to put on ram/swap backed 1481 * memory, while percent[1] determines pressure on the file LRUs. 1482 */ 1483 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1484 unsigned long *percent) 1485 { 1486 unsigned long anon, file, free; 1487 unsigned long anon_prio, file_prio; 1488 unsigned long ap, fp; 1489 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1490 1491 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1492 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1493 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1494 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1495 1496 if (scanning_global_lru(sc)) { 1497 free = zone_page_state(zone, NR_FREE_PAGES); 1498 /* If we have very few page cache pages, 1499 force-scan anon pages. */ 1500 if (unlikely(file + free <= high_wmark_pages(zone))) { 1501 percent[0] = 100; 1502 percent[1] = 0; 1503 return; 1504 } 1505 } 1506 1507 /* 1508 * OK, so we have swap space and a fair amount of page cache 1509 * pages. We use the recently rotated / recently scanned 1510 * ratios to determine how valuable each cache is. 1511 * 1512 * Because workloads change over time (and to avoid overflow) 1513 * we keep these statistics as a floating average, which ends 1514 * up weighing recent references more than old ones. 1515 * 1516 * anon in [0], file in [1] 1517 */ 1518 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1519 spin_lock_irq(&zone->lru_lock); 1520 reclaim_stat->recent_scanned[0] /= 2; 1521 reclaim_stat->recent_rotated[0] /= 2; 1522 spin_unlock_irq(&zone->lru_lock); 1523 } 1524 1525 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1526 spin_lock_irq(&zone->lru_lock); 1527 reclaim_stat->recent_scanned[1] /= 2; 1528 reclaim_stat->recent_rotated[1] /= 2; 1529 spin_unlock_irq(&zone->lru_lock); 1530 } 1531 1532 /* 1533 * With swappiness at 100, anonymous and file have the same priority. 1534 * This scanning priority is essentially the inverse of IO cost. 1535 */ 1536 anon_prio = sc->swappiness; 1537 file_prio = 200 - sc->swappiness; 1538 1539 /* 1540 * The amount of pressure on anon vs file pages is inversely 1541 * proportional to the fraction of recently scanned pages on 1542 * each list that were recently referenced and in active use. 1543 */ 1544 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1545 ap /= reclaim_stat->recent_rotated[0] + 1; 1546 1547 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1548 fp /= reclaim_stat->recent_rotated[1] + 1; 1549 1550 /* Normalize to percentages */ 1551 percent[0] = 100 * ap / (ap + fp + 1); 1552 percent[1] = 100 - percent[0]; 1553 } 1554 1555 /* 1556 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1557 * until we collected @swap_cluster_max pages to scan. 1558 */ 1559 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1560 unsigned long *nr_saved_scan, 1561 unsigned long swap_cluster_max) 1562 { 1563 unsigned long nr; 1564 1565 *nr_saved_scan += nr_to_scan; 1566 nr = *nr_saved_scan; 1567 1568 if (nr >= swap_cluster_max) 1569 *nr_saved_scan = 0; 1570 else 1571 nr = 0; 1572 1573 return nr; 1574 } 1575 1576 /* 1577 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1578 */ 1579 static void shrink_zone(int priority, struct zone *zone, 1580 struct scan_control *sc) 1581 { 1582 unsigned long nr[NR_LRU_LISTS]; 1583 unsigned long nr_to_scan; 1584 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1585 enum lru_list l; 1586 unsigned long nr_reclaimed = sc->nr_reclaimed; 1587 unsigned long swap_cluster_max = sc->swap_cluster_max; 1588 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1589 int noswap = 0; 1590 1591 /* If we have no swap space, do not bother scanning anon pages. */ 1592 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1593 noswap = 1; 1594 percent[0] = 0; 1595 percent[1] = 100; 1596 } else 1597 get_scan_ratio(zone, sc, percent); 1598 1599 for_each_evictable_lru(l) { 1600 int file = is_file_lru(l); 1601 unsigned long scan; 1602 1603 scan = zone_nr_lru_pages(zone, sc, l); 1604 if (priority || noswap) { 1605 scan >>= priority; 1606 scan = (scan * percent[file]) / 100; 1607 } 1608 nr[l] = nr_scan_try_batch(scan, 1609 &reclaim_stat->nr_saved_scan[l], 1610 swap_cluster_max); 1611 } 1612 1613 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1614 nr[LRU_INACTIVE_FILE]) { 1615 for_each_evictable_lru(l) { 1616 if (nr[l]) { 1617 nr_to_scan = min(nr[l], swap_cluster_max); 1618 nr[l] -= nr_to_scan; 1619 1620 nr_reclaimed += shrink_list(l, nr_to_scan, 1621 zone, sc, priority); 1622 } 1623 } 1624 /* 1625 * On large memory systems, scan >> priority can become 1626 * really large. This is fine for the starting priority; 1627 * we want to put equal scanning pressure on each zone. 1628 * However, if the VM has a harder time of freeing pages, 1629 * with multiple processes reclaiming pages, the total 1630 * freeing target can get unreasonably large. 1631 */ 1632 if (nr_reclaimed > swap_cluster_max && 1633 priority < DEF_PRIORITY && !current_is_kswapd()) 1634 break; 1635 } 1636 1637 sc->nr_reclaimed = nr_reclaimed; 1638 1639 /* 1640 * Even if we did not try to evict anon pages at all, we want to 1641 * rebalance the anon lru active/inactive ratio. 1642 */ 1643 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1644 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1645 1646 throttle_vm_writeout(sc->gfp_mask); 1647 } 1648 1649 /* 1650 * This is the direct reclaim path, for page-allocating processes. We only 1651 * try to reclaim pages from zones which will satisfy the caller's allocation 1652 * request. 1653 * 1654 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1655 * Because: 1656 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1657 * allocation or 1658 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1659 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1660 * zone defense algorithm. 1661 * 1662 * If a zone is deemed to be full of pinned pages then just give it a light 1663 * scan then give up on it. 1664 */ 1665 static void shrink_zones(int priority, struct zonelist *zonelist, 1666 struct scan_control *sc) 1667 { 1668 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1669 struct zoneref *z; 1670 struct zone *zone; 1671 1672 sc->all_unreclaimable = 1; 1673 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1674 sc->nodemask) { 1675 if (!populated_zone(zone)) 1676 continue; 1677 /* 1678 * Take care memory controller reclaiming has small influence 1679 * to global LRU. 1680 */ 1681 if (scanning_global_lru(sc)) { 1682 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1683 continue; 1684 note_zone_scanning_priority(zone, priority); 1685 1686 if (zone_is_all_unreclaimable(zone) && 1687 priority != DEF_PRIORITY) 1688 continue; /* Let kswapd poll it */ 1689 sc->all_unreclaimable = 0; 1690 } else { 1691 /* 1692 * Ignore cpuset limitation here. We just want to reduce 1693 * # of used pages by us regardless of memory shortage. 1694 */ 1695 sc->all_unreclaimable = 0; 1696 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1697 priority); 1698 } 1699 1700 shrink_zone(priority, zone, sc); 1701 } 1702 } 1703 1704 /* 1705 * This is the main entry point to direct page reclaim. 1706 * 1707 * If a full scan of the inactive list fails to free enough memory then we 1708 * are "out of memory" and something needs to be killed. 1709 * 1710 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1711 * high - the zone may be full of dirty or under-writeback pages, which this 1712 * caller can't do much about. We kick the writeback threads and take explicit 1713 * naps in the hope that some of these pages can be written. But if the 1714 * allocating task holds filesystem locks which prevent writeout this might not 1715 * work, and the allocation attempt will fail. 1716 * 1717 * returns: 0, if no pages reclaimed 1718 * else, the number of pages reclaimed 1719 */ 1720 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1721 struct scan_control *sc) 1722 { 1723 int priority; 1724 unsigned long ret = 0; 1725 unsigned long total_scanned = 0; 1726 struct reclaim_state *reclaim_state = current->reclaim_state; 1727 unsigned long lru_pages = 0; 1728 struct zoneref *z; 1729 struct zone *zone; 1730 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1731 1732 delayacct_freepages_start(); 1733 1734 if (scanning_global_lru(sc)) 1735 count_vm_event(ALLOCSTALL); 1736 /* 1737 * mem_cgroup will not do shrink_slab. 1738 */ 1739 if (scanning_global_lru(sc)) { 1740 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1741 1742 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1743 continue; 1744 1745 lru_pages += zone_reclaimable_pages(zone); 1746 } 1747 } 1748 1749 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1750 sc->nr_scanned = 0; 1751 if (!priority) 1752 disable_swap_token(); 1753 shrink_zones(priority, zonelist, sc); 1754 /* 1755 * Don't shrink slabs when reclaiming memory from 1756 * over limit cgroups 1757 */ 1758 if (scanning_global_lru(sc)) { 1759 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1760 if (reclaim_state) { 1761 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1762 reclaim_state->reclaimed_slab = 0; 1763 } 1764 } 1765 total_scanned += sc->nr_scanned; 1766 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1767 ret = sc->nr_reclaimed; 1768 goto out; 1769 } 1770 1771 /* 1772 * Try to write back as many pages as we just scanned. This 1773 * tends to cause slow streaming writers to write data to the 1774 * disk smoothly, at the dirtying rate, which is nice. But 1775 * that's undesirable in laptop mode, where we *want* lumpy 1776 * writeout. So in laptop mode, write out the whole world. 1777 */ 1778 if (total_scanned > sc->swap_cluster_max + 1779 sc->swap_cluster_max / 2) { 1780 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1781 sc->may_writepage = 1; 1782 } 1783 1784 /* Take a nap, wait for some writeback to complete */ 1785 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1786 congestion_wait(BLK_RW_ASYNC, HZ/10); 1787 } 1788 /* top priority shrink_zones still had more to do? don't OOM, then */ 1789 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1790 ret = sc->nr_reclaimed; 1791 out: 1792 /* 1793 * Now that we've scanned all the zones at this priority level, note 1794 * that level within the zone so that the next thread which performs 1795 * scanning of this zone will immediately start out at this priority 1796 * level. This affects only the decision whether or not to bring 1797 * mapped pages onto the inactive list. 1798 */ 1799 if (priority < 0) 1800 priority = 0; 1801 1802 if (scanning_global_lru(sc)) { 1803 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1804 1805 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1806 continue; 1807 1808 zone->prev_priority = priority; 1809 } 1810 } else 1811 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1812 1813 delayacct_freepages_end(); 1814 1815 return ret; 1816 } 1817 1818 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1819 gfp_t gfp_mask, nodemask_t *nodemask) 1820 { 1821 struct scan_control sc = { 1822 .gfp_mask = gfp_mask, 1823 .may_writepage = !laptop_mode, 1824 .swap_cluster_max = SWAP_CLUSTER_MAX, 1825 .may_unmap = 1, 1826 .may_swap = 1, 1827 .swappiness = vm_swappiness, 1828 .order = order, 1829 .mem_cgroup = NULL, 1830 .isolate_pages = isolate_pages_global, 1831 .nodemask = nodemask, 1832 }; 1833 1834 return do_try_to_free_pages(zonelist, &sc); 1835 } 1836 1837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1838 1839 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 1840 gfp_t gfp_mask, bool noswap, 1841 unsigned int swappiness, 1842 struct zone *zone, int nid) 1843 { 1844 struct scan_control sc = { 1845 .may_writepage = !laptop_mode, 1846 .may_unmap = 1, 1847 .may_swap = !noswap, 1848 .swap_cluster_max = SWAP_CLUSTER_MAX, 1849 .swappiness = swappiness, 1850 .order = 0, 1851 .mem_cgroup = mem, 1852 .isolate_pages = mem_cgroup_isolate_pages, 1853 }; 1854 nodemask_t nm = nodemask_of_node(nid); 1855 1856 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1858 sc.nodemask = &nm; 1859 sc.nr_reclaimed = 0; 1860 sc.nr_scanned = 0; 1861 /* 1862 * NOTE: Although we can get the priority field, using it 1863 * here is not a good idea, since it limits the pages we can scan. 1864 * if we don't reclaim here, the shrink_zone from balance_pgdat 1865 * will pick up pages from other mem cgroup's as well. We hack 1866 * the priority and make it zero. 1867 */ 1868 shrink_zone(0, zone, &sc); 1869 return sc.nr_reclaimed; 1870 } 1871 1872 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1873 gfp_t gfp_mask, 1874 bool noswap, 1875 unsigned int swappiness) 1876 { 1877 struct zonelist *zonelist; 1878 struct scan_control sc = { 1879 .may_writepage = !laptop_mode, 1880 .may_unmap = 1, 1881 .may_swap = !noswap, 1882 .swap_cluster_max = SWAP_CLUSTER_MAX, 1883 .swappiness = swappiness, 1884 .order = 0, 1885 .mem_cgroup = mem_cont, 1886 .isolate_pages = mem_cgroup_isolate_pages, 1887 .nodemask = NULL, /* we don't care the placement */ 1888 }; 1889 1890 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1891 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1892 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1893 return do_try_to_free_pages(zonelist, &sc); 1894 } 1895 #endif 1896 1897 /* 1898 * For kswapd, balance_pgdat() will work across all this node's zones until 1899 * they are all at high_wmark_pages(zone). 1900 * 1901 * Returns the number of pages which were actually freed. 1902 * 1903 * There is special handling here for zones which are full of pinned pages. 1904 * This can happen if the pages are all mlocked, or if they are all used by 1905 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1906 * What we do is to detect the case where all pages in the zone have been 1907 * scanned twice and there has been zero successful reclaim. Mark the zone as 1908 * dead and from now on, only perform a short scan. Basically we're polling 1909 * the zone for when the problem goes away. 1910 * 1911 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 1913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 1914 * lower zones regardless of the number of free pages in the lower zones. This 1915 * interoperates with the page allocator fallback scheme to ensure that aging 1916 * of pages is balanced across the zones. 1917 */ 1918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1919 { 1920 int all_zones_ok; 1921 int priority; 1922 int i; 1923 unsigned long total_scanned; 1924 struct reclaim_state *reclaim_state = current->reclaim_state; 1925 struct scan_control sc = { 1926 .gfp_mask = GFP_KERNEL, 1927 .may_unmap = 1, 1928 .may_swap = 1, 1929 .swap_cluster_max = SWAP_CLUSTER_MAX, 1930 .swappiness = vm_swappiness, 1931 .order = order, 1932 .mem_cgroup = NULL, 1933 .isolate_pages = isolate_pages_global, 1934 }; 1935 /* 1936 * temp_priority is used to remember the scanning priority at which 1937 * this zone was successfully refilled to 1938 * free_pages == high_wmark_pages(zone). 1939 */ 1940 int temp_priority[MAX_NR_ZONES]; 1941 1942 loop_again: 1943 total_scanned = 0; 1944 sc.nr_reclaimed = 0; 1945 sc.may_writepage = !laptop_mode; 1946 count_vm_event(PAGEOUTRUN); 1947 1948 for (i = 0; i < pgdat->nr_zones; i++) 1949 temp_priority[i] = DEF_PRIORITY; 1950 1951 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1952 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1953 unsigned long lru_pages = 0; 1954 1955 /* The swap token gets in the way of swapout... */ 1956 if (!priority) 1957 disable_swap_token(); 1958 1959 all_zones_ok = 1; 1960 1961 /* 1962 * Scan in the highmem->dma direction for the highest 1963 * zone which needs scanning 1964 */ 1965 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1966 struct zone *zone = pgdat->node_zones + i; 1967 1968 if (!populated_zone(zone)) 1969 continue; 1970 1971 if (zone_is_all_unreclaimable(zone) && 1972 priority != DEF_PRIORITY) 1973 continue; 1974 1975 /* 1976 * Do some background aging of the anon list, to give 1977 * pages a chance to be referenced before reclaiming. 1978 */ 1979 if (inactive_anon_is_low(zone, &sc)) 1980 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1981 &sc, priority, 0); 1982 1983 if (!zone_watermark_ok(zone, order, 1984 high_wmark_pages(zone), 0, 0)) { 1985 end_zone = i; 1986 break; 1987 } 1988 } 1989 if (i < 0) 1990 goto out; 1991 1992 for (i = 0; i <= end_zone; i++) { 1993 struct zone *zone = pgdat->node_zones + i; 1994 1995 lru_pages += zone_reclaimable_pages(zone); 1996 } 1997 1998 /* 1999 * Now scan the zone in the dma->highmem direction, stopping 2000 * at the last zone which needs scanning. 2001 * 2002 * We do this because the page allocator works in the opposite 2003 * direction. This prevents the page allocator from allocating 2004 * pages behind kswapd's direction of progress, which would 2005 * cause too much scanning of the lower zones. 2006 */ 2007 for (i = 0; i <= end_zone; i++) { 2008 struct zone *zone = pgdat->node_zones + i; 2009 int nr_slab; 2010 int nid, zid; 2011 2012 if (!populated_zone(zone)) 2013 continue; 2014 2015 if (zone_is_all_unreclaimable(zone) && 2016 priority != DEF_PRIORITY) 2017 continue; 2018 2019 if (!zone_watermark_ok(zone, order, 2020 high_wmark_pages(zone), end_zone, 0)) 2021 all_zones_ok = 0; 2022 temp_priority[i] = priority; 2023 sc.nr_scanned = 0; 2024 note_zone_scanning_priority(zone, priority); 2025 2026 nid = pgdat->node_id; 2027 zid = zone_idx(zone); 2028 /* 2029 * Call soft limit reclaim before calling shrink_zone. 2030 * For now we ignore the return value 2031 */ 2032 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, 2033 nid, zid); 2034 /* 2035 * We put equal pressure on every zone, unless one 2036 * zone has way too many pages free already. 2037 */ 2038 if (!zone_watermark_ok(zone, order, 2039 8*high_wmark_pages(zone), end_zone, 0)) 2040 shrink_zone(priority, zone, &sc); 2041 reclaim_state->reclaimed_slab = 0; 2042 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2043 lru_pages); 2044 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2045 total_scanned += sc.nr_scanned; 2046 if (zone_is_all_unreclaimable(zone)) 2047 continue; 2048 if (nr_slab == 0 && zone->pages_scanned >= 2049 (zone_reclaimable_pages(zone) * 6)) 2050 zone_set_flag(zone, 2051 ZONE_ALL_UNRECLAIMABLE); 2052 /* 2053 * If we've done a decent amount of scanning and 2054 * the reclaim ratio is low, start doing writepage 2055 * even in laptop mode 2056 */ 2057 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2058 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2059 sc.may_writepage = 1; 2060 } 2061 if (all_zones_ok) 2062 break; /* kswapd: all done */ 2063 /* 2064 * OK, kswapd is getting into trouble. Take a nap, then take 2065 * another pass across the zones. 2066 */ 2067 if (total_scanned && priority < DEF_PRIORITY - 2) 2068 congestion_wait(BLK_RW_ASYNC, HZ/10); 2069 2070 /* 2071 * We do this so kswapd doesn't build up large priorities for 2072 * example when it is freeing in parallel with allocators. It 2073 * matches the direct reclaim path behaviour in terms of impact 2074 * on zone->*_priority. 2075 */ 2076 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2077 break; 2078 } 2079 out: 2080 /* 2081 * Note within each zone the priority level at which this zone was 2082 * brought into a happy state. So that the next thread which scans this 2083 * zone will start out at that priority level. 2084 */ 2085 for (i = 0; i < pgdat->nr_zones; i++) { 2086 struct zone *zone = pgdat->node_zones + i; 2087 2088 zone->prev_priority = temp_priority[i]; 2089 } 2090 if (!all_zones_ok) { 2091 cond_resched(); 2092 2093 try_to_freeze(); 2094 2095 /* 2096 * Fragmentation may mean that the system cannot be 2097 * rebalanced for high-order allocations in all zones. 2098 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2099 * it means the zones have been fully scanned and are still 2100 * not balanced. For high-order allocations, there is 2101 * little point trying all over again as kswapd may 2102 * infinite loop. 2103 * 2104 * Instead, recheck all watermarks at order-0 as they 2105 * are the most important. If watermarks are ok, kswapd will go 2106 * back to sleep. High-order users can still perform direct 2107 * reclaim if they wish. 2108 */ 2109 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2110 order = sc.order = 0; 2111 2112 goto loop_again; 2113 } 2114 2115 return sc.nr_reclaimed; 2116 } 2117 2118 /* 2119 * The background pageout daemon, started as a kernel thread 2120 * from the init process. 2121 * 2122 * This basically trickles out pages so that we have _some_ 2123 * free memory available even if there is no other activity 2124 * that frees anything up. This is needed for things like routing 2125 * etc, where we otherwise might have all activity going on in 2126 * asynchronous contexts that cannot page things out. 2127 * 2128 * If there are applications that are active memory-allocators 2129 * (most normal use), this basically shouldn't matter. 2130 */ 2131 static int kswapd(void *p) 2132 { 2133 unsigned long order; 2134 pg_data_t *pgdat = (pg_data_t*)p; 2135 struct task_struct *tsk = current; 2136 DEFINE_WAIT(wait); 2137 struct reclaim_state reclaim_state = { 2138 .reclaimed_slab = 0, 2139 }; 2140 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2141 2142 lockdep_set_current_reclaim_state(GFP_KERNEL); 2143 2144 if (!cpumask_empty(cpumask)) 2145 set_cpus_allowed_ptr(tsk, cpumask); 2146 current->reclaim_state = &reclaim_state; 2147 2148 /* 2149 * Tell the memory management that we're a "memory allocator", 2150 * and that if we need more memory we should get access to it 2151 * regardless (see "__alloc_pages()"). "kswapd" should 2152 * never get caught in the normal page freeing logic. 2153 * 2154 * (Kswapd normally doesn't need memory anyway, but sometimes 2155 * you need a small amount of memory in order to be able to 2156 * page out something else, and this flag essentially protects 2157 * us from recursively trying to free more memory as we're 2158 * trying to free the first piece of memory in the first place). 2159 */ 2160 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2161 set_freezable(); 2162 2163 order = 0; 2164 for ( ; ; ) { 2165 unsigned long new_order; 2166 2167 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2168 new_order = pgdat->kswapd_max_order; 2169 pgdat->kswapd_max_order = 0; 2170 if (order < new_order) { 2171 /* 2172 * Don't sleep if someone wants a larger 'order' 2173 * allocation 2174 */ 2175 order = new_order; 2176 } else { 2177 if (!freezing(current)) 2178 schedule(); 2179 2180 order = pgdat->kswapd_max_order; 2181 } 2182 finish_wait(&pgdat->kswapd_wait, &wait); 2183 2184 if (!try_to_freeze()) { 2185 /* We can speed up thawing tasks if we don't call 2186 * balance_pgdat after returning from the refrigerator 2187 */ 2188 balance_pgdat(pgdat, order); 2189 } 2190 } 2191 return 0; 2192 } 2193 2194 /* 2195 * A zone is low on free memory, so wake its kswapd task to service it. 2196 */ 2197 void wakeup_kswapd(struct zone *zone, int order) 2198 { 2199 pg_data_t *pgdat; 2200 2201 if (!populated_zone(zone)) 2202 return; 2203 2204 pgdat = zone->zone_pgdat; 2205 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2206 return; 2207 if (pgdat->kswapd_max_order < order) 2208 pgdat->kswapd_max_order = order; 2209 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2210 return; 2211 if (!waitqueue_active(&pgdat->kswapd_wait)) 2212 return; 2213 wake_up_interruptible(&pgdat->kswapd_wait); 2214 } 2215 2216 /* 2217 * The reclaimable count would be mostly accurate. 2218 * The less reclaimable pages may be 2219 * - mlocked pages, which will be moved to unevictable list when encountered 2220 * - mapped pages, which may require several travels to be reclaimed 2221 * - dirty pages, which is not "instantly" reclaimable 2222 */ 2223 unsigned long global_reclaimable_pages(void) 2224 { 2225 int nr; 2226 2227 nr = global_page_state(NR_ACTIVE_FILE) + 2228 global_page_state(NR_INACTIVE_FILE); 2229 2230 if (nr_swap_pages > 0) 2231 nr += global_page_state(NR_ACTIVE_ANON) + 2232 global_page_state(NR_INACTIVE_ANON); 2233 2234 return nr; 2235 } 2236 2237 unsigned long zone_reclaimable_pages(struct zone *zone) 2238 { 2239 int nr; 2240 2241 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2242 zone_page_state(zone, NR_INACTIVE_FILE); 2243 2244 if (nr_swap_pages > 0) 2245 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2246 zone_page_state(zone, NR_INACTIVE_ANON); 2247 2248 return nr; 2249 } 2250 2251 #ifdef CONFIG_HIBERNATION 2252 /* 2253 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2254 * from LRU lists system-wide, for given pass and priority. 2255 * 2256 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2257 */ 2258 static void shrink_all_zones(unsigned long nr_pages, int prio, 2259 int pass, struct scan_control *sc) 2260 { 2261 struct zone *zone; 2262 unsigned long nr_reclaimed = 0; 2263 struct zone_reclaim_stat *reclaim_stat; 2264 2265 for_each_populated_zone(zone) { 2266 enum lru_list l; 2267 2268 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2269 continue; 2270 2271 for_each_evictable_lru(l) { 2272 enum zone_stat_item ls = NR_LRU_BASE + l; 2273 unsigned long lru_pages = zone_page_state(zone, ls); 2274 2275 /* For pass = 0, we don't shrink the active list */ 2276 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2277 l == LRU_ACTIVE_FILE)) 2278 continue; 2279 2280 reclaim_stat = get_reclaim_stat(zone, sc); 2281 reclaim_stat->nr_saved_scan[l] += 2282 (lru_pages >> prio) + 1; 2283 if (reclaim_stat->nr_saved_scan[l] 2284 >= nr_pages || pass > 3) { 2285 unsigned long nr_to_scan; 2286 2287 reclaim_stat->nr_saved_scan[l] = 0; 2288 nr_to_scan = min(nr_pages, lru_pages); 2289 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2290 sc, prio); 2291 if (nr_reclaimed >= nr_pages) { 2292 sc->nr_reclaimed += nr_reclaimed; 2293 return; 2294 } 2295 } 2296 } 2297 } 2298 sc->nr_reclaimed += nr_reclaimed; 2299 } 2300 2301 /* 2302 * Try to free `nr_pages' of memory, system-wide, and return the number of 2303 * freed pages. 2304 * 2305 * Rather than trying to age LRUs the aim is to preserve the overall 2306 * LRU order by reclaiming preferentially 2307 * inactive > active > active referenced > active mapped 2308 */ 2309 unsigned long shrink_all_memory(unsigned long nr_pages) 2310 { 2311 unsigned long lru_pages, nr_slab; 2312 int pass; 2313 struct reclaim_state reclaim_state; 2314 struct scan_control sc = { 2315 .gfp_mask = GFP_KERNEL, 2316 .may_unmap = 0, 2317 .may_writepage = 1, 2318 .isolate_pages = isolate_pages_global, 2319 .nr_reclaimed = 0, 2320 }; 2321 2322 current->reclaim_state = &reclaim_state; 2323 2324 lru_pages = global_reclaimable_pages(); 2325 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2326 /* If slab caches are huge, it's better to hit them first */ 2327 while (nr_slab >= lru_pages) { 2328 reclaim_state.reclaimed_slab = 0; 2329 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2330 if (!reclaim_state.reclaimed_slab) 2331 break; 2332 2333 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2334 if (sc.nr_reclaimed >= nr_pages) 2335 goto out; 2336 2337 nr_slab -= reclaim_state.reclaimed_slab; 2338 } 2339 2340 /* 2341 * We try to shrink LRUs in 5 passes: 2342 * 0 = Reclaim from inactive_list only 2343 * 1 = Reclaim from active list but don't reclaim mapped 2344 * 2 = 2nd pass of type 1 2345 * 3 = Reclaim mapped (normal reclaim) 2346 * 4 = 2nd pass of type 3 2347 */ 2348 for (pass = 0; pass < 5; pass++) { 2349 int prio; 2350 2351 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2352 if (pass > 2) 2353 sc.may_unmap = 1; 2354 2355 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2356 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2357 2358 sc.nr_scanned = 0; 2359 sc.swap_cluster_max = nr_to_scan; 2360 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2361 if (sc.nr_reclaimed >= nr_pages) 2362 goto out; 2363 2364 reclaim_state.reclaimed_slab = 0; 2365 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2366 global_reclaimable_pages()); 2367 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2368 if (sc.nr_reclaimed >= nr_pages) 2369 goto out; 2370 2371 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2372 congestion_wait(BLK_RW_ASYNC, HZ / 10); 2373 } 2374 } 2375 2376 /* 2377 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2378 * something in slab caches 2379 */ 2380 if (!sc.nr_reclaimed) { 2381 do { 2382 reclaim_state.reclaimed_slab = 0; 2383 shrink_slab(nr_pages, sc.gfp_mask, 2384 global_reclaimable_pages()); 2385 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2386 } while (sc.nr_reclaimed < nr_pages && 2387 reclaim_state.reclaimed_slab > 0); 2388 } 2389 2390 2391 out: 2392 current->reclaim_state = NULL; 2393 2394 return sc.nr_reclaimed; 2395 } 2396 #endif /* CONFIG_HIBERNATION */ 2397 2398 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2399 not required for correctness. So if the last cpu in a node goes 2400 away, we get changed to run anywhere: as the first one comes back, 2401 restore their cpu bindings. */ 2402 static int __devinit cpu_callback(struct notifier_block *nfb, 2403 unsigned long action, void *hcpu) 2404 { 2405 int nid; 2406 2407 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2408 for_each_node_state(nid, N_HIGH_MEMORY) { 2409 pg_data_t *pgdat = NODE_DATA(nid); 2410 const struct cpumask *mask; 2411 2412 mask = cpumask_of_node(pgdat->node_id); 2413 2414 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2415 /* One of our CPUs online: restore mask */ 2416 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2417 } 2418 } 2419 return NOTIFY_OK; 2420 } 2421 2422 /* 2423 * This kswapd start function will be called by init and node-hot-add. 2424 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2425 */ 2426 int kswapd_run(int nid) 2427 { 2428 pg_data_t *pgdat = NODE_DATA(nid); 2429 int ret = 0; 2430 2431 if (pgdat->kswapd) 2432 return 0; 2433 2434 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2435 if (IS_ERR(pgdat->kswapd)) { 2436 /* failure at boot is fatal */ 2437 BUG_ON(system_state == SYSTEM_BOOTING); 2438 printk("Failed to start kswapd on node %d\n",nid); 2439 ret = -1; 2440 } 2441 return ret; 2442 } 2443 2444 static int __init kswapd_init(void) 2445 { 2446 int nid; 2447 2448 swap_setup(); 2449 for_each_node_state(nid, N_HIGH_MEMORY) 2450 kswapd_run(nid); 2451 hotcpu_notifier(cpu_callback, 0); 2452 return 0; 2453 } 2454 2455 module_init(kswapd_init) 2456 2457 #ifdef CONFIG_NUMA 2458 /* 2459 * Zone reclaim mode 2460 * 2461 * If non-zero call zone_reclaim when the number of free pages falls below 2462 * the watermarks. 2463 */ 2464 int zone_reclaim_mode __read_mostly; 2465 2466 #define RECLAIM_OFF 0 2467 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2468 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2469 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2470 2471 /* 2472 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2473 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2474 * a zone. 2475 */ 2476 #define ZONE_RECLAIM_PRIORITY 4 2477 2478 /* 2479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2480 * occur. 2481 */ 2482 int sysctl_min_unmapped_ratio = 1; 2483 2484 /* 2485 * If the number of slab pages in a zone grows beyond this percentage then 2486 * slab reclaim needs to occur. 2487 */ 2488 int sysctl_min_slab_ratio = 5; 2489 2490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2491 { 2492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2494 zone_page_state(zone, NR_ACTIVE_FILE); 2495 2496 /* 2497 * It's possible for there to be more file mapped pages than 2498 * accounted for by the pages on the file LRU lists because 2499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2500 */ 2501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2502 } 2503 2504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2505 static long zone_pagecache_reclaimable(struct zone *zone) 2506 { 2507 long nr_pagecache_reclaimable; 2508 long delta = 0; 2509 2510 /* 2511 * If RECLAIM_SWAP is set, then all file pages are considered 2512 * potentially reclaimable. Otherwise, we have to worry about 2513 * pages like swapcache and zone_unmapped_file_pages() provides 2514 * a better estimate 2515 */ 2516 if (zone_reclaim_mode & RECLAIM_SWAP) 2517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2518 else 2519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2520 2521 /* If we can't clean pages, remove dirty pages from consideration */ 2522 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2523 delta += zone_page_state(zone, NR_FILE_DIRTY); 2524 2525 /* Watch for any possible underflows due to delta */ 2526 if (unlikely(delta > nr_pagecache_reclaimable)) 2527 delta = nr_pagecache_reclaimable; 2528 2529 return nr_pagecache_reclaimable - delta; 2530 } 2531 2532 /* 2533 * Try to free up some pages from this zone through reclaim. 2534 */ 2535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2536 { 2537 /* Minimum pages needed in order to stay on node */ 2538 const unsigned long nr_pages = 1 << order; 2539 struct task_struct *p = current; 2540 struct reclaim_state reclaim_state; 2541 int priority; 2542 struct scan_control sc = { 2543 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2544 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2545 .may_swap = 1, 2546 .swap_cluster_max = max_t(unsigned long, nr_pages, 2547 SWAP_CLUSTER_MAX), 2548 .gfp_mask = gfp_mask, 2549 .swappiness = vm_swappiness, 2550 .order = order, 2551 .isolate_pages = isolate_pages_global, 2552 }; 2553 unsigned long slab_reclaimable; 2554 2555 disable_swap_token(); 2556 cond_resched(); 2557 /* 2558 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2559 * and we also need to be able to write out pages for RECLAIM_WRITE 2560 * and RECLAIM_SWAP. 2561 */ 2562 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2563 reclaim_state.reclaimed_slab = 0; 2564 p->reclaim_state = &reclaim_state; 2565 2566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2567 /* 2568 * Free memory by calling shrink zone with increasing 2569 * priorities until we have enough memory freed. 2570 */ 2571 priority = ZONE_RECLAIM_PRIORITY; 2572 do { 2573 note_zone_scanning_priority(zone, priority); 2574 shrink_zone(priority, zone, &sc); 2575 priority--; 2576 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2577 } 2578 2579 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2580 if (slab_reclaimable > zone->min_slab_pages) { 2581 /* 2582 * shrink_slab() does not currently allow us to determine how 2583 * many pages were freed in this zone. So we take the current 2584 * number of slab pages and shake the slab until it is reduced 2585 * by the same nr_pages that we used for reclaiming unmapped 2586 * pages. 2587 * 2588 * Note that shrink_slab will free memory on all zones and may 2589 * take a long time. 2590 */ 2591 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2592 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2593 slab_reclaimable - nr_pages) 2594 ; 2595 2596 /* 2597 * Update nr_reclaimed by the number of slab pages we 2598 * reclaimed from this zone. 2599 */ 2600 sc.nr_reclaimed += slab_reclaimable - 2601 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2602 } 2603 2604 p->reclaim_state = NULL; 2605 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2606 return sc.nr_reclaimed >= nr_pages; 2607 } 2608 2609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2610 { 2611 int node_id; 2612 int ret; 2613 2614 /* 2615 * Zone reclaim reclaims unmapped file backed pages and 2616 * slab pages if we are over the defined limits. 2617 * 2618 * A small portion of unmapped file backed pages is needed for 2619 * file I/O otherwise pages read by file I/O will be immediately 2620 * thrown out if the zone is overallocated. So we do not reclaim 2621 * if less than a specified percentage of the zone is used by 2622 * unmapped file backed pages. 2623 */ 2624 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2625 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2626 return ZONE_RECLAIM_FULL; 2627 2628 if (zone_is_all_unreclaimable(zone)) 2629 return ZONE_RECLAIM_FULL; 2630 2631 /* 2632 * Do not scan if the allocation should not be delayed. 2633 */ 2634 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2635 return ZONE_RECLAIM_NOSCAN; 2636 2637 /* 2638 * Only run zone reclaim on the local zone or on zones that do not 2639 * have associated processors. This will favor the local processor 2640 * over remote processors and spread off node memory allocations 2641 * as wide as possible. 2642 */ 2643 node_id = zone_to_nid(zone); 2644 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2645 return ZONE_RECLAIM_NOSCAN; 2646 2647 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2648 return ZONE_RECLAIM_NOSCAN; 2649 2650 ret = __zone_reclaim(zone, gfp_mask, order); 2651 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2652 2653 if (!ret) 2654 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2655 2656 return ret; 2657 } 2658 #endif 2659 2660 /* 2661 * page_evictable - test whether a page is evictable 2662 * @page: the page to test 2663 * @vma: the VMA in which the page is or will be mapped, may be NULL 2664 * 2665 * Test whether page is evictable--i.e., should be placed on active/inactive 2666 * lists vs unevictable list. The vma argument is !NULL when called from the 2667 * fault path to determine how to instantate a new page. 2668 * 2669 * Reasons page might not be evictable: 2670 * (1) page's mapping marked unevictable 2671 * (2) page is part of an mlocked VMA 2672 * 2673 */ 2674 int page_evictable(struct page *page, struct vm_area_struct *vma) 2675 { 2676 2677 if (mapping_unevictable(page_mapping(page))) 2678 return 0; 2679 2680 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2681 return 0; 2682 2683 return 1; 2684 } 2685 2686 /** 2687 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2688 * @page: page to check evictability and move to appropriate lru list 2689 * @zone: zone page is in 2690 * 2691 * Checks a page for evictability and moves the page to the appropriate 2692 * zone lru list. 2693 * 2694 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2695 * have PageUnevictable set. 2696 */ 2697 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2698 { 2699 VM_BUG_ON(PageActive(page)); 2700 2701 retry: 2702 ClearPageUnevictable(page); 2703 if (page_evictable(page, NULL)) { 2704 enum lru_list l = page_lru_base_type(page); 2705 2706 __dec_zone_state(zone, NR_UNEVICTABLE); 2707 list_move(&page->lru, &zone->lru[l].list); 2708 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2709 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2710 __count_vm_event(UNEVICTABLE_PGRESCUED); 2711 } else { 2712 /* 2713 * rotate unevictable list 2714 */ 2715 SetPageUnevictable(page); 2716 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2717 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2718 if (page_evictable(page, NULL)) 2719 goto retry; 2720 } 2721 } 2722 2723 /** 2724 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2725 * @mapping: struct address_space to scan for evictable pages 2726 * 2727 * Scan all pages in mapping. Check unevictable pages for 2728 * evictability and move them to the appropriate zone lru list. 2729 */ 2730 void scan_mapping_unevictable_pages(struct address_space *mapping) 2731 { 2732 pgoff_t next = 0; 2733 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2734 PAGE_CACHE_SHIFT; 2735 struct zone *zone; 2736 struct pagevec pvec; 2737 2738 if (mapping->nrpages == 0) 2739 return; 2740 2741 pagevec_init(&pvec, 0); 2742 while (next < end && 2743 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2744 int i; 2745 int pg_scanned = 0; 2746 2747 zone = NULL; 2748 2749 for (i = 0; i < pagevec_count(&pvec); i++) { 2750 struct page *page = pvec.pages[i]; 2751 pgoff_t page_index = page->index; 2752 struct zone *pagezone = page_zone(page); 2753 2754 pg_scanned++; 2755 if (page_index > next) 2756 next = page_index; 2757 next++; 2758 2759 if (pagezone != zone) { 2760 if (zone) 2761 spin_unlock_irq(&zone->lru_lock); 2762 zone = pagezone; 2763 spin_lock_irq(&zone->lru_lock); 2764 } 2765 2766 if (PageLRU(page) && PageUnevictable(page)) 2767 check_move_unevictable_page(page, zone); 2768 } 2769 if (zone) 2770 spin_unlock_irq(&zone->lru_lock); 2771 pagevec_release(&pvec); 2772 2773 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2774 } 2775 2776 } 2777 2778 /** 2779 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2780 * @zone - zone of which to scan the unevictable list 2781 * 2782 * Scan @zone's unevictable LRU lists to check for pages that have become 2783 * evictable. Move those that have to @zone's inactive list where they 2784 * become candidates for reclaim, unless shrink_inactive_zone() decides 2785 * to reactivate them. Pages that are still unevictable are rotated 2786 * back onto @zone's unevictable list. 2787 */ 2788 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2789 static void scan_zone_unevictable_pages(struct zone *zone) 2790 { 2791 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2792 unsigned long scan; 2793 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2794 2795 while (nr_to_scan > 0) { 2796 unsigned long batch_size = min(nr_to_scan, 2797 SCAN_UNEVICTABLE_BATCH_SIZE); 2798 2799 spin_lock_irq(&zone->lru_lock); 2800 for (scan = 0; scan < batch_size; scan++) { 2801 struct page *page = lru_to_page(l_unevictable); 2802 2803 if (!trylock_page(page)) 2804 continue; 2805 2806 prefetchw_prev_lru_page(page, l_unevictable, flags); 2807 2808 if (likely(PageLRU(page) && PageUnevictable(page))) 2809 check_move_unevictable_page(page, zone); 2810 2811 unlock_page(page); 2812 } 2813 spin_unlock_irq(&zone->lru_lock); 2814 2815 nr_to_scan -= batch_size; 2816 } 2817 } 2818 2819 2820 /** 2821 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2822 * 2823 * A really big hammer: scan all zones' unevictable LRU lists to check for 2824 * pages that have become evictable. Move those back to the zones' 2825 * inactive list where they become candidates for reclaim. 2826 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2827 * and we add swap to the system. As such, it runs in the context of a task 2828 * that has possibly/probably made some previously unevictable pages 2829 * evictable. 2830 */ 2831 static void scan_all_zones_unevictable_pages(void) 2832 { 2833 struct zone *zone; 2834 2835 for_each_zone(zone) { 2836 scan_zone_unevictable_pages(zone); 2837 } 2838 } 2839 2840 /* 2841 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2842 * all nodes' unevictable lists for evictable pages 2843 */ 2844 unsigned long scan_unevictable_pages; 2845 2846 int scan_unevictable_handler(struct ctl_table *table, int write, 2847 void __user *buffer, 2848 size_t *length, loff_t *ppos) 2849 { 2850 proc_doulongvec_minmax(table, write, buffer, length, ppos); 2851 2852 if (write && *(unsigned long *)table->data) 2853 scan_all_zones_unevictable_pages(); 2854 2855 scan_unevictable_pages = 0; 2856 return 0; 2857 } 2858 2859 /* 2860 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2861 * a specified node's per zone unevictable lists for evictable pages. 2862 */ 2863 2864 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2865 struct sysdev_attribute *attr, 2866 char *buf) 2867 { 2868 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2869 } 2870 2871 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2872 struct sysdev_attribute *attr, 2873 const char *buf, size_t count) 2874 { 2875 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2876 struct zone *zone; 2877 unsigned long res; 2878 unsigned long req = strict_strtoul(buf, 10, &res); 2879 2880 if (!req) 2881 return 1; /* zero is no-op */ 2882 2883 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2884 if (!populated_zone(zone)) 2885 continue; 2886 scan_zone_unevictable_pages(zone); 2887 } 2888 return 1; 2889 } 2890 2891 2892 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2893 read_scan_unevictable_node, 2894 write_scan_unevictable_node); 2895 2896 int scan_unevictable_register_node(struct node *node) 2897 { 2898 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2899 } 2900 2901 void scan_unevictable_unregister_node(struct node *node) 2902 { 2903 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2904 } 2905 2906